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Problème 1 (4 pts)

Calculer la transformée de Laplace des quantités suivantes :

f (t) = ε(t)e−4t cos(4t + 2) (1)

g(t) = ε(t)(t + 1)e−2t cos(3t) (2)

Indication : cos(a + b) = cos(a) cos(b)− sin(a) sin(b)

Corrigé.

0.1 Partie A (1.5 pts)

En utilisant la première indication, la fonction devient (0.25 pt) :

f (t) = ε(t)e−4t cos(4t + 2) = ε(t)e−4t[cos(4t) cos(2)− sin(4t) sin(2)] (3)

Qui peut se réécrire sous la forme :
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f (t) = ε(t)e−4t cos(4t) cos(2)− ε(t)e−4t sin(4t) sin(2) (4)

Des règles 7 et 8 du dictionnaire, nous savons que :

L[ε(t)e−αt cos(ωt)] =
s + α

(s + α)2 + ω2 L[ε(t)e−αt(sin(ωt)] =
ω

(s + α)2 + ω2 (5)

Dans notre cas, nous obtenons ainsi (1 pt) :

F(s) = L[ f (t)] = cos(2)
s + 4

(s + 4)2 + 16
− sin(2)

4
(s + 4)2 + 16

(6)

Cette expression se met sous la forme (0.25 pt) :

F(s) =
cos(2)(4 + s)− 4 sin(2)

s2 + 8s + 32
(7)

0.2 Partie B (2.5 pts)

En développant la multiplication, nous obtenons ainsi (0.25 pt) :

g(t) = ε(t)te−2t cos(3t) + ε(t)e−2t cos(3t) (8)

De la règle 7 du dictionnaire, nous savons que :

L[ε(t)e−αt cos(ωt)] =
s + α

(s + α)2 + ω2 (9)

En appliquant cette règle au second terme de la fonction, nous trouvons (0.5 pt) :

L[ε(t)e−2t cos(3t)] =
s + 2

(s + 2)2 + 9
=

s + 2
s2 + 4s + 13

(10)

Pour calculer la transformée de Laplace, nous utilisons la règle 8 de la grammaire, avec n = 1
(0.25 pt) :
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tg(t) =
−dG(s)

ds
(11)

G(s) ayant déjà été déterminé précédemment, nous pouvons calculer sa dérivée (0.5 pt) :

dG(s)
ds

=
d
ds
(

s + 2
s2 + 4s + 13

) =
(s2 + 4s + 13)− (s + 2)(2s + 4)

(s2 + 4s + 13)2 (12)

En développant le produit, nous obtenons finalement (0.25 pt) :

dG(s)
ds

= − s2 + 4s− 5
(s2 + 4s + 13)2 ↔

−dG(s)
ds

=
s2 + 4s− 5

(s2 + 4s + 13)2 (13)

En additionnant les deux transformées, nous trouvons ainsi (0.5 pt) :

G(s) = L[g(t)] = s2 + 4s− 5
(s2 + 4s + 13)2 +

s + 2
s2 + 4s + 13

(14)

Mise sous le même dénominateur, l’expression devient :

G(s) =
s2 + 4s− 5 + (s + 2)(s2 + 4s + 13)

(s2 + 4s + 13)2 =
s2 + 4s− 5 + s3 + 6s2 + 21s + 26

(s2 + 4s + 13)2 (15)

Qui se simplifie finalement sous la forme (0.25 pt) :

G(s) =
s3 + 7s2 + 25s + 21
(s2 + 4s + 13)2 (16)

Problème 2 (4 pts)

Calculer la transformée de Laplace inverse des quantités suivantes :
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F(s) = e−2s s2 + s + 1
s2 + 5s + 6

(17)

G(s) =
s2 + 2s + 4

s3 + 5s2 + 8s + 4
(18)

Corrigé.

0.3 Partie A (2.25 pts)

Commençons par omettre le terme exponentiel. A l’aide d’une division polynômiale, nous
obtenons (0.5 pt) :

1
x2 + 5x + 6

)
x2 + x + 1

− x2 − 5x− 6
− 4x− 5

Notre fraction se réécrit donc sous la forme :

s2 + s + 1
s2 + 5s + 6

= 1 +
−4s− 5

s2 + 5s + 6
(19)

En essayant successivement plusieurs valeurs, nous trouvons que s = −2 et s = −3 an-
nulent le dénominateur. Ce dernier se factorise donc comme suit (0.25 pt) :

s2 + 5s + 6 = (s + 2)(s + 3) (20)

A l’aide de la décomposition en éléments simples, nous obtenons :

1 +
−4s− 5

(s + 2)(s + 3)
= 1 +

A
s + 2

+
B

s + 3
(21)
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La valeur de A peut être obtenue à l’aide de la méthode des résidus (0.25 pt) :

A = lim
s→−2

−4s− 5
s + 3

=
8− 5
−2 + 3

=
3
1
= 3 (22)

La valeur de B peut également être obtenue à l’aide de la méthode des résidus (0.25 pt) :

B = lim
s→−3

−4s− 5
s + 2

=
12− 5
−3 + 2

=
7
−1

= −7 (23)

La transformée de Laplace inverse à calculer, sans le terme exponentiel, prend donc la
forme :

F′(s) = 1 +
3

s + 2
− 7

s + 3
(24)

Des règles 2 et 4 du dictionnaire, nous savons que :

L−1[1] = δ(t) L−1[
1

s + α
] = ε(t)e−αt (25)

La transformée de Laplace inverse de cette expression s’exprime donc sous la forme (0.5 pt) :

f ′(t) = L−1[F′(s)] = δ(t) + ε(t)[3e−2t − 7e−3t] (26)

Afin de tenir compte du décalage, la règle 5 de la grammaire indique que :

L−1[e−sτF(s)] = ε(t− τ) f (t− τ) (27)

En tenant compte de ce décalage, nous obtenons finalement la transformée de Laplace in-
verse suivante (0.5 pt) :

f (t) = L−1[F(s)] = δ(t− 2) + ε(t− 2)[3e−2(t−2) − 7e−3(t−2)] (28)

Qui peut se réécrire sous la forme :

f (t) = δ(t− 2) + ε(t− 2)[3e−2t+4 − 7e−3t+6] (29)
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0.4 Partie B (1.75 pts)

En essayant successivement plusieurs valeurs, nous trouvons que s = −1 et s = −2 an-
nulent le dénominateur. Ce dernier se factorise donc comme suit (0.25 pt) :

s3 + 5s2 + 8s + 4 = (s + 1)(s + 2)2 (30)

A l’aide de la décomposition en éléments simples, nous obtenons ainsi :

s2 + 2s + 4
(s + 1)(s + 2)2 =

A
s + 1

+
B

s + 2
+

C
(s + 2)2 (31)

La valeur de A peut être obtenue à l’aide de la méthode des résidus (0.25 pt) :

A = lim
s→−1

s2 + 2s + 4
(s + 2)2 =

1− 2 + 4
1

=
3
1
= 3 (32)

La valeur de B peut être obtenue à l’aide de la méthode des résidus (0.5 pt) :

B = lim
s→−2

d
ds
(

s2 + 2s + 4
s + 1

) = lim
s→−2

s2 + 2s− 2
(s + 1)2 =

4− 4− 2
1

=
−2
1

= −2 (33)

La valeur de C peut être obtenue à l’aide de la méthode des résidus (0.25 pt) :

C = lim
s→−2

s2 + 2s + 4
s + 1

=
4− 4 + 4
−1

=
4
−1

= −4 (34)

La transformée de Laplace inverse à calculer prend donc la forme :

G(s) =
3

s + 1
− 2

s + 2
− 4

(s + 2)2 (35)

Des règles 4, et 12 du dictionnaire, nous savons que :

L−1[
1

s + α
] = ε(t)e−αt L−1[

1
(s + α)n+1 ] =

ε(t)tne−αt

n!
(36)
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La transformée de Laplace inverse cherchée s’exprime donc sous la forme (0.5 pt) :

g(t) = L−1[G(s)] = ε(t)[3e−t − 2e−2t − 4te−2t] (37)

Problème 3 (7 pts)

Considérons un système dont l’entrée est une impulsion de Dirac u(t) = δ(t).

1. Déterminer la fonction de transfert garantissant la sortie y(t) = 1
2 ε(t)− 1

2 e−6t (1 pt).

2. Dimensionner un régulateur proportionnel dérivé (PD), tel que le système en boucle
fermée d’asservissement ait deux pôles réels en−2 et−4. Donner la fonction de trans-
fert en boucle fermée correspondante. Considérer G(s) = 3

s(s+6) si vous n’avez pas
réussi le point précédent (2.5 pts).

Considérons maintenant la fonction de transfert G(s) = 10
s3+s2−14s−24 , bouclée par un régulateur

proportionnel (P).

1. A l’aide du critère de Nyquist, d’eterminer par calcul - et non pas par la méthode
graphique - le gain Kp minimum garantissant la stabilité de la boucle fermée. Pour
vous aider, le tracé du diagramme de Nyquist est présenté à la Figure 1, où l’étoile
symbolise le point (0,0) (3.5 pts).

NB : Cette question est indépendante des deux précédentes.

Corrigé.

0.5 Partie A (1 pt)

La relation liant l’entrée à la sortie est donnée par (0.25 pt) :
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Y(s) = U(s)G(s)↔ G(s) =
Y(s)
U(s)

(38)

La transformée de Laplace de l’entrée est donnée par (0.25 pt) :

U(s) = L[u(t)] = L[δ(t)] = 1 (39)

La transformée de Laplace de la sortie est donnée par (0.25 pt) :

Y(s) = L[y(t)] = L[1
2

ε(t)− 1
2

e−6t] =
1
2s
− 1

2(s + 6)
=

3
s(s + 6)

(40)

La fonction de transfert garantissant une telle sortie est donc de la forme (0.25 pt) :

G(s) =
Y(s)
U(s)

=

3
s(s+6)

1
=

3
s(s + 6)

(41)
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0.6 Partie B (2.5 pts)

Les deux pôles devant être en−2, et−4, le dénominateur de la nouvelle fonction de transfert
s’exprime sous la forme (0.5 pt) :

(s + 2)(s + 4) = s2 + 6s + 8 (42)

La fonction de transfert en boucle fermée d’asservissement est donnée par (0.25 pt) :

Gb f ,yc→y =
K(s)G(s)

1 + K(s)G(s)
(43)

S’agissant d’un régulateur proportionnel dérivé, nous avons la relation suivante (0.25 pt) :

K(s) = Kp(1 + sTd) (44)

L’équation (43) devient donc (0.25 pt) :

Gb f ,yc→y =
Kp(1 + sTd)G(s)

1 + Kp(1 + sTd)G(s)
(45)

En injectant la valeur de G(s), nous obtenons (0.25 pt) :

Gb f ,yc→y =
Kp(1 + sTd)

3
s(s+6)

1 + Kp(1 + sTd)
3

s(s+6)

(46)

Qui peut se réécrire sous la forme :

Gb f ,yc→y =
3Kp(1 + sTd)

s2 + 6s + 3Kp(1 + sTd)
(47)

En égalisant le dénominateur de l’équation (47) avec l’équation (42), nous obtenons (0.25
pt) :

s2 + 6s + 8 = s2 + s(6 + 3KpTd) + 3Kp (48)
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Par inspection directe, nous trouvons que Kp = 8
3 (0.25 pt). En remplaçant cette valeur dans

(48), l’équation en s devient :

6s = s(6 + 3
8
3

Td)↔ 6s = s(6 + 8Td) (49)

En résolvant ce système, nous obtenons finalement Td = 0 (0.25 pt). La fonction de transfert
en boucle fermée d’asservissement s’exprime donc sous la forme (0.25 pt) :

Gb f ,yc→y =
38

3(1− 0s)
s2 + 6s + 8

=
8

s2 + 6s + 8
(50)

Remarque : Td prenant une valeur nulle, le régulateur utilisé n’est finalement qu’un ”simple”
régulateur proportionnel.
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0.7 Partie C (3.5 pts)

En essayant successivement plusieurs valeurs, nous trouvons que les pôles de la fonction de
transfert sont s1 = −2, s2 = −3 et s3 = 4 (0.25 pt). Le pôle s3 ayant une partie réelle positive,
le système est donc instable (0.25 pt).

Le système possédant un pôle instable en boucle ouverte, nous avons P = 1 (0.25 pt) Comme
nous ne souhaitons aucun pôle instable en boucle fermée, nous imposons Z = 0 (0.25 pt). A
l’aide du critère de Nyquist généralisé, nous obtenons ainsi :

N = Z− P = 0− 1 = −1 (51)

KpG(jω) doit donc entourer une fois le point −1 (0.25 pt).

Afin de déterminer le gain maximum Kp, il faut calculer l’intersection de G(jω) avec l’axe
réel, autrement dit quand la partie imaginaire vaut zéro (0.25 pt). Dans notre cas, nous avons
(0.5 pt) :

G(jω) =
10

(jω)3 + (jω)2 − 14jω− 24
=

10
−jω3 −ω2 − 14jω− 24

(52)

La partie imaginaire est nulle lorsque la partie imaginaire du dénominateur vaut zéro, au-
trement dit si (0.25 pt) :

−ω3 − 14ω = −ω(ω2 + 14) = 0 (53)

Ceci se produit lorsque ω = 0, ainsi que lorsque ω = ±
√

14 (0.25 pt).

La partie réelle est la plus négative lorsque ω = 0 (0.25 pt). En insérant cette valeur, nous
obtenons (0.25 pt) :

G(j0) =
10

−(0)2 − 24
=

10
−24

= − 5
12

(54)

Ainsi, le gain limite avant d’encercler le point −1 est donné par Kp
5

12 = 1 ↔ Kp = 12
5 (0.25

pt). Afin de garantir la stabilité en boucle fermée, il faut donc imposer Kp > 12
5 (0.25 pt).
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Problème 4 (7 pts)

Un écosystème comporte deux espèces dont la densité de la première espèce est représentée
par la variable x1 et celle de la seconde par la variable x2. Un modéle de la dynamique est
donné par le système d’équations différentielles non linéaires suivant

ẋ1 = −a x1 + b1 x1x2 (55)
ẋ2 = +r x2 − b2 x1x2 + u (56)

On peut agir sur l’évolution de la densité de la seconde population par l’entremise de
l’entrée u. (Application numérique a = 1, r = 2, b1 = b2 = 1

2 .)

En absence d’entrée u = 0, on remarque plusieurs points d’équilibre, par exemple

I. x̄1 = x̄2 = 0

II. x̄1 = r
b2

, x̄2 = a
b1

Ceci a été vu au cours (renards - lapins).

1. Linéariser la dynamique autour du point d’équilibre II. pour obtenir une matrice A
en fonction de a, b1, b2 et r.

2. Déterminer la fonction de transfert résultante G(s) = Y(s)
U(s) en fonction de a, b1, b2 et r

si on pose comme sortie y = x2 − x̄2 = x2 − a
b1

= ∆x2.

3. Déterminer la fréquence d’oscillation de la population x2 (lapins).

4. Proposer une stratégie de commande u pour déplacer le point d’équilibre sans chan-
ger la fréquence de l’oscillation. Justfifier votre réponse. Est-ce qu’il est possible de
modifier le point d’équilibre dans tout le plan x1, x2 ?

5. Proposer un régulateur pour changer la fréquence d’oscillation pour la doubler. On
mesure x2. (INDICATION : utiliser un régulateur proportionnel, le gain pouvant être
négatif, i.e. feedback positif.)

6. Proposer un observateur de la dynamique linéarisée pour estimer la population x1
(renards) qui ne mesure que x2 (lapins). Donner les équations différentielles de l’ob-
servateur sans calculer les gains de celui-ci.

Corrigé.
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1. Linéarisation.
En posant ∆x1 = x1 − x̄1 et ∆x2 = x2 − x̄2 avec x̄1 = r

b2
= 4 et x̄2 = a

b1
= 2, on a en posant

f1 = −ax1 + b1x1x2 et f2 = rx2 − b2x1x2 :(
∆̇x1
∆̇x2

)
=

(
∂ f1
∂x1

∂ f1
∂x2

∂ f2
∂x1

∂ f2
∂x2

)
x1=− r

b2
,x2=

a
b1

(
∆x1
∆x2

)

=

(
−a + b1x2 b1x1
−b2x2 r− b2x1

)
x1=

r
b2

,x2=
a

b1

(
∆x1
∆x2

)

=

(
0 r b1

b2

−a b2
b1

0

)(
∆x1
∆x2

)

2. Fonction de transfert.
Avec C =

(
0 1

)
et B =

(
0 1

)T

G(s) = C(sI − A)−1B

=
(

0 1
) ( s −r b1

b2

a b2
b1

s

)−1 (
0
1

)

=
(

0 1
) 1

s2 + ar

(
s r b1

b2

−a b2
b1

s

)(
0
1

)
=

s
s2 + ar

=
s

s2 + 2

3. Fréquence d’oscillation.
La réponse impulsionnelle donne le contenu fréquentiel (par principe de superposition la

sortie sera la convolution avec celle-ci)

s
s2 + ω2 ↔ cos(ωt)

s
s2 + 2

↔ cos(
√

2t)

La fréquence est f = ω
2π =

√
2

2π = 0.225 [Hz]. Evidemment les unités des valeurs numériques
ne sont pas les bonnes, car cela ne donne pas de sens au niveau écologique.

4. Changement du point d’équilibre à l’aide de u.
Si on introduit une constante pour u, disons u = ū ∈ R, on peut changer le point

d’équilibre.
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0 = −ax1 + b1x1x2 (57)
0 = rx2 − b2x1x2 + ū (58)

En résolvant (57) pour x2, on a soit x1 = 0 = x2 = 0 ce qui entraı̂ne u = 0, soit

x2 =
a
b1

En introduisant cette valeur dans (58) on trouve

ar− b2ax1 + b1ū = 0

On peut donc choisir x1 ∈ R comme on veut et cela détermine le ū à appliquer

ū = a
b2

b1
x1 −

a r
b1

REMARQUE : dans cette partie du corrigé, on a utilisé x1 et x2 pour désigner x̄1 et x̄2, les
valeurs de l’équilibre.

5. Doublement de la fréquence par rétro-action.
On constate que la pulsation est donnée par ω =

√
ar. Ainsi si on peut modifier a ou

r par rétroaction, alors on peut changer la fréquence. Comme l’entrée est sur la seconde
équation (56), si on mesure la densité de lapins x2, on peut modifier le r par rétro-action
proportionnelle à x2 en posant u = −kpx2. Cela donnera

ω2 =
√

a(r− kp) = 2
√

2

avec a = 1 et r = 2 et en voulant le double de la pulsation (donc 2
√

2)√
2− kp = 2

√
2

2− kp = 8
kp = −6

Ainsi, il faut une rétro-action positive pour accélér le taux de reproduction des lapins

u = 6x2
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6. Observateur pour déterminer la population de renards x1.
L’observateur est donné par la structure vue au cours qui prend la forme suivante en

copiant la dynamique du système linéarisé :

˙∆x1 = r
b1

b2
∆x2 + l1(∆x2 − ˆ∆x2)

˙∆x2 = −a
b2

b1
∆x1 + l2(∆x2 − ˆ∆x2) + u

Pour obtenir l’estimée des renards x̂1, il faut décaler l’estimée ∆̂x1 de la valeur d’équilibre
x̄1 :

x̂1 = ˆ∆x1 + x̄1 = ˆ∆x1 +
r
b2

= ˆ∆x1 + 4
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FIGURE 1: Diagramme de Nyquist

16


