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Chapitre O : Introduction

Probleme 0.1
Calculer les réactions aux appuis de la poutre schématisée ci-contre, puis dessiner

les diagrammes T et M des efforts intérieurs.

Application :
a=1m
/f=2m
g=5kN/m
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Chapitre O : Introduction

Probleme 0.1

Schéma
q
q Y
B C
l I |
Ry Ry = —

Equilibre des forces et des moments
® ZF RB — q a + RA

2

SM, Ryl = foaqxdx =%

2
> RA=%=1250N

c Rg=qa+R;=6250 N



Chapitre O : Introduction

Probleme 0.1

F—x q
a4 N c
> B ;
EP; «
() — —
Ry
Nx)=0

T(x) =—Ry,=—1250N
M(x) = —Ryx = —1250x Nm

M(x =/) =—Ry¢l =—2500 Nm



Chapitre O : Introduction

Probleme 0.1

Efforts intérieurs trongon AB

T(x)
M(x)
q A E>77 C

N(x) (L| . a -
- NN =0
( ) -1250 @
T(x") = gx' = 5000x’ N - .
* M(X’) — —%QX'Z = —2500 x'* Nm Tw Y 5000
-2500
©

v

Diagrammes des efforts -

Mix)
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Chapitre 1 : Equilibre intérieur d’un solide
Probleme 1.1

Calculer la contrainte et la force dans un long rail soudé soumis a un écart de tem-
pérature de A@ = +50 °C

Section F =75cm?
Module E=21x10" Pa = 210 GPa
Coeff. therm. a=12x10%6/°C




Chapitre 1 : Equilibre intérieur d’un solide
Probleme 1.1

Les allongements thermiques et mécaniques se compensent
© Aal+2=0
On en tire la contrainte o
c o=A0aE
La loi de Hooke lie la contrainte et la force
- P=Fo
On trouve alors les valeurs numériques suivantes :
- AfB = 4+50°C o =—126 MPa P = —945 kN (compression)

- A8 = —50°C o = +126 MPa P = +945 kN (traction)



Chapitre 1 : Equilibre intérieur d’un solide
Probleme 1.2

Calculer les réactions R, et R, pour le systeme ci-dessous, puis représenter les
diagrammes des efforts intérieurs N (effort normal), T (effort tranchant), et M
(moment fléchissant), en indiquant les valeurs particulieres.
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Chapitre 1 : Equilibre intérieur d’un solide

Probleme 1.2

Schéma =

Equations d’équilibre

6 kN
3kN

s 1

R,

- XM, 3kN X 5m+ 6kN X 10m — Rg X 15m =0

>  Rp=2 =5kN

XM, 6kN X5m+ 3kN X 10m — Ry X 15m =20

> Ry=1:=4kN

Efforts intérieurs
F—x

N(x)
>

T(x)
(x)

R,



Trongon AB

Troncon BC

Troncon CD

Troncon DE

Chapitre 1 : Equilibre intérieur d’un solide
Probleme 1.2

*Nx)=0
« T(x) =R, = 4 kN
cM(x)=Ryx=4x

« N(x) =Ry
«T(x)=0
e M(x) = 2R, = 8kNm

*N(x) =0
« T(x) =R, = 4 kN
cM(x)=Ryx=4x

*Nx)=0
« T(x) =R, —3=1kN
e M(x) =Ry x—3(x—5)

N(x) ¥

T(x) v

M(x)

4

25



Troncon EF

Troncon FG

Troncon GH

«T(x)=0

*N(x) =0 w1
. T(x) = —Rg=5 kN
e M(x) =Ry x—3(x—5)

Chapitre 1 : Equilibre intérieur d’un solide
Probleme 1.2

*Nx)=0
‘T(X)=Ry—5-6=-5kN 5,
e M(x) =Ry x—3(x—5)
—6(x — 10)
“N(x)=—-R;+3+6=5kN o 4 | ° ?s

M(x)

—6()6 — 10) ©)

@ ®
= Rp x' ' 8\ YL
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Chapitre 2 : Traction ou compression simple
Probleme 2.1 : influence du poids propre

En négligeant la dilatation latérale, déterminer le déplacement, sous l'effet de son
propre poids, du centre de gravité d’une colonne cylindrique de hauteur # et de
poids spécifique y

(a) f (b) %
i
A
r N - "
i G h .
n n
\ Y
0] 0

Hauteur de la colonne h =5m
Poids spécifique de I'acier y = 7,810 N/m3
Module d’élasticité de I'acier E =2110" Pa



Chapitre 2 : Traction ou compression simple

Probleme 2.1 : influence du poids propre
Apres déformation, I'élément dx a hauteur x devient dx’ a hauteur x'

I oy _ _ y(h—x)
dx' = dx(1-2) = dx(1-122)

. x' = f;cxdx’= x(l—ﬂ)+&

Soit g' le poids spécifique de I'élément dx' 'égalité des masses donne
- Fy'dx' = Fydx

et, par consequent, on peut écrire
« yidx'=ydx

On détermine la hauteur n’ du nouveau centre de gravité en calculant le moment
statique S’ par rapport a la base. Celui-ci est égal au produit de n' par la masse
totale M

= M =L _1 r(h _rhy rx?
S—nM—gy(nhF)—gnyO [x( 2)+2E]dx

ou g symbolise I'accélération terrestre



Chapitre 2 : Traction ou compression simple
Probleme 2.1 : influence du poids propre

En égalant ces deux expressions, on trouve
, _h
- =—(3E —2yE)

Le déplacement du centre de gravité est ainsi

/ h?
c A =n-n=Z-oy =L

Avec les données fournies, on obtient numériguement

- An=31-10"°m = 3.1um
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Chapitre 2 : Traction ou compression simple
Probleme 2.4 : sertissage a chaud de bague acier-cuivre

Un anneau de cuivre est serti a chaud, sans jeu et sans serrage, sur un anneau
d’acier de méme largeur B. La tempeérature du cuivre est de A8 plus élevee que celle
de l'acier.

Calculer les contraintes dans l'acier et le cuivre, la pression entre les deux anneaux et
le raccourcissement relatif de leur rayon commun apres refroidissement du cuivre.

E, = 1,1710" Pa

E, = 2,1-10" Pa S

e, = 0,5cm

e, =1cm

R = 10cm

a, = 16,6:10°/°C

AO = 200 oC 1 Cu E,, a, A0

2 Ac E,




Chapitre 2 : Traction ou compression simple
Probleme 2.4 : sertissage a chaud de bague acier-cuivre

Les anneaux étant minces, on peut confondre leurs rayons moyens avec R et
admettre que les contraintes dans chacun d'eux sont constantes dans toute
I'épaissedur.

La pression p de serrage provoque une contrainte o; de traction dans le cuivre et une
contrainte o, de compression dans I'acier. On peut écrire deux conditions d’équilibre

- 2eBoy = 2 f:/zsinrpde= ZpRBfon/Zsinrppdg0= 2pRB
- 2e,Bo, = 2pRB

qui lient trois grandeurs inconnues o, o, et p, le systeme étant par consequent
hyperstatique d’ordre 3 — 2 = 1. La condition de déformation donne la troisieme
équation nécessaire : le raccourcissement A¢ de la demi-circonférence de I'anneau
de cuivre est égal a celui de 'anneau d’acier

+ A =7mAR = TRAGa; - TR > =R 2
1

E>



Chapitre 2 : Traction ou compression simple

Probleme 2.4 : sertissage a chaud de bague acier-cuivre

Avec la notation 4 = (e, E,) / (e, E,), la resolution de ces trois équations conduit aux
contraintes suivantes o, dans le cuivre et o, dans 'acier

A 1
* 01 = mA9a1E1=304MPa et 0y = 1_+/1A9a1E2=152MPa
Liees par la relation
. 4 _ &
02 B €1

ainsi qu’a la pression de contact ci-apres
€1 €2
c p =0y—=0,—=15.2MPa
R R
Finalement, le raccourcissement relatif du rayon commun se déduit de la troisieme
équation

. _AR_op _ 1 — 0
£=— —E2—1+/1A9a1—0.72 Yoo



Chapitre 2 : Traction ou compression simple
Probleme 2.5

Calculer la force subie par un alpiniste de masse m tombant d’'une hauteur 24 et
retenu par une corde en nylon de section F.

NA

(a) (b)

corde

point
d'assurage

Masse de l'alpiniste m = 80 kg

Section de la corde F=05cm? (8 mm)
Module d’élasticité du nylon E = 2,8-10° Pa
Demi-hauteur de chute h=15m



Chapitre 2 : Traction ou compression simple
Probleme 2.5

Dans sa partie initiale, le diagramme d’'une corde de nylon est rectiligne. Bien que
fortement tributaire du mode de tressage, le module d’élasticité de la corde est égal
environ au quart de celui d'un fil unique

- Ec~E/4 =0,7-109 Pa

En supposant que le diagramme force-déplacement reste linéaire, égalons I'énergie
de chute a I'énergie dans la corde (accélération terrestre g = 9,81 m/s?)
N2 h

- mg (2h) = T

pour extraire la force de blocage cherchée N1, indépendante de la hauteur de chute,

« Ny =2 mgE-F =10.5kN

En réalité, le diagramme de la corde n’est pas rectiligne et la force maximum N,
effectivement atteinte pour la méme énergie est plus faible. Pour une corde
correspondant au diagramme de la figure, cette force serait réduite dans le rapport
N,/ N, = 0,6 et serait donc égale a environ 6 kN.



Chapitre 2 : Traction ou compression simple
Probleme 2.3

Une force P est appliguée au point C du systeme représente. Calculer les efforts
interieurs N, et N, dans les barres, les reactions en 4 et B, ainsi que le deplacement

Oc

A C
7 E],E EZ:Fé
N, P N
47—7*77—>~ 77777 — — — — — ——— —
RA
4 0y
- > L




Chapitre 2 : Traction ou compression simple

Probleme 2.3

La statique ne permet d’en calculer qu’'une : dans un tel cas, le systeme est dit
hyperstatique d'ordre2 -1=1

Le déplacement 6. du point C est egal a l'allongement de la barre AC et au
raccourcissement de la barre CB

. N1lq . Ny,
E1F; E>F,

.5(:

D’autre part, on peut écrire la relation suivante
- P= N, +N,

De ces deux egalites, on tire facilement, avec la notation ¢ = (E, F,) / (E| F)

_ /, _ Ay
Ny = P77, Ny =Pt
_ 010,
O0c =P (A +05)ELFy

Enfin, il est évident que R, =N, et Rz =N,
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Chapitre 3 : Etat de contrainte bidimensionnel

Exemple plaque carrée

Une plague carree, en acier laminé a chaud, de 50 cm de c6té et 2 mm d’epaissedr,
subi sur son contour une charge lineique de P, = 2 x 10° N/m.

L =50cm

| =2 mm

E =201 GPa
u=0.27

Po

t1ttt

Calculer :

1) Les contraintes o et o, au centre de la plaques et la contrainte de
cisaillement sur le plan a 45°

2) Les allongements relatif ¢ et absolu AL des cotés

3) La variation relative de volume

4) La densite d’énergie



Chapitre 3 : Etat de contrainte bidimensionnel
Exemple plaque carrée

_ N _ Pl _ Po_
1) ox =0y T = 100 MPa
01 = 0y = Oy T
o Ix %
T(p = 45°) = — sin2¢ + tcos2¢p= 10 Oy —
2) &=_(0x—puoy) = 348107 1
AL =L =0.1738 mm oy
O,+0o - 1
3) v=»1-2u)2 2 =143810""
4) u_l(a_%+a—32'— o 0)_34’761L % - -—GI;:;
T E\2 2 HOxOy ) = m3 I, est un point




Chapitre 3 : Etat de contrainte bidimensionnel

Exemple bloc soumis a des charges biaxiales

La figure montre un bloc solide soumis a un etat de contraintes pour lequel on
connais les composantes normales et tangentielles. Déterminer, par le calcul et sur le
cercle de Mohr, les valeurs des contraintes principales.

Ty
« N, =2x10°N N,
. Ny = -3.6x10*N

.« T.=9x10*N

_ N
- B=6cm " 4_}_ ............ %_Nza.ﬁx
- b=1cm T, I
- H=10cm B

=



Chapitre 3 : Etat de contrainte bidimensionnel
Exemple bloc soumis a des charges biaxiales

Contraintes normales
N 200000 i
¢ Oy =—-= = 200 MPa
bH 10 X100
N 36000
oy = = = = —60 MPa
B b 60 X10
Contraintes tangentielles
T. 90000
T, = — = = 90 MPa
b H 10 X100

° Ty=Tbe=54kN



Chapitre 3 : Etat de contrainte bidimensionnel

Cercle Mohr

R = \/(“x“’y)z +12 = 158 MPa

2
oy =2 4 R = 228 MPa

Ox+t0y
2

Po = %tan‘1 <2L> = 24°

03 = — R = —88 Mpa

Exemple bloc soumis a des charges biaxiales
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Chapitre 5 : Torsion simple
Probleme 5.1

En choisissant une contrainte de cisaillement admissible z4,, de 50 MPa, calculer le
diametre — supposé uniforme — d’un arbre de turbine a gaz transmettant une
puissance de 25 MW a 8000 t/min



Chapitre 5 : Torsion simple
Probleme 5.1

Le moment de torsion M, est lié a la puissance P par l'inverse de la vitesse de
rotation w

25-10°-60
27 8000

° Mt =P/w — — 29.8'10_3 Nm

La contrainte tangentielle admissible z,,, est égale a la contrainte maximale z,,.

My  16M;
— 3
Wp D

Tadm = Tmax

de sorte que le diametre cherché D vaut

e D= 3/ 1Mt _ 145 cm
MTTadm




Mécanique des structures

Chapitre 5 : Torsion simple

Dr. Alain Prenleloup
SGM BA3

cPr-L




Chapitre 5 : Torsion simple

Probleme 5.2

Calculer la contrainte de cisaillement maximum dans un ressort hélicoidal de dia-
metre D, formé de n spires de diametre d et soumis a une charge de compression P.
Déterminer ensuite la fleche, la constante du ressort et I'énergie emmagasinée.




Chapitre 5 : Torsion simple
Probleme 5.2
La fibre moyenne du ressort est une hélice d’angle « en fonction du pas ¢ d’'une spire

t
e a~tanag = —
2T R

Par le centre de gravité G d’une section normale du ressort, construisons les axes
orthogonaux G,, G, et G, ainsi definis

« G, est horizontal et coupe I'axe du ressort au point O
- G_esttangent a la fibre moyenne et forme I'angle a avec I'horizontale
- G, complete le triedre droit avec G, et G, et forme I'angle a avec la verticale

Au point O, décomposons la force P selon les directions des axes G, et G, (la
composante selon I'axe G, est nulle)

« N=Psina selon G,

- T=Pcosa selon Gy

ou les grandeurs N et T sont les efforts intérieurs normal et tranchant au point G



Chapitre 5 : Torsion simple
Probleme 5.2
Les deux autres efforts intérieurs sont les moments de torsion M, et de flexion M,

« M =RT=PRcosa selon G,
- Mf=RN=PRsina selon G,

L'influence du moment de torsion est préedominante, de sorte que les autres efforts
intérieurs sont négligés dans l'analyse. Il s’ensuit que la contrainte maximale de
cisaillement peut s’écrire

. _ M _16M, _16PRcosa _16PR _ 8PD
max "y, T mds nd3 ~ nmd3 ~ nd®

Deux sections F, et F, distantes de ds tournent relativement I'une a I'autre d’un angle
de qui entraine une fleche df = R de. En adaptant I'expression pour prendre en
compte l'abscisse curviligne, on obtient

. df_RMtds_RPRcosadSNPRst_PDZdS 32 _ 8PD%s
G I Gl,  GlI, 4G md* md*G




Chapitre 5 : Torsion simple
Probleme 5.2

Pour obtenir la fleche totale, il suffit d’intégrer sur la longueur totale du ressort égale a
nmD /cosa = nmDetlontrouve donc

ST
La rigidité ou constante & du ressort est le facteur de proportionnalité entre la charge
et la fleche totale et peut étre explicitee sous la forme

P Gd*

. k=f=f=8nD3

de sorte que I'énergie U emmagasinée dans le ressort a pour valeur

U_Pf_P2_4nP2D3
2 2k Ga*
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Chapitre 6 : Flexion des poutres droites
Probleme 6.0

Dessiner les diagramme des effort interieur

—

«~— (/4 > < V4 —><— (/4 > < (4 —>




Chapitre 6 :

Schéma et équations d’équilibre
l l

- XM, mg,+ Mo =Ry7
__mg 2M,
2> R, = St
« 2F Ry + Rg = mg + qol
_mg _ 2Mo
- RB == + qu 7
Efforts tranchants
« I T(x) = Ry — qox
- I T(x) =Ry —mg — qox
- Il T(x) =Ry —mg + Rg — qpx

- IV T(x) =Ry —mg + Rg — qpx

Flexion des poutres droites
Probleme 6.0

N

A
i

1

mg

TTTTT]
i S

< U4 ——>— /4

/4

0/4 <~ /4 —>

i

qoL/2

v




Chapitre 6 : Flexion des poutres droites
Probleme 6.0

Moments de flexion

IIHIOHII\I*IHI
= n o

<« (/4 —>—— (/4 /4 <« (/4 —>
R, R,
I i 11 114

I M(x)=Ryx — %qoxz

II M(x)=Rysx —mg (x —é) —%qoxz
! N 1.,
III M(x) =Ryx —mg X—7]+Rp(x—7)—>qox

2

IV M(x) =RAx—mg(x—£)+RB (x—g)—Mo—%qoxz

M)




Chapitre 6 : Flexion des poutres droites

Probleme 6.1 et 6.2

Probleme 6.1 : Calculer les contraintes maximale et minimale dans la section d’'une
poutre rectangulaire de hauteur H = 6 cm et de largeur B = 4 cm en acier soumise a
un moment de flexion A = 5000 Nm. Déterminer ensuite le rayon de courbure r.

Probleme 6.2 : Calculer les contraintes tangentielles t dans une section rectangulaire
de hauteur H et de largeur B d’une poutre soumise a la flexion simple.




Chapitre 6 : Flexion des poutres droites
Probleme 6.1

Le moment d'inertie de la section par rapport a I'axe G,, ainsi que les moments
correspondants de resistance a la flexion, valent

3
« 1= [, y*dF =2B [ y?dy === = 0,72 - 10- 6 m4

: W1=W2=HL/2=24-10-6m3

Les contraintes normales o, €t o, ont ainsi pour valeur

Omax = % = 208 MPa

O = % = —208 MPa

Le rayon de courbure r est quant a lui obtenu

© p=-=302m



Chapitre 6 : Flexion des poutres droites

Probleme 6.2
Le moment statique de la section partielle se calcule immeédiatement sans expliciter

'intégrale

=B ()3 ()= - (75) |

Comme le moment d’inertie I de la section et la largeur b a I'abscisse y valent

BH3
[ ] I _— —,——
12

- b=B

Les contraintes tangentielles r s’écrivent

3 y \?
' T=57moy[1‘(zf_/z)]

ou 7., représente la contrainte tangentielle moyenne dans la section, définie par le

moy

rapport suivant

. T
Tmoy—BH



Chapitre 6 : Flexion des poutres droites
Probleme 6.3

Evaluer les contraintes normales o et tangentielles 7 dans la section en forme de T
inversé d’'une poutre droite soumise a un moment de flexion M et a un effort tran-
chant T

(a)

A A
B,
> -
m
H,
z M G
al Y
ml L
H,
Y

B, Yy *
—f




Chapitre 6 : Flexion des poutres droites
Probleme 6.3

Calculons d’abord l'aire F de la section, les distances &, et 4, du centre d'inertie G de
la section aux fibres extrémes et le moment d’inertie . = I de la section.

En considérant la section totale comme I'assemblage de I'ame de hauteur H, et de
largeur B, et de la semelle de hauteur H, et de largeur B,

° F — HlBl + Hsz

__ HiBy(Hy/2)+H;B,(H,+H;/2)
[ =
F

- My=H +H,—my

_ Bab3 | Bu
3 12

|

+Hy By (2 + Hy) —n3F

Des lors que les grandeurs qui apparaissent dans I’équation de la contrainte noramle
sont globales, les contraintes normales demeurent continues sur la hauteur de la
section malgré le changement brusque de largeur. Leur distribution est linéaire et a
pour expression

o) ="y



Chapitre 6 : Flexion des poutres droites

Probleme 6.3

| es valeurs maximales de contraintes normales sont atteintes sur les fibres extrémes
inférieure (traction) et supérieure (compression)

. M . -M
Omax = 7772 Omin — 7771

Les moments statiques S’ et S," de la section partielle F’ pour respectivement I'ame
et la semelle s’écrivent

« S1=Bi(mi+y)-(n—y)/2 —Mm<Yy<n,—H

« S =By(2—y)-(m2+y)/2 n,—H,<y<n,

La largeur b a I'abscisse y valant B, dans I'ame et B, dans la semelle, les contraintes
tangentielles sont, apres transformations mathématiques, données par

Tn?

-t =1 - /n)?] —m<y<n,—H

05

-t =21 - (/m2)? N, —Hy <y <,

et leur amplitude maximale surgit sur I'axe neutre

Tmax = T(0) = TU%/(ZI)
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Chapitre 7 : Déformée des poutres droites
Probleme 7.1
Chercher la déformée d’une poutre en console de section rectangulaire supportant

une force ponctuelle en son extremité libre

Données numeériques

QWD N

30 kN
1m

= 10cm

5cm
21107 Pa

= 0,8-10" Pa

——
——
—
-
—__-
-
—
-
-~
~—
-

Ti




Chapitre 7 : Déformée des poutres droites
Probleme 7.1

Déformée due au moment :

Le moment de flexion M provoqué par la force P est donné par
« M(x)=-P{- x)

L'équation difféerentielle du second ordre avec le moment devient
- Ely"=P{- x)

En intégrant successivement cette équation, on obtient
x2
° EIy'=P€x—P7+C1

x? x3
° E1y=P€7—P?+C1x+C2

ou C, et C, constituent les constantes d’intégration, determinees par les conditions
aux limites du probleme

- YV(x=0)=0=C
- y(x=0)=0=C(



Chapitre 7 : Déformée des poutres droites

Probleme 7.1
L’équation de la déformée due au moment et celle de sa deérivee s’écrivent ainsi

. y=—_x2(3/-
y=c7x"Q3l-x)

. y’=ix(2€—x)

2EI

La fleche fet la rotation b maximales apparaissent sous la charge en x = /
p/3
f=3m

p(?
p=tgh=_



Chapitre 7 : Déformée des poutres droites
Probleme 7.1

Déformée due a I'effort tranchant
Comme I'effort tranchant T est constant et vaut
« T(x)=P
'’equation différentielle du premier ordre a pour expression
, P
*Yr =05
dont I'intégration triviale donne
P
*Yyr=ngExt G

L’'unique constante d’intégration C, est a nouveau calculée grace a la condition de
bord en déplacement

« yr(x=0)=0=0C;

L'équation de la déformeée due a I'effort tranchant a des lors pour expression

P
© Y =7ox



Chapitre 7 : Déformée des poutres droites
Probleme 7.1

La fleche maximum f; due a l'effort tranchant apparait également sous la charge,
mais la rotation g, est indépendante de la variable x

p/
C =gy
P
PrEngy

On relevera que l'effort tranchant provoque, méme a I'encastrement, une rotation
constante lorsque la charge est concentrée.



Chapitre 7 : Déformée des poutres droites
Probleme 7.1

Déformée totale

La déformée totale y, et sa dérivee sont obtenues par sommation des déeformees
partielles y et y, et de leurs dérivees

P P
CYe=yHyr = xt G- X))+

/ / / P P
V=Y tyr=5ox@0-x)+n—

De maniere analogue, la fleche totale f, et la rotation totale g, sont trouveées par
addition des contributions partielles

p/3 P/l
* fe=ftfr=Eo 05
pl? P

* Be=F A Pr =555



Chapitre 7 : Déformée des poutres droites

Probleme 7.1

Application numérique

En portant les données numériques fournies dans les relations calculées
precedemment, on obtient, compte tenu du coefficient de forme & = 1,2 de méme
que de l'aire F = B H = 50 cm? et de I'inertie I = B H, / 12 = 417 cm* de la section,

- f=11,4mm
« fr=009mm
« =0017rad =098"
« Br=0,09-10"3rad = 0,005°
Il est a noter que les rapports des fleches et des rotations sont tres faibles
* fr/f =8%o
* Br/B =5 %o

L'influence de l'effort tranchant T est négligeable en comparaison de celle du
moment de flexion M



Données numeériques
200 kN/m

supportant une charge uniformément répartie.

= 10cm

2,1-10"" Pa
= 0,8:10" Pa

QT N

-
-
-
———
— ——

Chapitre 7 : Déformée des poutres droites

Probleme 7.2
Chercher la déformée d’une poutre sur deux appuis simples de section rectangulaire

pli2




Chapitre 7 : Déformée des poutres droites
Probleme 7.2

Déformée due au moment et a I'effort tranchant

Compte tenu de la charge répartie p(x) = p, le moment de flexion M s’écrit

Z
¢ M) =Elx—pZ

Comme la charge appliquée est continue, il est possible d'utiliser directement
I'’equation différentielle combinant les effets dus au moment de flexion et a I'effort
tranchant

144 M —_ —_ L
Yt__E_T’GF 2El(x (x) NGr

L’intégration successive de cette équation donne

, 3 )2
=G (5 -T) ngr G

p (x* Vlx P X
Ve = 2E1(E_T) Ngrz T X+ (2



Chapitre 7 : Déformée des poutres droites
Probleme 7.2

Les constantes d'integration C, et C, sont evaluées a partir des conditions aux limites
du probleme

- y:(x=0)=0=2C2
0% p 02

Coyx=0=0=2 ——n——+Cy!

Les equations de la déformee et de sa derivée ont pour expression

PBx — 20x3 + x*) + n==(fx — x?)

24-EI( 2 GF

(13 — 6/x% + 4x3) + === (¢ - 2x)

4
. _
Yt = 54kl 2 GF

Par symeétrie, la fleche maximum f, apparait au milieu de la poutre en x = /2

_ _ _ 5 pl* pl? _
fe=y:(x=1/2) o2 51 T Nscr =f+fr

tandis que la rotation maximale surgit sous les appuisenx =0etx = /

pt?> ol _
= |Btl ~ 24 EI 772(;1~‘_a_|_aT



Chapitre 7 : Déformée des poutres droites
Probleme 7.2

Application numérique

Les données numériques fournies conduisent, compte tenu du coefficient de forme A
= 1,2 eten vertu de l'aire F = B H = 50 cm? et de I'inertie I = B H;/ 12 = 417 cm* de

la section, aux fleches fet f; et rotations « et a,, dues respectivement au moment de
flexion M et a I'effort tranchant T,

- f=30mm
« fr=0075mm
-« a=0,0095rad =0,55°
- ar=03-10"3rad =0,017°
On relevera que les rapports des fleches et des rotations sont a nouveau tres faibles
© fr/f=25%
* Pr/B =32%



Chapitre 7 : Déformée des poutres droites
Probleme 7.3

En appliquant le principe de superposition et en ne considérant que l'influence du
moment de flexion, calculer la fleche au centre d’une poutre de section rectangulaire
soumise au cas de charge suivant :

Données numeériques
= 40 kN - -
100 kN/m a=20/3 b=1/3 <2y
12 KNm P
im p
10 cm : u
5cm

2,1-10" Pa

< v v
I

S

SSIESVRCVREN
[




Chapitre 7 : Déformée des poutres droites
Probleme 7.3

Conformement a I'annexe I, la deformee y, due a une charge concentree P a pour
expression

c Y, = 6€ — (2ab%x + a?bx — bx3)

La prise en compte de la position de la charge (a = 2¢/3, b = ¢/3) permet de récrire
cette égalité sous la forme

__P (82 3
TN 18El(6€ X=X )
La charge répartie p entraine la déformée y, suivante, aussi donnée par I'annexe |l

(x — 20 x3 + 13x)
24EI
Tandis que la déformée y, provoquée par le moment appliqué M, se deduit du

résultat donné dans la méme annexe apres remplacement de la variable x par la
quantite ¢ — x et inversion du signe de M,

© s =g (Px—x°)



Chapitre 7 : Déformée des poutres droites
Probleme 7.3
En vertu du principe de superposition, la fleche au centre de la poutre a pour valeur

« f=yU/2)=y,(4/2) + y,(4/2) + y3(L/2)

23 P35 pl* 1 Ml?
1296 EI ~ 384 EI 16 EI

Application numérique

Les données numériques fournies conduisent, d’apres l'aire F = B H = 50 cm? et
'inertie I = B H;/ 12 = 417 cm* de la section, a la fleche totale suivante

- f=081lmm + 1,49mm- 086 mm = 1,44 mm



Chapitre 7 : Déformée des poutres droites
Probleme 7.4

En négligeant I'influence de I'effort tranchant, calculer la fleche au centre de la poutre
a section variable, ainsi que les rotations aux extrémites.

Données numeériques :

E = 210GPa = e e g
I = 250cm4 ~ > >
M, = 20 kNm I 2 FI M,
¢ = 1m 4 | B
7 X X
_ M, : - - _ M,
Re= T § Ra=
' \
.h-"‘-j._oi__.--yl} f V2 ﬁi,f”’
- ______-.---- __—_-_-_! ______
(/2
g P




Chapitre 7 : Déformée des poutres droites

Probleme 7.4

Comme la structure présente deux trongcons a section constante, séparons la
déformée de la poutre en deux fonctions y, et y, devant satisfaire des conditions de
compatibilité au point de discontinuité de la section.

Le moment de flexion M, relatif a la premiere moitie de la poutre (0 < x; < ¢/2)
* M;i(x1) = Ryxq = Mo 7

L’équation différentielle associée a la déformée y, prend la forme suivante
+ Ely] =My

Lintégration successive de cette équation permet d’écrire

- Ely, = M02€+C1

- Ely, = —M, % + Cyx1 + Cy

ou C, et C, constituent les constantes d’intégration.



Chapitre 7 : Déformée des poutres droites
Probleme 7.4

De maniere analogue, le moment de flexion M, sur le deuxieme trongon (0 < x, <
?/2)

 My(x) = My~ Roxy = My (1-%)

L’'intégration de I'expression différentielles entraine successivement
© 2Elyy = —M, (1 - %)

® ZEIyé — _MO (Xz - x_z) + Dl

20
x3 x5
® ZEIyz =_MO 7_@ +D1x2+D2

ou D, et D, sont deux nouvelles constantes d’integration. Ces quatre inconnues sont
déterminées, d’'une part, par les conditions aux limites aux extremités de la poutre
(déplacement nul au droit des appuis simples)

« Y (x=0)=0=0,
© Y(x; =0)=0=0(,



Chapitre 7 : Déformée des poutres droites

Probleme 7.4
D’autre part, par la condition d’égalité des déformées et des pentes au point de

discontinuité de la section (x; = x, = ¢/2)

—M P2 / —5Mq (2 4
- yi(xy =1/2) = 480El +C1E=y2(x2=f/2)= 96EO'I +D1E
M,/ 3Myl 1

© 1l =1/2) = sEl | C1E1 =y,(x; = 1/2) = ez P13
Ce systeme de deux equations a deux inconnues a pour solution

3 Mo/l
8

Y PY4

© O =

D1=

de sorte que les deux déformées et leurs deriveées peuvent étre explicitées finalement
sous les formes suivantes

© yila) = 245 — (30%x; — 4x7) 0<x; < (/2

© y1lg) = 8€E1 (¢2 — 4x?)

© Y () = ol (9022, — 12023 + 4xc}) 0<x, <2
© Y2 () = f — (302 — 80x, + 4x%)



Chapitre 7 : Déformée des poutres droites

Probleme 7.4
La fleche fau centre de la poutre et les rotations « et faux extrémites s’ecrivent

My l?
. f = yl(f/Z) — }’2(5/2) = Z:El
ey Mol
a—Y1(O)_8E1
. e 3ML
B=-y(0)=—"—+

Application numérique

Avec les grandeurs numériques données, la fleche fet les rotations « et S valent
f=16mm
a =0,0048 rad = 0,27 °
B =-00071rad =-0,41"



Merci pour vote attention
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