

Exercise 1Figure 1: Circular bar and strain gauges A and B

A solid circular bar with a diameter of $d = 32$ mm is subjected to an axial force P and a torque T (see Figure 1). Strain gauges A and B mounted on the surface of the bar give readings $\varepsilon_A = 140 \times 10^{-6}$ and $\varepsilon_B = -60 \times 10^{-6}$. The bar is made of steel having $E = 210$ GPa and $\nu = 0.29$.

- Determine the axial force P and the torque T .
- Determine the maximum shear strain γ_{max} and the maximum shear stress τ_{max} in the bar.

Exercise 2

Reminder about non overconstrained systems : There is no need to use the displacement stiffness method when the system is not overconstrained.

We consider a cylindrical beam made out of two materials as depicted Fig.3a. Its radius is r , young modulus are E_1, E_2 and Poisson ratio are ν_1, ν_2 .

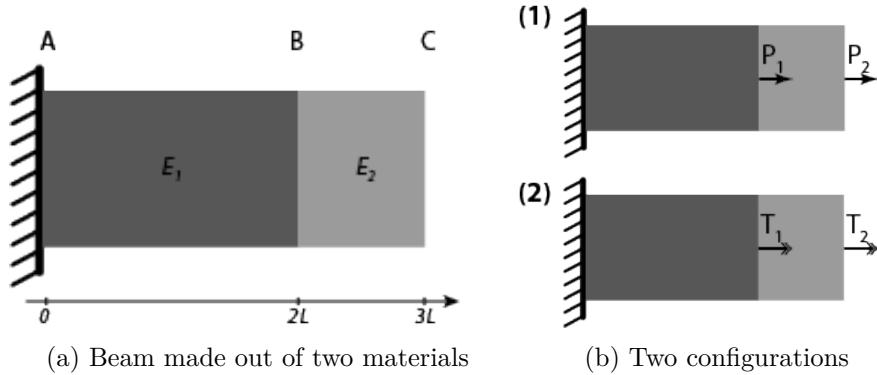


Figure 2

a) For the configuration 1 in Fig.3a (forces),

- What is the internal force in the beam ?
- What is and where is the maximum stress ?
- What is the displacement of points A, B and C ?

b) For the configuration 2 in Fig.3b (torques),

- What is the internal torque in the beam ?
- What is and where is the maximum shear stress ?
- What is the angle of points A, B and C ?