Structural Mechanics Exercises week 10 Prof. G. Fantner

Exercise 1

In a titanium structure you have identified the critical point where you know
that your part will start to fail. You have calculated the local stress state to be

Oz Toy Tae 85 0 —15V/3
=\t oy Te|=| 0 =20 0 |MPa
Trz Tyz Oz —15\/3 0 59

You know that the titanium you are using has a yield strength of 180 MPa. Use
the von Mises stress criterion to determine if your part will fail, and if not how
big your safety factor is.

Exercise solution 1
Given:
e Stress tensor in critical point.

e Yield stress in material.

Asked:
e Von Mises equivalent stress ojy.

o Does structure yield? Safety factor.

Relevant relationships:

e Von Mises equivalent stress

oM = \/% [(0'1 — 02)2 + (0'2 — 0'3)2 + (0'1 — 03)2]
for principal stresses o123

By looking at the given stress tensor, we can see that there are no shears acting
in y direction from either x or z, thus we already know that oo = —20 MPa.
This allows us to further treat the remaining part of the tensor

ﬁ N |j]vz Uz‘| N [—15ﬁ 55 ]MP&

Finding the eigenvalue solves to
det (57~ AF ) =0

)\1 = 0] = 40 MPa and )\2 = 03 = 100 MPa

Using these principal stresses give o) as:
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oN = \/% [(40 4 20)2 + (=20 — 100)2 + (40 — 100)2]MPa
= 60v3 MPa = 103.9 MPa

So we know the structure does not fail and we get a safety factor of

180
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Exercise 2
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Figure 1: Different loaded beams.

The three beams as shown in figure 1 are subjected to different loads and
supports. For each beam shown:
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o Find the distributed load function ¢(z).

e Determine the boundary conditions for the shear force and the moment
function.

o Calculate and sketch the shear force V(z) and the internal moment M (z).

Exercise solution 2

Given: Beams with loads.

Asked:
o Distributed load ¢(x).
e Boundary conditions.

e Shear force and moment functions and diagrams.

Relevant relationships:

e Shear force
dV (z)
dx

= —q(x)

e Bending moment

dM (z)
dz

=V (z)
a)

The only load that should be used in the load function is the force acting in the

middle of the beam, as the supports are on the boundary. The force is modelled
with a singularity function to get

Ga(x) = F<x — %>71 )

Since there are two pin supports on either end of the beam, the shear forces are
as of yet unknown. However, neither end can support a bending moment, thus
we get M,(0) =0 and M,(L) = 0.

Shear force and moment functions are calculated by integration:

Va(z) = —/qa(x) dz+Cy = —F <x - %>0 +C
M,(z) = /V(a;) do+Cy=—F(z—5) 4 Crr 1 0y

for which we use the boundary conditions to determine C and Cy. For M,(0) =0
we directly get Co = 0 and with M,(L) =0

—F(L—%)—i—ClL:O = Clzg

3
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so we finally get
0
Va(z) = =F <ac - %> +

My(z) = —-F <1: - %>1 +

T
which is sketched below:
Va(x) Ma(m)
E A oL Y

|
Nl
f
8
o
8

Note that the two supports each induce a reaction force of —g, bringing the
shear force diagram to 0!

b)

Again reaction forces and moments (from the wall) are neglected and only the
line force is used to get

a(z) = % <$ - %>0

The shear force and moment induced by the wall is yet unknown, but the
free right end can support neither a force nor a moment, so V(L) = 0 and
My(L) = 0.

Again integrate to get the shear force and bending moment functions:

L
F 2
My(x) :/V(:z:)da:—}—C'Q:—— <x—%> + Crz + Co

Vi(z) = —/qa(az)dx+Cl __E (- g>1 +Cy

2L
Using first V(L) = 0 we get

—E(L—£)1+Cl — 0125

L 2 2
and using My(L) =0
F 2 F F L? FL 3FL
—~ (L-L L4 Cy=—— " 4 T4 Oy =0 — (="
2L< 2>+2 thr=—or gt T2 2 )

so the complete functions are

Vila) = — (o - §>1+§

2 F 3FL
S o S
My(z) = 5T <$ 2> + 5% 3

which is shown below:
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V() My(x)
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Again the boundary force and moment can be seen from the functions and the
graph. The wall reaction force on the beam is —V;(0) = —g in z direction and
the reaction moment is —M;(0) = 2FL.

c)

The load function here is composed of two parts: a point load at x = %L and
a linearly distributed load that is 0 at x = %L and increases linearly to % at

T = %L. We write the load function as

-1 1

Ge)=~F(z— %) +%<m_%>
Additionally there is a point moment M = —F L acting on the left wall. This
could either be modeled at a point moment while treating the left end as
unable to support a moment (g(z) = M - ()~ ? together with M,(0) = 0) or by
directly including it as a boundary condition M.(0) = F'L. The right end gives
M.(L) = 0 in analogy to a).
Integration yields

Vc(a:):—/qa(x)dx—i-Clz—l—F<x—§>0—23;<w—2§>2+01

Mc(g;):/V(x)dx+02:F<x—§>1—£;<x—2§>3+01x+02

The constants are again determined by the boundary conditions
MO)=FL: Cy=FL

and

1F

M(L)=0: F(L—g)—@(L—%)3+CIL+FL:o S oC=—

89F
54
With subsituted constants

mwzp@_@o_%@_%fﬁg{
Mc(x):F<x—%>1—§%<m—%>3—8§%-x+FIJ

as drawn below:
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Exercise 3

A uniform beam is supported and loaded according to the figure 2.
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Figure 2: A supported beam under the distributed load

a) Sketch the free body diagram
b) Find reaction forces at the supports

¢) Draw the shear force and moment diagram

Exercise solution 3

Given:
o Sketch of the beam
« Distributed load ¢y = 4kNm™!
e Distance L; =4m

e Distance Ly =2m

Asked:
e Free body diagram

e Reaction forces at the supports
e Shear force diagram

¢ Moment diagram

&V
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Relevant relationships:

e Equilibrium of force

Y F.=0 (1)
e Equilibrium of moment

> Mp=0 (2)
e Relation between shear forve and bending moment

Aﬂ@:/vwﬂw+0 (3)

Relation between distrinuted load and shear force

w@:—/¢@m+c (4)

a)

Figure 3 presents the free body diagram.

4 kN/m
R, A R,
A B
4 m 2m
< > < >
Figure 3: The free body diagram
b)
From force equilibrium: ) F, = 0 we get
—Ra—Rp+ql2s = 0 (5)
Rp = qOLQ — Ry (6)
From moment equilibrium around point B: > Mp = 0 we get
L
Rali+qplay = 0 (7)
L3
= —qp—— = —2kN
Ra w057 (8)
Rp = 10kN (9)
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c)

We will make two sections: before point B (part 1.) and after point B (part 2).
From force equilibria for each section we get:

Vi(x)=Ra = 0 (10)
Va(w) = Ra—Rp+qo(z—L1) = 0 (11)
(12)

From previous equations we get

Vi(z) = Ra=—2kN (13)
Vo(z) = Ra+Rp—qo(x—L1)=8kN —4kNm™! (z —4m) (14)
(15)

Now we can draw the shear force diagram, as presented in figure 4a.

4 kN/m
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Figure 4: a) Shear force moment diagram B) Moment diagram

The moment diagram we can calcuate by integration of the shear force diagram.
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For part 1:
Mi(x) = /RA dz+Cy = Raz +Ci (16)

Knowing that M;(0) = 0 (moment is 0 at pin support) we get C; = 0 and
Mi(xz) = —2kN - z.

For part 2:
My(z) = /(RA+RB—qO (¢ — L)) dz + Cy (17)
2
MQ(JJ) = (RA—I—RB).%'—(]O(x_;/l)—i-CQ (18)

Value of Cy we can get from condition My (L1) = Ms(Ly), from which we get
Cy = —40kN m
Finally, we can write

My(z) =8kN -z —2kNm™! (z — 4m)® — 40kNm (19)

From these calculations we can now draw moment diagram, as presented on the
figure 4b.




	
	
	
	
	
	

