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16 Systemes dynamiques

d—” = dx = dy = 0 : systeme a |’état stationnaire (au repos)
dr dt dr
y(t) = flu(n)]: systeme statique (pas de mémoire)

Un systeme dynamique qui possede les propriétés de linéarité, stationarité et
causalité et qui se trouve initialement au repos est appelé un systeme Iscr.

u(r) x(1) y(1)

entrées états sorties

Fig. 1.21 Systeme S(0).

1.5 EXERCICES RESOLUS

Exercice 1

Considérons le comportement thermique d’une maison en hiver. Le systéme de
chauffage permet de réguler la température et de rendre la maison habitable.
a) Quelles variables d’entrée, de sortie et d’état choisir pour établir un modele
qui prédise la température moyenne de la maison en fonction du temps?
b) Comment étendre ce modele afin qu’il prédise la température dans plusieurs
pieces?

Solution
a) Entrée: puissance de chauffage P
Etat: chaleur Q = me,T
Sortie: température mesurée 7
Perturbation: température extérieure 7,

Texl T
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b) On considere les pieces séparément, chacune avec son entrée, son état et sa
sortie propre:
Entrées: P, — P,
Etats: O — Q4
Sorties: T1 — T,
Perturbation: 7,

AL RN 1N
P8 | EE
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Exercice 2

On a modélisé€ un systeme thermique par I’équation différentielle linéaire sui-
vante:

Ti(t) +3x(t) = u(t)  x(0) = 0

ou x représente la variation de température autour de son point d’équilibre (x := 7 —
T4, u la variation de la puissance de chauffage autour de son point d’équilibre (u := P
— Pgg) et 7 la constante de temps proportionnelle a la capacité thermique du systeme.
a) Ce systeme est-il statique ou dynamique?
b) Calculer sa réponse a un saut unité de I’entrée. Quelle est I’influence du
parametre 7 sur la réponse?

Solution
a) Le systeme est dynamique car il fait intervenir une équation différentielle
pour la variable dépendante x(¢).
b) Pour u(r) = 1, t 2 0, la résolution de 1’équation différentielle linéaire du pre-
mier ordre donne:

(1) = %(1—6‘3‘”) >0

On voit ainsi que 7 influence la vitesse a laquelle la température approche la
nouvelle valeur stationnaire ¥ = 1/3 (ou T = Tgq + 1/3). Pour 7 tres petit
(peu d’inertie thermique), la nouvelle valeur stationnaire est atteinte
quasi-instantanément. Pour 7 = 0, le systeme devient statique et est décrit
par la relation algébrique 3x = u, qui donne la solution x = u/3, dans notre
cas 1/3.
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Exercice 3
Pour une voiture roulant a vitesse constante sur une route plane, il existe une
relation entre la position de 1’accélérateur et la vitesse.

a) Dessiner schématiquement cette relation.
b) Considérons cette voiture en condition de trafic urbain sur plusieurs kilome-

tres et prenons des mesures instantanées de sa vitesse et de la position de
I’accélérateur. Ces mesures instantanées correspondent-elles a la relation du

point a)?

Solution
a) Puisque la vitesse est constante, la voiture est dans un état quasi-station-

naire. Le couple fourni par le moteur ne sert qu’a compenser les forces de
frottement. En appliquant la loi de mouvement de Newton, on obtient la

relation mathématique suivante:

mv(t) = ku(t)— fvi(t)

ou m est la masse de la voiture, v sa vitesse, u 1’entrée (la position de I’accé-
Iérateur), ku la force fournie par le moteur et fv2 la force de frottement. A
vitesse constante (v = 0),on aura 0 = kit — fv2 et donc

f/:cﬁ

ol la constante ¢ vaut Jk/f .
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b) Les mesures instantanées n’ont plus rien a voir avec la relation quasi-station-
naire du point a) car il s’agit, dans le trafic urbain, d’accélérer et de freiner le

véhicule. Les mesures instantanées u(f) et v(¢) sont lies entre elles par la loi
de mouvement de Newton.

Exercice 4

Pour des conditions de vent stables, une girouette pointe dans la direction du
vent. Cependant, lorsque le vent tourne, la girouette n’indique pas instantanément la
direction du vent.

a) Dessiner schématiquement la direction de la girouette lorsque la direction
du vent change soudainement de 10°.

b) Identifier les grandeurs d’entrée, d’état et de sortie susceptibles d’entrer
dans un modele dynamique de la girouette.

Solution

a)

A 0(1)

A\
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La girouette ne suit pas instantanément la direction du vent car elle a une
certaine inertie due d’abord a sa masse non nulle, mais aussi a certains €lé-
ments amortisseurs qui sont la pour éviter que la girouette suive trop rapide-
ment tous les petits tourbillons de vent.

b)La girouette peut étre modélisée comme un élément mécanique de rotation

avec la force du vent comme entrée, la position et la vitesse angulaires
comme variables d’état et la position angulaire comme sortie.

Exercice 5

Le niveau d’eau dans un réservoir varie en fonction du temps. On désire établir
un modele dynamique capable de prédire les variations de ce niveau.

a)

Quelles variables d’entrée et de sortie choisir?

b) Combien de variables d’état (nombre d’équations différentielles du premier

ordre) sont nécessaires ?

Solution

a)

Le choix des variables d’entrée et de sortie dépend de la situation physique
et des mesures disponibles. Les entrées vont correspondre aux variables que
I’on peut manipuler indépendamment (un ou plusieurs débits parmi ¢, g, et
q,)- Les sorties correspondent aux variables dépendantes que 1’on mesure,
par exemple £.

Les variables d’état sont les variables dépendantes pour lesquelles intervien-
nent des dérivées. Dans le cas particulier, la variation de niveau dans le
réservoir s’obtient a partir du bilan de masse

dm

- W+ Wy —w (1)

avec m = pSh, w; = pg; ou m représente la masse du liquide dans le réservoir,
p la masse volumique, $ la section de la cuve, & le niveau, w; le débit massi-
que i et g; le débit volumique correspondant.

L’équation (1) peut aussi s’écrire
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dh
55 =4q1%+49,—4;

Considérons deux situations physiques différentes:

e Le débit d’alimentation g, varie en fonction de la situation en amont mais
n’est pas ajustable dans I’étude de ce réservoir et g, est constant. Le débit de
fuite g, est ajustable au travers de la pompe. On mesure le niveau 4 a I’aide
de la différence de pression Ap = pgh. Pour cette situation, nous avons les
grandeurs d’entrée, d’état, de sortie, de perturbation et les parametres
suivants:

u=q, x:=h, y=A7Ap, d=¢q, 0:=(S,q,)

e Les débits d’alimentation g; et g, sont ajustables, le débit g, dépend du
niveau, g, = kA/h , et on mesure h directement. Pour cette situation nous
avons les grandeurs suivantes:

u = (qla qZ)’ X = h’ y = h’ 0 = (S’ k)
et le modele non linéaire:
S% = q,+q,—kih

b) Dans chaque situation considérée, il y a une seule variable d’état, le niveau .

Exercice 6

Pour les 4 systemes donnés ci-dessous, indiquer chaque fois si le systeme est
statique ou dynamique, monovariable ou multivariable, linéaire, stationnaire, causal
et initialement au repos. On utilise les notations conventionelles, soit # pour les
entrées, x pour les variables d’état et y pour les sorties:

a) X, = ap X, +apx,+bu; x(0) = xy
Xy = Ay X+ AyyXy + byuy X,(0) = x,
Yy =X-X

b) X+ 2xx+3x = 3u x(0) =0, x(0) =1
y=x+2u

o) y(1) = (2-1)u’(r)

d)y(t) = u(t—1)+u(t)+u(t+1)

Solution
a) dynamique: dérivées i, et x,
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multivariable: deux entrées u; et u,, une sortie y

linéaire: les variables u, x et y apparaissent linéairement dans le modele
stationnaire: tous les parametres sont constants

causal: pas de dépendance du futur

initialement au repos: considérons i#; = i, = 0, ce qui donne I’état
d’équilibre X; = X, = 0; donc le systeme sera initialement au repos pour
X1 = X0 = 0.

b)dynamique: dérivées x et ¥
monovariable: une entrée u, une sortie y
non linéaire: terme non linéaire xx
stationnaire: tous les parametres sont constants
causal: pas de dépenance du futur
initialement au repos: considérons u# = 0 pour lequel I’état d’équilibre
exige ¥ = 0, X = 0; comme x(0) # 0, le systeme n’est pas initialement au
repos.

c) statique: pas de dérivée, équation algébrique, y(f) ne dépend que de u(r)
monovariable: une entrée u, une sortie y
non linéaire: terme non linéaire 1>
non stationnaire: parametre variable (2 —f)
causal: pas de dépendance du futur
initialement au repos car systéme statique

d)dynamique: le systeme a de la mémoire car la sortie au temps ¢ dépend de
I’entrée au temps 7 —1
monovariable: une entrée u, une sortie y
linéaire: les variables u et y apparaisssent linéairement
non causal: ’entrée future u(z + 1) influence la sortie au temps ¢
initialement au repos: le systéme est au repos a 7 =0 si, étant donné u, ., = 0,
il n’évolue pas, ¢’est-a-dire y;, .,) = 0.Celaseralecassiu_, o, = 0.
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2.9 EXERCICES RESOLUS
Exercice 1

a) Ecrire les équations dynamiques des deux systemes suivants:

———
L

—_ Cl C2 —— R2 []
Rl

b) Montrer que ces deux systemes sont analogues et proposer une analogie
entre les grandeurs mécaniques et électriques qui interviennent dans ces
deux systemes.

Solution
a) Modélisons tout d’abord le systeme mécanique. Pour faciliter la mise en
équation, on considere séparement les deux sous-systemes avec les déplace-
ments respectifs x, et x,.
Le premier sous-systéme est décrit par I’équation dynamique:

mx; = —kyx; = f 1%, —ky(x; —x,) (1)

L’équation dynamique du point matériel qui constitue le second sous-sys-
teme s’écrit:

0=—f% +ky(x;—x,) 2)

b) Le modele du systeme électrique est obtenu sur la base des équations écrites
au nceud A et pour les mailles B et C avec: i, = ¢, = Cyu; et
i, = g, = C,it,,0ules g; représentent les charges.
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I A I3
L
u L i
1 2 c
?:: C, B G, ==¢ Rz[
)
Rl
Noeud A iy = i;—I3 3)
. di, .
Maille B ”1+La+”z+R1’1 =0
q1 .. q; .
—+L§,+—=+R =0
c, q1 c, 191

qui s’écrit, grice a la relation (3) et en considérant le débit de charge i3 = ¢;:

.. 1 . 1
Lg, = _aql_R1Q1_E;(CI1_q3) 4)

Maille C Ryiy = u,

. q>

R = ==

293 c,

. 1
Rz% = C—,(Cll—‘h) (5)

2

Les deux systemes sont représentés par des équations différentielles structurel-
lement identiques, (1) et (2) d’un c6té et (4) et (5) de I'autre. Les deux systemes
sont dits analogues. 1l est tout a fait possible de réaliser le circuit électrique pour
déterminer le comportement du montage mécanique.

En comparant respectivement les relations (/) et (4) ainsi que (2) et (5), il est
possible de définir comme grandeurs électriques équivalentes des positions x, et x,
les charges g, et g;. L’équivalent de la masse est I’inductance, I’équivalent d’un
coefficient de frottement visqueux (dissipatif) est la résistance (dissipative) et
I’équivalent du coefficient de rigidité d’un ressort est I’inverse de la capacité.

1
X1 >4, kiHE
1
Xy > q; fieR;

me L
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Exercice 2

Soit le systtme mécanique de rotation suivant:

SEEMGL

/
entrainé par le couple M et caractérisé par le moment d’inertie J, I’élément flexible
de rotation k et le frottement visqueux f.

a) Modéliser ce systeme dynamique.
b) Proposer un systeme électrique qui soit analogue a ce systeme mécanique.

Solution
a) Modele dynamique (ressort sans inertie, J. = 0)

Pour 6;: 00, = M+ M, = M —k(6, — 6,)

Pour 6: JB, = — My~ M, = k(6,-6,) - f6 } 162 = M= 10

Avec 0, = 0y Ja,+ fw, = M

L
b) inertie <~ L YA
+ —

ressort < C x|

frottement <> R u l() C == X R

Lx+Rx; = u

Les systemes mécaniques et électriques sont analogues.

Exercice 3

a) Grouper les 18 systemes dynamiques suivants (9 systemes mécaniques et 9
systemes électriques) en 9 paires de systemes analogues.
b) Certains de ces systemes n’ont pas de point d’équilibre. Lesquels?
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k k
m m;
I F k,
1. 2. e
L
Y Y Y\
+
ky = ¢ Ml > C ==
4.
L A m
k2
F
3. (e
L
YY)
+
ul ) R
5. _
Ll L2
Y Y Y\
. N‘V‘V-\l
ul > R, C
i | B | v T
6. R,
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G L
.
ul() C, == 2L,
7.
c L
. II N
D
1
8. 9.
k, ky g ky
L A om
T
11.
4
10.
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1 R
=
u l_() C, == é L,
T
L C
et
u l_() =,
14.
. .
5= m,
== A
2 A m T
F—( 16.
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L ¢

II

18.

Solution

a)(1,9),(2,7),(3,13),(4,16),(5,8), (6, 15), (10, 12), (11, 17), (14, 18).
b) Sans point d’équilibre: (4, 16), (5, 8), (6, 15).

Exercice 4

Soit la paire de systemes analogues (14, 18) donnée a 1’exercice précédent.

Montrer que ces deux systemes dynamiques ont bien le méme ordre, c’est-a-dire le
méme nombre d’équations différentielles du premier ordre.

Solution

a) La modélisation du systeme mécanique 18 donne:
mi = F—kix—k,x = F—kx

avec x le déplacement de la masse et k, = k| + k, la constante de ressort totale
résultant de la mise en parallele des ressorts (méme déplacement).

En définissant x; := x et x, := X, on obtient les deux équations différen-
tielles du premier ordre suivantes:

X=X x1(0) = xy9
. 1
Xy = =[F—kx] X,(0) = X,
m
b)Le systeme électrique a trois éléments dynamiques (L, C; et C,) pour les-
quels on peut écrire 3 équations différentielles de premier ordre. On note

cependant que les 2 capacités sont en série et donc traversées par le méme
courant, ce qui permet de travailler avec la capacité toale C; selon la loi

i = L.{.L
Ct Cl C2
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En notant x; la tension aux bornes des deux capacités en série et x, le cou-
rant qui les traverse, la modélisation donne:

ou

% = 4, x1(0) = x;o
Ct

o1 _

Les deux systemes dynamiques sont donc bien d’ordre 2 avec 1’analogie
position <> charge et vitesse <> courrant.

Exercice 5

Les moteurs AC travaillent souvent a hautes vitesses et sont connectés a la
charge par l'intermédiaire d’un systeme d’engrenage. La figure représente un
moteur AC entrainant une charge au travers d’un systtme d’engrenage idéal
(conserve la puissance) avec un rapport de réduction de n, c’est-a-dire 6, =—n 6,
n> 1. J,, représente le moment d’inertie du moteur et de son syst¢tme d’entraine-
ment, f;,, son coefficient de frottement visqueux et 6, sa position angulaire. J, f; et
6, sont les grandeurs correspondantes du coté de la charge. Sachant que le couple
développé par le moteur AC est donné par :

M, = Ku,-K,0_

m

ou u,, représente la tension électrique appliquée au moteur et K; et K, sont des
constantes,

H
um
— Moteur AC

o

6, =

Ja
L]

Lo

a) Modéliser ce systeme dynamique.
b) Quel est son ordre?

Solution
a) Entrainement : J ém =M, - fmém -Mr, @))

m
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Charge: JO, = My .~ f.0. )

ou Mr,, et My, représentent les couples transmis et recus au travers de
I’engrenage.

Engrenage : Pry = Pre Moy Om = My O 0n = -nb. (3
My, = MRcé_c = _MRC}I 4)
Moteur électrique: M, = Ku, —K,0 5)
(D, 3), (@) () > Jn(-mb = Kty = Kp(=mB = f 1o ()0 +MRC(%)
= My, = —n2J 0, —nKu, —n*(K,+ f,,)0, (6)
)+ (6) > JO, = —n?J 0. —nKu,—n*(Ky+ f,)0.— f.0.

(Jo+n2J )0, +[f.+n*(Ky+ f)10, = —nK u,,

b) Systéme d’ordre 2 pour décrire ,(¢). Notons toutefois que ce systeme élec-
tromécanique ne contient pas d’élément flexible et donc ne fait pas interve-
nir 8, dans les équations. On peut donc travailler avec la vitesse angulaire
o, = 6. et obtenir un modele du premier ordre pour décrire w,:
(Jo+n?J Do+ [f +n* (K, + f)]o, = —nKu,,.

Exercice 6

Soit un chariot de masse M pouvant se déplacer horizontalement et supportant
un pendule inversé de masse m. On néglige les forces de frottement ainsi que la masse
du bras de longueur L. On désire mettre au point une commande dont le but consiste
a maintenir le bras en position verticale en exergant une force F' sur le chariot.

m
.0
|
| L
F
_> M
O ©
>y
0

e Ecrire les équations dynamiques pour ce systeme.
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Solution

Dénotons par H et V les forces horizontale et verticale exercées par le bras sur
le chariot et, par réaction, par le chariot sur le bras en sens inverse. Nous pouvons
ainsi considérer les deux sous-systemes chariot et pendule indépendamment:

H

F ‘ :»—» x=y+L sin®

> M |V
()

L’axe de rotation du bras se déplace avec le chariot dans le sens horizontal.
L’accélération du chariot dans la direction y tend a diminuer 1’angle 6. Son effet au
niveau du couple de rotation correspond donc a une force horizontale de sens
inverse, mj . L’effet des forces H et V au niveau du couple de rotation est nul.

Loi de mouvement de Newton:

d*y . .
M 2 =F-H chariot horizontal (D)
t
d? . .
m(ﬁ( y+Lsin6) = H pendule horizontal 2
t
d? .
mcﬁ(L cos@) = mg-V pendule vertical 3)
t
d*o . .. .
mLZF = mgLsin@— mjLcosO rotation 4)
t

Le systéme est non linéaire a cause des termes sin6 et cos 6. On peut obtenir
une approximation linéaire en considérant de petits déplacements 0 et ainsi, avec
sinf = 6,cosf = 1:

Mj = F-H 6))
m(i+L0) = H (6)
0=mg-V (7
mL?0 = mgLO— myL 3

Les équations (6) et (7) permettent de définir H et V. En éliminant ces variables,
le modele linéaire résultant, avec la variable d’entrée F(¢) et les variables dépendan-
tes y(7) et (1), s’écrit:
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{(M+m)ji+mLé =F ©)
j+LO-g0 =0 (10)

Exercice 7

On souhaite balancer une balle sur une barre, laquelle est actionnée sans frotte-
ment par un moteur DC dont I’entrée est le courant i(#). Pour la modélisation du sys-
téme, on considere deux hypotheses différentes:

a) La balle ne roule pas mais glisse simplement sans frottement sur la barre.

b) La balle roule sans glisser sur la barre.

La balle de rayon r a une masse m. La constante de couple du moteur est K.

Le moment d’inertie du systeme barre-balle est J, indépendamment de la position
de la balle.

e Pour chaque cas, introduire les hypotheses nécessaires supplémentaires et
écrire les équations dynamiques du systéme barre-balle.

Solution
a) Systeme barre-balle sans frottement:

Jo = K i (1)
Balle qui glisse sans frottement:

mx

mgsin @ (2)

— X = gsing

Systeme dynamique comprenant les équations (1) et (2). Pour de petits
angles, sin¢g = ¢.

b) Balle qui roule sans glisser autour du point A:

J 0 = (mgsing)r X =ra
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2
To=Jo 4mr? = 2mr2emr? = L
A balle 5 5

= T2 = (mgsin@)r
5 r

BN gx — gsing 3)

Systéme dynamique comprenant les équations (1) et (3). Pour de petits
angles, sing = ¢.

Exercice 8

Considérons un module lunaire qui veut alunir. La poussée vers le haut est due
a I’expulsion des gaz. La variable de commande (entrée) est le débit massique w de
gaz expulsé vers I’extérieur. La vitesse d’expulsion est proportionnelle a ce débit,
v =kw.

y

Surface lunaire

a) Ecrire un modele dynamique qui permette de décrire la position y(¢) et la
masse m(r).
b) Quel est I’ordre de ce modele ? Est-il linéaire et stationnaire ? (justifier)
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Solution
a) Bilan de masse pour le module:

m(r) = -w(r) ey
Bilan de quantité de mouvement pour le module:
p =mg @)

Ce systeéme est particulier en ce sens qu’avec I’expulsion de gaz il y a forma-
tion d’un deuxieme systeme (le gaz expulsé) avec une vitesse différente de
celle du module.

Pour calculer p, on considere la quantité de mouvement aux temps ¢ et £ + At
apres expulsion de la masse Am < 0:

Temps ¢ Temps ¢ + At
Module: my (m+Am)(y + Ay)
Gaz expulsé: 0 —Am(y +v)

dt  At—o0 At

iy L0+ Am)(3 + AF) = Am(§ + v)] = [m)]

At =0 At
= i TAY=Amy my — iy 3)
Ao At

(1), (2) et (3) avec v = kw donnent:
m(0)§(t) = m(1)g —kw(t) “
Le modele dynamique est donné par les équations (1) et (4).

b) Ce modele dynamique est d’ordre 3 avec la position et la vitesse du module,
ainsi que sa masse comme variables d’état. On remarque que la masse dans
cet exemple n’est pas un parametre constant, mais bien une variable d’état
qui varie.

Le modele est non linéaire & cause des termes mj et w?.
Le modele est stationnaire car les parameétres g et k sont constants.
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3.6 EXERCICES RESOLUS

Exercice 1

Soit le systeéme de rotation caractérisé par le coefficient de rigidité k et le cou-
ple de frottement M = f(0,-63).

Ji - Jp

a) Ecrire le modele d’état liant I’entrée 6, a la sortie 6;. Le modele est-il
linéaire ?
b) Expliciter les matrices d’état A, B et C.

Solution
a) Jléz = k(91—92)—f(92—93)
Modele linéaire
J,03 = f(62-63)
Xy = 92 Xl = X
A . k
Xy =6, X, = J—(u—xl)—Ji(xz—x4)
1 1
Xy = 0, )
. Xy = Xy
Xy =03 I
- Y= g
yi=0; y =X
0 1 0 0] o]
kLo )
J J J — T
A= |1 7 ! b=1|J c=10010
0 0 0 1 01 l )
Jy Jy -
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Exercice 2

Soit le systeme non linéaire:

I
\S)

X, = —xx,+u x,(0)

Il
—_

X, = x-2x, x,(0)

¢ Proposer une approximation linéaire de ce systeme pour le point de fonc-
tionnement correspondant a # = 2 et a des valeurs positives de X, et X, .

Solution
Au point d’équilibre correspondanta . = 2 :

0=-xXx,+2 - X, =2
0=1x-2%, X, =
Linéarisation
9f, . af ;
all = a—x1 ’ = —x2 = —1 a12 = a—x2 / = —xl = —2
€q €q
aof, df5
a21=5}—1,—1 022=3;;,—_2
é&q &q
af 9f,
b, = =—| =1 b, == =0
U7 u|, 27 Qul,
¢q &q
Systeme linéarisé
Ox, =—0x, —28x, + du dx,(0) =0
dx, = Ox, - 20x, dx,(0) =0
Exercice 3
Soit le systeme dynamique:
X = —x;+tx+tu xl(O) =0
)'6'2 = x1—2x2—2u xz(O) = xz(O) =0

X+ 2x,

y
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a) Ce systeme est-il linéaire et stationnaire ? Quel est son ordre ?
b) Quelle est la valeur finale de y qui résulte d’un saut de u de deux unités?

Solution
a) Systeme linéaire et stationnaire d’ordre 3.
b) A I’état stationnaire final, on aura:

0=-Xx+x,+2 X, =4

0=x-4 X, =2

—y=Xx+2x, =38

Exercice 4

Soit le modele d’un systeme mécanique soumis a la force F(¢) et caractérisé
par la constante de rigidité k et le coefficient de frottement visqueux b.

. x(1) (@
b .
T
F() M 1] m
—/\/\V\\—
k

a) Ecrire les équations dynamiques pour ce systéme.
b) Ecrire le modele d’état correspondant, la sortie a considérer étant y(r).

Solution

ML) = F()-bL =) —k(x—y)
dr? dr

mE 1) = b=y +k(x—y)
dr? dt

b)entrée: F(1)
sortie: y(?)

X=X o X=X

. . 1
Xyi=X = X, = A—4{F—b(x2—x4)—k(x1—x3)}
X3i=y — x3 = Xy

. . 1
Xpi=y = Xy = %{b(xz—x4)+k(xl—x3)}
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X 0 1 0 0f[x 0
Xy kb kD X, 1
_|lMm M M M L M| p
X 0 0 0 1]]x5 0
X, kb _k _b x| |0
L] | m m m m|[ L]
X1

y=[0010]i

Exercice 5

La dynamique d’un moteur électrique est décrite par 1’équation
O(1) + ab(t) + 02(1) = u(r)

ol o est une constante.
a) Déterminer le modele d’état de ce systeme, en considérant la tension d’ali-

mentation u(z) comme ’entrée du systéme et la position angulaire 6(r)
comme sa sortie.

b) Linéariser ce modele pour le point d’équilibre correspondant a2 # = 1 et a
une valeur positive de 6.

Solution

aAx, =0 — X =x,

— A . 2
X, =0 = X, =-o0x,—xf+u

y =X

b) Linéarisation
¢ Calcul du point d’équilibre pour z = 1:

0 =X, }—> X,=0
0=-oax,—x{+1 H=1lox =xl>%x =1

(hypothése: ¥, = 6 > 0)



Représentation par variables d’état 103

e Modele d’état linéaire:
0x = Aéx +béu
Oy = ¢Tox

A= {_20)_61 _14 - LOZ _1OJ b= m ¢ = [10]

Exercice 6

La dynamique de I’échangeur de chaleur représenté ci-dessous est régie par les
équations différentielles suivantes:

T(n

P(n)

T,

fluide intérieur

Sfluide extérieur

myc T (1) = kjp[To(t) - T (1)]
myc, Ty (1) = P(1) — k[T (1) = T1(1)] = ky[To(2) = T

La température extérieure 7 est constante et les valeurs numériques des para-
metres du systeme sont:

myc; = 0,5 [Il(]’ myc, = 2 [Il(]: ki =1 [%l] et kyy = 0,5 [VEV]

a) Ecrire ce systéme sous la forme d’un modele d’état sachant que I’entrée est
I’apport de puissance P(7) et la sortie la température du fluide interne 7' (7).

b) Déterminer I’état au point d’équilibre spécifié par une puissance de 20 W et
une température extérieure de 20°C.

c) Le modele d’état du point a) est-il linéaire? Sinon, déterminer un modele
d’état linéaire valable pour des évolutions autour du point de fonctionne-
ment déterminé au point b).
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Solution
a) Modele d’état
x, (1) =T (1) u(t) := P(t)
X, (1) 1= TH(1) y(1) == T (1)
X (1) = - k1 x, (1) + ki x,(1)
mc; mc

k k k k
5y(1) = 2 xl(t)—(—-————lz + 20 )xz(t)+—20 T+ 40
202 myCy MyCy my¢, mycy

[y(2) = x,(1)

b) Point d’équilibre
u=20W,T=20°C

o 0 = kX —(kyy+kog) Ty +kpoT +1 = X, = T+k—”- = 60°C
20

¢) Le modele d’état est affine mais non linéaire a cause du terme constant
koo T/ (mycsy).
Un modele d’état linéaire peut s’obtenir en soustrayant des équations dyna-
miques du processus les équations correspondant au point d’équilibre et en
introduisant les variables écart:

k k
8k, = — —28x, + —28x,
mycy myc
k ki, +k 1
8, = —12 8x1—( 12 20)6x2+ Su
myc; myc; myc,

Exercice 7

La dynamique simplifiée d’un avion est décrite par les équations suivantes ou
I’angle d est I’entrée du systeme et 1’angle 6 sa sortie:

¥ = 0,5(y—6)-0,46—0,05cosy
g =-5(y-0)+25y-1,5¢q
0=gq

a) Déterminer le point d’équilibre de ce systeme lorsque 1’avion descend selon
un angle constant ¥ = /9 .
b) Donner le modele d’état linéarisé autour de ce point d’équilibre.
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Solution
a) Point d’équilibre
0 = 0,5(7—6)-0,46-0,05c0s7
0=-57-6)+257-1,5g
0=g

Pour ¥ donné, il en résulte un systéme de 3 équations non linéaires avec les
3 inconnues J, 0 et g . Sa résolution donne:

2,06 rad

0

—1,40 rad

Yy = /9 = 0,35 rad

I R O
I

b) Linéarisation
Soitx; :=y,x, :==q,x3:=0,u:=08,y:=0
X, = 0,5x;,-0,05cosx; —0,5x3 - 0,4u = f(x, u)
Xy = 20x, - 1,5x,+5x3 = fHr(x,u)
Xy = x5 = f3(x,u)

[y =x;=g(x,u)

Le modele d’état linéarisé est:

Ol [054005sin7 0 05| |91 [-04
ox,| = 20 1,5 5 | [8x,|+| 0 | Ou
8¢, 0 1 0] |6, Lo

ox,
v =1001] |5,

Ox4

Pour ¥ = 7/9,a;; =0,52.
Exercice 8
Soit le systeme dynamique monovariable
y+ay:l;l+bu Y(0)=yo,Y(0)=Vo,”(0):”o

a) Quel est son ordre ?
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b) Peut-on mettre ce systeme dynamique sous la forme d’un modele d’état?

Solution

a) Ce systeme est d’ordre 2 car il est décrit par une équation différentielle du
deuxiéme ordre.

b)La particularité de ce systtme est qu’il fait intervenir i, la dérivée de
I’entrée. De ce fait, il n’est pas directement amenable a la formulation
X = Ax+ Bu.
On présente ci-dessous trois tentatives, les deux premieres infructueuses, la
troisieme plus heureuse.

b1) Approche standard
On peut définir

X =y u, =1u
Xy =Yy Uy :=1

pour obtenir un modele d’état d’ordre 2 avec deux entrées:
X = x,

X, = —ax; +u,+bu,

Malheureusement, les deux entrées u(f) et #1(¢) de ce modele ne sont pas
indépendantes car le fait de spécifier u(r) détermine entierement sa dérivée

i(r).

b2) Variable d’état supplémentaire
On introduit une troisiéme variable d’état pour décrire la dynamique de
I’entrée. On a ainsi:

Xy =y Vi=1u
Xyi=Yy

et un modele d’état d’ordre 3 avec comme entrée r(?) :

X, = —ax; +v+bx,
X3 =V

Ce modele d’état n’est malheureusement plus commandé par 1’entrée u(r)
mais par sa dérivée u(1).



Représentation par variables d’état 107

b3) Théorie de la réalisation
La théorie de la réalisation (cf. C.T. Chen, Linear System Theory and
Design, Oxford Press, 2012) permet de définir deux états x; et x,,

X =y
Xyi=y—u

qui amenent le systeme dynamique sous la forme x = Ax + bu :
X = x,tu

X, = —ax; +bu

Notons que les états x; et x, sont de nature mathématique et ne possedent
en général pas de sens physique particulier.

Exercice 9

Le dispositif mécanique de stabilisation de la vitesse d’un entrainement est
représenté ci-dessous:

Moteur

Lorsque la vitesse du moteur augmente, les deux spheres s’écartent de 1’axe de
rotation sous I’effet de la force centrifuge. L’ augmentation de I’inertie qui en résulte
s’oppose a la cause du mouvement. Soit 7 = 0,02 [m] la position radiale du centre
des spheres a I’arrét et r cette méme position lorsque le systeme est en rotation. Le
déplacement sans frottement des spheres sur leur support est régi par I’équation:

Mi(t) = Ma*(t)r(t) —k[r(t)—ryl, ot k = 12,5 [N/m]

L’inertie de chacune des spheres de masse M = 0,1 [kg] et de rayon p=0,01 [m]
par rapport a I’axe de rotation du moteur est donnée par:
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I0r) = %Mpz + Mr2(1)

Le mouvement de ce systeme peut &tre grossierement décrit par la relation:
2I(r)yw(t) = —aw(t) + bu(t),oua =2 et b =1

L’entrée de ce systeme est la tension d’alimentation u(f) et sa sortie la vitesse
angulaire du moteur @(f).
a) Décrire la dynamique de ce systeme par un modele d’état.
b) Déterminer la tension # a appliquer pour maintenir la vitesse a 10 [rad/sec].
Calculer I’état du systéme au point de fonctionnement spécifié par u .
c) Linéariser le modele d’état autour du point de fonctionnement obtenu au
point b).

Solution
a) Variables d’état et modele d’état:

b

210y

xl(f):

a
_21(x2)x1(t) +

X (1) :=r(t) — Xy(1) = x5(2)
x3(1) =F(t) —

x, (1) =) —

i5(1) = x2(0) (1) - %xz(t) + A‘erO

| y(t) = x(1)

ot I(x,) = %Mp2+Mx§(t)

b) Pour la vitesse constante @ = 10 rad/sec:

0=-ao+bi = ﬁ:gw = =20V
Point d’équilibre:
X, = 10 rad/sec
k
fy= —0  Z01m
k—Mx?

¢) Linéarisation
— X+ b u
21(x,) 21(x,)

f1(xp, xp,u) =

fz(x3) = X3
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k k
f3(xxy) = xfx, - e + 2770
g1(x)) = x;
Le modele d’état linéarisé est:
0x(t) = Adx(t) + Bdu(r)
Oy(r) = Cox(1)
avec:
—a Q_f_] 0
21(x,) 0x, -996 0 0
A= 0 0 1 = 0 0 1
2 =250
2x,x, x%—ﬁ 0
L M éq
af, b (—ax, +bu) —(—ax; + bu)Mx,
avec ‘a-}— = 87 5 = 5 5
2 2 2(§Mp2 +Mx§) (gMp2+Mx%)
b 498
B= 1) c=[100
0
0

Exercice 10

Le mouvement d’une bille de masse m dans un cerceau vertical de rayon r en
rotation a vitesse @ autour de I’axe vertical A est régi par I’équation:

mr = —bO—mgsinO + mrw?sin Ocos O

La masse m = 0,1 kg et le coefficient de frottement b = 0,14 kg m/s sont des
parametres constants du systeéme.
a) En régime stationnaire, identifier tous les points d’équilibre pour r@?/g > 1.
Calculer numériquement le point d’équilibre 6 € (0, 7r) pour le cas ot r =
Im, ® = 3,3657 rad/s, g = 9,81 m/s>.
b) Proposer un modele d’état pour ce systeme.
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A

¢) Linéariser le modele d’état autour du point d’équilibre 6 en prenant comme
entrée la variation de vitesse dw et comme sortie la variation angulaire 86.

Solution
a) En régime stationnaire 6=6=0):

mgsin® — mr@?sinBcosO = 0

sin@(g — ro*cos@) = 0

.= e 9=0
°sinf = 0 "
0=rn
e g—rw?cosf = 0 = cosh = % = 0 = arccos(%)
r? r?
Valeur numérique: 6 = arccos 9’3871) 5 = 0,52 rad = 30°
b) Modele d’état
Entrée u := w, sortie y := 6
x =0 - X =6 = f1(0)
. . =b g .. 9 _
= = —x, —2sinx, + u?sinx, cosx, = f,(x, X, U
X,i=0 — | X o R 1 1 1 = falxy, xg, u)
|y =x =g(x)

¢) Linéarisation
On linéarise le systéme autour du point d’équilibre

i = 3,3657, %, = 0,5236,%, = 0:
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avec

0 1
S cosx; + u?(cos2x, —sinx;) —
r mrix,, %, u

B= 0 . c=[1 0
2usinx, cosx, %), %, 0

si=| 0 Ulsx+| 9| su
-2,83 -14 291

(1 o] &x

=7
<
1l
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4.3 EXERCICES RESOLUS

Exercice 1

Un systéme dynamique possede la réponse impulsionnelle g(z) = et

e Calculer la réponse du systéme a un saut unité.

Solution
t t
(1) = [g(r-Du(r)dt = je‘3(“”dr
0 0
t 1 1
_ o 3tp 3t 3l o3 o 1o -3
=e {e dt = e 3(e 1)_3(1 e) t20

Exercice 2

e Utiliser le produit de convolution temporel pour calculer la réponse du sys-
teme dynamique

X+2x = 2u x(0) =0

al’entrée u(t) = 2&(t). Noter que la réponse impulsionnelle de ce systeme
vaut g(t) = 2¢ '

Solution

t t
x(1) = _[g(t—r)u(r)dr = J'g(r)u(t—r)dr
0 0

t t

t
[ 2¢ 2 2e(t-1)dr = 4 | et = 4(—%)5210
0 0

t

2(1-¢Y 1>0

Exercice 3

Un circuit électrique est excité par une tension de type impulsion rectangulaire
d’amplitude 10 V et de durée 10 ps. La réponse observée a I’aide d’un oscilloscope
s’avére étre approximativement égale 2 y(7) = 0,5¢7100,

a) Déterminer la réponse impulsionnelle du systeme.

b) A I’aide de I’intégrale de convolution, calculer la réponse indicielle.
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Solution
a) Vu la durée tres courte de I’entrée, I’impulsion rectangulaire peut étre appro-
chée par ad(z) out a est déterminé par I’aire de I’impulsion rectangulaire:

u(t) = ad(t) = 10746(t) — a = 1074 Vs

Réponse impulsionnelle, ¢’est-a-dire pour u(r) = 6(1):

g(t) = YO = 5. 1031000 430
a

b) Réponse indicielle
t t

y(t) = e(t)*g(t) = Js(r)g(t— 7) d7 = J'S -103¢7100t=1) dq7
0 0
t

5+ 10310011007 dg = 50(1 - ¢7190) 120
0

Exercice 4

La réponse impulsionnelle d’un syst¢éme dynamique est g(¢) = &(¥).
e Calculer la sortie y(f) de ce systeme a I’entrée u(f) représentée a la figure
ci-dessous:

u(t)

A AN

Solution

=

y(1) = Ju(n)g(t-7) dr

—oo

a)pour0<r<1

t t
.[u(r)e(t—r) dr = .[r- 1-dt = =12
0 0
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&r-1)

u(T)

L S

b)pour 1 <r<2

t 1 t

J’u(r)s(t—r)dr = jT- 1 -dr+j(—r+ 2)-1-dt

0 0 1

t
= l+(—11'+21') = —l(t2—4t+2)
2 2 . 2

£(t-7)

1(T)

L S

c)pourt =2
t
[u(ve(—1) dr = 2-% -1
0
A
1 £(t-7)

u(T)

Ya
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Ainsi la solution compleéte devient:

0 pour £ <0

;tz pour 0<r<1
y(1) =
—%t2+2t—l pour 1 <7<2

1 pour =2

y() A

0.9

0.8

0.7

0.6

0.5+

0.4+

03[

0.2

0.1
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5.8 EXERCICES RESOLUS

Exercice 1

Soit le systeme dynamique:
X, = —x;+xy,+u x;(0) =0
X, = x-2x, x,(0) =0

* Calculer la fonction de transfert X,(s)/U(s) correspondant aux points de

fonctionnement

ayu =1

byu =2
Solution

La fonction de transfert est la méme pour # = 1 et & = 2 car le systeme est
linéaire.

L - X ()[s+1] = X,(s)+ U(s)
X,(s)[s+2] = X,(s)
- Xo()[s+2][s+1] = X,(s)+ U(s)

X,(s) _ 1
U(s) sS+3s+1

Exercice 2

e Calculer la réponse du systeme dynamique suivant a une impulsion de Dirac
au temps ¢ =0:

V() +2y(1) = 2u(r) y(0) =-1, y0)= 0
Solution
L - [szY(s)+s]+2[sY(s)+1] = 2U(s)
Y(s) = 2 U(s) - (s+2)

s(s+2) s(s+2)
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2 1
= U - =
s(s+2) (s) s
réponse réponse
forcée libre
Pour U(s) = 1 Y(s)= —2=__L_A4, B 1
s(s+2) s s s+2 s

Meéthode des résidus pour calculer A et B:

A= lim -2 =1
s—>0 S+2

B= lim 2=-_1

s—>-2
On obtient ainsi: Y(s) = 1
s+2
—1 -2t
LY - oy =-e 120

Exercice 3

a) Calculer la transformée de Laplace de:

(1) = 0 r<1
y e i>1

b) Calculer la transformée de Laplace inverse de:

LY(s) = ——
(s+1)
-2
2.Y(s) = —%
s +4s+5
Solution
e L —S —S
a) y(i) = VA i 5 oy = £ = 2
s+l s+ 1
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1
b 1 Y(s) = —— L, oy =2t 120
(s+1)
e—Zs 25
2. Y(s) = =e Y (s)
s +4s+5
—1
Yi(s) = — = 1 Ly ) = Psine 120

S +ds+5  (s+2)+1

= y(1) = y,(t-2) = ¢ "Psin(r-2) 122

Exercice 4

La modélisation d’un systeéme dynamique a donné 1’équation différentielle sui-
vante:

() +2y(1) =3 = u(1) y(0) =1
e Evaluer la fonction de transfert correspondante.

Solution
Systéme non linéaire a cause du terme constant —3. Introduisons:

u=u+3 - y+2y = u y(0) =1

Fonction de transfert:

Y(s) _ 1
f](s) S+ 2
Exercice 5

Un chariot mobile de masse M est attaché a un mur a 1’aide d’un ressort de
coefficient de rigidité k. Sur ce chariot se trouve un parallélipipede de masse m qui
peut se déplacer par inertie relativement au chariot. Ce déplacement relatif est
caractérisé par un frottement visqueux (linéaire) de coefficient f. Le chariot est sou-
mis a la force F (7). Les grandeurs x et y dénotent les déplacements du chariot et du
parallélipipede par rapport a un repere fixe, et z le déplacement du parallélipipede
relatif au chariot, z = y — x.
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F(1) / k
—

ONNO]

X
0

a) Evaluer la fonction de transfert Z(s)/F(s) .
b)Evaluer la fonction de transfert Z(s)/F(s) pour les cas limites «sans
frottement» et «avec grand frottement».

Solution

) {Mx = —kx—f(x-y)+F x(0) = £(0) = 0
my = f(x-y) y(0) = y(0) = 0

{X(s)[Ms2+fs+k] = fsY(s) + F(s)
L -
Y(s)[ms2+fs] = fsX(s)

Y(o) . _fs _ _f

X(s) ms2+fs ms+ f

X(s)[Ms2 + s+ k—fs(msf+ fﬂ = F(s)

X(s) _ ms+ f
F(s) Mms3+(M+m)fs2+mks+fk

Z(s) _ Y(5)-X(s) _ Y($)X(s) _X(s) _ (Y(S)_l)X(S)

F(s)  F(s)  X(s)F(s) F(s) \X(s) JF(s)

( f _ms+f) (ms + f)
ms+ [ ms+ ) ms® + (M +m) fs®+mks + fk

-ms
Mms® + (M + m)fs2 + mks + fk
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b) f — 0 : pas de frottement. La masse m ne bouge pas (y = 0) et 7 = —x
(oscillations non amorties du chariot).

Z(s) _ -ms -1

lim = 3 = >
£=0 F(S)  Mms® +mks  Ms*+k

f — oo : grand frottement. Les deux masses sont collées et il n’y pas de
déplacement relatif z.

lim Z0) _ ¢
foe F(5)

Exercice 6

Soit le systeme dynamique avec I’entrée u(?) et la sortie y(7):

X(t) = —x(t) + 2u(t) — x(t)u(r) x(0) =1

y(t) = x(1-2)

a) Ce systeme est-il linéaire, stationnaire, initialement au repos?
b) Evaluer la fonction de transfert Y(s)/U(s) pour le point de fonctionnement
correspondant a . = 1.

Solution

a) Le systeme est non linéaire a cause du terme xu, stationnaire car les coeffi-
cients sont constants, causal car y(z) ne dépend pas des entrées futures. Pour
déterminer si le systeme est initialement au repos, il faut connaitre la valeur
de u.Parexemple,u = 0 = X = 0 etlesysteme avec x(0) = 1 n’est pas
initialement au repos. Par contre, pour # = 1, x(0) = X = 1 etle systeme
est initialement au repos.

b) A 1’état stationnaire pour i = 1:

0=-x+2-Xx —x=1
Linéarisation de xu:
xu=Xxiu+udx+x0u = 1+ 0x+0du

Systeme linéarisé (en variables écart):

{5x(t)=— Ox(1)+28u(t)—0x(t)—ou(t) = —206x(t)+ ou(r) ox(0) =0
Sy(1) = 8x(1-2)
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o X _ 1
U(s) s+2
& _ e—2s
X(s)
Y(s) _ e
U(s) s+2
Exercice 7

Soit le systeme dynamique

1+ oas

Gls) = 1+s

a) Calculer sa réponse indicielle

b) Esquisser les réponses indicielles pour ¢ = 1 et a = —1
Solution 1
a) U(s) = -
s
Y(s) = l+oasl _ §+ B _ 1+oc—1
I+ss s 1+s s s+1
A= lim Lros _
s—0 l+s
B = lim l+oas _ a—1
s—-1 N

LY S oy = 1+ (a-1)e” 120

b)
AY(®

a=1 y®H=1 =0

a=-1 yB =12t 120

\
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Exercice 8

a) Calculer la transformée de Laplace du signal temporel suivant:

(@)

u(r)

\

0 T\
x\\uz ( l‘)

N,
\,

b) Evaluer le signal temporel dont la transformée de Laplace vaut:

Y(s) = (s+3)(s+4)
(s+1)(s+2)
Solution
a) u(t) = u (1) +uy(t)
0 t<0 0 1<t
1) = ) =
nm =91, 120 (1) Losn it
T T
1 1 —1s 1 —Ts
U(S) = —5——26 = —2[1—6 ]
Ts Ts Ts
2
b) Y(s):s+7s+12= 45+ 10 -1+ A + B
43542 (s+1)(s+2) s+1 s+2
A= lim B*+10_g4

s— -1 s+2

B= lim 2+10_ ,
s> -2 s+ 1

L S oy = 8(6) +6e " —2e" >0
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Exercice 9

e Calculer la réponse indicielle du systeme dynamique suivant:

X+2X+5x = Su x(0) = x(0) =0
Solution
G(s) = 2; Ues) = 1
s +2s+5 $
Y(s)=;=é+ Bs+C _1_ s+2

s(sS+25+5) 5 (s+1) 422 5 (s+1)42?

5= A(s*+25+5)+(Bs+C)s

s : 0=A+B A=1

s' 1 0=24+C — B=-1

0

s 1 5=54 C=22
s+ 2 _ (s+1) +l 2

s+1)?+2%  s+D)P+22 25+ 1)+ 27

Y(s)—l— s+1 1 2
s 2.2 2 2, 52
(s+1)" +2 (s+1)" +2

y(t) = 1- e_t(COSZI + %sinZt) t>0

Exercice 10

Soit g(¢) la réponse impulsionnelle d’un systéme dynamique:

g

~y
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Calculer le produit de convolution y(¢) = g(t) * u(t) pour u(t) = &(1),
a) par voie temporelle,
b) par voie fréquentielle.

Solution

g(t) = e(t)y—te(t)+(t—1)e(r-1)

t
a) Calcul par voie temporelle: y(t) = Jg(r) &(t—-1)drt

0

t<0
£(t-1)
— — — 5 1
\
| g1 Surface =0
\
| =
t 0 1 T
0<r<l1
g(1t)  Surface = ¢ — petit triangle = 7 — Ll
T
t=1
Surface = €
2

T
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La solution devient ainsi:

0 t<0
tz
t—— 0<r<1
y(t) = 2
L
2
A YO
0.5 fm-mmmmmmm s
04 |
0.3 |-
0.2 |-
0.1 |-
I t
0 L L L L L L L L L L o
0 0.4 0.8 1.2 1.6 2

b) Calcul par voie fréquentielle

1
s

G(s) =

v =

1 e _
—;'l'?,U(S) =

1 1 e
Y(s) = G(s)U(s) = s—z—;+s—3

1L
Y1) = te(t)—t2—2€(t)+(t_Tl)26(t— 1

2 (=12, _
(r 2)5(t)+ > g(t-1)

Exercice 11

Soit Y(s) = (s +12)/(s% + 4s) la transformée de Laplace de la réponse indi-
cielle d’un systeme dynamique.

a) Calculer y(1).

b) Evaluer la valeur finale de la réponse du systéme a I’entrée u(t) = 1—e 2!,
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Solution
a)Y(s)=s+12 _ s+12 =é+i
s2+4s  s(s+4) s

lim sY(s)

A
s—0 4

3 4+12 _
4

1im4(s +4)Y(s) =

¥t = L[Y(s)] = L‘IB-S%J =320 120
s+ 12
Y(s) _ s(s+4) _ s+12
U(s) 1 s+4
s

b) G(s) =

Pour u(t) = 1—e2t, U(s) = 1-—L_
s+2

© =

s+12)(1 1)_ s+ 12 s+12  2s+12)

Y(s)= (s+4 s s+2) S(s+4)_(s+4)(5+2)_S(S+4)(5+2)

lim y(f) = limsY(s) = lim _2(s+12) =3
t— oo s—0 S—>0(S+4)(s+2)

Le théoréeme de la valeur finale s’applique car les deux pdles de sY(s) sont

négatifs.
Exercice 12
Soit le systeme décrit par I’équation dynamique
V(O =2y(0) +y(t) = u(r) y(0) =1,y(0) =0

e Déterminer sa réponse libre dans le domaine temporel.

Solution
La transformation de Laplace donne:

[s2Y(s) —s] = 2[sY(s) = 11+ Y(s) = U(s)

Y(s)[s2=2s+1]-(s=2) = U(s)
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1 s=2
Y(s) = U(s +
(s) Gl (s) 1)
N -
réponse forcée réponse libre

Calcul de la réponse libre y;(?):

L_l[(ss__f)z] - L_I[STJF(S_BDZ] ) L_l[ﬁ_m]

ete(t) —tele(t) = e(t)e[1 —1]

y1(1)

yl(l‘)

Exercice 13

On considere le transfert d’énergie d’une source chaude (cuve de volume cons-
tant V, température T, puissance de chauffe P_) vers un puit froid (réacteur endo-
thermique de volume constant V¢, température 7%, puissance consommée Py < 0). Le
transfert a lieu par I’intermédiaire d’un manteau de chauffe (volume constant V,,
température homogene 7, coefficient de transfert UA entre T}, et T}).

Le liquide caloporteur circule a I’aide d’une pompe avec un débit volumique F.
Les capacités calorifiques du caloporteur et du mélange réactionnel sont identiques
et égales a pc;,. On suppose que le systeme est bien isolé et qu’il n’y a pas de perte
thermique vers I’extérieur.

y Ve
Tm w
] Ve UA: | &
P Pe
| Te
T
d Py | 3R

a) Ecrire un modele dynamique pour ce systeme.
b) Sachant que F est constant et que V,,, et V, peuvent étre négligés par rapport
aVy(V,,V.— 0),déterminer la fonction de transfert Ti(s)/P(s).

Solution
a) Bilans thermiques

dT
pcpvfd—tf = UA(T,,—T;) + P; TH0) = Ty (1)
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ar
PV = PO F(Te=Ty) ~UA(Ty, =Ty)  T(0) =Ty

dT,
pec,V = pc,F(T,,-T)+P, T.00)=T

©dr

b)Hypothese: V,, =V, =0

2)— 0= pCpF(Tc - Tm) - UA(Tm - Tf)
3)—- 0=pc,F(Ty, - T) + P,
N UA(T,, — Tp) = pe,F(T, —Ty) = P,

dT;
() + (@) = peVi—t =P+ Py
L
pchfsTf(s) =P (s) + P(s)

Fonction de transfert:

T:(s) _ 1
P (s) pchfs

Exercice 14
Déterminer pour le systeme dynamique
y+5y+y =3u  y0)=1 y(0)=0

a) la fonction de transfert Y(s)/ U(s),
b)un modele d’état.

Solution

@)

3)

“

&)

a) La fonction de transfert Y(s)/ U(s) ne considere pas les conditions initiales:

Y(s) _ 3
U(s) s2+5s+1

b) {xl—y {xl—x2 x,(0)=1
X, =Y X, =—=5x,—x,+3u x,(0)=0
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Exercice 15

Le systeme dynamique
V+2y+y=2u  y0)=1 y(0) =-2

est soumis 2 ’entrée u(r) = ¢, 1 > 0.
e Calculer sa réponse libre et sa réponse forcée.

Solution
L [szY(s) —s+ 2]+ 2 [sY(s)— 1]+ Y(s) =2U(s)

Y($)[s2 +2s + 11 =2U(s) + s

s
(s+ 1)2U(S)+(s+ 1)2

Y(s) =

Réponse libre pour U(s) =0

_ s _s+l-1_ 11
(s+1D2  (s+1)2  s+1 (s+1)2

Réponse forcée pour U(s) = 1/(s + 2) et des conditions initiales nulles

2 __ A, B ., C
(s+1)2(s+2) s+1 (s+1)2 s+2

Yi(s) =

A = 1imi(i): lim(— 2 ):—2
s—-1ds\s+2 s — -1 (s+2)2

B = lim( 2 ):2
s—o>-I\s+2

=2

lim
s—-2(s+1)2
yt) =2+ 2tet +2¢2 120

Réponse totale

(&) =y, () +y(t) = —et+tet+ 272 120
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Exercice 16

¢ Transformer le systtme dynamique
X(t) +2x(t) = u(r) x(0) =2
sous la forme d’un systeme dynamique avec des conditions initiales nulles.

Solution
La transformation de Laplace du systéme dynamique donne:

[sX(s)=2]+2X(s) = U(s)

X(s)

L us)+2] = —[U(s) +2A(5)] )
s+2 s+2

ol A(s) = L(8(1)) = 1

La transformation de Laplace inverse de (1) donne:
X(1) +2x(t) = u(t) +206(1) x(0) =0

On voit ainsi que, pour un systeéme dynamique linéaire, des conditions initiales
différentes de zéro correspondent a I’application d’une impulsion de Dirac au temps
initial.

Exercice 17

On considere un objet de masse m placé sur un chariot de masse M:

FQ) k

L’objet est fixé sur le chariot avec un élément flexible de constante de rigidité
k. D’autre part, le mouvement de I’objet est caractérisé par un frottement visqueux
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de coefficient f. Le chariot est soumis a une force F. On dénote par x la position du
chariot par rapport a un repere fixe et par y la position de 1’objet par rapport au
chariot.
a) Ecrire les équations dynamiques pour ce systeéme et déterminer la fonction
de transfert Y(s)/F(s).
b) Considérer le cas limite ou I’objet est fixé par un lien rigide et évaluer la
fonction de transfert X(s)/F(s).

Solution
a) Chariot: Mi = F+ky+fy (H
Objet: m(E+7¥) = —ky— fy @)
L
: Ms2X(s) = F(s)+ (fs+k)Y(s) 3)
m[s2X(s) +52Y(s)] = —(fs +k)Y(s) %)
_F)+(fs+k)Y(s)
3)— X(s) = a2 ©)
W+ - N ! ©)

F(s)  Ms2+(M/m+ 1) fs+(M/m+ 1)k

Le signe négatif de la fonction de transfert indique qu’une force dans le sens
de x déplacera I’objet dans le sens négatif de y.

b) Fonction de transfert X(s)/F(s)
X(s) _ 2+ (f/m)s+kim

(5) +(6) -
F(s) s [Ms2+(M/m+1)fs+(M/m+1)k]

)

Cas limite d’un lien rigide: k — oo

lim X6 _ s2+ (f/m)s+kim _ 1
koo F(8) koo s2[Ms2+ (M/m+1)fs+(M/m+ 1)k] s2(M +m)
> M+m)i = F

Equation de mouvement pour le cas ou I’objet est solidaire du chariot.

Exercice 18

Soit le systeme dynamique

2e8

) = Gev D

a) Exprimer la relation entrée-sortie a 1’aide d’un modele d’état et déterminer
I’ensemble des conditions initiales qui assurent que le systéme soit relaché
au temps initial.
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b) Calculer la réponse indicielle de ce systeme.

Solution
2) Y(s) _ 2e°
U(s) 5s2+s

e

S¥(0) + (1) = 2u(z—-1)

Di a la présence du retard unité, le systeme dynamique est d’ordre infini
(voir exemple 3, section 3.2.2). On peut cependant I’exprimer sous la forme
d’un modele d’état du deuxiéme ordre avec retard pur:

x,(1) = y(1) x,(1) = x,(1)
{xz(t) = y(1) X,(1) = —%Xz(t)+%u(t— 1)

0 1
X(1) = | o+
0

u(it=1)  x(0) = [ xlo}
5

X20

wminN O

Pour que le systeme soit relaché au temps initial # = 0, c’est-a-dire qu’il ne
subisse plus I’effet des entrées passées, il convient d’avoir:

Xjp = Xy = 0 U0y =0

b) Réponse indicielle pour U(s) = 1/s

2e

Y(s) = = Y'(s)e™s

() s2(5s+1) ()

Yi(s) = —=2 4,8, C
s2(5s+1) s sz S5s+1

A = lim -‘l[ 2 ] - 1im[-i] = 10
s—0dsLSs+1 s—0L (55+1)2

B = lim —2— =2
s—>05s+1
C= lim 2 =50
s—>-1/5 §2

—y'(t) = —10&(t) +2&(t)t + 10&(t)e /3

y(1) = —10e(t— 1) +2e(t—1)(t— 1) + 10&(t — 1)e~t-1)/5
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Exercice 19

Un systeme dynamique est représenté par la fonction de transfert

S5(cs+ 1)

G(s) = ————~F—
(as+ 1)(bs+1)

ou a, b et ¢ sont des parametres que I’on peut choisir par un dimensionnement
appropri€ du systeme.
a) Montrer que la réponse impulsionnelle de ce systeme est, en général, discon-
tinue a7 =0.
b) Choisir a, b et ¢ pour qu’il n’y ait pas de discontinuité dans la réponse
impulsionnelle.

Solution
a) Réponse impulsionnelle:

5(cs+1)

Ys) = GB) = T s +

Théoreme de la valeur initiale:

limy(r) = limsY(s) = —=3(es+D - _ 3¢
t—0 § — oo (as+1)(bs+1) ab

La réponse impulsionnelle est, en général, discontinue a ¢t = 0 car elle
«saute» de 0 a 5c/ab #0.

b) _b =0 pour c=0 a,b#0 (cette derniere condition pour éviter d’avoir un
systeme du premier ordre qui «saute» a ¢ = 0)

Exercice 20

Un systeme mécanique est composé de deux sous-systemes décrits par leur
fonction de transfert G(s) et Gy(s).

U(s) R(s) Y(s)
—— G- L5l Gw- —

a) Calculer la réponse indicielle temporelle y(¢) du systeme.
b) Pour u(t) = &(¢), évaluer la valeur finale du signal r(¢).
¢) Déduire I’équation différentielle qui régit la dynamique du systéme complet.

Solution
a) Y(s) = G,(s)R(s)
R(s) = G(s)U(s)
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Y(s) = G,(s)G(s)U(s)
_ _ S+ 1 _1/2 4/3  5/6
(s+5)(s+2) s s s+5 s+2
y(t) = %—ﬂ€_5t+%€_2t pour >0
b) Valeur finale de ()

limr(t) = limsR(s) = limsG(s)U(s)
t— oo s—>0 s—>0

= lim 28t D1
s—>0 s+5 s

Le théoreme de la valeur finale est applicable car le pole de sR(s) vaut —5.

= Y@ _ _ _5(s+1) _ _5s+5
C)G(S)_U(S) 6) (s+5)(s+2) s2+7s+10

Y(s)(s2+7s+10) = (55 +5)U(s)

La transformation de Laplace inverse nous conduit a I’équation différentielle
du systeme complet:

V(1) +7y(t) + 10y(t) = Su(t) + Su(r)
Les conditions initiales y(0), y(0) et u#(0) ne peuvent pas étre déduites de la
fonction de transfert du systeme.

Exercice 21

Un systeme physique S est composé des trois sous-systemes Sy, S, et S3. Le
sous-systeme S; est régi par I’équation différentielle:

V() +5y,(2) + 6y, (1) = (1) + u(2), y1(0) = y,(0) = u(0) =0

u(t)
—> S
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Les sous-systémes S, et S5 sont décrits par les fonctions de transfert:

1 1
G,(s) = m, G3(S) = ;

a) Calculer la fonction de transfert Y(s)/ U(s) du systeme complet S.
b) Evaluer la valeur initiale et la valeur finale de la réponse impulsionnelle du

systeme S.

Solution
Systeme 1

$2Y () +5sY(s) +6Y,(s) = sU(s)+ U(s)
Y (s)(s?+5s+6) = (s+ 1)U(s)

_Y(s) s+ 1 _ s+ 1

G,(s) = = =

U(s) s2+5s+6 (s+2)(s+3)
Systeme 2

Y,(s) 1
G = 22770

29 =55 T 2
Systeme 3
Gt = bt -
() +Y,(0s) s

a) Systeme global S

Y(s) = G3()[G(5) + Gy()]U(s)

G(s) = 5((?) = G4(5)[G,(5) + Gy(5)]

=1[ s+ 1 + 1 ]: 2
sL(s+2)(s+3) s+2 s(s+3)

b) Valeur initiale

lim g(r) = lim sG(s) = lim 2 -
t—0 s> S+3
Valeur finale

2 2

li t li G(s) = lim — = =
tgnoog() 1m0s (8) = sgnos+3 3

Le théoreme de la valeur finale est applicable car le pole de sG(s) vaut —3.
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Exercice 22

Un systeme dynamique est décrit par le modele d’état

w(1) = ( 0 a Jmn( 0 Ju(t), x(0) = [ xlo]
-a 0 1 Xy

y(r) = (1 0)x(r)

a) Déterminer la fonction de transfert de ce systeme.
b) Calculer sa réponse impulsionnelle.
c¢) Calculer sa réponse libre.

Solution
a) La fonction de transfert ne considere pas les condition initiales. Pour des

conditions initiales nulles:

(1) = axy(t) 3 sX,(5) = aXy(s) (1)
(1) = —ax (N +u() 3 sX,(s) = —aX,(s) + U(s) @)
¥ = X () S Y(s) = X,(s) 3)
= G(s) = L) - _a

a

2+a2 5 (0 = ewsin(an

b)Pour U(s) =1, Y(s) =
c) Equation dynamique: ji(¢) + a%y(t) = au(t)
avecy = x; et y =X = ax,
Réponse libre pour u(f) =0:
() +aty() =0 y(0) = xp5, ¥(0) = axy,
¢ L
$2Y(s) = sx;g—axy +a’Y(s) = 0
Y(s)(s?+a?) = sxjy+axy,

S¥igtaxy _ s .
= 10 20
52 +a? s?+a?

Y(s) =
() s2 +a?

= x;o&(t)cos(at) + x,,&(t)sin(at)

—~
~
~

e(t)[x gcos(at) + xyysin(at)]
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Exercice 23

Montrer que la transformée de Laplace de &(f)sin(wt + ¢) correspond bien a
I’entrée 10 du dictionnaire de la transformation de Laplace:

ssing + wcos ¢
52 + @?
Solution
La relation trigonométrique
sin(a+ B) = sinocos B+ cosasin
permet d’écrire:
sin(@t + ¢) = sin(wt)cosP+ cos(wt)sin@

On a ainsi:

L{e(t)sin(wt + ¢)} = cos¢ L{sin(wt)} + sing L{cos(wr)}

wcos ¢ + ssin @

2+ @ s+ o?
Exercice 24

Soit le systeme de transmission par courroie crantée suivant:

Un couple M,(7) est appliqué a la petite poulie de rayon r; caractérisée par le
moment d’inertie J; et un frottement visqueux de coeffcient f;. La transmission par
courroie crantée est considérée idéale, c’est-a-dire sans perte de puissance. La
grande roue de rayon r, caractérisée par le moment d’inertie J, et un frottement vis-
queux de coefficient f; est soumise au couple résistant M (7).

a) Ecrire les équations dynamiques pour ce systeme.

b) Ce systeme est-il linéaire et stationnaire ?

¢) On considere le couple résistant comme une perturbation. Déterminer la

fonction de transfert entre le couple résistant M, et la vitesse angulaire
w, = 92 .

d) Considérer le systeme en régime permanent (vitesses constantes). Ecrire la

relation liant le couple résultant M, au couple appliqué M, et a la vitesse ,.
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Solution
a)J,01 = M, —f,61-Mr, Jioy = My~ f10; = My, M
ou
Jy02 = My, — f,0,- M, Jy0y = My — fr0,- M, @)

My, 5: couples transmis
My @; = M1, w,: conservation de puissance
Wy ri =01, (3)

Myyry=Mry 1 )

b) Systeme linéaire et stationnaire.

) L), @} 0,()[J s+ f,] = M,(s)— My, (s) )
0y($)[Jps + fr] = MTl(S);g—Mr(S) (6)
1
5)—> My, (s) = Ma(s>—w2(s);2w]sl + £ )
1

2
6) + (7): wz(s)[J2s+f2+(?) s, +f1)} - :—zMa(s)—Mr(s)
1 1

Jo 1= J2+J1(:—2)2 fei= fz"‘flc_?)z

1

= () s+ f.] = ?Ma(s)—Mr(s)
1

my(s) 1
MJ(s) J.s+f,

d)Régime permanent
(1) » 0=M,-f®,-M 8)
(2 = 0= Mp-f,0,-M, )

— — 7'2 _ _ Vz
MTZ = MTlr— wl = a)zr—
1 1

: 0

M- f0,2 )2 f.0,-M
a 127‘11 272 r
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Exercice 25

Soit une cuve avec vanne motorisée qui posséde une section S de 50 m” et est
remplie d’eau. Le débit volumique d’alimentation est proportionnel a la position 6,
avec la constante de proportionnalité o = 0,16 m>®/(min rad). Le débit de sortie est
proportionnel a la racine carrée du niveau /, avec la constante de proportionnalité
k=5 m?2>/min. La tension d’alimentation u est amplifiée (K, = 20) et commande la
vanne par l’intermédiaire d’un moteur €lectrique caractérisé par la résistance
R, =50 Q et la constante de moteur K;; =5 V min. Le moment d’inertie du moteur
et de la vanne est J = 10~ kg m?/rad. Le frottement est négligeable.

=20

Ku

Amplificateur

a) Ecrire les équations dynamiques pour ce systéme.
b) Déterminer la fonction de transfert H(s)/ U(s) pour le point de fonctionne-
ment correspondant a un niveau d’eau de 4 m.

Solution
a)JO = K i, (1)
u, =Ku . .
. R, ,+K 0-Ku=0 2)
R i +K 0-u, =0
Sh = a@—kh 3)

b) Linéarisation:
,\/71 = ,\/ﬁ + Lﬁh
2.h

L:(1) — Js?0(s) = K I,(s) “)
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2) - R, I,(s)+K_ s0(s)-K,U(s) =0 5)
k2 H(s) _ o
3 - H(s)[Ss+2 ﬁj - a0 > G = —

@ +(5) > R, Js?*0(s) = K [K,U(s)-K,s6(s)]

O(S) _ KmKa

0(s)[R.Js>+K2s] = K_K U(s) — =
(o msl = KK U() U(s)  s(R,Js+K2)

H(s) _ H(s) 6(s) _ oK, K, _ 0,51
U(s)  6(s) U(s) s(R JS+K2)(SS+L) s(2-1074s+ 1)(40s + 1)
m m 2/\/;1

Exercice 26

Soit un systeme de deux chariots de masses m et M reliés entre eux par une
liaison flexible de rigidité k. Le roulement des deux chariots est entravé par du frot-
tement visqueux de coefficients respectifs f et g. Le petit chariot est soumis a la
force F. La vitesse du grand chariot est noté v = dx/dz.

- o

a) Modéliser ce systeme dynamique.

b) Calculer la fonction de transfert X(s)/F(s). Contient-elle un terme intégra-
teur? Si oui, donner une explication physique de celui-ci.

¢) Calculer la fonction de transfert V(s)/ F(s). Calculer son gain statique et don-
ner une explication physique de celui-ci.

Solution
a) Petit chariot: m(X+7§) = F—ky—fy @))
Grand chariot: MX = ky+ fy—gx 2)
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b) L: m[s2X(s) +s2Y(s)] = F(s)—kY(s)— fsY(s) (1a)
Ms2X(s) = kY(s)+ fsY(s)—gsX(s) (2a)

(2a) — [Ms? + gs1X(s) =[fs+k]Y(s)

_ Ms%+gs
ou v(s) = X () (2b)
(la) — ms2X(s) + [ms?+ fs + k)Y (s) = F(s) (1b)
(1b)+(2b)%[ms2+(ms2+fs+k)(M52+gs)]X(S) = F(s)
fs+k
X(s) _ fs+k
F(s)  ms*(fs+k)+ (ms2+ fs+k)(Ms? + gs)
_ fs+k

s{imMs3 +[(m+ M) f+mgls?+[(m+Mk+ fgls+gh}

Cette fonction de transfert contient un terme intégrateur 1/s. Cela signifie
que, par exemple, si la force F est constante, la position x augmentera indé-
finiment.

o) V(s) _ sX(s) _ fs+k
F(s) F(s) mMs3+[(m+M)f+mgls?+[(m+Mk+ fgls + gk
K = lim Y& _1
s—0 F(s) g

Cela signifie qu’a I’état stationnaire, si la force F' augmente d’une unité, la
vitesse v augmentera de 1/g:

Feky=gr > 2 =1
8

S
ST
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6.7 EXERCICES RESOLUS

Exercice 1

Le systéme de suspension pour une roue d’un véhicule comprend un ressort de
constante de rigidité k; et un amortisseur linéaire de coefficient f. La masse du
véhicule portée par la roue est m, , celle de la roue m, . D’autre part, la roue est
elle-méme flexible, caractérisée par une constante de rigidité &, .

p—

" L

Amortisseur ||~

X d | ——
T Ressort

a) Calculer la fonction de transfert Y;(s)/X(s) qui représente la réponse du
véhicule a des bosses sur la route.
b) Evaluer le gain statique et interpréter sa signification physique.

Solution
Amy, = —ki(y;—y)—f =)
myy, = ki(y1—yy) + f(V1 =) —ky(y, —x)
L

Y ()[m s>+ fs+ k1 = Y,(s)[fs+k,]

Yo(s)[mys?+ fs+k +ky] = Y () fs+k1+k,X(s)

fs+k,
mys? + fs+ (k; +k,)

k2
Yi(s)+ (s)

Y (s) = X
2(5) m,s? + fs + (k| +ky)

(fs+k)?
mys? + fs+ (k; +k,)

[ms?+ fs+ k1Y ,(s) = Y (s)+

(fs+kj)k,
mys> + fs+ (k, +k,)

X(s)
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{mymys* + (myf +myf)s® + [m(k; + ky) + f2 + myk 15>+ [ f(k, + ky) +

+ fhkyls + &k, (k, +hky)—(f2s2+2fk;s+ k1) Y (s) = (fs+k)k,X(s)

Y (s){mymys* + f(my +my)s® + [ky(my +my) + kym 15> + fkys + ki k,}

= (fs+k)X(s)

(fs+k))k,
mymyst + f(my +my)s® + [ky(my +my) + kym 15> + fkys + kk,

b) Gain statique: K = lim G(s) = 1
s—0

Donc, a basses fréquences, toute variation du profil de la route sera trans-
mise intégralement au véhicule.

Exercice 2
a) Evaluer la réponse impulsionnelle du systéme

s—1

) = A Do

b) Représenter graphiquement cette réponse.
c) Evaluer les poles et les zéros de ce systeéme. Est-il stable?

Solution
-1 A B
Y = G U = ) = +
2) () = GOUE) = G573 = 2541 T 543
A= lim 3=1_-23
oL s+3 5
_ s—1 4
s—-3 2s+1 5
Lt y(t) = 3 A5 s
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b) Graphique

y() A
0.6

0.5
0.4
0.3f
0.2r

0.1

0
04l k/——-——

-0.2

-03 1 P

-0.4 ‘
0 .

¢)z;=1,p; =-05, p, =-3. Comme les deux poles sont dans la moitié gauche
du plan complexe, le systeme est BIBO stable.

Exercice 3

Soit le systeme dynamique autonome, c’est-a-dire sans entrée:

L {1 -2}6 £(0) = {10}
-3 10

a) Calculer x(1) .
b) Quel est I’ordre du systeme ? Combien de modes se trouvent dans la réponse

x(1)? Discuter ce résultat.

Solution
a)x, = x;—2x, x,(0) =10

X, = 2x,-3x, x,(0) = 10

\y



206

Systemes dynamiques

SX,(5) =10 = X,(s) - 2X,(s)
sX5(s) =10 = 2X,(s) —3X,(s)
2
X,()[s+3] = 2X,(5)+ 10— Xy(s) = ;;—3X1(S)+%
_ - __4 _20
X, (s =11 = =2X,() + 10 = ==X, (5) = 25+ 10
X,(5)[(s—1)(s+3)+4] = —20+10(s +3)
X, (s)[s*+25-3+4] = 105+ 10
X,(5)[s2+2s+1] = 10(s +1)
_ 10
X160 =25
Xy =2 10,10 2041064 1) _ _10Gs+3) _ 10

s+3 s+1 s+3 (s+3)(s+1)  (s+3)(s+1) s+1

x(1) = x,(¢) = 10e7t t20

b) Le systéme est d’ordre 2 car il est décrit par 2 équations différentielles du pre-

mier ordre. Comme les réponses x;(7) et x,(f) ne contiennent que le mode ™,
on pourrait penser que le systeéme est du premier ordre. Cependant, il s’agit la
d’un artefact dii au choix des conditions initiales. Pour le montrer, consi-
dérons le méme systeme dynamique avec les conditions initiales génériques:

x(0) = 110
X20
Un développement similaire a celui du point a) donne les signaux X;(s) et

X5(s) suivants:

X108+ (3x10—2xy)
(s+1)2

Xl(s) =

Xp08 + (2x,0— X50)
(s+1)2

Xz(s) =

Pour x,q = x,, = 10, on retrouve le résultat du point a). Dans le cas général,
avec un pdle double a s = —1, on observe les modes ¢! et ze'. Notons éga-
lement que les valeurs propres de la matrice du syst¢eme sont 4, = A, = —1.
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Exercice 4

Un systeme physique est composé des deux sous-systemes S, et S, :

Le sous-systeme S, est décrit par la fonction de transfert: G (s) = (s +1)/s.
La sortie z de ce systeme est I’entrée du sous-systeme S, dont la dynamique
est régie par 1’équation différentielle:

V(@) +39(2) +2y(1) = 2(1) +3z() y(0) =1 y(0) =0 2(0) =0

a) Calculer la fonction de transfert du systeme complet S.
b) Evaluer les pdles et les zéros ainsi que le gain statique du systeme S.

Solution
. ) 1 Z(s)
Systtme S, : G,(s) = 151 = £48)
a) Systeme S, 1(8) g Uls)
Y(s)

Systeme S, : calcul de G =
ysteme S, : calcul de G,(s) Z(5)

Le concept de fonction de transfert suppose des conditions initiales nulles
(systeme relaché):

s2Y(s) +3sY(s) +2Y(s) = sZ(s) +3Z(s)
Y(s)[s2+3s+2] = Z(s)[s + 3]

Y(s) _ s+3

Ga(s) = -
2(5) Z(s) s243s+2

Y(s) _ Y(s) Z(s)
U(s) Z(s) U(s)

Systeme S: G(s) =

(s+3)(s+1) _ s+3
(s+1)(s+2)s s(s+2)

G(s) = Go(s)G,(s) = G(s) =
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b)Poles: p;=0 p,=-2
zéro: z;=-3

Il s’agit d’un systeme intégrateur (p; = 0) avec un gain statique infini:

lim G(s) = lim =¥3_ =
s—0 s—>0 S(S+2)

Exercice 5

Pour les cas suivants, et sans calculer explicitement y(¢), déterminer les termes
dynamiques (modes) présents dans la réponse. Quelles réponses ont un caractere
oscillatoire ? Quelles réponses convergent pour t —>oo ?

2
a)Y(s) = ———
) Y(s) s(s2 +4s)
2
b)Y(s) = ——————
)¥(s) s(s2+4s+3)
2
o) Y(s) = ————
) ¥(s) s(s2+45+4)
2
HY(s) = — 2
() s(s2+4s+38)
Solution
2 A B C
a)Y(s) = ——— =+2 4+ —
)Y s?2(s+4) s s2 s+4
y(t) = Ag(t) + Bte(t) + Cete(t) non oscillatoire
lim y(t) = oo
t— oo
bY(s) s —=2 A, B [ C
s(s+3)(s+1) s s+3 s+1
y(t) = Ag(t) + Be3te(t) + Cete(t) non oscillatoire
lim y(r) = A
t— oo
2 A B C
)Y(s) = —— ="+ —
) ¥() s(s+2)2 s (s+2) (s+2)2
y(t) = Ag(t) + Be 2te(t) + Cte 2te(t) non oscillatoire
lim y(r) = A
t— oo
DY) 2 _ A, _BG+2) _ C-2

s[(s+2)2+22] s (s+2)2+22 (s+2)2+22
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y(t) = Ag(t) + Be 2tcos(2t) + Ce 2tsin(21) oscillatoire

avec lim y(t) = A.
t— oo

Exercice 6

Soit le systeme dynamique suivant avec m = 1 kg et k = 500 N/m. La réponse
libre du systeme pour un déplacement de x et une vitesse initiale nulle est donnée a
la figure ci-dessous:

k=2

k=4

k=5

k=3

t

0“3 0‘,4 0‘,5 016 0j7 0“8 0‘,9 1‘
e Sil’amplitude des vibrations décroit a 25% de x, apres trois cycles consécu-

tifs, déterminer le coefficient de frottement f.

Solution
— Modele dynamique:

mxX = —kx— fx x(0) = x5, x(0) =0

#L

m[s?X(s)—sxy— 0]+ kX(s) + f[sX(s)—x,] = 0
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mxgs+ fx,  xo(ms+ f)

S X(s) = -
mst+ fs+k  mst+ fs+k
xXo(s+ f/m) a Xol(s +a)+ (a/®)®]
24 (flm)s+kim (s +a)?+ @?
aveca = L @ = . [skm— 12
2m 2m

— Réponse oscillatoire sous-amortie (0 < < 1)
x(1) = xoe(t)[e—atcos(@t) + %e‘atsin((ﬁt)}

Au maxima et minima de la réponse, #,k=0,1,2,...,0n a:

ot, = km, sin(ot,) = 0 et cos(w.t) = 1,cequidonne:

x(1) = xpe M = xpeakn/®)

Pour la situation donnée, k = 6 et x(¢;) = x,/4,ce qui donne:
onf

1 _ ¢ fAkm—f,

4

etainsi f = 2 ,k—m
(67/In4)2 + 1
Ns

Avec m =1 kg, k=500 N/m, on obtient f = 3,28 —.
m

Exercice 7

Un oscillateur est constitué de 2 boules métalliques de 1 kg reliées entre elles
par une barre rigide de 1 m et de masse négligeable. La barre est suspendue en son
milieu par un fil trés fin qui se laisse tordre sans casser. La constante de rigidité en
rotation du fil est k = 2 - 10~ Nm/(rad). D’autre part, on estime le coefficient de
frottement visqueux dans I’air du systéme boules/barre & 10~3 Nms/(rad).
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a) Calculer le coefficient d’amortissement de cet oscillateur.
b) Sachant que I’oscillateur est chargé avec 10 tours (3600°) et laché a vitesse
nulle, calculer sa réponse libre dans le domaine de Laplace.

Solution
a) Modele dynamique:
JO = —kO-f0 6(0) = 6,; 6(0) = 0

¢ L

J[s20(s) -56,-0]+k0O(s) + f[sO(s) - 6,] = 0
O(Is+f) _ Oy(Jslk+ flk)
Js2+ fs+k  (JIK)s2+ (flk)s+ 1

2 2 1 m2
J:Zm(é) :mlelkg%zO,Skgm2

— 0(s) =

)]

F=103Nms. - 5o« N
(rad) (rad)
Dénominateur de 6(s):

(i)sz + Gg)s +1 = 2?2 +2t8s+ 1

—>7T= A/z = [0S 50s
k2710
-3
=L =1L 10 = 0,05

2tk 2.0k 2.J0,5-2-104
b)Réponse libre pour 6, =207
207(2500s +5) _ _ 207(s +0,002)
250052 +5s+1  s2+0,002s + 0,0004

— 207 (s+0,001)+0,001 _ 20n(s +0,001) + 0,05(0,02)

(s +0,001)2 + (0,02)2 (s +0,001)2 + (0,02)2
— 0(t) = 207e(1)[e0%01tc05(0,021) + 0,05¢-0-901t5in (0,02¢)]

(1) = 0(s) =




212 Systemes dynamiques

x(7) A

80 -
60

40

-20 |

-40

t[s]
-60 L -

! I L L L I I ! L o
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Exercice 8
Un systéme dynamique est représenté par 1’équation différentielle
V+y(ay+4) = 2u y(0) =2 y(0) =0

a) Evaluer la fonction de transfert Y(s)/U(s) pour le point de fonctionnement
correspondant a u = 4.

b) Pour quelles valeurs de o I’approximation linéaire de ce systeme sera-t-elle
stable et non oscillante ?

Solution d’équilibre
a) A I’état d’équilibre: y = j = 0
4y =2u =8 — y =2
Pour des questions de notation, définissons v 1=y .
Linéarisation de yv autourde y = 2 etv = 0

0 0
VY = FPE V=F) 5 (v —¥) = 2(v—7)

En variables écart
8j+200y+48y = 26u  8y(0) =0  8y(0) = 0
‘L
Y(s) _ 2 _ 12 _ 1/2
U(s) s2+2as+4  (1/H)s2+(a/2)s+1  1252+210s+ 1

Sse=1 4 2]
4 2
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20 = 5> =

I

b) Approximation linéaire non oscillante pour > 1, ¢’est-a-dire pour o > 2.

Exercice 9

La réponse indicielle y(f) d’un systeme inconnu a été mesurée comme suit:

Y &

a) Déterminer le retard pur de ce systeéme.

b) Sachant que ce systeme ne possede pas de zéro, déterminer son gain statique
et ses poles.

¢) Déterminer sa fonction de transfert.

Solution
a) Le retard pur vaut 1 s.
b) Gain statique = lim y(¢) = 2
t— oo

On mesure un dépassement de 50 %
Y1) = K(1+et01-8
3 = 2(1 + e CW/i1-8%

=2 _ o255

J72 + (In2)2
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On mesure une durée séparant le début de la réponse et le premier maximum

de 1 s,donc:
= I -

p /1 _ é,z
Ainsi 7 = —43“1; = 03108

Les pdles sont: p; , = —%[(Ci NE-1) = -0,69+ )

¢) La fonction de transfert est de la forme

K

G(s) = ¢
() 252 +20ts+ 1

2e8

etdonc G(s) =
0,097s2 +0,134s + 1
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7.5 EXERCICES RESOLUS

Exercice 1

a) Tracer le diagramme de Bode asymptotique pour la fonction de transfert

1

Gls) = s(s+3)

b) Ajouter un terme multiplicatif a cette fonction de transfert afin que le
déphasage approche —90° a hautes fréquences.

Solution

1 1/3

VGEE) = 533 T o)

Diagramme de Bode asymptotique de G(s)

pente -1

1/3

pente -2

" o [rads] "°

-90
o[°]

-100 -

-110 -

-120 -

0T 435°

140

-150 -

-160

-170 -

-180 L 5 o ?
10 10 10 a)[rad/S] 10
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b) Le déphasage de G(s) vaut —180° a haute fréquence. Il convient donc d’ajou-
ter un terme avance de phase au numérateur. Par exemple, G'(s) =
(s + 1)G(s) aura un déphasage de —90° a hautes fréquences.

Exercice 2
a) Tracer le rapport d’amplitude asymptotique pour la fonction de transfert:

-5
5¢ "

) = Grr Do)

b) Déterminer 6 de facon a ce que le déphasage soit €gal a —180° pour @ = 1

rad/s.
Solution
Se—es e—es
a) G(s) = =
25+ D(s+5  (2s+ D(s/5+1)

10°

R,[-]
10° b E
' pente -1 3
10° ~. ]
10" b

/— pente -2
107 1
10°
10* L
10°
. 1/2 5

1010‘ 1é>° 18‘ 1:)2 10°

b) p(w) = — Ow— arctan(2 ®) — arctan(%))
o(w=1) = —0-arctan(2) — arctan@j = —x rad

= 6 = mw—arctan(2) — arctan(%) = 1,845
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Exercice 3

Soit un systeme dynamique caractérisé par un gain unité, un pdle a —1 et un
zéroa—1/o.

a) Ecrire sa fonction de transfert.

b) Esquisser le diagramme de Bode pour o= —1.

Solution
a) AS+l
o A
G(s) = — 1 =1lmG(s) == —A=a«a
s+ 1 s—0
—G(s) = os + 1
s+ 1

b) Pour o= -1 G(s) = =5
1+

%}

. 2 .
G(jw) = 1-jo _ (l-0)-2jo
1+jo 1+
Ja-o)) +40° 1+
IG(jw)| = > = 5 =1
1+ w 1+ w

ZG(jw) = arctan( _2(02) = —arctan( 2(02)
l-w l-w

Alternative :

. 1-j G (jw)
G(jo) = 1 JO - Z1s
+jo G,(jo)

Gl = G109 _ v o’
|G2(j0) 1+

LG (jo) - LG, (jw)

£G(jo)

= arctan(—m) — arctan(®) = —2arctan(m)

Notons que I’approche alternative permet de conclure que arctan (2w/(1 — @?))
=2 arctan(w).
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Diagramme de Bode

1

10
R,[-]
10°
g
10 ‘ ‘ ‘
10 10" 10° 10" @ [rad/s] 10°
0
o[°]
20 | B
wl |
-60 |- B
ol |
-90°
-100 | B
120 B
140 | 4
-160 - E
1
180 ‘ 1 0 ‘ 1 >
10° 10° 10 10" ¢ [rad/s] 10

Exercice 4

On a mesuré expérimentalement les réponses harmoniques suivantes sur un
processus physique:

w(rad/s) 0,1 02 0,5 1 2 5 10
Ry (5 193 9.8 3,6 1,95 045 0,08 0,02
o) -101 -113 —-145 -192 —268 —455 —745

¢ Identifier ce systeme, c’est-a-dire déterminer sa fonction de transfert.
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Solution
Diagramme de Bode asymptotique a partir des données expérimentales

3

10
Ry 111
10° E E
pente +1
10' E E
2
10° E k!
: : pente -2
10" E E
1
10° 0 !
10 10 w [rad/s] 10
-100
o]
200 |- : : : : J
-300 - B
-400 - E
500 - E
600 - E
700 |- : . . . .
-800 - xS |
10 10 o [rad/s] °

— Asymptote basses fréquences: Ry — K/ .
Pour w = 1,R, = 2 — gainen vitesse K = 2

— Retard pur a hautes fréquences: — 180° — 0w(360°/2 )
Pour = 10, ¢ = -745° — 0 = 1s

2¢°

—)G(S) = ;‘(‘m
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Exercice 5

On a mesuré expérimentalement les réponses harmoniques suivantes (malheu-
reusement incomplétes) sur un processus physique:

w(rad/s) | 001 0,03 0,05 0,1 03 0.5 1 3 5 10
Ry (5 1,99 191 1,78 141 0,60 0,35 0,14 0,02 | 0,008 | 0,002
0C) - -1 -1 -1T-71T-T=25]-71-7 -

¢ Identifier ce systeme, c’est-a-dire déterminer sa fonction de transfert.

Solution
Diagramme d’amplitude & partir des données expérimentales:

K:2, TIZIOS, 1'2=1S

2¢79s

=60 = Do

Détermination de 0
¢ =—0w - arctan(10w) — arctan ()

Pour w=1, ¢ = -215° = —3,75@ = — O-arctan(10) — arctan(1)
s
=60=15s
-15
= G(s) = —2¢ "

(10s+ D)(s+ 1)

Ral-1 A

-2
10 ¢

L

10" () [radss]

$
0

ol
-
A=
S
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Exercice 6

Soit le systeme dynamique suivant:

(s—0,2)es

Gls) = s(s2+2s+1)

a) Quel est son gain statique ?

b) Ce systeme présente-t-il un effet de résonance ? Si oui, a quelle pulsation?

c¢) Indiquer le déphasage asymptotique a basses fréquences et a hautes fréquen-
ces.

d) Construire le diagramme de Bode asymptotique.

Solution

G(s) = (s=02)e* _ 02(5s—1)e*
s(s2+2s+1) s(s+1)2
a) Gain statique = lim G(s) = —oo
s—0

b)Poles: p; =0 p, 3=-1
Poles réels, donc pas de résonance. Par contre, ce systeme posséde un zéro,
ce qui peut modifier I’allure de la réponse.

c)w—0 ¢ — -90°
W—> oo Q— —o
d) Diagramme de Bode asymptotique

e Diagramme d’amplitude (voir diagramme)
e Diagramme de phase

1
(s+1)2

G(s) 9;—2(5s— 1 e

G1(5)Gy(5)G3(5)Gy(s)

ZG(jo) = Q1+ Q)+ O3+ @y

@4lrad] = -w o =01 04 = -57°
P41°] = —(326(; )w =1 0, = -57,3°

w=10 @ = -573°



Systemes dynamiques

246

 [rad/s]

10’

107

1072

o1 A

100

 [rad/s]

10’

107"

10



Analyse fréquentielle 247

Exercice 7

Le diagramme de Bode d’un systéme oscillant du deuxieme ordre caractérisé
par les poles p; , =—2 +j et un z€ro a —1 est donné ci-dessous.

RI1A
10° |
10’ 2 ‘-1 ‘u ‘1 2 >
10 10 10 10 10 o [rad/s]
o° A

.90 - I I I 1 -~ >
10 10
o [rad/s]
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a) Calculer la constante de temps équivalente 7 et le coefficient d’amortisse-
ment (.

b) Comparer le diagramme de phase avec celui donné a la figure 7.11 et discu-
ter les différences majeures.

¢) Le systeme possede-t-il un effet de résonance ? (expliquer).

Solution
G(s) = f(s+1) _ 1(2'(s+1)
sc+4s+5  (1/5)s+(4/5)s+1

a)%s2+gs+1 = 252 +2718s+ 1

2 = l—>1: 1 = 0,447
3 5

4 401 2 2

21 = = =-|—|=32J5=-==0.8%
W=7t 5(21) 53

b) Figure 7.11 correspond a

K

G) = 55—
252 +218s + 1
c’est-a-dire a un systeéme du 2° ordre sans z€éro (¢ compris entre 0 et —180°).

K(s+1)

Ici, G(s) = —=8+ D)
252 +278s + 1

c’est-a-dire un systeme du 2° ordre avec un zéro — contribution de phase du
zéro: 0 — 90° = ¢ commence a 0 a basses fréquences, augmente légere-
ment a cause du zéro et diminue ensuite asymptotiquement vers —90°.

c) Résonance car R, (w,) > 2 (gain statique)
0. =186 R,(w)=28

Sans zéro, un systeme du 2° ordre avec = 0,894 n’a pas de résonance. Ici,
la résonance est due a la présence du zéro a —1.

Exercice 8

Soit le filtre avance de phase F(s) en série avec la fonction de transfert G(s):

U(s) os+1 s+l s Y(s)
—>| 9= o > Gls)= 6 T ¢
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a) Représenter G(s) dans un diagramme d’amplitude de Bode asymptotique.

b) Calculer la valeur de & pour que la sortie du systeme suive sans retard de
phase I’entrée u(z) = 2sin(37).

¢) Pour la situation donnée au point b), calculer I’amplitude de la sortie en
régime permanent.

Solution

a) G(s) = 6(5"' 1)e—OJS =2 (s+1) o015
s

+3 (s/3+1)
R A
pente 1
10' |
pente 0

, /

,| pente0 ‘ 1
10° | '
10" ! ! I I >

10" 10° 3 10’

10°
o [rad/s]

600 ! . ! !
-1

-
10 10° 3 10’

10°
o [rad/s]
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~ B (s +1)(s+1) 15
b)H(s) = F(s)G(s) = 2 Eos o

¢ = arg(H(jw)) = arctan(a®) + arctan(w) — arctan(0,1 w)
- arctan(%’) -0,lo

¢ =0 pour @ =3 rad/s donne:
arctan(3 ) = —arctan(3) + arctan(0,3) + arctan(1) + 0,3 = 0,1278

_ tan(0,1278) _ 0.043
3 b

1+(0,043 -3)2(1+32) _

O Ry = GOl = 2 A+ 1)

4,32

ce qui donne une sortie d’amplitude 8,64.

u,y A

Exercice 9

Un phénomene de transport est modélisé€ par un retard pur de 2 s. A 1’aide d’un
développement en série de Taylor, on obtient I’approximation de Padé suivante:

G(s) = e2s = e o 1=s

es 1+s

a) Représenter G(s) et son approximation de Padé dans un diagramme de Bode
asymptotique.

b) Calculer le rapport d’amplitude et le déphasage de G(jw) et de son aproxi-
mation de Padé pour =5 rad/s.

¢) Evaluer I’ordre et le gain statique de G(s) et de son approximation.
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Solution

l-jo

l1+jo

1—joi _ JSTre? _
N+jol 12

arg[Gp,g(jo)] = arg(l — jw) — arg(1 + jw) = —2arctan(w)

a) Gpyge(jO) =

|GPadé(jw)| =

R A
10°
-1 w
10 w w >
] 1
10 10° 10" [rad/s]
o] A
0
-200
-400
-600
-800
-1000
(0]
-1200 >

>
10 10° 10" [rad/s]
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b) Pour o =5 rad/s
IGGS N = |Gpage(5)| = 1
arg[G(5j)] = -2-5 = —-10 rad = -573°
arg[Gp,e(57)1 = —2arctan(5) = -2,75rad = —-157°

¢) G(s): ordre infini; gain statique = 1
Gp,aqgs(s): ordre 1, gain statique = 1
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