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123 O Chapitre 0 : Introduction

Calculer les réactions aux appuis de la poutre schématisée ci-contre, puis dessiner
les diagrammes T et M des efforts intérieurs.

Application :
a = 1 m
 = 2 m
q = 5 kN / m

Problème 0.1

q

 a

CA B

x x'



123 O Chapitre 0 : Introduction

Schéma

Equilibre des forces et des moments

• ΣF 𝑅𝑅𝐵𝐵 = 𝑞𝑞 𝑎𝑎 + 𝑅𝑅𝐴𝐴

• ΣMB 𝑅𝑅𝐴𝐴 = ∫0
𝑎𝑎 𝑞𝑞 𝑥𝑥 𝑑𝑑𝑑𝑑 = 𝑞𝑞 𝑎𝑎2

2

•  𝑅𝑅𝐴𝐴 = 𝑞𝑞 𝑎𝑎2

2
= 1250 N

•  𝑅𝑅𝐵𝐵 = 𝑞𝑞 𝑎𝑎 + 𝑅𝑅𝐴𝐴 = 6250 N

Problème 0.1

RA RB

q
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Efforts intérieurs tronçon AB

• 𝑁𝑁 𝑥𝑥 = 0

• 𝑇𝑇 𝑥𝑥 = −𝑅𝑅𝐴𝐴= −1250 𝑁𝑁

• 𝑀𝑀 𝑥𝑥 = −𝑅𝑅𝐴𝐴𝑥𝑥 = −1250𝑥𝑥 𝑁𝑁𝑁𝑁

• 𝑀𝑀 𝑥𝑥 =  = −𝑅𝑅𝐴𝐴 = −2500 𝑁𝑁𝑁𝑁

Problème 0.1

RA

q
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Efforts intérieurs tronçon AB

• 𝑁𝑁 𝑥𝑥′ = 0

• 𝑇𝑇 𝑥𝑥′ = 𝑞𝑞𝑞𝑞′ = 5000𝑥𝑥′ N

• 𝑀𝑀 𝑥𝑥′ = −1
2
𝑞𝑞𝑥𝑥′2 = −2500 𝑥𝑥′2 𝑁𝑁𝑁𝑁

Diagrammes des efforts

Problème 0.1

T(x)

N(x)

M(x)

x’

T(x)

M(x)

+

−

−

q

-1250

5000

-2500
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Chapitre 1 : Équilibre intérieur d’un solide

Calculer la contrainte et la force dans un long rail soudé soumis à un écart de tem-
pérature de ∆θ = ± 50 ˚C

Section F = 75 cm2

Module E = 2.1 x 10-11 Pa = 210 GPa
Coeff. therm. α = 12 x 10-6 /°C

Problème 1.1 

PP



F



Chapitre 1 : Équilibre intérieur d’un solide

Les allongements thermiques et mécaniques se compensent

• ∆𝜃𝜃 𝛼𝛼 + 𝜎𝜎
𝐸𝐸

= 0

On en tire la contrainte σ

• 𝜎𝜎 = ∆𝜃𝜃 𝛼𝛼 𝐸𝐸

La loi de Hooke lie la contrainte et la force

• 𝑃𝑃 = 𝐹𝐹 𝜎𝜎

On trouve alors les valeurs numériques suivantes :

• ∆𝜃𝜃 = +50°C 𝜎𝜎 = −126 𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃 = −945 𝑘𝑘𝑘𝑘 (compression)

• ∆𝜃𝜃 = −50°C 𝜎𝜎 = +126 𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃 = +945 𝑘𝑘𝑘𝑘 (traction)

Problème 1.1 



Chapitre 1 : Équilibre intérieur d’un solide

Calculer les réactions RA et RB pour le système ci-dessous, puis représenter les
diagrammes des efforts intérieurs N (effort normal), T (effort tranchant), et M
(moment fléchissant), en indiquant les valeurs particulières.

Problème 1.2

A B

2 m 3 m 5 m 2 m 3 m

3 kN

6 kN



Chapitre 1 : Équilibre intérieur d’un solide

Schéma

Équations d’équilibre

• ΣMA 3𝑘𝑘𝑘𝑘 × 5𝑚𝑚 + 6𝑘𝑘𝑘𝑘 × 10𝑚𝑚 − 𝑅𝑅𝐵𝐵 × 15𝑚𝑚 = 0

 𝑅𝑅𝐵𝐵 = 75
15

= 5 𝑘𝑘𝑘𝑘

• ΣMA 6𝑘𝑘𝑘𝑘 × 5𝑚𝑚 + 3𝑘𝑘𝑘𝑘 × 10𝑚𝑚 − 𝑅𝑅𝐴𝐴 × 15𝑚𝑚 = 0

 𝑅𝑅𝐴𝐴 = 60
15

= 4 𝑘𝑘𝑘𝑘

Efforts intérieurs

Problème 1.2

RA

RB

3 kN
6 kN

RA

T(x)

N(x)

M(x)

x



Chapitre 1 : Équilibre intérieur d’un solide

Tronçon AB

Tronçon BC

Tronçon CD

Tronçon DE

Problème 1.2

+

T(x)

M(x)

N(x)

• 𝑁𝑁 𝑥𝑥 = 0
• 𝑇𝑇 𝑥𝑥 = 𝑅𝑅𝐴𝐴 = 4 kN
• 𝑀𝑀 𝑥𝑥 = 𝑅𝑅𝐴𝐴 𝑥𝑥 = 4 𝑥𝑥

• 𝑁𝑁 𝑥𝑥 = 𝑅𝑅𝐴𝐴
• 𝑇𝑇 𝑥𝑥 = 0
• 𝑀𝑀 𝑥𝑥 = 2𝑅𝑅𝐴𝐴 = 8 𝑘𝑘𝑘𝑘𝑘𝑘

• 𝑁𝑁 𝑥𝑥 = 0
• 𝑇𝑇 𝑥𝑥 = 𝑅𝑅𝐴𝐴 = 4 kN
• 𝑀𝑀 𝑥𝑥 = 𝑅𝑅𝐴𝐴 𝑥𝑥 = 4 𝑥𝑥

• 𝑁𝑁 𝑥𝑥 = 0
• 𝑇𝑇 𝑥𝑥 = 𝑅𝑅𝐴𝐴 − 3 = 1 𝑘𝑘𝑘𝑘
• 𝑀𝑀 𝑥𝑥 = 𝑅𝑅𝐴𝐴 𝑥𝑥 − 3 𝑥𝑥 − 5
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Chapitre 1 : Équilibre intérieur d’un solide

Tronçon EF

Tronçon FG

Tronçon GH

Problème 1.2

−

+

T(x)

M(x)

N(x)

• 𝑁𝑁 𝑥𝑥 = 0
• 𝑇𝑇 𝑥𝑥 = 𝑅𝑅𝐴𝐴 − 5 − 6 = −5 kN
• 𝑀𝑀 𝑥𝑥 = 𝑅𝑅𝐴𝐴 𝑥𝑥 − 3 𝑥𝑥 − 5

−6 𝑥𝑥 − 10

• 𝑁𝑁 𝑥𝑥 = −𝑅𝑅𝐴𝐴 + 3 + 6 = 5 𝑘𝑘𝑘𝑘
• 𝑇𝑇 𝑥𝑥 = 0
• 𝑀𝑀 𝑥𝑥 = 3𝑅𝑅𝐵𝐵 = −15 𝑘𝑘𝑘𝑘𝑘𝑘

• 𝑁𝑁 𝑥𝑥 = 0
• 𝑇𝑇 𝑥𝑥 = −𝑅𝑅𝐵𝐵= 5 kN
• 𝑀𝑀 𝑥𝑥 = 𝑅𝑅𝐴𝐴 𝑥𝑥 − 3 𝑥𝑥 − 5

−6 𝑥𝑥 − 10
= 𝑅𝑅𝐵𝐵 𝑥𝑥′

8
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20
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Chapitre 2 : Traction ou compression simple

En négligeant la dilatation latérale, déterminer le déplacement, sous l’effet de son
propre poids, du centre de gravité d’une colonne cylindrique de hauteur h et de
poids spécifique γ

Hauteur de la colonne h = 5 m
Poids spécifique de l’acier γ = 7,8·104 N/m3

Module d’élasticité de l’acier E = 2,1·1011 Pa

Problème 2.1 : influence du poids propre



Chapitre 2 : Traction ou compression simple

Après déformation, l’élément dx à hauteur x devient dx' à hauteur x'

• 𝑑𝑑𝑑𝑑′ = 𝑑𝑑𝑑𝑑 (1 – 𝜎𝜎
𝐸𝐸

) = 𝑑𝑑𝑑𝑑 1 − 𝛾𝛾 ℎ−𝑥𝑥
𝐸𝐸

• 𝑥𝑥′ = ∫0
𝑥𝑥 𝑥𝑥 𝑑𝑑𝑑𝑑𝑑 = 𝑥𝑥 1 − 𝛾𝛾𝛾

2
+ 𝛾𝛾𝑥𝑥2

2𝐸𝐸

Soit g' le poids spécifique de l’élément dx' l’égalité des masses donne

• 𝐹𝐹 𝛾𝛾′ 𝑑𝑑𝑑𝑑′ = 𝐹𝐹 𝛾𝛾 𝑑𝑑𝑑𝑑

et, par conséquent, on peut écrire

• 𝛾𝛾′𝑑𝑑𝑥𝑥′ = 𝛾𝛾 𝑑𝑑𝑑𝑑

On détermine la hauteur η' du nouveau centre de gravité en calculant le moment
statique S' par rapport à la base. Celui-ci est égal au produit de η' par la masse
totale M

• 𝑆𝑆′ = 𝜂𝜂′𝑀𝑀 = 1
𝑔𝑔
𝛾𝛾 𝜂𝜂 ℎ 𝐹𝐹 = 1

𝑔𝑔
𝛾𝛾𝐹𝐹 ∫0

ℎ 𝑥𝑥 1 − 𝛾𝛾𝛾
2

+ 𝛾𝛾𝑥𝑥2

2𝐸𝐸
𝑑𝑑𝑑𝑑

où g symbolise l’accélération terrestre

Problème 2.1 : influence du poids propre



Chapitre 2 : Traction ou compression simple

En égalant ces deux expressions, on trouve

• 𝜂𝜂′ = ℎ
6𝐸𝐸

3𝐸𝐸 − 2𝛾𝛾𝛾𝛾

Le déplacement du centre de gravité est ainsi

• Δ𝜂𝜂 = 𝜂𝜂– 𝜂𝜂′ = ℎ
2

– 𝜂𝜂′ = 𝛾𝛾ℎ2

3𝐸𝐸

Avec les données fournies, on obtient numériquement

• Δ𝜂𝜂 = 3,1 · 10−6 𝑚𝑚 = 3.1 𝜇𝜇𝑚𝑚

Problème 2.1 : influence du poids propre
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Chapitre 2 : Traction ou compression simple

Un anneau de cuivre est serti à chaud, sans jeu et sans serrage, sur un anneau
d’acier de même largeur B. La température du cuivre est de ∆θ plus élevée que celle
de l’acier.

Calculer les contraintes dans l’acier et le cuivre, la pression entre les deux anneaux et
le raccourcissement relatif de leur rayon commun après refroidissement du cuivre.

E1 = 1,17·1011 Pa
E2 = 2,1·1011 Pa
e1 = 0,5 cm
e2 = 1 cm
R = 10 cm
α1 = 16,6·10–6 / ˚C
∆θ = 200 ˚C

Problème 2.4  : sertissage à chaud de bague acier-cuivre



Chapitre 2 : Traction ou compression simple

Les anneaux étant minces, on peut confondre leurs rayons moyens avec R et
admettre que les contraintes dans chacun d’eux sont constantes dans toute
l’épaisseur.

La pression p de serrage provoque une contrainte σ1 de traction dans le cuivre et une
contrainte σ2 de compression dans l’acier. On peut écrire deux conditions d’équilibre

• 2 𝑒𝑒1𝐵𝐵𝜎𝜎1 = 2 ∫0
𝜋𝜋/2 sin𝜑𝜑 𝑝𝑝 𝑑𝑑𝑑𝑑 = 2 𝑝𝑝 𝑅𝑅 𝐵𝐵 ∫0

𝜋𝜋/2 sin𝜑𝜑 𝑝𝑝 𝑑𝑑𝜑𝜑 = 2 𝑝𝑝 𝑅𝑅 𝐵𝐵

• 2𝑒𝑒2𝐵𝐵𝜎𝜎2 = 2 𝑝𝑝 𝑅𝑅 𝐵𝐵

qui lient trois grandeurs inconnues σ1, σ2 et p, le système étant par conséquent
hyperstatique d’ordre 3 – 2 = 1. La condition de déformation donne la troisième
équation nécessaire : le raccourcissement ∆ de la demi-circonférence de l’anneau
de cuivre est égal à celui de l’anneau d’acier

• Δ = 𝜋𝜋Δ𝑅𝑅 = 𝜋𝜋 𝑅𝑅Δ𝜃𝜃 𝛼𝛼1 – 𝜋𝜋 𝑅𝑅 𝜎𝜎1
𝐸𝐸1

= 𝜋𝜋 𝑅𝑅 𝜎𝜎2
𝐸𝐸2

Problème 2.4  : sertissage à chaud de bague acier-cuivre



Chapitre 2 : Traction ou compression simple

Avec la notation λ = (e2 E2) / (e1 E1), la résolution de ces trois équations conduit aux
contraintes suivantes σ1 dans le cuivre et σ2 dans l’acier

• 𝜎𝜎1 = 𝜆𝜆
1+𝜆𝜆

Δ𝜃𝜃 𝛼𝛼1 𝐸𝐸1 = 304 𝑀𝑀𝑀𝑀𝑀𝑀 et 𝜎𝜎2 = 1
1+𝜆𝜆

Δ𝜃𝜃 𝛼𝛼1 𝐸𝐸2 = 152 𝑀𝑀𝑀𝑀𝑀𝑀

Liées par la relation

• 𝜎𝜎1
𝜎𝜎2

= 𝑒𝑒2
𝑒𝑒1

ainsi qu’à la pression de contact ci-après

• 𝑝𝑝 = 𝜎𝜎1
𝑒𝑒1
𝑅𝑅

= 𝜎𝜎2
𝑒𝑒2
𝑅𝑅

= 15.2 𝑀𝑀𝑀𝑀𝑀𝑀

Finalement, le raccourcissement relatif du rayon commun se déduit de la troisième
équation

• 𝜀𝜀 = Δ𝑅𝑅
𝑅𝑅

= 𝜎𝜎2
𝐸𝐸2

= 1
1+𝜆𝜆

Δ𝜃𝜃 𝛼𝛼1 = 0.72 ‰

Problème 2.4  : sertissage à chaud de bague acier-cuivre



Chapitre 2 : Traction ou compression simple

Calculer la force subie par un alpiniste de masse m tombant d’une hauteur 2h et
retenu par une corde en nylon de section F.

Masse de l’alpiniste m = 80 kg
Section de la corde F = 0,5 cm2 (Ø 8 mm)
Module d’élasticité du nylon E = 2,8·109 Pa
Demi-hauteur de chute h = 15 m

Problème 2.5

N

N
(b)

O

1

N2



1

2

h

hpoint
d'assurage

m
(a)

corde



Chapitre 2 : Traction ou compression simple

Dans sa partie initiale, le diagramme d’une corde de nylon est rectiligne. Bien que
fortement tributaire du mode de tressage, le module d’élasticité de la corde est égal
environ au quart de celui d’un fil unique

• 𝐸𝐸𝐸𝐸 ≈ 𝐸𝐸 / 4 = 0,7 · 109 𝑃𝑃𝑃𝑃

En supposant que le diagramme force-déplacement reste linéaire, égalons l’énergie
de chute à l’énergie dans la corde (accélération terrestre g = 9,81 m/s2)

• 𝑚𝑚 𝑔𝑔 2ℎ = 𝑁𝑁12 ℎ
2𝐸𝐸𝐶𝐶𝐹𝐹

pour extraire la force de blocage cherchée N1, indépendante de la hauteur de chute,

• 𝑁𝑁1 = 2 𝑚𝑚𝑚𝑚𝐸𝐸𝐶𝐶𝐹𝐹 = 10.5 𝑘𝑘𝑘𝑘

En réalité, le diagramme de la corde n’est pas rectiligne et la force maximum N2
effectivement atteinte pour la même énergie est plus faible. Pour une corde
correspondant au diagramme de la figure, cette force serait réduite dans le rapport
N2 / N1 ≈ 0,6 et serait donc égale à environ 6 kN.

Problème 2.5



Chapitre 2 : Traction ou compression simple

Une force P est appliquée au point C du système représenté. Calculer les efforts
intérieurs N1 et N2 dans les barres, les réactions en A et B, ainsi que le déplacement
δC

Problème 2.3



Chapitre 2 : Traction ou compression simple

La statique ne permet d’en calculer qu’une : dans un tel cas, le système est dit
hyperstatique d’ordre 2 – 1 = 1

Le déplacement δC du point C est égal à l’allongement de la barre AC et au
raccourcissement de la barre CB

• 𝛿𝛿𝐶𝐶 = 𝑁𝑁11
𝐸𝐸1𝐹𝐹1

= 𝑁𝑁22
𝐸𝐸2𝐹𝐹2

D’autre part, on peut écrire la relation suivante

• 𝑃𝑃 = 𝑁𝑁1 + 𝑁𝑁2
De ces deux égalités, on tire facilement, avec la notation  = (E2 F2) / (E1 F1)

• 𝑁𝑁1 = 𝑃𝑃 2
𝜆𝜆1+2

𝑁𝑁2 = 𝑃𝑃 λ1
𝜆𝜆1+2

• 𝛿𝛿𝐶𝐶 = 𝑃𝑃 12
λ1+2 𝐸𝐸1𝐹𝐹1

Enfin, il est évident que RA = N1 et RB = N2

Problème 2.3
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Chapitre 3 : État de contrainte bidimensionnel

Une plaque carrée, en acier laminé à chaud, de 50 cm de côté et 2 mm d’épaisseur,
subi sur son contour une charge linéique de P0 = 2 x 105 N/m.

L = 50 cm
l = 2 mm
E = 201 GPa
µ = 0.27

Exemple plaque carrée

p0

p0

l

lL

Calculer : 

1) Les contraintes σx et σy au centre de la plaques et la contrainte de 
cisaillement sur le plan à 45°

2) Les allongements relatif ε et absolu ∆L des côtés
3) La variation relative de volume
4) La densité d’énergie



Chapitre 3 : État de contrainte bidimensionnel

1) 𝜎𝜎𝑥𝑥 = 𝜎𝜎𝑦𝑦 = 𝑁𝑁
𝐴𝐴

= 𝑃𝑃0𝐿𝐿
𝑙𝑙 𝐿𝐿

= 𝑃𝑃0
𝑙𝑙

= 100 MPa

𝜎𝜎1 = 𝜎𝜎2 = 𝜎𝜎𝑥𝑥

𝜏𝜏 𝜑𝜑 = 45° = −𝜎𝜎𝑥𝑥−𝜎𝜎𝑦𝑦
2

sin2𝜑𝜑 + τ 𝑐𝑐𝑐𝑐𝑐𝑐2𝜑𝜑= 0

2) 𝜀𝜀 = 1
𝐸𝐸
𝜎𝜎𝑥𝑥 − 𝜇𝜇𝜇𝜇𝑦𝑦 = 3.48 10−4

∆𝐿𝐿 = 𝜀𝜀 𝐿𝐿 = 0.1738 𝑚𝑚𝑚𝑚

3) 𝑣𝑣 = 1 − 2𝜇𝜇 𝜎𝜎𝑥𝑥+𝜎𝜎𝑦𝑦
𝐸𝐸

= 4.38 10−4

4) 𝑢𝑢 = 1
𝐸𝐸

𝜎𝜎𝑥𝑥2

2
+ 𝜎𝜎𝑦𝑦2

2
− 𝜇𝜇𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦 = 34′761 𝐽𝐽

𝑚𝑚3

Exemple plaque carrée

σy

σxσx

σϕ

τϕ

σ1 = σ2σ3 = 0

Γxy est un point



Chapitre 3 : État de contrainte bidimensionnel

La figure montre un bloc solide soumis à un état de contraintes pour lequel on
connais les composantes normales et tangentielles. Déterminer, par le calcul et sur le
cercle de Mohr, les valeurs des contraintes principales.

• Nx = 2 x 105 N

• Ny = –3.6 x 104 N

• Tx = 9 x 104 N

• B = 6 cm

• b = 1 cm

• H = 10 cm

Exemple bloc soumis à des charges biaxiales

Nx
Nx

x

y

Ny

Ny

Ty

Ty

B

H

b

Tx Tx



Chapitre 3 : État de contrainte bidimensionnel

Contraintes normales

• 𝜎𝜎𝑥𝑥 = 𝑁𝑁𝑥𝑥
𝑏𝑏 𝐻𝐻

= 200000
10 ×100

= 200 MPa

• 𝜎𝜎𝑦𝑦 = 𝑁𝑁𝑦𝑦
𝐵𝐵 𝑏𝑏

= 36000
60 ×10

= −60 MPa

Contraintes tangentielles

• 𝜏𝜏𝑥𝑥 = 𝑇𝑇𝑥𝑥
𝑏𝑏 𝐻𝐻

= 90000
10 ×100

= 90 MPa

• 𝜏𝜏𝑦𝑦 = −𝜏𝜏𝑥𝑥

• 𝑇𝑇𝑦𝑦 = 𝜏𝜏𝑦𝑦 𝐵𝐵 𝑏𝑏 = 54 𝑘𝑘𝑘𝑘

Exemple bloc soumis à des charges biaxiales



Chapitre 3 : État de contrainte bidimensionnel

Cercle Mohr

• 𝑅𝑅 = 𝜎𝜎𝑥𝑥−𝜎𝜎𝑦𝑦
2

2
+ 𝜏𝜏𝑥𝑥2 = 158 MPa

• 𝜎𝜎1 = 𝜎𝜎𝑥𝑥+𝜎𝜎𝑦𝑦
2

+ 𝑅𝑅 = 228 MPa

• 𝜎𝜎2 = 0 MPa

• 𝜎𝜎3 = 𝜎𝜎𝑥𝑥+𝜎𝜎𝑦𝑦
2

− 𝑅𝑅 = −88 Mpa

• 𝜑𝜑0 = 1
2
𝑡𝑡𝑡𝑡𝑡𝑡−1 2𝜏𝜏𝑥𝑥

𝜎𝜎𝑥𝑥−𝜎𝜎𝑦𝑦
= 24°

Exemple bloc soumis à des charges biaxiales

τx = 90

τy = –90

σy = –60

σx = 200

2ϕ0σ3 σ1σ2
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Chapitre 5 : Torsion simple

En choisissant une contrainte de cisaillement admissible τadm de 50 MPa, calculer le
diamètre – supposé uniforme – d’un arbre de turbine à gaz transmettant une
puissance de 25 MW à 8000 t/min

Problème 5.1



Chapitre 5 : Torsion simple

Le moment de torsion Mt est lié à la puissance P par l’inverse de la vitesse de
rotation ω

• 𝑀𝑀𝑡𝑡 = ⁄𝑃𝑃 𝜔𝜔 = 25�106�60
2𝜋𝜋 8000

= 29.8 � 10−3 𝑁𝑁𝑁𝑁

La contrainte tangentielle admissible τadm est égale à la contrainte maximale τmax

• 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑡𝑡
𝑊𝑊𝑝𝑝

= 16𝑀𝑀𝑡𝑡
𝜋𝜋𝐷𝐷3

de sorte que le diamètre cherché D vaut

• 𝐷𝐷 = 3 16𝑀𝑀𝑡𝑡
𝜋𝜋𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎

= 14.5 𝑐𝑐𝑐𝑐

Problème 5.1
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Mécanique des structures

Chapitre 5 : Torsion simple



Chapitre 5 : Torsion simple

Calculer la contrainte de cisaillement maximum dans un ressort hélicoïdal de dia-
mètre D, formé de n spires de diamètre d et soumis à une charge de compression P.
Déterminer ensuite la flèche, la constante du ressort et l’énergie emmagasinée.

Problème 5.2



Chapitre 5 : Torsion simple

La fibre moyenne du ressort est une hélice d’angle α en fonction du pas t d’une spire

• 𝑎𝑎 ≈ tan𝛼𝛼 = 𝑡𝑡
2𝜋𝜋 𝑅𝑅

Par le centre de gravité G d’une section normale du ressort, construisons les axes
orthogonaux Gx, Gy et Gz ainsi définis :

• Gz est horizontal et coupe l’axe du ressort au point O

• Gx est tangent à la fibre moyenne et forme l’angle a avec l’horizontale

• Gy complète le trièdre droit avec Gx et Gz et forme l’angle a avec la verticale

Au point O, décomposons la force P selon les directions des axes Gx et Gy (la
composante selon l’axe Gz est nulle)

• 𝑁𝑁 = 𝑃𝑃 sin𝛼𝛼 selon Gx

• 𝑇𝑇 = 𝑃𝑃 cos𝛼𝛼 selon Gy

où les grandeurs N et T sont les efforts intérieurs normal et tranchant au point G

Problème 5.2



Chapitre 5 : Torsion simple

Les deux autres efforts intérieurs sont les moments de torsion Mt et de flexion Mf

• 𝑀𝑀𝑡𝑡 = 𝑅𝑅 𝑇𝑇 = 𝑃𝑃 𝑅𝑅 cos𝛼𝛼 selon Gx

• 𝑀𝑀𝑓𝑓 = 𝑅𝑅 𝑁𝑁 = 𝑃𝑃 𝑅𝑅 sin𝛼𝛼 selon Gy

L’influence du moment de torsion est prédominante, de sorte que les autres efforts
intérieurs sont négligés dans l’analyse. Il s’ensuit que la contrainte maximale de
cisaillement peut s’écrire

• 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑡𝑡
𝑊𝑊𝑝𝑝

= 16𝑀𝑀𝑡𝑡
𝜋𝜋𝑑𝑑3

= 16𝑃𝑃 𝑅𝑅 cos 𝛼𝛼
𝜋𝜋𝑑𝑑3

≈ 16𝑃𝑃 𝑅𝑅
𝜋𝜋𝑑𝑑3

= 8𝑃𝑃 𝐷𝐷
𝜋𝜋𝑑𝑑3

Deux sections F1 et F2 distantes de ds tournent relativement l’une à l’autre d’un angle
dϕ qui entraîne une flèche df = R dϕ. En adaptant l’expression pour prendre en
compte l’abscisse curviligne, on obtient

• 𝑑𝑑𝑑𝑑 = 𝑅𝑅 𝑀𝑀𝑡𝑡 𝑑𝑑𝑑𝑑
𝐺𝐺 𝐼𝐼𝑝𝑝

= 𝑅𝑅 𝑃𝑃 𝑅𝑅 cos 𝛼𝛼 𝑑𝑑𝑑𝑑
𝐺𝐺 𝐼𝐼𝑝𝑝

≈ 𝑃𝑃 𝑅𝑅2𝑑𝑑𝑑𝑑
𝐺𝐺 𝐼𝐼𝑝𝑝

= 𝑃𝑃 𝐷𝐷2𝑑𝑑𝑑𝑑
4 𝐺𝐺

32
𝜋𝜋 𝑑𝑑4

= 8 𝑃𝑃 𝐷𝐷2𝑑𝑑𝑑𝑑
𝜋𝜋 𝑑𝑑4 𝐺𝐺

Problème 5.2



Chapitre 5 : Torsion simple

Pour obtenir la flèche totale, il suffit d’intégrer sur la longueur totale du ressort égale à
𝑛𝑛 𝜋𝜋 𝐷𝐷 / cos𝛼𝛼 ≈ 𝑛𝑛 𝜋𝜋 𝐷𝐷 et l’on trouve donc

• 𝑓𝑓 = 8𝑛𝑛𝑛𝑛𝐷𝐷3

𝐺𝐺𝑑𝑑4

La rigidité ou constante k du ressort est le facteur de proportionnalité entre la charge
et la flèche totale et peut être explicitée sous la forme

• 𝑘𝑘 = 𝑃𝑃
𝑓𝑓

= 𝑓𝑓 = 𝐺𝐺𝑑𝑑4

8𝑛𝑛𝐷𝐷3

de sorte que l’énergie U emmagasinée dans le ressort a pour valeur

• 𝑈𝑈 = 𝑃𝑃𝑃𝑃
2

= 𝑃𝑃2

2𝑘𝑘
= 4𝑛𝑛𝑛𝑛2𝐷𝐷3

𝐺𝐺𝑑𝑑4

Problème 5.2
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Chapitre 6 : Flexion des poutres droites

Dessiner les diagramme des effort intérieur

Problème 6.0

A

/4 /4 /4 /4

m
M0B



Chapitre 6 : Flexion des poutres droites
Problème 6.0

Schéma et équations d’équilibre

• ΣMA 𝑚𝑚𝑚𝑚 
4

+ 𝑀𝑀0 = 𝑅𝑅𝐴𝐴


4

 𝑅𝑅𝐴𝐴 = 𝑚𝑚𝑚𝑚
2

+ 2𝑀𝑀0


• ΣF 𝑅𝑅𝐴𝐴 + 𝑅𝑅𝐵𝐵 = 𝑚𝑚𝑚𝑚 + 𝑞𝑞0

 𝑅𝑅𝐵𝐵 = 𝑚𝑚𝑚𝑚
2

+ 𝑞𝑞0−
2𝑀𝑀0


Efforts tranchants

• I 𝑇𝑇 𝑥𝑥 = 𝑅𝑅𝐴𝐴 − 𝑞𝑞0𝑥𝑥

• II 𝑇𝑇 𝑥𝑥 = 𝑅𝑅𝐴𝐴 −𝑚𝑚𝑚𝑚 − 𝑞𝑞0𝑥𝑥

• III 𝑇𝑇 𝑥𝑥 = 𝑅𝑅𝐴𝐴 −𝑚𝑚𝑚𝑚 + 𝑅𝑅𝐵𝐵 − 𝑞𝑞0𝑥𝑥

• IV 𝑇𝑇 𝑥𝑥 = 𝑅𝑅𝐴𝐴 −𝑚𝑚𝑚𝑚 + 𝑅𝑅𝐵𝐵 − 𝑞𝑞0𝑥𝑥

RA Rbmg

M0

I II III IV

T(x)

RA

RB

q0L/2

mg



Chapitre 6 : Flexion des poutres droites

Moments de flexion

• I 𝑀𝑀 𝑥𝑥 = 𝑅𝑅𝐴𝐴𝑥𝑥 −
1
2
𝑞𝑞0𝑥𝑥2

• II 𝑀𝑀 𝑥𝑥 = 𝑅𝑅𝐴𝐴𝑥𝑥 − 𝑚𝑚𝑚𝑚 𝑥𝑥 − 
4
− 1

2
𝑞𝑞0𝑥𝑥2

• III 𝑀𝑀 𝑥𝑥 = 𝑅𝑅𝐴𝐴𝑥𝑥 − 𝑚𝑚𝑚𝑚 𝑥𝑥 − 
4

+ 𝑅𝑅𝐵𝐵 𝑥𝑥 − 
2
− 1

2
𝑞𝑞0𝑥𝑥2

• IV 𝑀𝑀 𝑥𝑥 = 𝑅𝑅𝐴𝐴𝑥𝑥 − 𝑚𝑚𝑚𝑚 𝑥𝑥 − 
4

+ 𝑅𝑅𝐵𝐵 𝑥𝑥 − 
2
− 𝑀𝑀0 −

1
2
𝑞𝑞0𝑥𝑥2

Problème 6.0

M(x)

RA Rbmg

M0

I II III IV

M(x(T=0))



Chapitre 6 : Flexion des poutres droites

Problème 6.1 : Calculer les contraintes maximale et minimale dans la section d’une
poutre rectangulaire de hauteur H = 6 cm et de largeur B = 4 cm en acier soumise à
un moment de flexion M = 5000 Nm. Déterminer ensuite le rayon de courbure r.

Problème 6.2 : Calculer les contraintes tangentielles t dans une section rectangulaire
de hauteur H et de largeur B d’une poutre soumise à la flexion simple.

Problème 6.1 et 6.2



Chapitre 6 : Flexion des poutres droites

Le moment d’inertie de la section par rapport à l’axe Gz, ainsi que les moments
correspondants de résistance à la flexion, valent

• 𝐼𝐼 = ∬𝐹𝐹 𝑦𝑦2𝑑𝑑𝑑𝑑 = 2𝐵𝐵 ∫0
𝐻𝐻/2 𝑦𝑦2𝑑𝑑𝑑𝑑 = 𝐵𝐵𝐻𝐻3

12
= 0,72 · 10– 6 𝑚𝑚4

• 𝑊𝑊1 = 𝑊𝑊2 = 𝐼𝐼
𝐻𝐻/2

= 24 · 10– 6 𝑚𝑚3

Les contraintes normales σmax et σmin ont ainsi pour valeur

• 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀
𝑊𝑊1

= 208 𝑀𝑀𝑀𝑀𝑀𝑀

• 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = −𝑀𝑀
𝑊𝑊2

= −208 𝑀𝑀𝑀𝑀𝑀𝑀

Le rayon de courbure r est quant à lui obtenu

• 𝜌𝜌 = 𝐸𝐸 𝐼𝐼
𝑀𝑀

= 30,2 𝑚𝑚

Problème 6.1



Chapitre 6 : Flexion des poutres droites

Le moment statique de la section partielle se calcule immédiatement sans expliciter
l’intégrale

• 𝑆𝑆′ = 𝐵𝐵 𝐻𝐻
2

– 𝑦𝑦 � 1
2

𝐻𝐻
2

+ 𝑦𝑦 = 𝐵𝐵𝐻𝐻2

8
1 − 𝑦𝑦

𝐻𝐻/2

2

Comme le moment d’inertie I de la section et la largeur b à l’abscisse y valent

• 𝐼𝐼 = 𝐵𝐵𝐻𝐻3

12

• 𝑏𝑏 = 𝐵𝐵

Les contraintes tangentielles τ s’écrivent

• 𝜏𝜏 = 3
2
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 1 − 𝑦𝑦

𝐻𝐻/2

2

où τmoy représente la contrainte tangentielle moyenne dans la section, définie par le
rapport suivant

• 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑇𝑇
𝐵𝐵 𝐻𝐻

Problème 6.2



Chapitre 6 : Flexion des poutres droites

Evaluer les contraintes normales σ et tangentielles τ dans la section en forme de T
inversé d’une poutre droite soumise à un moment de flexion M et à un effort tran-
chant T

Problème 6.3



Chapitre 6 : Flexion des poutres droites

Calculons d’abord l’aire F de la section, les distances h1 et h2 du centre d’inertie G de
la section aux fibres extrêmes et le moment d’inertie Iz = I de la section.

En considérant la section totale comme l’assemblage de l’âme de hauteur H1 et de
largeur B1 et de la semelle de hauteur H2 et de largeur B2

• 𝐹𝐹 = 𝐻𝐻1𝐵𝐵1 + 𝐻𝐻2𝐵𝐵2

• 𝜂𝜂1 = 𝐻𝐻1𝐵𝐵1 𝐻𝐻1/2 +𝐻𝐻2𝐵𝐵2 𝐻𝐻1+𝐻𝐻2/2
𝐹𝐹

• 𝜂𝜂2 = 𝐻𝐻1 + 𝐻𝐻2 − 𝜂𝜂1

• 𝐼𝐼 = 𝐵𝐵2𝐻𝐻23

3
+ 𝐵𝐵1𝐻𝐻13

12
+𝐻𝐻1 𝐵𝐵1

𝐻𝐻1
2

+ 𝐻𝐻2 − 𝜂𝜂22𝐹𝐹

Dès lors que les grandeurs qui apparaissent dans l’équation de la contrainte noramle
sont globales, les contraintes normales demeurent continues sur la hauteur de la
section malgré le changement brusque de largeur. Leur distribution est linéaire et a
pour expression

• 𝜎𝜎 𝑦𝑦 = 𝑀𝑀
𝐼𝐼
𝑦𝑦

Problème 6.3



Chapitre 6 : Flexion des poutres droites

Les valeurs maximales de contraintes normales sont atteintes sur les fibres extrêmes
inférieure (traction) et supérieure (compression)

• 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀
𝐼𝐼
𝜂𝜂2 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = −𝑀𝑀

𝐼𝐼
𝜂𝜂1

Les moments statiques S1' et S2' de la section partielle F' pour respectivement l’âme
et la semelle s’écrivent

• 𝑆𝑆1′ = 𝐵𝐵1 𝜂𝜂1 + 𝑦𝑦 � 𝜂𝜂1 − 𝑦𝑦 /2 −𝜂𝜂1≤ 𝑦𝑦 ≤ 𝜂𝜂2 − 𝐻𝐻1

• 𝑆𝑆2′ = 𝐵𝐵2 𝜂𝜂2 − 𝑦𝑦 � 𝜂𝜂2 + 𝑦𝑦 /2 𝜂𝜂2 − 𝐻𝐻2 ≤ 𝑦𝑦 ≤ 𝜂𝜂2
La largeur b à l’abscisse y valant B1 dans l’âme et B2 dans la semelle, les contraintes
tangentielles sont, après transformations mathématiques, données par

• 𝜏𝜏 𝑦𝑦 = 𝑇𝑇𝜂𝜂12

2𝐼𝐼
1 − 𝑦𝑦/𝜂𝜂1 2 −𝜂𝜂1≤ 𝑦𝑦 ≤ 𝜂𝜂2 − 𝐻𝐻1

• 𝜏𝜏 𝑦𝑦 = 𝑇𝑇𝜂𝜂22

2𝐼𝐼
1 − 𝑦𝑦/𝜂𝜂2 2 𝜂𝜂2 − 𝐻𝐻2 ≤ 𝑦𝑦 ≤ 𝜂𝜂2

et leur amplitude maximale surgit sur l’axe neutre

• 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜏𝜏 0 = 𝑇𝑇𝜂𝜂12/ 2𝐼𝐼

Problème 6.3
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Chapitre 7 : Déformée des poutres droites

Chercher la déformée d’une poutre en console de section rectangulaire supportant
une force ponctuelle en son extrémité libre

Données numériques
P = 30 kN
 = 1 m
H = 10 cm
B = 5 cm
E = 2,1·1011 Pa
G = 0,8·1011 Pa

Problème 7.1



Chapitre 7 : Déformée des poutres droites

Déformée due au moment :

Le moment de flexion M provoqué par la force P est donné par

• 𝑀𝑀 𝑥𝑥 = –𝑃𝑃( – 𝑥𝑥)

L’équation différentielle du second ordre avec le moment devient

• 𝐸𝐸 𝐼𝐼 𝑦𝑦𝑦 = 𝑃𝑃( – 𝑥𝑥)

En intégrant successivement cette équation, on obtient

• 𝐸𝐸 𝐼𝐼 𝑦𝑦𝑦 = 𝑃𝑃𝑥𝑥 –𝑃𝑃 𝑥𝑥2

2
+ 𝐶𝐶1

• 𝐸𝐸 𝐼𝐼 𝑦𝑦 = 𝑃𝑃 𝑥𝑥
2

2
–𝑃𝑃 𝑥𝑥3

6
+ 𝐶𝐶1𝑥𝑥 + 𝐶𝐶2

où C1 et C2 constituent les constantes d’intégration, déterminées par les conditions
aux limites du problème

• 𝑦𝑦𝑦 𝑥𝑥 = 0 = 0 = 𝐶𝐶1
• 𝑦𝑦(𝑥𝑥 = 0) = 0 = 𝐶𝐶2
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Chapitre 7 : Déformée des poutres droites

L’équation de la déformée due au moment et celle de sa dérivée s’écrivent ainsi

• 𝑦𝑦 = 𝑃𝑃
6 𝐸𝐸𝐸𝐸

𝑥𝑥2 (3 – 𝑥𝑥)

• 𝑦𝑦𝑦 = 𝑃𝑃
2 𝐸𝐸𝐸𝐸

𝑥𝑥 (2 – 𝑥𝑥)

La flèche f et la rotation b maximales apparaissent sous la charge en x = 

• 𝑓𝑓 = 𝑃𝑃3

3 𝐸𝐸𝐸𝐸

• 𝛽𝛽 ≈ 𝑡𝑡𝑡𝑡 𝛽𝛽 = 𝑃𝑃2

2 𝐸𝐸𝐸𝐸
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Chapitre 7 : Déformée des poutres droites

Déformée due à l’effort tranchant

Comme l’effort tranchant T est constant et vaut

• 𝑇𝑇(𝑥𝑥) = 𝑃𝑃

l’équation différentielle du premier ordre a pour expression

• 𝑦𝑦𝑇𝑇′ = 𝜂𝜂 𝑃𝑃
𝐺𝐺 𝐹𝐹

dont l’intégration triviale donne

• 𝑦𝑦𝑇𝑇 = 𝜂𝜂 𝑃𝑃
𝐺𝐺 𝐹𝐹

𝑥𝑥 + 𝐶𝐶1

L’unique constante d’intégration C1 est à nouveau calculée grâce à la condition de
bord en déplacement

• 𝑦𝑦𝑇𝑇 𝑥𝑥 = 0 = 0 = 𝐶𝐶1
L’équation de la déformée due à l’effort tranchant a dès lors pour expression

• 𝑦𝑦𝑇𝑇 = 𝜂𝜂 𝑃𝑃
𝐺𝐺 𝐹𝐹

𝑥𝑥
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Chapitre 7 : Déformée des poutres droites

La flèche maximum fT due à l’effort tranchant apparaît également sous la charge,
mais la rotation βT est indépendante de la variable x

• 𝑓𝑓𝑇𝑇 = 𝜂𝜂 𝑃𝑃 
𝐺𝐺 𝐹𝐹

• 𝛽𝛽𝑇𝑇 = 𝜂𝜂 𝑃𝑃
𝐺𝐺 𝐹𝐹

On relèvera que l’effort tranchant provoque, même à l’encastrement, une rotation
constante lorsque la charge est concentrée.
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Chapitre 7 : Déformée des poutres droites

Déformée totale

La déformée totale yt et sa dérivée sont obtenues par sommation des déformées
partielles y et yT et de leurs dérivées

• 𝑦𝑦𝑡𝑡 = 𝑦𝑦 + 𝑦𝑦𝑇𝑇 = 𝑃𝑃
6 𝐸𝐸𝐸𝐸

𝑥𝑥2 3 – 𝑥𝑥 + 𝜂𝜂 𝑃𝑃
𝐺𝐺 𝐹𝐹

𝑥𝑥

• 𝑦𝑦𝑡𝑡′ = 𝑦𝑦′ + 𝑦𝑦𝑇𝑇′ = 𝑃𝑃
2 𝐸𝐸𝐸𝐸

𝑥𝑥 (2 – 𝑥𝑥) + 𝜂𝜂 𝑃𝑃
𝐺𝐺 𝐹𝐹

De manière analogue, la flèche totale ft et la rotation totale βt sont trouvées par
addition des contributions partielles

• 𝑓𝑓𝑡𝑡 = 𝑓𝑓 + 𝑓𝑓𝑇𝑇 = 𝑃𝑃3

3 𝐸𝐸𝐸𝐸
+ 𝜂𝜂 𝑃𝑃 

𝐺𝐺 𝐹𝐹

• 𝛽𝛽𝑡𝑡 = 𝛽𝛽 + 𝛽𝛽𝑇𝑇 = 𝑃𝑃2

2 𝐸𝐸𝐸𝐸
+ 𝜂𝜂 𝑃𝑃

𝐺𝐺 𝐹𝐹
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Chapitre 7 : Déformée des poutres droites

Application numérique

En portant les données numériques fournies dans les relations calculées
précédemment, on obtient, compte tenu du coefficient de forme h = 1,2 de même
que de l’aire F = B H = 50 cm2 et de l’inertie I = B H3 / 12 = 417 cm4 de la section,

• 𝑓𝑓 = 11,4 𝑚𝑚𝑚𝑚

• 𝑓𝑓𝑇𝑇 = 0,09 𝑚𝑚𝑚𝑚

• 𝛽𝛽 = 0,017 𝑟𝑟𝑟𝑟𝑟𝑟 = 0,98 ˚

• 𝛽𝛽𝑇𝑇 = 0,09 · 10−3 𝑟𝑟𝑟𝑟𝑟𝑟 = 0,005 ˚

Il est à noter que les rapports des flèches et des rotations sont très faibles

• 𝑓𝑓𝑇𝑇/𝑓𝑓 = 8 ‰

• 𝛽𝛽𝑇𝑇/𝛽𝛽 = 5 ‰

L’influence de l’effort tranchant T est négligeable en comparaison de celle du
moment de flexion M
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Chapitre 7 : Déformée des poutres droites

Chercher la déformée d’une poutre sur deux appuis simples de section rectangulaire
supportant une charge uniformément répartie.

Données numériques
p = 200 kN/m
 = 1 m
H = 10 cm
B = 5 cm
E = 2,1·1011 Pa
G = 0,8·1011 Pa
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Chapitre 7 : Déformée des poutres droites

Déformée due au moment et à l’effort tranchant

Compte tenu de la charge répartie p(x) = p, le moment de flexion M s’écrit

• 𝑀𝑀 𝑥𝑥 = 𝑝𝑝 
2
𝑥𝑥 − 𝑝𝑝 𝑥𝑥2

2

Comme la charge appliquée est continue, il est possible d’utiliser directement
l’équation différentielle combinant les effets dus au moment de flexion et à l’effort
tranchant

• 𝑦𝑦𝑡𝑡′′ = − 𝑀𝑀
𝐸𝐸𝐸𝐸
− 𝜂𝜂 𝑝𝑝

𝐺𝐺𝐺𝐺
= 𝑝𝑝

2 𝐸𝐸𝐸𝐸
𝑥𝑥2 −  𝑥𝑥 − 𝜂𝜂 𝑝𝑝

𝐺𝐺𝐺𝐺

L’intégration successive de cette équation donne

• 𝑦𝑦𝑡𝑡′ = 𝑝𝑝
2 𝐸𝐸𝐸𝐸

𝑥𝑥3

3
−  𝑥𝑥

2

2
− 𝜂𝜂 𝑝𝑝

𝐺𝐺𝐺𝐺
𝑥𝑥 + 𝐶𝐶1

• 𝑦𝑦𝑡𝑡 = 𝑝𝑝
2 𝐸𝐸𝐸𝐸

𝑥𝑥4

12
−  𝑥𝑥

3

6
− 𝜂𝜂 𝑝𝑝

𝐺𝐺𝐺𝐺
𝑥𝑥2

2
+ 𝐶𝐶1𝑥𝑥 + 𝐶𝐶2
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Chapitre 7 : Déformée des poutres droites

Les constantes d’intégration C1 et C2 sont évaluées à partir des conditions aux limites
du problème

• 𝑦𝑦𝑡𝑡 𝑥𝑥 = 0 = 0 = 𝐶𝐶2

• 𝑦𝑦𝑡𝑡 𝑥𝑥 =  = 0 = 𝑝𝑝
𝐸𝐸𝐸𝐸


4

24
− 𝜂𝜂 𝑝𝑝

𝐺𝐺𝐺𝐺


2

2
+ 𝐶𝐶1

Les équations de la déformée et de sa dérivée ont pour expression

• 𝑦𝑦𝑡𝑡 = 𝑝𝑝
24 𝐸𝐸𝐸𝐸



3𝑥𝑥 − 2𝑥𝑥3 + 𝑥𝑥4 + 𝜂𝜂 𝑝𝑝
2 𝐺𝐺𝐺𝐺

𝑥𝑥 − 𝑥𝑥2

• 𝑦𝑦𝑡𝑡′ = 𝑝𝑝
24 𝐸𝐸𝐸𝐸



3 − 6𝑥𝑥2 + 4𝑥𝑥3 + 𝜂𝜂 𝑝𝑝
2 𝐺𝐺𝐺𝐺

− 2𝑥𝑥

Par symétrie, la flèche maximum ft apparaît au milieu de la poutre en x = /2

• 𝑓𝑓𝑡𝑡 = 𝑦𝑦𝑡𝑡 𝑥𝑥 = /2 = 5
384

𝑝𝑝4

𝐸𝐸𝐸𝐸
+ 𝜂𝜂 𝑝𝑝2

8 𝐺𝐺𝐺𝐺
= 𝑓𝑓 + 𝑓𝑓𝑇𝑇

tandis que la rotation maximale surgit sous les appuis en x = 0 et x = 

• 𝛼𝛼𝑡𝑡 = 𝛽𝛽𝑡𝑡 = 𝑝𝑝3

24 𝐸𝐸𝐸𝐸
+ 𝜂𝜂 𝑝𝑝

2 𝐺𝐺𝐺𝐺
= 𝛼𝛼 + 𝛼𝛼𝑇𝑇
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Chapitre 7 : Déformée des poutres droites

Application numérique

Les données numériques fournies conduisent, compte tenu du coefficient de forme h
= 1,2 et en vertu de l’aire F = B H = 50 cm2 et de l’inertie I = B H3 / 12 = 417 cm4 de
la section, aux flèches f et fT et rotations α et αT, dues respectivement au moment de
flexion M et à l’effort tranchant T,

• 𝑓𝑓 = 3,0 𝑚𝑚𝑚𝑚

• 𝑓𝑓𝑇𝑇 = 0,075 𝑚𝑚𝑚𝑚

• 𝛼𝛼 = 0,0095 𝑟𝑟𝑟𝑟𝑟𝑟 = 0,55 ˚

• 𝛼𝛼𝑇𝑇 = 0,3 · 10−3 𝑟𝑟𝑟𝑟𝑟𝑟 = 0,017 ˚

On relèvera que les rapports des flèches et des rotations sont à nouveau très faibles

• 𝑓𝑓𝑇𝑇/𝑓𝑓 = 2,5 %

• 𝛽𝛽𝑇𝑇/𝛽𝛽 = 3,2 %
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Chapitre 7 : Déformée des poutres droites

En appliquant le principe de superposition et en ne considérant que l’influence du 
moment de flexion, calculer la flèche au centre d’une poutre de section rectangulaire 
soumise au cas de charge suivant :

Données numériques
P = 40 kN
P = 100 kN/m
M0 = 12 kNm
 = 1 m
H = 10 cm
B = 5 cm
E = 2,1·1011 Pa
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Chapitre 7 : Déformée des poutres droites

Conformément à l’annexe II, la déformée y1 due à une charge concentrée P a pour
expression

• 𝑦𝑦1 = 𝑃𝑃
6 𝐸𝐸𝐸𝐸

2𝑎𝑎𝑏𝑏2𝑥𝑥 + 𝑎𝑎2𝑏𝑏𝑏𝑏 − 𝑏𝑏𝑥𝑥3

La prise en compte de la position de la charge (a = 2/3, b = /3) permet de récrire
cette égalité sous la forme

• 𝑦𝑦1 = 𝑃𝑃
18 𝐸𝐸𝐸𝐸

8
9


2𝑥𝑥 − 𝑥𝑥3

La charge répartie p entraîne la déformée y2 suivante, aussi donnée par l’annexe II,

• 𝑦𝑦2 = 𝑝𝑝
24 𝐸𝐸𝐸𝐸

𝑥𝑥4 − 2 𝑥𝑥3 + 3𝑥𝑥

Tandis que la déformée y3 provoquée par le moment appliqué M0 se déduit du
résultat donné dans la même annexe après remplacement de la variable x par la
quantité  – x et inversion du signe de M0

• 𝑦𝑦3 = −𝑀𝑀0
6 𝐸𝐸𝐸𝐸



2𝑥𝑥 − 𝑥𝑥3
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Chapitre 7 : Déformée des poutres droites

En vertu du principe de superposition, la flèche au centre de la poutre a pour valeur

• 𝑓𝑓 = 𝑦𝑦 /2 = 𝑦𝑦1 /2 + 𝑦𝑦2 /2 + 𝑦𝑦3 /2

= 23
1296

𝑃𝑃3

𝐸𝐸𝐸𝐸
+ 5

384
𝑝𝑝4

𝐸𝐸𝐸𝐸
− 1

16
𝑀𝑀0

2

𝐸𝐸𝐸𝐸

Application numérique

Les données numériques fournies conduisent, d’après l’aire F = B H = 50 cm2 et
l’inertie I = B H3 / 12 = 417 cm4 de la section, à la flèche totale suivante

• 𝑓𝑓 = 0,81 𝑚𝑚𝑚𝑚 + 1,49 𝑚𝑚𝑚𝑚 – 0,86 𝑚𝑚𝑚𝑚 = 1,44 𝑚𝑚𝑚𝑚
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Chapitre 7 : Déformée des poutres droites

En négligeant l’influence de l’effort tranchant, calculer la flèche au centre de la poutre
à section variable, ainsi que les rotations aux extrémités.

Données numériques :
E = 210 GPa
I = 250 cm4

M0 = 20 kNm
 = 1 m
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Chapitre 7 : Déformée des poutres droites

Comme la structure présente deux tronçons à section constante, séparons la
déformée de la poutre en deux fonctions y1 et y2 devant satisfaire des conditions de
compatibilité au point de discontinuité de la section.

Le moment de flexion M1 relatif à la première moitié de la poutre (0 < x1 < /2)

• 𝑀𝑀1 𝑥𝑥1 = 𝑅𝑅𝐴𝐴𝑥𝑥1 = 𝑀𝑀0
𝑥𝑥1


L’équation différentielle associée à la déformée y1 prend la forme suivante

• 𝐸𝐸𝐸𝐸𝑦𝑦1′′ = −𝑀𝑀0
𝑥𝑥1


L’intégration successive de cette équation permet d’écrire

• 𝐸𝐸𝐸𝐸𝑦𝑦1′ = −𝑀𝑀0
𝑥𝑥12

2+ 𝐶𝐶1

• 𝐸𝐸𝐸𝐸𝑦𝑦1 = −𝑀𝑀0
𝑥𝑥13

6+ 𝐶𝐶1𝑥𝑥1 + 𝐶𝐶2

où C1 et C2 constituent les constantes d’intégration.

Problème 7.4



Chapitre 7 : Déformée des poutres droites

De manière analogue, le moment de flexion M2 sur le deuxième tronçon (0 < x2 <
/2)

• 𝑀𝑀2 𝑥𝑥2 = 𝑀𝑀0 − 𝑅𝑅𝐵𝐵𝑥𝑥2 = 𝑀𝑀0 1 − 𝑥𝑥2


L’intégration de l’expression différentielles entraîne successivement

• 2𝐸𝐸𝐸𝐸𝑦𝑦2′′ = −𝑀𝑀0 1 − 𝑥𝑥2


• 2𝐸𝐸𝐸𝐸𝑦𝑦2′ = −𝑀𝑀0 𝑥𝑥2 −
𝑥𝑥22

2 + 𝐷𝐷1

• 2𝐸𝐸𝐸𝐸𝑦𝑦2 = −𝑀𝑀0
𝑥𝑥22

2 − 𝑥𝑥23

6 + 𝐷𝐷1𝑥𝑥2 + 𝐷𝐷2

où D1 et D2 sont deux nouvelles constantes d’intégration. Ces quatre inconnues sont
déterminées, d’une part, par les conditions aux limites aux extrémités de la poutre
(déplacement nul au droit des appuis simples)

• 𝑦𝑦1 𝑥𝑥1 = 0 = 0 = 𝐶𝐶2
• 𝑦𝑦2 𝑥𝑥2 = 0 = 0 = 𝐶𝐶2
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Chapitre 7 : Déformée des poutres droites

D’autre part, par la condition d’égalité des déformées et des pentes au point de
discontinuité de la section (x1 = x2 = /2)

• 𝑦𝑦1 𝑥𝑥1 = /2 = −𝑀𝑀0
2

48 𝐸𝐸𝐸𝐸
+ 𝐶𝐶1



2 𝐸𝐸𝐸𝐸
= 𝑦𝑦2 𝑥𝑥2 = /2 = −5𝑀𝑀0

2

96 𝐸𝐸𝐸𝐸
+ 𝐷𝐷1



4 𝐸𝐸𝐸𝐸

• 𝑦𝑦1′ 𝑥𝑥1 = /2 = −𝑀𝑀0

8 𝐸𝐸𝐸𝐸
+ 𝐶𝐶1

1
𝐸𝐸𝐸𝐸

= 𝑦𝑦2′ 𝑥𝑥2 = /2 = 3𝑀𝑀0

16 𝐸𝐸𝐸𝐸
− 𝐷𝐷1

1
2𝐸𝐸𝐸𝐸

Ce système de deux équations à deux inconnues a pour solution

• 𝐶𝐶1 = 𝑀𝑀0

8
𝐷𝐷1 = 3 𝑀𝑀0

8

de sorte que les deux déformées et leurs dérivées peuvent être explicitées finalement
sous les formes suivantes

• 𝑦𝑦1 𝑥𝑥1 = 𝑀𝑀0
24 𝐸𝐸𝐸𝐸

32𝑥𝑥1 − 4𝑥𝑥13 0 < 𝑥𝑥1 < /2

• 𝑦𝑦1′ 𝑥𝑥1 = 𝑀𝑀0
8 𝐸𝐸𝐸𝐸



2 − 4𝑥𝑥12

• 𝑦𝑦2 𝑥𝑥2 = 𝑀𝑀0
48 𝐸𝐸𝐸𝐸

92𝑥𝑥2 − 12𝑥𝑥22 + 4𝑥𝑥23 0 < 𝑥𝑥2 < /2

• 𝑦𝑦2′ 𝑥𝑥2 = 𝑀𝑀0
16 𝐸𝐸𝐸𝐸

32 − 8𝑥𝑥2 + 4𝑥𝑥22
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Chapitre 7 : Déformée des poutres droites

La flèche f au centre de la poutre et les rotations α et β aux extrémités s’écrivent

• 𝑓𝑓 = 𝑦𝑦1 /2 = 𝑦𝑦2 /2 = 𝑀𝑀0
2

24 𝐸𝐸𝐸𝐸

• 𝛼𝛼 = 𝑦𝑦1′ 0 = 𝑀𝑀0

8 𝐸𝐸𝐸𝐸

• 𝛽𝛽 = −𝑦𝑦2′ 0 = −3𝑀𝑀0

16 𝐸𝐸𝐸𝐸

Application numérique

Avec les grandeurs numériques données, la flèche f et les rotations α et β valent

• 𝑓𝑓 = 1,6 𝑚𝑚𝑚𝑚

• 𝛼𝛼 = 0,0048 𝑟𝑟𝑟𝑟𝑟𝑟 = 0,27 ˚

• 𝛽𝛽 = – 0,0071 𝑟𝑟𝑟𝑟𝑟𝑟 = – 0,41 ˚
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Merci pour vote attention
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