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Motivation

Motivation

Besoin de créer un isomorphisme entre :

produit de convolution

{f(t)} ∗ {g(t)}
⇔

produit de polynômes

F (s)G(s)
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Le produit de convolution (rappel)

Le produit de convolution (rappel)

Définition

{f(t)} ∗ {g(t)} :=

{∫ t

0
f(τ)g(t− τ)dτ

}
Propriétés

Commutativité

{f(t)} ∗ {g(t)} = {g(t)} ∗ {f(t)}

Associativité(
{f(t)} ∗ {g(t)}

)
∗ {h(t)} = {f(t)} ∗

(
{g(t)} ∗ {h(t)}

)
Distributivité par rapport à l’addition

{f(t)} ∗
(
{g(t)}+ {h(t)}

)
= {f(t)} ∗ {g(t)}+ {f(t)} ∗ {h(t)}
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La transformée de Laplace

La transformée de Laplace

Définition

F (s) = L ({f(t)}) :=

∫ ∞
0

f(τ)e−sτdτ
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Conséquence sur le produit de convolution

Conséquence sur le produit de convolution

L({f(t)} ∗ {g(t)}) =

∫ ∞
0

(∫ µ

0
f(τ)g(µ− τ)dτ

)
e−sµdµ

=

∫ ∞
0

∫ µ

0
f(τ)g(µ− τ)e−sµdτdµ

=

∫ ∞
0

∫ ∞
0

f(τ)g(µ− τ)e−sµdµdτ

Changement de variables ε = µ− τ et donc dε = dµ et µ = ε+ τ

L ({f(t)} ∗ {g(t)}) =

∫ ∞
0

∫ ∞
0

f(τ)g(ε)e−sεe−sτdεdτ

=

∫ ∞
0

f(τ)e−sτdτ

∫ ∞
0

g(ε)e−sεdε

= L({f(t)})L({g(t)})
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Dictionnaire

Dictionnaire élémentaire

Exponentielle

L
(
{eat}

)
=

∫ ∞
0

eaτe−sτdτ

=

∫ ∞
0

e(a−s)τdτ =

[
1

a− s
e(a−s)τ

]∞
0

= 0− 1

a− s
=

1

s− a

Dr. Ph. Mullhaupt Commande des systèmes dynamiques SIE 7 / 23



Dictionnaire

Dictionnaire élémentaire

Sinus

{sin(t)} =
{ejt} − {e−jt}

2j

L ({sin(t)}) =
1

2j

(
1

s− j
− 1

s+ j

)
=

1

2j

s+ j − s+ j

s2 + 1

=
1

s2 + 1
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Dictionnaire

Dictionnaire élémentaire

Cosinus

{cos(t)} =
{ejt}+ {e−jt}

2

L ({cos(t)}) =
1

2

(
1

s− j
+

1

s+ j

)
=

1

2

s+ j + s− j
s2 + 1

=
s

s2 + 1
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Grammaire

Grammaire élémentaire

Décalage en s

e−λtf(t)↔ F (s+ λ)

Démonstration

F (s+ λ) =

∫ ∞
0

f(τ)e−(s+λ)τdτ

=

∫ ∞
0

e−λτf(τ)e−sτdτ

↔ e−λtf(t)
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Grammaire

Grammaire élémentaire

Décalage dans le temps

ε(t− λ)f(t− λ)↔ e−λsF (s)

Démonstration

e−λsF (s) = e−λs
∫ ∞
0

f(τ)e−sτdτ =

∫ ∞
0

f(τ)e−s(τ+λ)dτ

(remarque : µ = λ+ τ , τ = 0⇒ µ = λ, dµ = dτ )

=

∫ ∞
λ

f(τ)e−sµdµ

=

∫ ∞
λ

f(µ− λ)e−sµdµ =

∫ ∞
0

ε(µ− λ)f(µ− λ)e−sµdµ

↔ ε(t− λ)f(t− λ)
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Grammaire

Grammaire élémentaire

Mise à l’échelle de la variable temporelle

ωτ = µ, dτ = 1
ωdµ

L({f(ωt)}) =

∫
f(ωτ)e−sτdτ

=
1

ω

∫
f(µ)e−s

µ
ω dµ

=
1

ω
F
( s
ω

)
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Grammaire

Grammaire élémentaire

Techniques de démonstrations
intégration par partie

avec Ψ =
∫
ψ et Φ =

∫
φ, on a∫

Ψφ+

∫
ψΦ = [ΨΦ]

et donc∫
Ψφ = [ΨΦ]−

∫
ψΦ

et∫
ψΦ = [ΨΦ]−

∫
Ψφ
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Grammaire

Grammaire élémentaire

Dérivation

{f ′(t)} ↔ sF (s)− f(0)

Démonstration

L
(
{f ′(t)}

)
=

∫ ∞
0

f ′(τ)e−sτdτ

=

∫
ψΦ avec ψ = f ′(τ) Φ = e−sτ

= [ΨΦ]−
∫

Ψφ

=
[
f(τ)e−sτ

]∞
0

+ s

∫ ∞
0

f(τ)e−sτdτ

↔ 0− f(0) + sF (s)
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Grammaire

Grammaire élémentaire

Intégration

L
({∫ t

0
f(τ)dτ

})
↔ 1

s
F (s)

Démonstration

L
({∫ t

0
f(µ)dµ

})
=

∫ ∞
0

{∫ τ

0
f(µ)dµ

}
e−sτdτ

=

∫
Ψφ = [ΨΦ]−

∫
ψΦ

=

[∫ τ

0
f(µ)dµ(−1

s
)e−sτ

]∞
0

+
1

s

∫ ∞
0

f(τ)e−sτdτ

↔ 0− 0 +
1

s
F (s)
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Transformée de Laplace inverse

Transformée de Laplace inverse

Soit f(t) une fonction f(.) : R→ R de croissance bornée par une
exponentielle |f(t)| ≤ Ceat, ∀t, avec a,C ∈ R+.

Formule de Mellin

f(t) =
1

2πj

∫ x+j∞

x−j∞
F (s)estds, x > a
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Transformée de Laplace inverse Série de Fourier

Série de Fourier

Soit f(t) une fonction périodique de période T , c.-à-d.
f(t+ T ) = f(t),∀t.

Représentation

f(t) =

∞∑
k=−∞

cke
j 2kπ
T
t ck ∈ C

ck =

∫ t+T

t
f(τ)e−j

2kπ
T
τdτ
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Transformée de Laplace inverse Transformée de Fourier

Transormée de Fourier

Soit f(.) : R→ R une fonction éventuellement discontinue mais de
croissance bornée par une exponentielle |f(t)| < Ceat, ∀t > 0 avec
a,C ∈ R+.

Représentation

f(t) =
1

2π

∫ +∞

−∞
G(jω)ejωtdω

G(jω) =

∫ ∞
−∞

f(τ)e−jωτdτ

Attention : La transformation ne converge pas forcément aux points
de discontinuité.
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Transformée de Laplace inverse Transformée de Fourier

Transformation de Laplace inverse

Démonstration de la formule de Mellin
Soit x > a un nombre réel fixe et soit la fonction auxiliare

φ(t) := e−xtf(t)

Elle admet une transformation de Fourier et donc

φ(t) =
1

2π

∫ +∞

−∞

(∫ +∞

−∞
φ(τ)ejω(t−τ)dτ

)
dω

Ainsi, étant donné que f(τ) ≡ 0 pour τ < 0,

e−xtf(t) =
1

2π

∫ ∞
−∞

(∫ ∞
−∞

e−xτf(τ)ejω(t−τ)dτ

)
dω

=
1

2π

∫ ∞
−∞

ejωt
(∫ ∞

0
e−(x+jω)tf(τ)dτ

)
dω
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Transformée de Laplace inverse Transformée de Fourier

Transformation de Laplace inverse

Démonstration de la formule de Mellin (suite)
En posant s = x+ jω

f(t) =
1

2π

∫ ∞
−∞

F (s)e(x+jω)tdω =
1

2πj

∫ x+j∞

x−j∞
F (s)estds

L’intégrale est effectuée dans le plan complexe le long d’une droite
verticale parallèle à l’axe imaginaire et passant par la valeur rélle x.
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Transformée de Laplace inverse Transformée de Fourier

Dictionnaire étendu

1 ε(t)↔ 1
s <s > 0

2 δ(t)↔ 1
3 tn ↔ n!

sn+1 <s > 0
4 eat ↔ 1

s−a <s > <a
5 sin(ωt)↔ ω

s2+ω2 <s > |=ω|
6 cos(ωt)↔ s

s2+ω2 <s > |=ω|
7 sinh(λt)↔ λ

s2−λ2 <s > <λ
8 cosh(λt)↔ s

s2−λ2 <s > <λ
9 tneat ↔ n!

(s−a)n+1 <s > <a
10 t sin(ωt)↔ 2sω

(s2+ω2)2
<s > |=ω|

11 t cos(ωt)↔ s2−ω2

(s2+ω2)2
<s > |=ω|

12 eλt sin(ωt)↔ ω
(s−λ)2+ω2 <s > (<λ+ |=ω|)

13 eλt cos(ωt)↔ s−λ
(s−λ)2+ω2 <s > (<λ+ |=ω|)
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Transformée de Laplace inverse Transformée de Fourier

Grammaire étendue

1 f(t)↔ F (s)

2
∑n

i=1 kifi(t)↔
∑n

i=1 kiFi(s) ki ∈ R
3 f(ωt)↔ 1

ωF
(
s
ω

)
ω ∈ R+

4 e−λtf(t)↔ F (s+ λ)

5 ε(t− τ)f(t− τ)↔ e−sτF (s)

6 f (n)(t)↔ sn
(
F (s)− f(0)

s − . . .−
f (n−1)(0)

sn

)
7
∫ t
0 f(τ)dτ ↔ 1

sF (s)

8 (−1)ntnf(t)↔ F (n)(s)

9 limt→∞ f(t)↔ lims→0[sF (s)]

10 limt→0 f(t)↔ lims→∞[sF (s)]

11
∫ t
0 f(τ)g(t− τ)dτ ↔ F (s)G(s)

12
∫∞
s F (p)dp↔ f(t)

t
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Justification de l’isomorphisme

Justification de l’isomorphisme

L’algèbre des polynômes est intègre
Fait bien connu
Un polynôme non nul n’admet pas de diviseur de zéro
Autrement dit si

F (s)G(s) = 0 ⇒ F (s) = 0 ou G(s) = 0

Th. de Titmarsch : l’algèbre de convolution est intègre

Fait non complètement trivial
L’algèbre de convolution n’a pas de diviseur de zero
Autrement dit si

a ∗ b = 0 ⇒ a = 0 ou b = 0
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