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Objectif

Objectif : critere de stabilité de la boucle fermée

Avec plusieurs avantages :

@ Pas besoin de calculer les pbles en boucle fermée
(pas besoin de calculer les racines de AR + BS avec K = £ et
G =23

@ Utilisation uniquement du transfert en boucle ouverte
(utilisation directe de KG)

@ Il faut seulement connaitre le nombre de pbles instables de la

boucle ouverte
(le nombre de racines instables de AR)

@ Rend possible la synthese en “sculptant” la boucle ouverte (cf.
lecon sur le diagramme de Bode)
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Boucle ouverte et boucle fermée

Boucle ouverte

Schéma de commande en boucle ouverte

O K(s) O G(s) Y (s)
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Boucle ouverte et boucle fermée

Transfert en boucle ouverte

Transfert en boucle ouverte
(régulateur et systéme a régler)

S(s) B(s)
R(s) A(s)

K(s)G(s) =

Péles en boucle ouverte (régulateur et systeme)
Ce sont les zéros de
A(s)R(s)
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Boucle ouverte et boucle fermée

Boucle fermée

Schéma de commande en boucle fermée

Y. (s) — K(s) pOA  G(s) Y (s)
_ +
v
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Boucle ouverte et boucle fermée

Transferts en boucle fermée

Asservissement et régulation
@ Asservissement

K(s)G(s) _ B(s)5(s)
L+ K(s)G(s)  A(s)R(s) + B(s5)5(s)

@ Régulation

G(s) B(s)R&)

1+ K(s)G(s) A(s)R(s) + B(s)S(s)

Péles en boucle fermée
Les deux transferts ont le méme polynéme au dénominateur

A(s)R(s) + B(s)S(s)

qui détermine les p6les en boucle fermée
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Diagramme de Nyquist

Le diagramme de Nyquist
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Critere de Nyquist simplifié

Critere de Nyquist simplifié

(pas de pble instable dans la boucle ouverte KG)

Boucle fermée stable si le point —1 n’est pas encerclé par K (jw)G(jw)

~~~~~
.

C 2
S

e

150

53 + 952 + 265 + 24
150

(s+2)(s+3)(s+4)
150

(s —p1)(s —p2)(s — p3)

K(s)G(s) =
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Critere de Nyquist simplifié

Vérification du critéere de Nyquist simplifié

Calculons les pbles de la boucle fermée

N
K145y
K(s)G(s) B 150
1+ K(s)G(s)  s34+9s2+26s+174 A S
g%
A(s)R(s) + B(s)S(s) = s>+ 9s%+ 265+ 174 ’11’5'{

(5 + 8.38)(s + 0.31 + 4.557) (s + 0.31 — 4.55)
= (s—p1)(s —p2)(s —p3)

Les pdles en boucle fermée sont tous dans le demi-plan gauche
(pi € C_,i=1,2,3)
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Critere de Nyquist simplifié

(pas de pble instable dans la boucle ouverte KG)

Boucle fermée instable si le point —1 est encerclé par K (jw)G(jw)

350
K(s)G(s) =
(5)G(s) $3 + 952 + 265 + 24
B 350
- (s+2)(s+3)(s+4)
B 350

(s —p1)(s —p2)(s — p3)

s

“iok

10
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Critere de Nyquist simplifié

Vérification du critéere de Nyquist simplifié

Calculons les pbles de la boucle fermée /

N
541
K(s)G(s) B 350 105t
1+ K(s)G(s)  s3+9s2+26s+374 % - —>
- 90\
/
A(s)R(s) + B(s)S(s) = s>+ 9s%+ 265+ 374 ,..(,05 %

= (s+10.1)(s — 0.55 — 6.067)(s — 0.55 + 6.067)
= (s—p1)(s —p2)(s —p3)

Les pbles po = 0.55 + 6.065 et p3 = 0.55 — 6.065 conduisent a une
instabilité car ils appartiennent a C;
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Critere de Nyquist simplifié

ATTENTION

@ La boucle ouverte n’est pas utilisée en pratique (dans ce chapitre)
@ Elle sert uniguement a des fins d’analyse et de synthése
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Transformation d’un contour par une application méromorphe

Polynémes, fonctions entiéres, fonctions analytiques

Un polynébme est une somme finie de monémes

F(s):Zaisi seC
i=0

Une fonction entiére est une somme infinie de monémes, dont la
somme est convergente partout (pour tout s € C)

F(s) = i a;s'
=0

Condition < pour la convergence dans tout C

1
i

'lim (]az\) =0
1—00
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Transformation d’un contour par une application méromorphe

Polynémes, fonctions entiéres, fonctions analytiques

Une fonction analytique est localement une fonction entiére
Dans unouvertV Cc C

F(s) = Zai(so)(s — 50)" Vso € V ai(sg) € C
=0

@ La série converge dans un disque centré en s, de rayon r(sg)
(qui peut étre petit)
@ Le disque de convergence doit étre inclut dans V
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Transformation d’un contour par une application méromorphe

Fonction méromorphe

Définition (utilisée dans ce chapitre)
C’est une fraction de deux fonctions entieres J

Définition parfois rencontrée
Localement définie par une fraction de deux fonctions analytiques J

m

16/36

Dr. Ph. Mullhaupt Commande des systemes dynamiques S



Transformation d’un contour par une application méromorphe

Exemples de fonctions méromorphes

Polynéme

s+3+3s2+3s+1

Fraction de deux polynémes

s+ 2
s24+2s+1

A l'aide de fonctions entiéres bien connues

sin(s) e’

$24+s+1 cos(s)

A l'aide du critere de convergence pour les fonctions entieres
25+ 3 1+ 2

S aist Y i+ 2)) 2
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Transformation d’un contour par une application méromorphe

Principe de I'argument

Contour I délimitant une région simplement connexe

Soit I un contour dans la plan complexe qui entoure une région
simplement connexe.
I" est orientée

Fonction méromorphe
Soit F'(s) une fonction méromorphe

Principe de I'argument de Cauchy
arg F(I') = 2n(Z — P)

Z est le nombre de zéros de F'(s) a l'intérieur de '
P est le nombre de plles de F(s) a l'intérieur de I'
le signe + correspond a la méme orientation que celle de T’

v
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Transformation d’un contour par une application méromorphe

Transformation d’'un contour par une fraction rationnelle

X+ )y =S -
e ‘l‘w: o)w )t ) Yinfw)=S

. (s+1.1)2+0.22
X (s +0.5)3

-
— -
X+
AT _ =
trois poles a l'intérieur du contour trois tours dans le sens trig. — autour de 0
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Transformation d’un contour par une application méromorphe

Transformation d’'un contour par une fraction rationnelle

I=ev we0;27]

Dr. Ph. Mullhaupt Commande des systemes dynamiques SIE 20/36



Transformation d’un contour par une application méromorphe

Transformation d’'un contour par une fraction rationnelle

I=e% we|0;27]
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Transformation d’un contour par une application méromorphe

Transformation d’'un contour par une fraction rationnelle

[ = (1+0.2cos(8w))e’*  w € [0;27]
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Transformation d’un contour par une application méromorphe

Transformation d’un contour par une fonction méromorphe

I=ev we|0;27]

sin(22s)
= f 0.5s -1
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Transformation d’un contour par une application méromorphe

Esquisse de la démonstration

Iw)

est une courbe qui délimite une région simplement connexe ayant ainsi
un intérieur et un extérieur

La courbe I'(w) est paramétrée par w € [0; 27|

F(s) contient
@ mzéros z;,i=1,...,m
@ npdlesp;,i=1,....n
@ les Z premiers zéros sont a l'intérieur de I'(w)
@ les P premires pbles sont a l'intérieur de I'(w)
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Transformation d’un contour par une application méromorphe

Esquisse de la démonstration

F(s) est une fraction rationnelle

(8 —pi)
Z m
arg(F(I") = Z arg(l" — s; Z arg(I" — ;)
=1 i=Z+1
P n
- Zarg I'—pi) — Z arg(I' — p;)
i= i=P+1
Z P
= Z arg(I' — s;) — Z arg(I" — p;)
i=1 i=1

org(F(T(©)))ucpozy = 27(Z— P)
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Application méromorphe particuliére : 1 + KG

Application et contour particulier

Contour particulier

I" est le contour qui délimite tout le demi-plan complexe C..

Ainsi, on suit 'axe +jw,w € [0; +oc] et I'on encercle le demi-plan en
tournant autour de l'infini et on revient le long de 'axe —jw avec

w = [0; +oc]. On délimite bien une région simplement connexe qui est
tout C,. avec le contour T’

Application particuliere

F(s) =1+ K(s)G(s)

¢ F&/)= 1+ K(5)665)
> 5 =
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Application méromorphe particuliére : 1 + KG

Application et contour particulier

[ = +jw

T DG -6 1961
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Application méromorphe particuliére : 1 + KG

Application du principe de I’argument

Le principe appliqué aT et F(s) = 1 + KG donne
Z—P=N

N est le nombre de tours de

1+ K(D)G() =1+ K (jw)G(jw)

autour de l'origine 0
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Application méromorphe particuliére : 1 + KG

Application du principe de I’argument

Z
Nombre de zéros de 1 + KG dans C

B S(s) B(s)  A(s)R(s)+ B(s)S(s)
PEREGE =1 20 A = A9)R()

Nombre de zéros de AR + B.S, nombre de péles de la boucle fermée
e Cy

P
Nombre de pdles de 1 + KG dans C

A(s)R(s) + B(s)S(s)

1+ K(s)G(s) = A(S)R(s)

Nombre de zéros de AR, nombre de plles de la boucle ouverte € C
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Critére de Nyquist généralisé

Critére de Nyquist généralisé

On dessine K (jw)G(jw) dans C, w € [—o0; +00]
@ Z :nombre de zéros de AR + BS (pbles b.f.) dans C

@ P :nombre de zéros de AR (pbles b.o.) dans C,.
@ N :nombre de tours de K (jw)G(jw) autour de —1

iy o [e KE

Critere de Nyquist généralisé
yausta = il Al
N=Z-P 8o,
A1

Z2eo0s A /K6 /.:—: /:/4/ de to BF
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Critére de Nyquist généralisé

Critére de Nyquist généralisé

K(jw)G(jw)
I'=+jw .

KG

—
150
(s+1)(s = 2)(s+3)(s +4)
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Exemple : bille sur une roue

Exemple : bille sur une roue

Fonction de transfert
1 4

701 (wlor)i- o)

G(s) =

Régulateur

K(s) = K(1+4s)
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Exemple : bille sur une roue

Exemple : bille sur une roue

Nombre de péles instables en boucle ouverte
@ 1 péle instable p; = v/0.1. Ainsi P =1

Le critére de stabilité de Nyquist généralisé détermine N

@ P =1 (1 pble instable en boucle ouverte)
Z =0 (0 pbles de la boucle fermées dans C)
Calculons N (le nombre de tours autour de —1).

N = Z-P
-1 = 0-1

@ K(jw)G(jw) doit encercler le point —1 une fois pour assurer la
stabilité en boucle fermée
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Transformation méromorphe artistique

Une transformation méromorphe artistique

Etoile a N branches — transformation méromor

s =1+0.2cos(Nw)

N=1,2,34,...,70  wel0,2n7]

sin(220 e/ (1 + 0.2 cos(Nw))
1.94 e%(1 + 0.2 cos(Nw))
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