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16 Systèmes dynamiques

 

: système à l’état stationnaire (au repos)

: système statique (pas de mémoire)

Un système dynamique qui possède les propriétés de 

 

l

 

inéarité, 

 

s

 

tationarité et

 

c

 

ausalité et qui se trouve initialement au 

 

r

 

epos est appelé un 

 

système lscr

 

.

 

1.5 EXERCICES RÉSOLUS

 

Exercice 1

 

Considérons le comportement thermique d’une maison en hiver. Le système de
chauffage permet de réguler la température et de rendre la maison habitable.

a) Quelles variables d’entrée, de sortie et d’état choisir pour établir un modèle
qui prédise la température moyenne de la maison en fonction du temps?

b)Comment étendre ce modèle afin qu’il prédise la température dans plusieurs
pièces?

 

Solution

 

a) Entrée: puissance de chauffage 

 

P

 

Etat: chaleur 

 

Q

 

 = 

 

mc

 

p

 

T

 

Sortie: température mesurée 

 

T

 

Perturbation: température extérieure 

 

T

 

ext 

du
dt
------ dx

dt
------ dy

dt
------ 0= = =

y t( ) f u t( )[ ]=

P

T
Text

y t( )u t( ) x t( )
étatsentrées sorties

Fig. 1.21 Système S(θ).
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b)On considère les pièces séparément, chacune avec son entrée, son état et sa
sortie propre:
Entrées: P1 – P4
Etats: Q1 – Q4
Sorties: T1 – T4
Perturbation: Text

Exercice 2

On a modélisé un système thermique par l’équation différentielle linéaire sui-
vante:

où x représente la variation de température autour de son point d’équilibre (x := T –
Téq), u la variation de la puissance de chauffage autour de son point d’équilibre (u := P
– Péq) et τ  la constante de temps proportionnelle à la capacité thermique du système.

a) Ce système est-il statique ou dynamique?
b)Calculer sa réponse à un saut unité de l’entrée. Quelle est l’influence du
paramètre τ sur la réponse?

Solution
a) Le système est dynamique car il fait intervenir une équation différentielle
pour la variable dépendante x(t).

b)Pour u(t) = 1, t ≥ 0, la résolution de l’équation différentielle linéaire du pre-
mier ordre donne:

t ≥ 0

On voit ainsi que τ  influence la vitesse à laquelle la température approche la
nouvelle valeur stationnaire  = 1/3 (ou  = Téq + 1/3). Pour τ  très petit
(peu d’inertie thermique), la nouvelle valeur stationnaire est atteinte
quasi-instantanément. Pour τ = 0, le système devient statique et est décrit
par la relation algébrique 3x = u, qui donne la solution x = u /3, dans notre
cas 1/3.

Text

P1

P4

P2

P3

T1 T2

T3 T4

τ ẋ t( ) 3x t( )+ u t( )= x 0( ) 0=

x t( ) 1
3
--- 1 e 3t/τ––( )=

x T
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Exercice 3

Pour une voiture roulant à vitesse constante sur une route plane, il existe une
relation entre la position de l’accélérateur et la vitesse.

a) Dessiner schématiquement cette relation.
b)Considérons cette voiture en condition de trafic urbain sur plusieurs kilomè-
tres et prenons des mesures instantanées de sa vitesse et de la position de
l’accélérateur. Ces mesures instantanées correspondent-elles à la relation du
point a)? 

Solution
a) Puisque la vitesse est constante, la voiture est dans un état quasi-station-
naire. Le couple fourni par le moteur ne sert qu’à compenser les forces de
frottement. En appliquant la loi de mouvement de Newton, on obtient la
relation mathématique suivante:

où m est la masse de la voiture, v sa vitesse, u l’entrée (la position de l’accé-
lérateur), ku la force fournie par le moteur et fv2 la force de frottement. A
vitesse constante , on aura  et donc

où la constante c vaut .

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

   = 1

   = 0,1

 = 0

x(t)

t

τ

τ

τ

mv̇ t( ) ku t( ) f v2 t( )–=

v̇ 0=( ) 0 ku f v2–=

v c u=

k/ f
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b)Les mesures instantanées n’ont plus rien à voir avec la relation quasi-station-
naire du point a) car il s’agit, dans le trafic urbain, d’accélérer et de freiner le
véhicule. Les mesures instantanées u(t) et v(t) sont liées entre elles par la loi
de mouvement de Newton.

Exercice 4

Pour des conditions de vent stables, une girouette pointe dans la direction du
vent. Cependant, lorsque le vent tourne, la girouette n’indique pas instantanément la
direction du vent.

a) Dessiner schématiquement la direction de la girouette lorsque la direction
du vent change soudainement de 10°.

b) Identifier les grandeurs d’entrée, d’état et de sortie susceptibles d’entrer
dans un modèle dynamique de la girouette.

Solution
a)

vitesse

   position 
accélérateur u

v

t

θ(t)

10o

0



20 Systèmes dynamiques

La girouette ne suit pas instantanément la direction du vent car elle a une
certaine inertie due d’abord à sa masse non nulle, mais aussi à certains élé-
ments amortisseurs qui sont là pour éviter que la girouette suive trop rapide-
ment tous les petits tourbillons de vent.

b)La girouette peut être modélisée comme un élément mécanique de rotation
avec la force du vent comme entrée, la position et la vitesse angulaires
comme variables d’état et la position angulaire comme sortie.

Exercice 5

Le niveau d’eau dans un réservoir varie en fonction du temps. On désire établir
un modèle dynamique capable de prédire les variations de ce niveau.

a) Quelles variables d’entrée et de sortie choisir?
b)Combien de variables d’état (nombre d’équations différentielles du premier
ordre) sont nécessaires?

Solution
a)

Le choix des variables d’entrée et de sortie dépend de la situation physique
et des mesures disponibles. Les entrées vont correspondre aux variables que
l’on peut manipuler indépendamment (un ou plusieurs débits parmi q1, q2 et
qs). Les sorties correspondent aux variables dépendantes que l’on mesure,
par exemple h.

Les variables d’état sont les variables dépendantes pour lesquelles intervien-
nent des dérivées. Dans le cas particulier, la variation de niveau dans le
réservoir s’obtient à partir du bilan de masse

(1)

avec m = ρSh, wi = ρqi où m représente la masse du liquide dans le réservoir,
ρ la masse volumique, S la section de la cuve, h le niveau, wi le débit massi-
que i et qi le débit volumique correspondant.
L’équation (1) peut aussi s’écrire

q

q1

S
s

h

q2

dm
dt
------- w1 w2 ws–+=
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Considérons deux situations physiques différentes: 
• Le débit d’alimentation q1 varie en fonction de la situation en amont mais
n’est pas ajustable dans l’étude de ce réservoir et q2 est constant. Le débit de
fuite qs est ajustable au travers de la pompe. On mesure le niveau h à l’aide
de la différence de pression ∆p = ρgh. Pour cette situation, nous avons les
grandeurs d’entrée, d’état, de sortie, de perturbation et les paramètres
suivants:
u := qs, x := h, y := ∆p, d := q1, θ := (S, q2)

• Les débits d’alimentation q1 et q2 sont ajustables, le débit qs dépend du
niveau, , et on mesure h directement. Pour cette situation nous
avons les grandeurs suivantes: 
u := (q1, q2), x := h, y := h, θ  := (S, k) 
et le modèle non linéaire:

b)Dans chaque situation considérée, il y a une seule variable d’état, le niveau h.

Exercice 6

Pour les 4 systèmes donnés ci-dessous, indiquer chaque fois si le système est
statique ou dynamique, monovariable ou multivariable, linéaire, stationnaire, causal
et initialement au repos. On utilise les notations conventionelles, soit u pour les
entrées, x pour les variables d’état et y pour les sorties:

a)

b)

c)

d)

Solution
a) dynamique: dérivées  et 

Sdh
dt
------ q1 q2 qs–+=

qs k h=

Sdh
dt
------ q1 q2 k h–+=

ẋ1 a11x1 a12x2 b1u1+ += x1 0( ) x10=
ẋ2 a21x1 a22x2 b2u2+ += x2 0( ) x20=
y x1 x2–=

ẋ̇ 2xẋ 3x+ + 3u= x 0( ) 0  ẋ 0( ), 1= =
y x 2u+=

y t( ) 2 t–( )u2 t( )=

y t( ) u t 1–( ) u t( ) u t 1+( )+ +=

ẋ1 ẋ2
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multivariable: deux entrées u1 et u2, une sortie y
linéaire: les variables u, x et y apparaissent linéairement dans le modèle
stationnaire: tous les paramètres sont constants
causal: pas de dépendance du futur
initialement au repos: considérons , ce qui donne l’état
d’équilibre ; donc le système sera initialement au repos pour
x10 = x20 = 0.

b) dynamique: dérivées  et 
monovariable: une entrée u, une sortie y
non linéaire: terme non linéaire 
stationnaire: tous les paramètres sont constants
causal: pas de dépenance du futur
initialement au repos: considérons  pour lequel l’état d’équilibre
exige , ; comme , le système n’est pas initialement au
repos.

c) statique: pas de dérivée, équation algébrique, y(t) ne dépend que de u(t)
monovariable: une entrée u, une sortie y
non linéaire: terme non linéaire u2
non stationnaire: paramètre variable (2 – t)
causal: pas de dépendance du futur
initialement au repos car système statique

d)dynamique: le système a de la mémoire car la sortie au temps t dépend de
l’entrée au temps t –1
monovariable: une entrée u, une sortie y
linéaire: les variables u et y apparaisssent linéairement
non causal: l’entrée future u(t + 1) influence la sortie au temps t
initialement au repos: le système est au repos à t = 0 si, étant donné ,

il n’évolue pas, c’est-à-dire . Cela sera le cas si .

u1 u2 0= =
x1 x2 0= =

ẋ ẋ̇

x ẋ

u 0=
x 0= ẋ 0= ẋ 0( ) 0≠

u 0 ∞ ),[ 0=
y 0 ∞ ),[ 0= u 1– 0 ),[ 0=
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2.9 EXERCICES RÉSOLUS
Exercice 1

a) Ecrire les équations dynamiques des deux systèmes suivants:

b)Montrer que ces deux systèmes sont analogues et proposer une analogie
entre les grandeurs mécaniques et électriques qui interviennent dans ces
deux systèmes.

Solution
a)  Modélisons tout d’abord le système mécanique. Pour faciliter la mise en
équation, on considère séparement les deux sous-systèmes avec les déplace-
ments respectifs  et .
Le premier sous-système est décrit par l’équation dynamique:

(1)

L’équation dynamique du point matériel qui constitue le second sous-sys-
tème s’écrit:

(2)

b) Le modèle du système électrique est obtenu sur la base des équations écrites
au nœud A et pour les mailles B et C avec:  et

, où les   représentent les charges.

m

k1 f1

k2

f2

x1

x2

L

C1 C2

R1

R2

x1 x2

mẋ̇1 k1x1– f 1 ẋ1– k2 x1 x2–( )–=

0 f– 2= ẋ2 k2 x1 x2–( )+

i1 q̇1 C1u̇1= =
i2 q̇2 C2u̇2= = qi
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Nœud A  (3)

Maille B                                                             

qui s’écrit, grâce à la relation (3) et en considérant le débit de charge :

(4)

Maille C

(5)

Les deux systèmes sont représentés par des équations différentielles structurel-
lement identiques, (1) et (2) d’un côté et (4) et (5) de l’autre. Les deux systèmes
sont dits analogues. Il est tout à fait possible de réaliser le circuit électrique pour
déterminer le comportement du montage mécanique. 

En comparant respectivement les relations (1) et (4) ainsi que (2) et (5), il est
possible de définir comme grandeurs électriques équivalentes des positions  et 
les charges  et . L’équivalent de la masse est l’inductance, l’équivalent d’un
coefficient de frottement visqueux (dissipatif) est la résistance (dissipative) et
l’équivalent du coefficient de rigidité d’un ressort est l’inverse de la capacité.

i3

L

C1 C2

R1

R2

A

B

C

i1

u1

u2

i2

i2 i1 i3–=

u1 L
di1
dt
------- u2 R1i1+ + + 0=

q1

C1
------ Lq̇̇1

q2

C2
------ R1q̇1+ + + 0=

i3 q̇3=

Lq̇̇1
1
C1
------q1– R1q̇1– 1

C2
------ q1 q3–( )–=

R2i3 u2=

R2q̇3
q2

C2
------=

R2q̇3
1
C2
------ q1 q3–( )=

x1 x2
q1 q3

x1 q1↔ ki
1
C i
-----↔

x2 q3↔ f i Ri↔

m L↔
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Exercice 2

 

Soit le système mécanique de rotation suivant:

entraîné par le couple 

 

M

 

 et caractérisé par le moment d’inertie 

 

J

 

, l’élément flexible
de rotation 

 

k

 

 et le frottement visqueux 

 

f

 

.
a) Modéliser ce système dynamique.
b)Proposer un système électrique qui soit analogue à ce système mécanique.

 

Solution

 

a) Modèle dynamique (ressort sans inertie, 

 

J

 

r

 

 = 0)

Pour 

 

θ

 

1

 

:  = 

 

M

 

 – 

 

k

 

(

 

θ

 

1

 

 – 

 

θ

 

2

 

)

Pour 

 

θ

 

2

 

: 

Avec :

b) inertie

 

↔

 

L

 

ressort

 

↔

 

C

 

frottement

 

↔

 

R

 

Les systèmes mécaniques et électriques sont analogues.

 

Exercice 3

 

a) Grouper les 18 systèmes dynamiques suivants (9 systèmes mécaniques et 9
systèmes électriques) en 9 paires de systèmes analogues.

b)Certains de ces systèmes n’ont pas de point d’équilibre. Lesquels?

kM
J

f1 2θ θMr

0θ̇̇ 1 M M r+=

⎭
⎬
⎫

  Jθ̇̇ 2 M f θ̇ 2–=Jθ̇̇ 2 MR– M f– k θ1 θ– 2( ) f θ̇ 2–= =

ω2 θ̇ 2= Jω̇ 2 f ω2+ M=

RCu

+

–

L

x1
x2

Lẋ1 Rx1+ u=
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k1

k2

m1

m2

F

k

m

F

1. 2.

RCu
+

–

L

fk1

k2

m1

m2

F

3.

4.

5.

Ru

+

–

L

R1 Cu

+

–

L1 L2

R26.
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7.

C2u

+

–

L2

C1 L1

f

m

F

f

m

F
8. 9.

f

m

F

L

u

+

–

C

k1

m

F

k2k1

k2

m

F
10.

11.

12.

C2u

+

–

C1

L
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R

C2
u

+

–

L2

C1

L113.

14.

u

+

–

L

C2

C1

f

k

m

F

15.
16.F

f2

k

m1

m2

f1
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Solution
a) (1, 9), (2, 7), (3, 13), (4, 16), (5, 8), (6, 15), (10, 12), (11, 17), (14, 18).
b)Sans point d’équilibre: (4, 16), (5, 8), (6, 15).

Exercice 4
Soit la paire de systèmes analogues (14, 18) donnée à l’exercice précédent.

Montrer que ces deux systèmes dynamiques ont bien le même ordre, c’est-à-dire le
même nombre d’équations différentielles du premier ordre.

Solution
a) La modélisation du système mécanique 18 donne:

avec x le déplacement de la masse et kt = k1 + k2 la constante de ressort totale
résultant de la mise en parallèle des ressorts (même déplacement).
En définissant  et , on obtient les deux équations différen-
tielles du premier ordre suivantes:

b)Le système électrique a trois éléments dynamiques (L, C1 et C2) pour les-
quels on peut écrire 3 équations différentielles de premier ordre. On note
cependant que les 2 capacités sont en série et donc traversées par le même
courant, ce qui permet de travailler avec la capacité toale Ct selon la loi

k1

k2

m

F

u

+

–

L

C2

C1

17.

18.

mẋ̇ F k1x– k2x– F ktx–= =

x1 :=  x x2 :=  ẋ

ẋ1 x2= x1 0( ) x10=

ẋ2
1
m
---- F ktx1–[ ]= x2 0( ) x20=

1
C t
----- 1

C1
------ 1

C2
------+=
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En notant x1 la tension aux bornes des deux capacités en série et x2 le cou-
rant qui les traverse, la modélisation donne:

ou

Les deux systèmes dynamiques sont donc bien d’ordre 2 avec l’analogie
position ↔ charge et vitesse ↔ courrant.

Exercice 5
Les moteurs AC travaillent souvent à hautes vitesses et sont connectés à la

charge par l’intermédiaire d’un système d’engrenage. La figure représente un
moteur AC entraînant une charge au travers d’un système d’engrenage idéal
(conserve la puissance) avec un rapport de réduction de n, c’est-à-dire θm = – n θc,
n > 1. Jm représente le moment d’inertie du moteur et de son système d’entraîne-
ment, fm son coefficient de frottement visqueux et θm sa position angulaire. Jc, fc et
θc sont les grandeurs correspondantes du côté de la charge. Sachant que le couple
développé par le moteur AC est donné par :

 

où um représente la tension électrique appliquée au moteur et K1 et K2 sont des
constantes,

a) Modéliser ce système dynamique. 
b)Quel est son ordre?

Solution
a) Entraînement: (1)

C t ẋ1 x2= x1 0( ) x10=

Lẋ2 x1 u–+ 0= x2 0( ) x20=

ẋ1
1
C t
-----x2= x1 0( ) x10=

ẋ2
1
L
--- u x1–[ ]= x2 0( ) x20=

Mm K1um K2θ̇m–=

Moteur AC
um Jm

Jcfm
m

fc

n
θ

cθ

Jmθ̇̇m Mm f mθ̇m– MTm–=
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Charge: (2)
où MTm et MRc représentent les couples transmis et reçus au travers de
l’engrenage.
Engrenage: (3)

(4)

Moteur électrique: (5)

(1), (3), (4), (5) →

⇒ (6)

(2) + (6) →

b)Système d’ordre 2 pour décrire θc(t). Notons toutefois que ce système élec-
tromécanique ne contient pas d’élément flexible et donc ne fait pas interve-
nir θc dans les équations. On peut donc travailler avec la vitesse angulaire

 et obtenir un modèle du premier ordre pour décrire ωc:
.

Exercice 6
Soit un chariot de masse M pouvant se déplacer horizontalement et supportant

un pendule inversé de masse m. On néglige les forces de frottement ainsi que la masse
du bras de longueur L. On désire mettre au point une commande dont le but consiste
à maintenir le bras en position verticale en exerçant une force F sur le chariot.

• Ecrire les équations dynamiques pour ce système.

Jcθ̇̇ c MRc f cθ̇ c–=

PTm PRc= MTmθ̇ m MRcθ̇ c= θ̇ m nθ̇c–=

MTm MRc
θ̇ c

θ̇ m
------ MRc

1
n
---–= =

Mm K1um K2θ̇ m–=

Jm n–( )θ̇̇ c K1um K2 n–( )θ̇ c– f m n–( )θ̇ c–= MRc
1
n
---⎝ ⎠

⎛ ⎞+

MRc n2Jmθ̇̇c nK1um– n2 K2 f m+( )θ̇ c––=

Jcθ̇̇c n2Jmθ̇̇c– nK1um– n2 K2 f m+( )θ̇ c– f cθ̇ c–=
Jc n2Jm+( )θ̇̇c f c n2 K2 f m+( )+[ ]θ̇ c+ nK1um–=

ωc θ̇ c=
Jc n2Jm+( )ω̇ c f c n2 K2 f m+( )+[ ]ωc+ nK1um–=

M

m

L
F

y
0

. .

θ
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Solution
Dénotons par H et V les forces horizontale et verticale exercées par le bras sur

le chariot et, par réaction, par le chariot sur le bras en sens inverse. Nous pouvons
ainsi considérer les deux sous-systèmes chariot et pendule indépendamment: 

L’axe de rotation du bras se déplace avec le chariot dans le sens horizontal.
L’accélération du chariot dans la direction y tend à diminuer l’angle θ. Son effet au
niveau du couple de rotation correspond donc à une force horizontale de sens
inverse, . L’effet des forces H et V au niveau du couple de rotation est nul.

Loi de mouvement de Newton:

chariot horizontal (1)

pendule horizontal (2)

pendule vertical (3)

rotation (4)

Le système est non linéaire à cause des termes sinθ et cosθ. On peut obtenir
une approximation linéaire en considérant de petits déplacements θ et ainsi, avec
sinθ G θ, cosθ G 1:

(5)

(6)

(7)

(8)

Les équations (6) et (7) permettent de définir H et V. En éliminant ces variables,
le modèle linéaire résultant, avec la variable d’entrée F(t) et les variables dépendan-
tes y(t) et θ(t), s’écrit: 

M
F

y
0

H

V
. .

m

L

H
V

θ

mÿ
x=y+L sinθ 

mẏ̇

Md2y
dt2
-------- F H–=

m d2

dt2
------- y L θsin+( ) H=

m d2

dt2
------- L θcos( ) mg V–=

mL2d2θ
dt2
--------- mgL θ mẏ̇L θcos–sin=

Mẏ̇ F H–=

m ẏ̇ L θ̇̇+( ) H=

0 mg V–=

mL2θ̇̇ mgLθ mẏ̇L–=
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(9)
(10)

Exercice 7

On souhaite balancer une balle sur une barre, laquelle est actionnée sans frotte-
ment par un moteur DC dont l’entrée est le courant i(t). Pour la modélisation du sys-
tème, on considère deux hypothèses différentes:

a) La balle ne roule pas mais glisse simplement sans frottement sur la barre.
b)La balle roule sans glisser sur la barre.

La balle de rayon r a une masse m. La constante de couple du moteur est Km.
Le moment d’inertie du système barre-balle est J, indépendamment de la position
de la balle.

• Pour chaque cas, introduire les hypothèses nécessaires supplémentaires et
écrire les équations dynamiques du système barre-balle.

Solution
a) Système barre-balle sans frottement:

(1)

Balle qui glisse sans frottement:

(2)

Système dynamique comprenant les équations (1) et (2). Pour de petits
angles, .

b)Balle qui roule sans glisser autour du point A:

M m+( ) ẏ̇ mLθ̇̇+ F=
ẏ̇ Lθ̇̇ gθ–+ 0=⎩

⎨
⎧

J φ̇̇ Kmi=

mẋ̇ mg φsin=

ẋ̇→ g φsin=

φ g φsin

JAα̇̇ mg φsin( )r= x rα=
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(3)

Système dynamique comprenant les équations (1) et (3). Pour de petits
angles, .

Exercice 8

Considérons un module lunaire qui veut alunir. La poussée vers le haut est due
à l’expulsion des gaz. La variable de commande (entrée) est le débit massique w de
gaz expulsé vers l’extérieur. La vitesse d’expulsion est proportionnelle à ce débit,
v = kw.

a) Ecrire un modèle dynamique qui permette de décrire la position y(t) et la
masse m(t).

b)Quel est l’ordre de ce modèle? Est-il linéaire et stationnaire? (justifier)

.

mg

mg sin

φ

φx
.

r

α

JA Jballe mr2+ 2
5
---mr2 mr2+ 7

5
---mr2= = =

7
5
---mr2 ẋ̇

r
--→ mg φsin( )r=

7
5
--- ẋ̇→ g φsin=

φ g φsin

Surface lunaire

mg

y

0

v
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Solution
a) Bilan de masse pour le module:

(1)

Bilan de quantité de mouvement pour le module:

(2)

Ce système est particulier en ce sens qu’avec l’expulsion de gaz il y a forma-
tion d’un deuxième système (le gaz expulsé) avec une vitesse différente de
celle du module.
Pour calculer , on considère la quantité de mouvement aux temps t et t + ∆t
après expulsion de la masse ∆m < 0:

Temps t Temps t + ∆t
Module:
Gaz expulsé: 0

(3)

(1), (2) et (3) avec v = kw donnent:

(4)

Le modèle dynamique est donné par les équations (1) et (4).

b)Ce modèle dynamique est d’ordre 3 avec la position et la vitesse du module,
ainsi que sa masse comme variables d’état. On remarque que la masse dans
cet exemple n’est pas un paramètre constant, mais bien une variable d’état
qui varie.
Le modèle est non linéaire à cause des termes  et w2.
Le modèle est stationnaire car les paramètres  et k sont constants.

ṁ t( ) w t( )–=

ṗ mg=

ṗ

mẏ m ∆m+( ) ẏ ∆ ẏ+( )
∆m ẏ v+( )–

 dp
dt
------→ p t ∆t+( ) p t( )–

∆t
---------------------------------------

∆t 0→
lim=

m ∆m+( ) ẏ ∆ ẏ+( ) ∆m ẏ v+( )–[ ] mẏ[ ]–
∆t

---------------------------------------------------------------------------------------------------
∆t 0→
lim=

g 
m∆ ẏ ∆mv–

∆t
----------------------------

∆t 0→
lim mẏ̇ ṁv–=

m t( ) ẏ̇ t( ) m t( )g kw2 t( )–=

mẏ̇
g
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3.6 EXERCICES RÉSOLUS

Exercice 1

Soit le système de rotation caractérisé par le coefficient de rigidité k et le cou-
ple de frottement .

a) Ecrire le modèle d’état liant l’entrée  à la sortie . Le modèle est-il
linéaire?

b)Expliciter les matrices d’état A, B et C.

Solution

a)
Modèle linéaire

          

b)                         

M f f θ̇ 2 θ̇ 3–( )=

k
J1

f
J2

1 32θ θθ

θ1 θ3

J1θ̇̇ 2 k θ1 θ2–( ) f θ̇ 2 θ̇ 3–( )–=

J2θ̇̇ 3 f θ̇ 2 θ̇ 3–( )=

x1 := θ2

x2 := θ̇ 2

x3 := θ3

x4 := θ̇ 3

u := θ1

y := θ3

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎧

ẋ1 x2=

ẋ2
k
J1
----- u x1–( ) f

J1
----- x2 x4–( )–=

ẋ3 x4=

ẋ4
f
J2
----- x2 x4–( )=

y x3=

A

0  1  0  0
k
J1
-----   – f

J1
-----   – 0  f

J1
-----

0  0  0  1

0  f
J2
-----   0  f

J2
-----–

= b

0
k
J1
-----

0
0

= cT 0 0 1 0=
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Exercice 2

Soit le système non linéaire:

• Proposer une approximation linéaire de ce système pour le point de fonc-
tionnement correspondant à  et à des valeurs positives de  et .

Solution
Au point d’équilibre correspondant à :

Linéarisation

Système linéarisé 

 

Exercice 3

Soit le système dynamique:

                 

ẋ1 x1x2– u               x1 0( )+ 2= =

ẋ2 x1 2x– 2                    x2 0( ) 1= =

u 2= x1 x2

u 2=

0 x1x2– 2+=
0 x1 2x2    –=

⇒ x1 2=
x2 1=

a11
∂ f 1

∂x1
---------

éq

x2– 1–= = = a12
∂ f 1

∂x2
---------

éq

x1– 2–= = =

a21
∂ f 2

∂x1
---------

éq

1= = a22
∂ f 2

∂x2
---------

éq

2–= =

b1
∂ f 1

∂u
---------

éq
1= = b2

∂ f 2

∂u
---------

éq
0= =

δ ẋ1 δx1– 2δx2– δu+=
δ ẋ2 δx1 2δx2         –=

δx1 0( ) 0=
δx2 0( ) 0=

ẋ1 x1– x2 u+ +=
ẋ̇2 x1 2 ẋ2– 2u–=
y x1 2x2      +=

x1 0( ) 0               =
x2 0( ) ẋ2 0( ) 0= =
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a) Ce système est-il linéaire et stationnaire? Quel est son ordre?
b)Quelle est la valeur finale de y qui résulte d’un saut de u de deux unités?

Solution
a) Système linéaire et stationnaire d’ordre 3.
b)A l’état stationnaire final, on aura:

→ 

Exercice 4

Soit le modèle d’un système mécanique soumis à la force  et caractérisé
par la constante de rigidité k et le coefficient de frottement visqueux b.

a) Ecrire les équations dynamiques pour ce système.
b)Ecrire le modèle d’état correspondant, la sortie à considérer étant .

Solution

a)

b) entrée:
sortie:

0 x1– x2 2+ += x1 4=
⇒

0 x1 4–= x2 2=

y x1 2x2+ 8= =

F t( )

m

x(t)

M

y(t)
b

k

F(t)

y t( )

M d2

dt2
-------x t( ) F t( ) b d

dt
----- x y–( )– k x y–( )–=

m d2

dt2
-------y t( ) b d

dt
----- x y–( ) k x y–( )+=

F t( )
y t( )

x1 := x → ẋ1 x2=

x2 := ẋ → ẋ2
1
M
----- F b x2 x4–( )– k x1 x3–( )–{ }=

x3 := y → ẋ3 x4=

x4 := ẏ → ẋ4
1
m
---- b x2 x4–( ) k x1 x3–( )+{ }=
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Exercice 5

La dynamique d’un moteur électrique est décrite par l’équation

où α est une constante.
a) Déterminer le modèle d’état de ce système, en considérant la tension d’ali-
mentation  comme l’entrée du système et la position angulaire 
comme sa sortie.

b)Linéariser ce modèle pour le point d’équilibre correspondant à  et à
une valeur positive de .

Solution
a) := 

:= 
 := 

b)Linéarisation
• Calcul du point d’équilibre pour :

(hypothèse: )

ẋ1

ẋ2

ẋ3

ẋ4

0  1  0  0
k
M
-----  – b

M
-----  – k

M
-----  b

M
-----

0  0  0  1
k
m
----  b

m
----  k

m
----  – b

m
----–

x1

x2

x3

x4

0
1
M
-----

0

0

F+=

y 0  0  1  0

x1

x2

x3

x4

=

θ̇̇ t( ) αθ̇ t( ) θ2 t( )+ + u t( )=

u t( ) θ t( )

u 1=
θ

x1 θ → ẋ1 x2=
x2 θ̇ → ẋ2 αx2– x1

2– u+=
y x1

u 1=

x2 0=0 x2=

0 αx2– x1
2– 1+= ⎭

⎬
⎫ →

x1
2 1 x1→ 1 x1→± 1= = =

x1 θ  0>=
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• Modèle d’état linéaire:

Exercice 6

La dynamique de l’échangeur de chaleur représenté ci-dessous est régie par les
équations différentielles suivantes:

La température extérieure T est constante et les valeurs numériques des para-
mètres du système sont:

a) Ecrire ce système sous la forme d’un modèle d’état sachant que l’entrée est
l’apport de puissance P(t) et la sortie la température du fluide interne T1(t).

b)Déterminer l’état au point d’équilibre spécifié par une puissance de 20 W et
une température extérieure de 20°C.

c) Le modèle d’état du point a) est-il linéaire? Sinon, déterminer un modèle
d’état linéaire valable pour des évolutions autour du point de fonctionne-
ment déterminé au point b).

δ ẋ Aδx bδu+=
δy cTδx=

A 0 1
2x1 – α–

0 1
2 – α–

= = b 0
1

= cT 1 0=

P(t)

fluide intérieur

fluide extérieur

T2(t)

T1(t) T

m1c1Ṫ 1 t( ) k12 T 2 t( ) T 1 t( )–[ ]=

m2c2Ṫ 2 t( ) P t( ) k12 T 2 t( ) T 1 t( )–[ ]– k20 T 2 t( ) T–[ ]–=

m1c1 0,5 J
K
----   m2c2, 2 J

K
----   k12, 1 W

K
-----   et  k20 0,5 W

K
-----= = = =
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Solution
a)Modèle d’état

b)Point d’équilibre

, T = 20°C
•

•

c) Le modèle d’état est affine mais non linéaire à cause du terme constant 
k20T/(m2c2).
Un modèle d’état linéaire peut s’obtenir en soustrayant des équations dyna-
miques du processus les équations correspondant au point d’équilibre et en
introduisant les variables écart:

Exercice 7
La dynamique simplifiée d’un avion est décrite par les équations suivantes où

l’angle δ est l’entrée du système et l’angle θ sa sortie:

a) Déterminer le point d’équilibre de ce système lorsque l’avion descend selon
un angle constant .

b)Donner le modèle d’état linéarisé autour de ce point d’équilibre.

x1 t( ) := T 1 t( ) u t( ) := P t( )

x2 t( ) := T 2 t( ) y t( ) := T 1 t( )

ẋ1 t( )
k12

m1c1
------------x1 t( )–

k12

m1c1
------------x2 t( )+=

ẋ2 t( )
k12

m2c2
------------x1 t( )

k12

m2c2
------------

k20

m2c2
------------+⎝ ⎠

⎛ ⎞ x2 t( )–
k20

m2c2
------------T u t( )

m2c2
------------+ +=

y t( ) x1 t( )=

u 20 W=
0 k12x1– k12x2  x1⇒+ x2= =

0 k12x1 k12 k20+( )x2– k20T u  x2 T u
k20
-------+ 60°C= =⇒+ +=

δ ẋ1
k12

m1c1
------------δx1–

k12

m1c1
------------δx2+=

δ ẋ2
k12

m2c2
------------δx1

k12 k20+
m2c2

---------------------⎝ ⎠
⎛ ⎞ δx2– 1

m2c2
------------δu+=

γ̇ 0,5 γ θ–( ) 0,4δ– 0,05 γcos–=

q̇ 5 γ θ–( )– 25γ 1,5q–+=

θ̇ q=

γ π/9=
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Solution
a) Point d’équilibre

Pour  donné, il en résulte un système de 3 équations non linéaires avec les
3 inconnues ,  et . Sa résolution donne:

b)Linéarisation
Soit x1 := γ, x2 := q, x3 := θ, u  := δ, y := θ

Le modèle d’état linéarisé est:

Pour , a11 = 0,52.

Exercice 8

Soit le système dynamique monovariable

a) Quel est son ordre?

0 0,5 γ θ–( ) 0,4δ– 0,05 γcos–=
0 5 γ θ–( )– 25γ 1,5q–+=
0 q=

γ
δ θ q

δ 2,06 rad=
q 0=
θ 1,40 rad  –=
γ π/9 0,35 rad= =

ẋ1 0,5x1 0,05 x1 0,5x3– 0,4u–cos– f 1 x u,( )  = =
ẋ2 20x1 1,5x2– 5x3+ f 2 x u,( )= =
ẋ3 x2 f 3 x u,( )= =

y x3 g x u,( ) = =

δ ẋ1

δ ẋ2

δ ẋ3

0,5 0,05 γsin+ 0 0,5–
20 1,5– 5
0 1 0

 
δx1

δx2

δx3

0,4–
0
0

 δu+=

δy 0 0 1  
δx1

δx2

δx3

=

γ π/9=

ẏ̇ ay+ u̇ bu+= y 0( ) y0 ẏ 0( ), v0 u 0( ), u0= = =
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b)Peut-on mettre ce système dynamique sous la forme d’un modèle d’état?

Solution
a) Ce système est d’ordre 2 car il est décrit par une équation différentielle du
deuxième ordre.

b)La particularité de ce système est qu’il fait intervenir , la dérivée de
l’entrée. De ce fait, il n’est pas directement amenable à la formulation

.
On présente ci-dessous trois tentatives, les deux premières infructueuses, la
troisième plus heureuse.

b1) Approche standard
On peut définir

pour obtenir un modèle d’état d’ordre 2 avec deux entrées:

Malheureusement, les deux entrées u(t) et  de ce modèle ne sont pas
indépendantes car le fait de spécifier u(t) détermine entièrement sa dérivée

.

b2) Variable d’état supplémentaire
On introduit une troisième variable d’état pour décrire la dynamique de
l’entrée. On a ainsi:

et un modèle d’état d’ordre 3 avec comme entrée :

Ce modèle d’état n’est malheureusement plus commandé par l’entrée u(t)
mais par sa dérivée .

u̇

ẋ Ax Bu+=

x1 := y u1 := u

x2 := ẏ u2 := u̇

ẋ1 x2=

ẋ2 ax1– u2 bu1+ +=

u̇ t( )

u̇ t( )

x1 := y v := u̇

x2 := ẏ

x3 := u

u̇ t( )

ẋ1 x2=

ẋ2 ax1– v bx3+ +=

ẋ3 v=

u̇ t( )
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b3) Théorie de la réalisation
La théorie de la réalisation (cf. C.T. Chen, Linear System Theory and
Design, Oxford Press, 2012) permet de définir deux états x1 et x2,

qui amènent le système dynamique sous la forme :

Notons que les états x1 et x2 sont de nature mathématique et ne possèdent
en général pas de sens physique particulier.

Exercice 9

Le dispositif mécanique de stabilisation de la vitesse d’un entraînement est
représenté ci-dessous:

Lorsque la vitesse du moteur augmente, les deux sphères s’écartent de l’axe de
rotation sous l’effet de la force centrifuge. L’augmentation de l’inertie qui en résulte
s’oppose à la cause du mouvement. Soit r0 = 0,02 [m] la position radiale du centre
des sphères à l’arrêt et r cette même position lorsque le système est en rotation. Le
déplacement sans frottement des sphères sur leur support est régi par l’équation:

L’inertie de chacune des sphères de masse M = 0,1 [kg] et de rayon ρ = 0,01 [m]
par rapport à l’axe de rotation du moteur est donnée par:

x1 := y

x2 := ẏ u–

ẋ Ax bu+=

ẋ1 x2 u+=

ẋ2 ax1– bu+=

Moteur 

 
M 

M 

k 

k 

r 

u 

Mṙ̇ t( ) Mω2 t( )r t( ) k r t( ) r0–[ ] où k,– 12,5 N/m[ ]= =
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Le mouvement de ce système peut être grossièrement décrit par la relation:

L’entrée de ce système est la tension d’alimentation u(t) et sa sortie la vitesse
angulaire du moteur ω(t).

a) Décrire la dynamique de ce système par un modèle d’état.
b)Déterminer la tension  à appliquer pour maintenir la vitesse à 10 [rad/sec].
Calculer l’état du système au point de fonctionnement spécifié par .

c) Linéariser le modèle d’état autour du point de fonctionnement obtenu au
point b).

Solution
a) Variables d’état et modèle d’état:

où 

b)Pour la vitesse constante  rad/sec:

Point d’équilibre:
 rad/sec

c) Linéarisation

I r( ) 2
5
---Mρ2 Mr2 t( )+=

2I r( )ω̇ t( ) aω t( )– bu t( ) où a,+ 2  et  b 1= = =

u
u

x1 t( ) := ω t( ) →
x2 t( ) := r t( ) →
x3 t( ) := ṙ t( ) →

ẋ1 t( ) = a
2I x2( )
----------------x1 t( )– b

2I x2( )
----------------u t( )+

ẋ2 t( ) = x3 t( )

ẋ3 t( ) = x1
2 t( )x2 t( ) k

M
-----x2 t( )– k

M
-----r0+

  y t( ) x1 t( )=

I x2( ) 2
5
---Mρ2 Mx2

2 t( )+=

ω 10=

0 aω– bu    u⇒+ a
b
---ω    u⇒ 20V= = =

x1 10=

x2
kr0

k Mx1
2–

-------------------- 0,1 m= =

x3 0=

f 1 x1 x2 u, ,( ) a
2I x2( )
----------------x1– b

2I x2( )
----------------u+=

f 2 x3( ) x3=
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Le modèle d’état linéarisé est:

avec:

avec 

Exercice 10

Le mouvement d’une bille de masse m dans un cerceau vertical de rayon r en
rotation à vitesse ω  autour de l’axe vertical A est régi par l’équation:

La masse m = 0,1 kg et le coefficient de frottement b = 0,14 kg m/s sont des
paramètres constants du système.

a) En régime stationnaire, identifier tous les points d’équilibre pour rω2/g > 1.
Calculer numériquement le point d’équilibre  pour le cas où r =
1 m,  rad/s, g = 9,81 m/s2.

b)Proposer un modèle d’état pour ce système.

f 3 x1 x2,( ) x1
2x2

k
M
-----x2– k

M
-----r0+=

g1 x1( ) x1=

δ ẋ t( ) Aδx t( ) Bδu t( )+=

δy t( ) Cδx t( )=

A

a–
2I x2( )
----------------   

∂ f 1

∂x2
---------   0

0  0  1

2x1x2  x1
2 k

M
-----   – 0

éq

996– 0  0
0 0  1
2 25  – 0

= =

∂ f 1

∂x2
--------- ∂

∂x2
--------

ax1– bu+( )

2 2
5
---Mρ2 Mx2

2+⎝ ⎠
⎛ ⎞

-----------------------------------------

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=
a– x1 bu+( )Mx2–

2
5
---Mρ2 Mx2

2+⎝ ⎠
⎛ ⎞ 2
--------------------------------------------=

B

b
2I x2( )
----------------

0
0

=

éq

498
0
0

= C 1 0 0=

mrθ̇̇ bθ̇– mg θ mrω2 θ θcossin+sin–=

θ 0 π,( )∈
ω 3,3657=
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c) Linéariser le modèle d’état autour du point d’équilibre  en prenant comme
entrée la variation de vitesse δω et comme sortie la variation angulaire δθ.

Solution
a) En régime stationnaire :

•  

•  

Valeur numérique:

b)Modèle d’état
Entrée u := ω, sortie y := θ

c) Linéarisation
On linéarise le système autour du point d’équilibre

, , :

θ

θ̇ θ̇̇ 0= =( )

mg θ mrω2 θ θcossin–sin 0=

θ g rω 2 θcos–( )sin 0=

θsin 0=
θ 0=

θ π=

g rω 2 θcos– 0  θcos⇒ g
rω 2
---------= =  θ⇒ arccos g

rω 2
---------⎝ ⎠

⎛ ⎞=

θ arccos 9,81
3,37( )2
----------------- 0,52 rad 30°= = =

x1 := θ →

x2 := θ̇ →

ẋ1 = x2 = f 1 x2( )

ẋ2 = b–
mr
-------x2

g
r
--- x1 u2 x1 x1cossin+  = f 2 x1 x2 u, ,( )sin–

  y x1 g x1( )= =

u 3,3657= x1 0,5236= x2 0=
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avec

A
0  1

g–
r
------ x1 u2 cos2x1 sin2x1–( )    +cos b–

mr
-------

=
x1 x2 u, ,

B 0
2u x1 x1cossin x1 x2 u, ,

= ;   C 1   0=

δ ẋ 0    1
2,83    – 1,4–

 δx 0
2,91

 δu+=

δy 1   0  δx=
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4.3 EXERCICES RÉSOLUS

Exercice 1

Un système dynamique possède la réponse impulsionnelle .
• Calculer la réponse du système à un saut unité.

Solution

       

Exercice 2

• Utiliser le produit de convolution temporel pour calculer la réponse du sys-
tème dynamique 

               

à l’entrée . Noter que la réponse impulsionnelle de ce système
vaut .

Solution

              

Exercice 3

Un circuit électrique est excité par une tension de type impulsion rectangulaire
d’amplitude 10 V et de durée 10 µs. La réponse observée à l’aide d’un oscilloscope
s’avère être approximativement égale à y(t) = 0,5e–100t.

a) Déterminer la réponse impulsionnelle du système.
b)A l’aide de l’intégrale de convolution, calculer la réponse indicielle.

g t( ) e 3t–=

y t( ) g t τ–( )u τ( ) τd
0

t

∫ e 3 t τ–( )– τd
0

t

∫= =

e 3t– e3τ τd
0

t

∫ e 3t– 1
3
--- e3t 1–( ) 1

3
--- 1 e 3t––( )= = = t 0≥

ẋ 2x+ 2u= x 0( ) 0=

u t( ) 2ε t( )=
g t( ) 2e 2t–=

x t( ) g t τ–( )u τ( ) τd
0

t

∫ g τ( )u t τ–( ) τd
0

t

∫= =

2e 2τ– 2ε t τ–( ) τd
0

t

∫ 4 e 2τ– τd
0

t

∫ 4 1
2
---–⎝ ⎠

⎛ ⎞ e 2τ–
0

t
= = =

2 1 e 2t––( )= t 0≥
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Solution
a) Vu la durée très courte de l’entrée, l’impulsion rectangulaire peut être appro-
chée par aδ(t) où a est déterminé par l’aire de l’impulsion rectangulaire:

 Vs

Réponse impulsionnelle, c’est-à-dire pour u(t) = δ(t):

t ≥ 0

b)Réponse indicielle

t ≥ 0

Exercice 4
La réponse impulsionnelle d’un système dynamique est g(t) = ε(t). 
• Calculer la sortie y(t) de ce système à l’entrée u(t) représentée à la figure
ci-dessous:

Solution

a) pour 0 ≤ t < 1

u t( ) aδ t( ) 10 4– δ t( )  a→ 10 4–= = =

g t( ) y t( )
a

--------- 5 103e 100t–⋅= =

γ t( ) ε t( )*g t( ) ε τ( )g t τ–( ) τd
0

t

∫ 5 103e 100 t τ–( )–⋅  τd
0

t

∫= = =

5 103e 100t– e100τ τd
0

t

∫⋅ 50 1 e 100t––( )= =

u(t)

t

1

10 2

t -t+2

y t( ) u τ( )g t τ–( ) τd
∞–

∞

∫=

u τ( )ε t τ–( ) τd
0

t

∫ τ 1 τd⋅ ⋅
0

t

∫
1
2
---t2= =
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b) pour 1 ≤ t < 2

c) pour t ≥ 2

u(τ)

τ

1

10 2t

(t-    )τ ε

u τ( )ε t τ–( ) τd
0

t

∫ τ 1 dτ⋅ ⋅
0

1

∫ τ– 2+( ) 1 τd⋅ ⋅
1

t

∫+=

1
2
--- 1

2
---τ– 2τ+⎝ ⎠

⎛ ⎞
1

t
+ 1

2
--- t2 4t– 2+( )–= =

u(τ)

τ

1

10 2t

(t-    )τε

u τ( )ε t τ–( ) τd
0

t

∫ 2 1
2
---⋅ 1= =

u(τ)

τ

1

10 2 t

(t-    )τε
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Ainsi la solution complète devient:

 

y t( )

0 pour t 0<
1
2
---t2 pour 0 t 1<≤

1
2
---t2– 2t 1–+ pour 1 t 2<≤

1 pour t 2≥⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

=

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

y(t)
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5.8 EXERCICES RÉSOLUS

Exercice 1

Soit le système dynamique:

• Calculer la fonction de transfert  correspondant aux points de
fonctionnement
a) 
b) 

Solution
La fonction de transfert est la même pour  et  car le système est

linéaire.

L

Exercice 2

• Calculer la réponse du système dynamique suivant à une impulsion de Dirac
au temps t = 0:

             ,

Solution

L

ẋ1 x1– x2 u               x1 0( )+ + 0= =

ẋ2 x1 2x– 2                        x2 0( ) 0= =

X2 s( ) U s( )⁄

u 1=
u 2=

u 1= u 2=

→ X1 s( ) s 1+[ ] X2 s( ) U s( )+=

X2 s( ) s 2+[ ] X1 s( )=

→ X2 s( ) s 2+[ ] s 1+[ ] X2 s( ) U s( )+=

          
X2 s( )
U s( )
--------------→ 1

s2 3s 1+ +
--------------------------=

ẏ̇ t( ) 2 ẏ t( )+ 2u t( )= y 0( ) 1–= ẏ 0( )   0=

→ s2Y s( ) s+[ ] 2 sY s( ) 1+[ ]+ 2U s( )=

Y s( ) 2
s s 2+( )
-------------------U s( ) s 2+( )

s s 2+( )
-------------------–=
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réponse réponse 
forcée libre

 Pour  

Méthode des résidus pour calculer A et B :

On obtient ainsi: 

L–1    

Exercice 3

a) Calculer la transformée de Laplace de:

          

b)Calculer la transformée de Laplace inverse de:

1. 

2. 

Solution

a)                  

2
s s 2+( )
-------------------U s( )     1

s
---–=

U s( ) 1      Y s( )→ 2
s s 2+( )
------------------- 1

s
---– A

s
--- B

s 2+
----------- 1

s
---–+= = =

A     2
s 2+
-----------

s 0→
lim 1= =

B     2
s
---

s 2–→
lim 1–= =

Y s( ) 1
s 2+
-----------–=

→ y t( ) e 2t–            t 0≥–=

y t( )
0

e t 1–( ) 4⁄–⎩
⎨
⎧= t 1<

t 1≥

Y s( ) 2

s 1+( )2
-------------------=

Y s( ) e 2s–

s2 4s 5+ +
--------------------------=

y t( ) e t 1–( )/4–= t 1≥ →
L

Y s( ) e s–

s 1
4
---+

----------- 4e s–

4s 1+
---------------= =
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b) 1.                 

2.

 

     

Exercice 4

La modélisation d’un système dynamique a donné l’équation différentielle sui-
vante:

         

• Evaluer la fonction de transfert correspondante.

Solution
Système non linéaire à cause du terme constant –3. Introduisons:

               

Fonction de transfert:             

Exercice 5

Un chariot mobile de masse M est attaché à un mur à l’aide d’un ressort de
coefficient de rigidité k. Sur ce chariot se trouve un parallélipipède de masse m qui
peut se déplacer par inertie relativement au chariot. Ce déplacement relatif est
caractérisé par un frottement visqueux (linéaire) de coefficient f. Le chariot est sou-
mis à la force F(t). Les grandeurs x et y dénotent les déplacements du chariot et du
parallélipipède par rapport à un repère fixe, et z le déplacement du parallélipipède
relatif au chariot, z = y – x.

Y s( ) 2

s 1+( )2
-------------------= →L

–1
y t( ) 2te t–= t 0≥

Y s( ) e 2s–

s2 4s 5+ +
-------------------------- e 2s– Y 1 s( )= =

Y 1 s( ) 1

s2 4s 5+ +
-------------------------- 1

s 2+( )2 1+
----------------------------= = →L

–1
y1 t( ) e 2t– tsin= t 0≥

   y t( )⇒ y1 t 2–( ) e 2 t 2–( )– t 2–( )sin= = t 2≥

ẏ t( ) 2y t( ) 3–+ u t( )= y 0( ) 1=

ũ u 3+= → ẏ 2y+ ũ= y 0( ) 1=

Y s( )
Ũ s( )
------------ 1

s 2+
-----------=
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a) Evaluer la fonction de transfert  .
b)Evaluer la fonction de transfert  pour les cas limites «sans
frottement» et «avec grand frottement».

Solution

a)                   

L     

M

m

y

x

F(t) kf

0

Z s( )/F s( )
Z s( )/F s( )

Mẋ̇ kx– f ẋ ẏ–( )– F+=
mẏ̇ f ẋ ẏ–( )                 =⎩

⎨
⎧ x 0( ) ẋ 0( ) 0= =

y 0( ) ẏ 0( ) 0= =

→
X s( ) Ms2 fs k+ +[ ] fsY s( ) F s( )+=

Y s( ) ms2 fs+[ ] fsX s( )     =⎩
⎨
⎧

Y s( )
X s( )
----------- fs

ms2 fs+
--------------------- f

ms f+
----------------= =

X s( ) Ms2 fs k fs f
ms f+
----------------⎝ ⎠

⎛ ⎞–+ + F s( )=

X s( )
F s( )
----------- ms f+

Mms3 M m+( ) f s2 mks fk+ + +
-------------------------------------------------------------------------------=

Z s( )
F s( )
----------- Y s( ) X s( )–

F s( )
----------------------------- Y s( )

X s( )
-----------X s( )

F s( )
----------- X s( )

F s( )
-----------– Y s( )

X s( )
----------- 1–⎝ ⎠

⎛ ⎞ X s( )
F s( )
-----------= = =

f
ms f+
---------------- ms f+

ms f+
----------------–⎝ ⎠

⎛ ⎞ ms f+( )
Mms3 M m+( ) f s2 mks fk+ + +
-------------------------------------------------------------------------------=

ms–
Mms3 M m+( ) f s2 mks fk+ + +
-------------------------------------------------------------------------------=
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b) : pas de frottement. La masse 

 

m

 

 ne bouge pas (

 

y 

 

= 0) et 

 

z 

 

= –

 

x

 

(oscillations non amorties du chariot).

: grand frottement. Les deux masses sont collées et il n’y pas de
déplacement relatif 

 

z

 

.

 

Exercice 6

 

Soit le système dynamique avec l’entrée 

 

u

 

(

 

t

 

) et la sortie 

 

y

 

(

 

t

 

):

                    

a) Ce système est-il linéaire, stationnaire, initialement au repos?
b)Evaluer la fonction de transfert 

 

Y

 

(

 

s

 

)/

 

U

 

(

 

s

 

) pour le point de fonctionnement
correspondant à .

 

Solution

 

a) Le système est non linéaire à cause du terme 

 

xu

 

, stationnaire car les coeffi-
cients sont constants, causal car 

 

y

 

(

 

t

 

) ne dépend pas des entrées futures. Pour
déterminer si le système est initialement au repos, il faut connaître la valeur
de . Par exemple,  et le système avec 

 

x

 

(0) = 1 n’est pas
initialement au repos. Par contre, pour ,  et le système
est initialement au repos.

b)A l’état stationnaire pour :

     

Linéarisation de 

 

xu:

 

Système linéarisé (en variables écart):

f 0→

    Z s( )
F s( )
-----------

f 0→
lim ms–

Mms3 mks+
------------------------------- 1–

Ms2 k+
-------------------= =

f ∞→

    Z s( )
F s( )
-----------

f ∞→
lim 0=

ẋ t( ) x t( )– 2u t( ) x t( )u t( )–+= x 0( ) 1=

y t( ) x t 2–( )=

u 1=

u u  0  x ⇒ 0= =
u 1= x 0( ) x 1= =

u 1=

0 x– 2 x–+= x→ 1=

xu xu uδx xδu+ +≅ 1 δx δu+ +=

δ ẋ t( ) δx t( )– 2δu t( ) δx t( )– δu t( )–+ 2δx t( )– δu t( )         δx 0( )+ 0= = =
δy t( ) δx t 2–( )                                                                                    =⎩

⎨
⎧
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L              

                            

Exercice 7
Soit le système dynamique 

a) Calculer sa réponse indicielle
b)Esquisser les réponses indicielles pour 

Solution
a)

L–1         

b) 

→ X s( )
U s( )
------------ 1

s 2+
-----------=

Y s( )
X s( )
----------- e 2s–=

Y s( )
U s( )
------------ e 2s–

s 2+
-----------=

G s( ) 1 αs+
1 s+
---------------=

α 1  et  α 1–= =

U s( ) 1
s
---=

Y s( ) 1 αs+
1 s+
---------------1

s
--- A

s
--- B

1 s+
-----------+ 1

s
--- α 1–

s 1+
------------+= = =

A     1 αs+
1 s+
---------------

s 0→
lim 1= =

B     1 αs+
s

---------------
s 1–→
lim α 1–= =

→ y t( ) 1 α 1–( )e t–+= t 0≥

0 0.5 1 1.5 2 2.5 3 3.5 4-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y(t)

t

y(t) = 1   t ≥ 0

y(t) = 1-2e–t   t ≥ 0

= 1

= –1
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Exercice 8

 

a) Calculer la transformée de Laplace du signal temporel suivant:

b)Evaluer le signal temporel dont la transformée de Laplace vaut:

 

Solution

 

a)

          

b) 

 

L

 

–1

 

 

 

           

u1(t)

1

0
u2(t)

u(t)

t

Y s( ) s 3+( ) s 4+( )
s 1+( ) s 2+( )
---------------------------------=

u t( ) u1 t( ) u2 t( )+=

u1 t( )
0               t 0<
1
τ
---t              t 0≥

⎩
⎪
⎨
⎪
⎧

= u2 t( )
  0               t τ<
1
τ
---– t τ–( )     t τ≥

⎩
⎪
⎨
⎪
⎧

=

U s( ) 1

τs2
------- 1

τs2
-------e τs–– 1

τs2
------- 1 e τs––[ ]= =

Y s( ) s2 7s 12+ +
s2 3s 2+ +
----------------------------- 1 4s 10+

s 1+( ) s 2+( )
---------------------------------+ 1 A

s 1+
----------- B

s 2+
-----------+ += = =

A     4s 10+
s 2+

------------------
s 1–→
lim 6= =

B     4s 10+
s 1+

------------------
s 2–→
lim 2–= =

→ y t( ) δ t( ) 6e t– 2e 2t––+= t 0≥
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Exercice 9

• Calculer la réponse indicielle du système dynamique suivant:

               

Solution

               

                             A = 1

               B = –1

                                 C = –2

          

Exercice 10

Soit  la réponse impulsionnelle d’un système dynamique: 

ẋ̇ 2 ẋ 5x+ + 5u= x 0( ) ẋ 0( ) 0= =

G s( ) 5

s2 2s 5+ +
--------------------------= U s( ) 1

s
---=

Y s( ) 5

s s2 2s 5+ +( )
--------------------------------- A

s
--- Bs C+

s 1+( )2 22+
------------------------------+ 1

s
--- s 2+

s 1+( )2 22+
------------------------------–= = =

5 A s2 2s 5+ +( ) Bs C+( )s+=

s2   :   0 A B+=

s1   :   0 2A C+= →

s0   :   5 5A=

s 2+
s 1+( )2 22+
------------------------------ s 1+( )

s 1+( )2 22+
------------------------------ 1

2
--- 2

s 1+( )2 22+
------------------------------+=

Y s( ) 1
s
--- s 1+

s 1+( )2 22+
------------------------------– 1

2
--- 2

s 1+( )2 22+
------------------------------–=

y t( ) 1 e t– 2tcos 1
2
--- 2tsin+⎝ ⎠

⎛ ⎞–= t 0≥

g t( )

1

0

g(t)

t1
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Calculer le produit de convolution  pour ,
a) par voie temporelle,
b) par voie fréquentielle.

Solution

a) Calcul par voie temporelle: 

 

y t( ) g t( ) * u t( )= u t( ) ε t( )=

g t( ) ε t( ) tε t( )– t 1–( )ε t 1–( )+=

y t( ) g τ( )ε t τ–( ) τd

0

t

∫=

1

0

  (t-  )τ

τ

ε

t 1 τ

Surface = 0g(   )

t 0<

1

0 t 1 τ

Surface = t – petit triangle = t – t2
2

  (t-  )τ

τ

ε

g(   )

0 t≤ 1<

1

0 t1 τ

Surface = 1
2

  (t-  )τ

τ

ε

g(   )

t 1≥
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La solution devient ainsi:

b)Calcul par voie fréquentielle

, 

↓L

Exercice 11

Soit  la transformée de Laplace de la réponse indi-
cielle d’un système dynamique.

a) Calculer .
b)Evaluer la valeur finale de la réponse du système à l’entrée .

y t( )

0 t 0<

t t2
2
----– 0 t 1<≤

1
2
--- t 1≥⎩

⎪
⎪
⎨
⎪
⎪
⎧

=

0 0.4 0.8 1.2 1.6 2
0

0.1

0.2

0.3

0.4

0.5

y(t)

t

G s( ) 1
s
--- 1

s2
----– e s–

s2
-------+= U s( ) 1

s
---=

Y s( ) G s( )U s( ) 1
s2
---- 1

s3
----– e s–

s3
-------+= =

y t( ) tε t( ) t2
2
----ε t( )– t 1–( )2

2
------------------ε t 1–( )+=

t t2
2
----–⎝ ⎠

⎛ ⎞ ε t( ) t 1–( )2

2
------------------ε t 1–( )+=

Y s( ) s( 12 )/ s2 4s+( )+=

y t( )
u t( ) 1 e 2t––=



162 Systèmes dynamiques

Solution
a)

b)

Pour , 

Le théorème de la valeur finale s’applique car les deux pôles de sY(s) sont
négatifs.

Exercice 12

Soit le système décrit par l’équation dynamique

, 

• Déterminer sa réponse libre dans le domaine temporel.

Solution
La transformation de Laplace donne:

Y s( ) s 12+
s2 4s+
---------------- s 12+

s s 4+( )
------------------- A

s
--- B

s 4+
-----------+= = =

A sY s( )
s 0→
lim 12

4
------ 3= = =

B s 4+( )Y s( )
s 4–→
lim 4 12+–

4–
------------------ 2–= = =

y t( ) 1– Y s( )[ ] 1– 3
s
--- 2

s 4+
-----------– 3 2e 4t––= = =L L t 0≥

G s( ) Y s( )
U s( )
------------

s 12+
s s 4+( )
-------------------

1
s
---

------------------- s 12+
s 4+
--------------= = =

u t( ) 1 e 2t––= U s( ) 1
s
--- 1

s 2+
-----------–=

Y s( ) s 12+
s 4+
--------------⎝ ⎠

⎛ ⎞ 1
s
--- 1

s 2+
-----------–⎝ ⎠

⎛ ⎞ s 12+
s s 4+( )
------------------- s 12+

s 4+( ) s 2+( )
---------------------------------– 2 s 12+( )

s s 4+( ) s 2+( )
------------------------------------= = =

y t( )
t ∞→
lim sY s( )

s 0→
lim 2 s 12+( )

s 4+( ) s 2+( )
---------------------------------s 0→

lim 3= = =

ẏ̇ t( ) 2 ẏ t( )– y t( )+ u t( )= y 0( ) 1= ẏ 0( ) 0=

s2Y s( ) s–[ ] 2 sY s( ) 1–[ ]– Y s( )+ U s( )=

Y s( ) s2 2s– 1+[ ] s 2–( )– U s( )=
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réponse forcée réponse libre

Calcul de la réponse libre 

 

y

 

1

 

(

 

t

 

):

 

Exercice 13

 

On considère le transfert d’énergie d’une source chaude (cuve de volume cons-
tant 

 

V

 

c

 

, température 

 

T

 

c

 

, puissance de chauffe 

 

P

 

c

 

) vers un puit froid (réacteur endo-
thermique de volume constant 

 

V

 

f

 

, température 

 

T

 

f

 

, puissance consommée 

 

P

 

f

 

 

 

< 0). Le
transfert a lieu par l’intermédiaire d’un manteau de chauffe (volume constant 

 

V

 

m

 

,
température homogène 

 

T

 

m

 

, coefficient de transfert 

 

UA

 

 entre 

 

T

 

m

 

 et 

 

T

 

f

 

).
Le liquide caloporteur circule à l’aide d’une pompe avec un débit volumique 

 

F

 

.
Les capacités calorifiques du caloporteur et du mélange réactionnel sont identiques
et égales à 

 

ρ

 

c

 

p

 

. On suppose que le système est bien isolé et qu’il n’y a pas de perte
thermique vers l’extérieur.

a) Ecrire un modèle dynamique pour ce système.
b)Sachant que 

 

F

 

 est constant et que 

 

V

 

m

 

 et 

 

V

 

c

 

 peuvent être négligés par rapport
à 

 

V

 

f

 

 

 

(

 

V

 

m

 

, 

 

V

 

c

 

 

 

→

 

 0), déterminer la fonction de transfert 

 

T

 

f

 

(

 

s

 

)/

 

P

 

c

 

(

 

s

 

).

 

Solution

 

a) Bilans thermiques

 

T

 

f

 

(0) = 

 

T

 

f0

 

(1)

Y s( ) = 1
s 1–( )2
------------------U s( ) + s 2–

s 1–( )2
------------------

⎩⎪⎪⎨⎪⎪⎧ ⎩⎪⎨⎪⎧

y1 t( ) 1– s 2–
s 1–( )2
------------------ 1– A

s 1–
----------- B

s 1–( )2
------------------+ 1– 1

s 1–
----------- 1

s 1–( )2
------------------–= = =L L L

y1 t( ) etε t( ) tetε t( )– ε t( )et 1 t–[ ]= =

Vc

Tc

F

W
K

Pc Pf

Vm

Vf

Tf

UA

c

 : [       ]
J

m3 K[!        ]
Tm

ρcpV f
dT f
dt
--------- UA Tm T f–( ) Pf+=
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Tm(0) = Tm0 (2)

Tc(0) = Tc0 (3)

b)Hypothèse: Vm = Vc = 0
(2) → 0 = ρcpF(Tc – Tm) – UA(Tm – Tf)

(3) → 0 = ρcpF(Tm – Tc) + Pc

→ UA(Tm – Tf) = ρcpF(Tc – Tm) = Pc (4)

(1) + (4) → ρcpVf  = Pc + Pf (5)

↓L

ρcpVfsTf(s) = Pc(s) + Pf(s)

Fonction de transfert:

Exercice 14

Déterminer pour le système dynamique 

y(0) = 1

a) la fonction de transfert Y(s)/U(s),
b) un modèle d’état.

Solution
a) La fonction de transfert Y(s)/U(s) ne considère pas les conditions initiales:

b)

ρcpVm
dTm
dt
---------- ρcpF T c Tm–( ) UA Tm T f–( )–=

ρcpV c
dT c
dt
--------- ρcpF Tm T c–( ) Pc+=

dT f
dt
---------

T f s( )
Pc s( )
------------- 1

ρcpV fs
-----------------=

ẏ̇ 5 ẏ y+ + 3u= ẏ 0( ) 0=

Y s( )
U s( )
------------ 3

s2 5s 1+ +
--------------------------=

x1 = y
x2 = ẏ{ ẋ1 = x2                             

ẋ2 = 5x2– x1– 3u+{ x1 0( ) = 1

x2 0( ) = 0
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Exercice 15

Le système dynamique

y(0) = 1

est soumis à l’entrée u(t) = e–2t, t ≥ 0.
• Calculer sa réponse libre et sa réponse forcée.

Solution
L → [s2Y(s) – s + 2] + 2 [sY(s) – 1] + Y(s) = 2U(s)

Y(s)[s2 + 2s + 1] = 2U(s) + s

Réponse libre pour U(s) = 0

yl(t) = e–t – te–t t ≥ 0

Réponse forcée pour U(s) = 1/(s + 2) et des conditions initiales nulles

yf(t) = –2e–t + 2te–t + 2e–2t t ≥ 0

Réponse totale

t ≥ 0

ẏ̇ 2 ẏ y+ + 2u= ẏ 0( ) 2–=

Y s( ) 2
s 1+( )2
-------------------U s( ) s

s 1+( )2
-------------------+=

Y l s( ) s
s 1+( )2
------------------- s 1 1–+

s 1+( )2
-------------------- 1

s 1+
----------- 1

s 1+( )2
-------------------–= = =

Y f s( ) 2
s 1+( )2 s 2+( )
------------------------------------ A

s 1+
----------- B

s 1+( )2
------------------- C

s 2+
-----------+ += =

A d
ds
----- 2

s 2+
-----------⎝ ⎠

⎛ ⎞
s 1 –→
lim 2

s 2+( )2
-------------------–⎝ ⎠

⎛ ⎞
s 1–→
lim 2–= = =

B 2
s 2+
-----------⎝ ⎠

⎛ ⎞
s 1–→
lim 2= =

C 2
s 1+( )2
-------------------

s 2–→
lim 2= =

y t( ) yl t( ) yf t( )+ e t–– te t– 2e 2t–+ += =
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Exercice 16

• Transformer le système dynamique

sous la forme d’un système dynamique avec des conditions initiales nulles.

Solution
La transformation de Laplace du système dynamique donne:

(1)

où

La transformation de Laplace inverse de (1) donne:

On voit ainsi que, pour un système dynamique linéaire, des conditions initiales
différentes de zéro correspondent à l’application d’une impulsion de Dirac au temps
initial.

Exercice 17

On considère un objet de masse m placé sur un chariot de masse M:

L’objet est fixé sur le chariot avec un élément flexible de constante de rigidité
k. D’autre part, le mouvement de l’objet est caractérisé par un frottement visqueux

ẋ t( ) 2x t( )+ u t( )= x 0( ) 2=

sX s( ) 2–[ ] 2X s( )+ U s( )=

X s( ) 1
s 2+
----------- U s( ) 2+[ ] 1

s 2+
----------- U s( ) 2∆ s( )+[ ]= =

∆ s( ) L δ t( )( ) 1= =

ẋ t( ) 2x t( )+ u t( ) 2δ t( )+= x 0( ) 0=

F(t) k

f
m

x

y

0

0

M
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de coefficient f. Le chariot est soumis à une force F. On dénote par x la position du
chariot par rapport à un repère fixe et par y la position de l’objet par rapport au
chariot.

a) Ecrire les équations dynamiques pour ce système et déterminer la fonction
de transfert Y(s)/F(s).

b)Considérer le cas limite où l’objet est fixé par un lien rigide et évaluer la
fonction de transfert X(s)/F(s).

Solution
a) Chariot: (1)
Objet: (2)

(3)

(4)

(3) → (5)

(4) + (5) → (6)

Le signe négatif de la fonction de transfert indique qu’une force dans le sens
de x déplacera l’objet dans le sens négatif de y.

b)Fonction de transfert X(s)/F(s)

(5) + (6) → (7)

Cas limite d’un lien rigide: k → ∞

⇒ 

Equation de mouvement pour le cas où l’objet est solidaire du chariot.

Exercice 18
Soit le système dynamique

a) Exprimer la relation entrée-sortie à l’aide d’un modèle d’état et déterminer
l’ensemble des conditions initiales qui assurent que le système soit relâché
au temps initial.

Mẋ̇ F ky f ẏ+ +=
m ẋ̇ ẏ̇+( ) ky– f ẏ–=

L
Ms2X s( ) F s( ) fs k+( )Y s( )+=

m s2X s( ) s2Y s( )+[ ] fs k+( )Y s( )–=

X s( ) F s( ) fs k+( )Y s( )+
Ms2

------------------------------------------------=

Y s( )
F s( )
----------- 1

Ms2 M /m 1+( ) fs M /m 1+( )k+ +
------------------------------------------------------------------------------------–=

X s( )
F s( )
----------- s2 f /m( )s k/m+ +

s2 Ms2 M /m 1+( ) fs M /m 1+( )k+ +[ ]
----------------------------------------------------------------------------------------------=

 X s( )
F s( )
-----------

k ∞→
lim  s2 f /m( )s k/m+ +

s2 Ms2 M /m 1+( ) fs M /m 1+( )k+ +[ ]
----------------------------------------------------------------------------------------------

k ∞→
lim 1

s2 M m+( )
--------------------------= =

M m+( ) ẋ̇ F=

G s( ) 2e s–

s 5s 1+( )
----------------------=
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b)Calculer la réponse indicielle de ce système.

Solution

a)

Dû à la présence du retard unité, le système dynamique est d’ordre infini
(voir exemple 3, section 3.2.2). On peut cependant l’exprimer sous la forme
d’un modèle d’état du deuxième ordre avec retard pur:

Pour que le système soit relâché au temps initial t = 0, c’est-à-dire qu’il ne
subisse plus l’effet des entrées passées, il convient d’avoir:

b)Réponse indicielle pour U(s) = 1/s

→

Y s( )
U s( )
------------ 2e s–

5s2 s+
----------------=

L–1

5 ẏ̇ t( ) ẏ t( )+ 2u t 1–( )=

x1 t( ) y t( )=

x2 t( ) ẏ t( )=⎩
⎨
⎧ ẋ1 t( ) x2 t( )=

ẋ2 t( ) 1
5
---x2 t( )– 2

5
---u t 1–( )+=

ẋ t( )
0  1

0  1
5
---–⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

x t( )
0
2
5
---⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

u t 1–( )+= x 0( ) x10

x20⎝ ⎠
⎜ ⎟
⎛ ⎞

=

x10 x20 0= = u 1 0 ),–[ 0=

Y s( ) 2e s–

s2 5s 1+( )
------------------------- Y' s( )e s–= =

Y' s( ) 2
s2 5s 1+( )
------------------------- A

s
--- B

s2
---- C

5s 1+
---------------+ += =

A  d
ds
----- 2

5s 1+
---------------

s 0→
lim 10

5s 1+( )2
----------------------–

s 0→
lim 10–= = =

B  2
5s 1+
---------------

s 0→
lim 2= =

C  2
s2
----

s 1/5–→
lim 50= =

y' t( ) 10ε t( )– 2ε t( )t 10ε t( )e t/5–+ +=

y t( ) 10ε t 1–( )– 2ε t 1–( ) t 1–( ) 10ε t 1–( )e t 1–( )/5–+ +=
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Exercice 19
Un système dynamique est représenté par la fonction de transfert

où a, b et c sont des paramètres que l’on peut choisir par un dimensionnement
approprié du système.

a) Montrer que la réponse impulsionnelle de ce système est, en général, discon-
tinue à t = 0.

b)Choisir a, b et c pour qu’il n’y ait pas de discontinuité dans la réponse
impulsionnelle.

Solution
a) Réponse impulsionnelle:

Théorème de la valeur initiale:

La réponse impulsionnelle est, en général, discontinue à t = 0 car elle
«saute» de 0 à 5c /ab ≠ 0.

b) pour c = 0 a, b ≠ 0 (cette dernière condition pour éviter d’avoir un
système du premier ordre qui «saute» à t = 0)

Exercice 20

Un système mécanique est composé de deux sous-systèmes décrits par leur
fonction de transfert G1(s) et G2(s).

a) Calculer la réponse indicielle temporelle y(t) du système.
b)Pour u(t) = ε(t), évaluer la valeur finale du signal r(t).
c) Déduire l’équation différentielle qui régit la dynamique du système complet.

Solution
a)

G s( ) 5 cs 1+( )
as 1+( ) bs 1+( )
----------------------------------------=

Y s( ) G s( ) 5 cs 1+( )
as 1+( ) bs 1+( )
----------------------------------------= =

y t( )
t 0→
lim sY s( )

s ∞→
lim 5s cs 1+( )

as 1+( ) bs 1+( )
---------------------------------------- 5c

ab
------= = =

5c
ab
------ 0=

R(s)U(s) Y(s)
G1(s) = 

5(s+1)
s+5

G2(s) = 
1

s+2

Y s( ) G2 s( )R s( )=
R s( ) G1 s( )U s( )=
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pour t ≥ 0

b)Valeur finale de r(t)

Le théorème de la valeur finale est applicable car le pôle de sR(s) vaut –5.

c)

La transformation de Laplace inverse nous conduit à l’équation différentielle
du système complet:

Les conditions initiales y(0),  et u(0) ne peuvent pas être déduites de la
fonction de transfert du système.

Exercice 21

Un système physique S est composé des trois sous-systèmes S1, S2 et S3. Le
sous-système S1 est régi par l’équation différentielle:

Y s( ) G2 s( )G1 s( )U s( )=

5 s 1+( )
s 5+( ) s 2+( )
--------------------------------- 1

s
---⋅ 1/2

s
-------- 4/3

s 5+
-----------– 5/6

s 2+
-----------+= =

y t( ) 1
2
--- 4

3
---e 5t–– 5

6
---e 2t–+=

r t( )
t ∞→
lim sR s( )

s 0→
lim sG1 s( )U s( )

s 0→
lim= =

s5 s 1+( )
s 5+

-------------------1
s
---

s 0→
lim 1= =

G s( ) Y s( )
U s( )
------------ G2 s( )G1 s( ) 5 s 1+( )

s 5+( ) s 2+( )
--------------------------------- 5s 5+

s2 7s 10+ +
-----------------------------= = = =

Y s( ) s2 7s 10+ +( ) 5s 5+( )U s( )=

ẏ̇ t( ) 7 ẏ t( ) 10y t( )+ + 5u̇ t( ) 5u t( )+=

ẏ 0( )

S1

S3

S

u(t)

S2

+

+

y(t)

y2(t)

y1(t)

ẏ̇1 t( ) 5 ẏ1 t( ) 6y1 t( )+ + u̇ t( ) u t( ),+= y1 0( ) ẏ1 0( ) u 0( ) 0= = =
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Les sous-systèmes S2 et S3 sont décrits par les fonctions de transfert:

,

a) Calculer la fonction de transfert Y(s)/U(s) du système complet S.
b)Evaluer la valeur initiale et la valeur finale de la réponse impulsionnelle du
système S.

Solution
Système 1

Système 2

Système 3

a) Système global S

b)Valeur initiale

Valeur finale

Le théorème de la valeur finale est applicable car le pôle de sG(s) vaut –3.

G2 s( ) 1
s 2+
-----------= G3 s( ) 1

s
---=

s2Y 1 s( ) 5sY 1 s( ) 6Y 1 s( )+ + sU s( ) U s( )+=

Y 1 s( ) s2 5s 6+ +( ) s 1+( )U s( )=

G1 s( )
Y 1 s( )
U s( )
------------- s 1+

s2 5s 6+ +
-------------------------- s 1+

s 2+( ) s 3+( )
---------------------------------= = =

G2 s( )
Y 2 s( )
U s( )
------------- 1

s 2+
-----------= =

G3 s( ) Y s( )
Y 1 s( ) Y 2 s( )+
--------------------------------- 1

s
---= =

Y s( ) G3 s( ) G1 s( ) G2 s( )+[ ]U s( )=

G s( ) Y s( )
U s( )
------------ G3 s( ) G1 s( ) G2 s( )+[ ]= =

1
s
--- s 1+

s 2+( ) s 3+( )
--------------------------------- 1

s 2+
-----------+ 2

s s 3+( )
-------------------= =

 g t( )
t 0→
lim  sG s( )

s ∞→
lim  2

s 3+
-----------

s ∞→
lim 0= = =

 g t( )
t ∞→
lim  sG s( )

s 0→
lim  2

s 3+
-----------

s 0→
lim 2

3
---= = =
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Exercice 22
Un système dynamique est décrit par le modèle d’état

,

a) Déterminer la fonction de transfert de ce système.
b)Calculer sa réponse impulsionnelle.
c) Calculer sa réponse libre.

Solution
a) La fonction de transfert ne considère pas les condition initiales. Pour des
conditions initiales nulles:

(1)

(2)

(3)

b)Pour U(s) = 1, 

c) Equation dynamique: 

avec et

Réponse libre pour u(t) = 0:

,

ẋ t( ) 0  a
a  – 0⎝ ⎠

⎜ ⎟
⎛ ⎞

x t( ) 0
1⎝ ⎠

⎜ ⎟
⎛ ⎞

u t( )+= x 0( ) x10

x20⎝ ⎠
⎜ ⎟
⎛ ⎞

=

y t( ) 1  0( )x t( )=

ẋ1 t( ) ax2 t( )  sX1 s( )→ aX2 s( )= =L

ẋ2 t( ) ax1 t( )– u t( )  sX2 s( )→+ aX1 s( )– U s( )+= =L

y t( ) x1 t( )  Y s( )→ X1 s( )= =L

G s( )⇒ Y s( )
U s( )
------------ a

s2 a2+
----------------= =

Y s( ) a
s2 a2+
----------------   y t( )→ ε t( ) at( )sin= =L–1

ẏ̇ t( ) a2y t( )+ au t( )=

y x1= ẏ ẋ1 ax2= =

ẏ̇ t( ) a2y t( )+ 0= y 0( ) x10= ẏ 0( ) ax20=
L

s2Y s( ) sx10– ax20– a2Y s( )+ 0=

Y s( ) s2 a2+( ) sx10 ax20+=

Y s( )
sx10 ax20+
s2 a2+

--------------------------- s
s2 a2+
----------------x10

a
s2 a2+
----------------x20+= =

L–1

y t( ) x10ε t( ) at( ) x20ε t( ) at( )sin+cos=
ε t( ) x10 at( ) x20 at( )sin+cos[ ]=
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Exercice 23

Montrer que la transformée de Laplace de ε(t)sin(ωt + φ) correspond bien à
l’entrée 10 du dictionnaire de la transformation de Laplace:

Solution
La relation trigonométrique

permet d’écrire:

On a ainsi:

Exercice 24

Soit le système de transmission par courroie crantée suivant:

Un couple Ma(t) est appliqué à la petite poulie de rayon r1 caractérisée par le
moment d’inertie J1 et un frottement visqueux de coeffcient f1. La transmission par
courroie crantée est considérée idéale, c’est-à-dire sans perte de puissance. La
grande roue de rayon r2 caractérisée par le moment d’inertie J2 et un frottement vis-
queux de coefficient f2 est soumise au couple résistant Mr(t).

a) Ecrire les équations dynamiques pour ce système.
b)Ce système est-il linéaire et stationnaire?
c) On considère le couple résistant comme une perturbation. Déterminer la
fonction de transfert entre le couple résistant Mr et la vitesse angulaire

.
d)Considérer le système en régime permanent (vitesses constantes). Ecrire la
relation liant le couple résultant  au couple appliqué  et à la vitesse .

s φ ω φcos+sin
s2 ω2+

------------------------------------

α β+( )sin α β α βsincos+cossin=

ωt φ+( )sin ωt( ) φ ωt( ) φsincos+cossin=

L ε t( ) ωt φ+( )sin{ } φ L ωt( )sin{ } φ L ωt( )cos{ }sin+cos=

ω φcos
s2 ω2+
----------------- s φsin

s2 ω2+
-----------------+=

Ma
. .

r2r1

θ1

θ2

Mr

ω2 θ̇2=

M r Ma ω2
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Solution
a) (1)

ou
(2)

MT1,2: couples transmis
MT1 ω1 = MT2 ω2: conservation de puissance
ω1 r1 = ω2 r2 (3)
MT1 r2 = MT2 r1 (4)

b)Système linéaire et stationnaire.

c)L {(1), (2)}: (5)

(6)

(5) → (7)

(6) + (7):

→

d)Régime permanent
(1) → (8)

(2) → (9)

(9):

⇒

J1θ̇̇ 1 Ma f 1θ̇1– MT1–= J1ω̇ 1 Ma f 1ω1– MT1–=

J2θ̇̇ 2 MT2 f 2θ̇2– M r–= J2ω̇ 2 MT2 f 2ω2– M r–=

ω1 s( ) J1s f 1+[ ] Ma s( ) MT1 s( )–=

ω2 s( ) J2s f 2+[ ] MT1 s( )
r2

r1
---- M r s( )–=

MT1 s( ) Ma s( ) ω2 s( )
r2

r1
---- J1s1 f 1+[ ]–=

ω2 s( ) J2s f 2
r2

r1
----⎝ ⎠

⎛ ⎞ 2
J1s1 f 1+( )+ +

r2

r1
----Ma s( ) M r s( )–=

Je := J2 J1
r2

r1
----⎝ ⎠

⎛ ⎞ 2
f e := f 2 f 1

r2

r1
----⎝ ⎠

⎛ ⎞ 2
+ +

ω2 s( ) Jes f e+[ ]
r2

r1
----Ma s( ) M r s( )–=

ω2 s( )
M r s( )
-------------- 1–

Jes f e+
-------------------=

0 Ma f 1ω 1– MT1–=

0 MT2 f 2ω 2– M r–=

MT2 MT1
r2

r1
---- ω 1 ω 2

r2

r1
----= =

0 Ma f 1ω 2
r2

r1
----–⎝ ⎠

⎛ ⎞ r2

r1
---- f 2ω 2– M r–=

0 Ma
r2

r1
---- f eω 2– M r–=

M r Ma
r2

r1
---- f eω 2–=
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Exercice 25

Soit une cuve avec vanne motorisée qui possède une section S de 50 m2 et est
remplie d’eau. Le débit volumique d’alimentation est proportionnel à la position θ,
avec la constante de proportionnalité α = 0,16 m3/(min rad). Le débit de sortie est
proportionnel à la racine carrée du niveau h, avec la constante de proportionnalité
k = 5 m2,5/min. La tension d’alimentation u est amplifiée (Ka = 20) et commande la
vanne par l’intermédiaire d’un moteur électrique caractérisé par la résistance
Rm = 50 Ω et la constante de moteur Km = 5 V min. Le moment d’inertie du moteur
et de la vanne est J = 10–4 kg m2/rad. Le frottement est négligeable.

a) Ecrire les équations dynamiques pour ce système.
b)Déterminer la fonction de transfert H(s)/U(s) pour le point de fonctionne-
ment correspondant à un niveau d’eau de 4 m.

Solution
a) (1)

(2)

(3)

b)Linéarisation:

L : (1) → (4)

JM

Rm

Emu

θim

qin

S

h
qout

+

-

Am
pli

fic
ate

ur
   

  K
a =

 20

Jθ̇̇ Kmim=

um Kau=

Rmim Kmθ̇ um = 0–+ ⎭
⎬
⎫

   Rmim Kmθ̇ Kau–+ 0=

Sḣ αθ k h–=

h g h 1
2 h
----------δh+

Js2θ s( ) KmIm s( )=
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(2) → (5)

(3) →

(4) + (5) →

Exercice 26

Soit un système de deux chariots de masses m et M reliés entre eux par une
liaison flexible de rigidité k. Le roulement des deux chariots est entravé par du frot-
tement visqueux de coefficients respectifs f et g. Le petit chariot est soumis à la
force F. La vitesse du grand chariot est noté v = dx /dt.

a) Modéliser ce système dynamique.
b)Calculer la fonction de transfert X(s)/F(s). Contient-elle un terme intégra-
teur? Si oui, donner une explication physique de celui-ci.

c) Calculer la fonction de transfert V(s)/F(s). Calculer son gain statique et don-
ner une explication physique de celui-ci.

Solution
a) Petit chariot: (1)
Grand chariot: (2)

RmIm s( ) Kmsθ s( ) KaU s( )–+ 0=

H s( ) Ss k
2 h
----------+ αθ s( )  H s( )

θ s( )
------------→ α

Ss k
2 h
----------+

----------------------= =

RmJs2θ s( ) Km KaU s( ) Kmsθ s( )–[ ]=

θ s( ) RmJs2 Km
2 s+[ ] KmKaU s( )  θ s( )

U s( )
------------→

KmKa
s RmJs Km

2+( )
-----------------------------------= =

H s( )
U s( )
------------ H s( )

θ s( )
------------  θ s( )

U s( )
------------

αKmKa

s RmJs Km
2+( ) Ss k

2 h
----------+⎝ ⎠

⎛ ⎞
---------------------------------------------------------------- 0,51

s 2 10 4– s 1+⋅( ) 40s 1+( )
-------------------------------------------------------------= = =

f

k F

M

m

y0x0

g

m ẋ̇ ẏ̇+( ) F ky– f ẏ–=
Mẋ̇ ky f ẏ gẋ–+=
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b)L : (1a)

(2a)

(2a) →  

ou (2b)

(1a) → (1b)

(1b) + (2b) → 

Cette fonction de transfert contient un terme intégrateur 1/s. Cela signifie
que, par exemple, si la force F est constante, la position x augmentera indé-
finiment.

c)

Cela signifie qu’à l’état stationnaire, si la force  augmente d’une unité, la
vitesse  augmentera de 1/g:

m s2X s( ) s2Y s( )+[ ] F s( ) kY s( )– fsY s( )–=

Ms2X s( ) kY s( ) fsY s( ) gsX s( )–+=

Ms2 gs+[ ]X s( ) fs k+[ ]= Y s( )

Y s( ) Ms2 gs+
fs k+

----------------------X s( )=

ms2X s( ) ms2 fs k+ +[ ]Y s( )+ F s( )=

ms2 ms2 fs k+ +( ) Ms2 gs+( )
fs k+

---------------------------------------------------------------+ X s( ) F s( )=

X s( )
F s( )
----------- fs k+

ms2 fs k+( ) ms2 fs k+ +( ) Ms2 gs+( )+
--------------------------------------------------------------------------------------------------=

fs k+
s mMs3 m M+( ) f mg+[ ]s2 m M+( )k fg+[ ]s gh+ + +{ }
----------------------------------------------------------------------------------------------------------------------------------------------=

V s( )
F s( )
----------- sX s( )

F s( )
-------------- fs k+

mMs3 m M+( ) f mg+[ ]s2 m M+( )k fg+[ ]s gk+ + +
-------------------------------------------------------------------------------------------------------------------------------------= =

K  V s( )
F s( )
-----------

s 0→
lim 1

g
---= =

F
v

F ky gv  ∆v
∆F
-------→ 1

g
---= = =
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6.7 EXERCICES RÉSOLUS

Exercice 1

Le système de suspension pour une roue d’un véhicule comprend un ressort de
constante de rigidité  et un amortisseur linéaire de coefficient f. La masse du
véhicule portée par la roue est , celle de la roue . D’autre part, la roue est
elle-même flexible, caractérisée par une constante de rigidité .

a) Calculer la fonction de transfert Y1(s)/X(s) qui représente la réponse du
véhicule à des bosses sur la route.

b)Evaluer le gain statique et interpréter sa signification physique.

Solution
a)

↓L

k1
m1 m2

k2

x

y2

y1

Amortisseur

Ressort

m1
y1

m2
y2

x

fk1

k2

m1 ẏ̇1 k1 y1 y2–( )– f ẏ1 ẏ2–( )–=

m2 ẏ̇2 k1 y1 y2–( ) f ẏ1 ẏ2–( ) k2 y2 x–( )–+=

Y 1 s( ) m1s2 fs k1+ +[ ] Y 2 s( ) fs k1+[ ]=

Y 2 s( ) m2s2 fs k1 k2+ + +[ ] Y 1 s( ) fs k1+[ ] k2X s( )+=

Y 2 s( )
fs k1+

m2s2 fs k1 k2+( )+ +
---------------------------------------------------Y 1 s( )

k2

m2s2 fs k1 k2+( )+ +
---------------------------------------------------X s( )+=

m1s2 fs k1+ +[ ]Y 1 s( )
fs k1+( )2

m2s2 fs k1 k2+( )+ +
---------------------------------------------------Y 1 s( ) +=

fs k1+( )k2

m2s2 fs k1 k2+( )+ +
---------------------------------------------------X s( )+
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b)Gain statique: 

Donc, à basses fréquences, toute variation du profil de la route sera trans-
mise intégralement au véhicule.

Exercice 2

a) Evaluer la réponse impulsionnelle du système

b)Représenter graphiquement cette réponse.
c) Evaluer les pôles et les zéros de ce système. Est-il stable?

Solution

a)

L–1       t ≥ 0

m1m2s4 m1 f m2 f+( )s3 m1 k1 k2+( ) f 2 m2k1+ +[ ]s2 f k1 k2+( ) +[+ + +{

f k1+ ]s k+ 1 k1 k2+( ) f 2s2 2 f k1s k1
2+ +( )– }Y 1 s( ) fs k1+( )k2X s( )=

Y 1 s( ) m1m2s4 f m1 m2+( )s3 k1 m1 m2+( ) k2m1+[ ]s2 f k2s k1k2+ + + +{ }

fs k1+( )X s( )=

G s( )
Y 1 s( )
X s( )
-------------= =

fs k1+( )k2

m1m2s4 f m1 m2+( )s3 k1 m1 m2+( ) k2m1+[ ]s2 f k2s k1k2+ + + +
----------------------------------------------------------------------------------------------------------------------------------------------------------------=

K G s( )
s 0→
lim 1= =

G s( ) s 1–
2s 1+( ) s 3+( )
------------------------------------=

Y s( ) G s( )U s( ) s 1–
2s 1+( ) s 3+( )
------------------------------------ A

2s 1+
--------------- B

s 3+
-----------+= = =

A     s 1–
s 3+
-----------

s 1
2
---–→

lim 3
5
---–= =

B     s 1–
2s 1+
---------------

s 3–→
lim 4

5
---= =

→ y t( ) 3
10
------e t/2–– 4

5
---e 3t–+=
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b)Graphique

c) z1 = 1, p1 = –0,5, p2 = –3. Comme les deux pôles sont dans la moitié gauche
du plan complexe, le système est BIBO stable.

Exercice 3

Soit le système dynamique autonome, c’est-à-dire sans entrée:

a) Calculer .
b)Quel est l’ordre du système? Combien de modes se trouvent dans la réponse
x(t)? Discuter ce résultat.

Solution
a)

↓L

0 0.5 1 1.5 2 2.5 3 3.5 4-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

y(t)

t

ẋ 1  2–
2  3–

x= x 0( ) 10
10

=

x t( )

ẋ1 x1 2x2–= x1 0( ) 10=

ẋ2 2x1 3x2–= x2 0( ) 10=
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b)Le système est d’ordre 2 car il est décrit par 2 équations différentielles du pre-
mier ordre. Comme les réponses x1(t) et x2(t) ne contiennent que le mode e–t,
on pourrait penser que le système est du premier ordre. Cependant, il s’agit là
d’un artefact dû au choix des conditions initiales. Pour le montrer, consi-
dérons le même système dynamique avec les conditions initiales génériques:

Un développement similaire à celui du point a) donne les signaux X1(s) et
X2(s) suivants:

Pour x10 = x20 = 10, on retrouve le résultat du point a). Dans le cas général,
avec un pôle double à s = –1, on observe les modes e–t et te–t. Notons éga-
lement que les valeurs propres de la matrice du système sont λ1 = λ2 = –1.

sX1 s( ) 10– X1 s( ) 2X2 s( )–=

sX2 s( ) 10– 2X1 s( ) 3X2 s( )–=

X2 s( ) s 3+[ ] 2X1 s( ) 10+= → X2 s( ) 2
s 3+
-----------X1 s( ) 10

s 3+
-----------+=

X1 s( ) s 1–[ ] 2X2 s( )– 10+ 4
s 3+
-----------X1 s( )– 20

s 3+
-----------– 10+= =

X1 s( ) s 1–( ) s 3+( ) 4+[ ] 20– 10 s 3+( )+=

X1 s( ) s2 2s 3– 4+ +[ ] 10s 10+=

X1 s( ) s2 2s 1+ +[ ] 10 s 1+( )=

X1 s( ) 10
s 1+
-----------=

X2 s( ) 2
s 3+
----------- 10

s 1+
----------- 10

s 3+
-----------+ 20 10 s 1+( )+

s 3+( ) s 1+( )
----------------------------------- 10 s 3+( )

s 3+( ) s 1+( )
--------------------------------- 10

s 1+
-----------= = = =

x1 t( ) x2 t( ) 10e t–= = t 0≥

x 0( ) x10

x20

=

X1 s( )
x10s 3x10 2x20–( )+

s 1+( )2
-------------------------------------------------=

X2 s( )
x20s 2x10 x20–( )+

s 1+( )2
---------------------------------------------=
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Exercice 4

Un système physique est composé des deux sous-systèmes  et :

Le sous-système  est décrit par la fonction de transfert: .
La sortie z de ce système est l’entrée du sous-système  dont la dynamique

est régie par l’équation différentielle:

a) Calculer la fonction de transfert du système complet S.
b)Evaluer les pôles et les zéros ainsi que le gain statique du système S.

Solution

a) Système : 

Système : calcul de 

Le concept de fonction de transfert suppose des conditions initiales nulles
(système relâché):

Système S: 

 

S1 S2

S1 S2

S

z(t) y(t)u(t)

S1 G1 s( ) s( 1 )/s+=
S2

ẏ̇ t( ) 3 ẏ t( ) 2y t( )+ + ż t( ) 3z t( )+= y 0( ) 1= ẏ 0( ) 0= z 0( ) 0=

S1 G1 s( ) s 1+
s

----------- Z s( )
U s( )
------------= =

S2 G2 s( ) Y s( )
Z s( )
-----------=

s2Y s( ) 3sY s( ) 2Y s( )+ + sZ s( ) 3Z s( )+=

Y s( ) s2 3s 2+ +[ ] Z s( ) s 3+[ ]=

G2 s( ) Y s( )
Z s( )
----------- s 3+

s2 3s 2+ +
--------------------------= =

G s( ) Y s( )
U s( )
------------ Y s( )

Z s( )
----------- Z s( )

U s( )
------------⋅= =

G s( ) G2 s( )G1 s( )= → G s( ) s 3+( ) s 1+( )
s 1+( ) s 2+( )s
------------------------------------ s 3+

s s 2+( )
-------------------= =
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b)Pôles: p1 = 0 p2 = –2
zéro: z1 = –3

Il s’agit d’un système intégrateur (p1 = 0) avec un gain statique infini:

Exercice 5

Pour les cas suivants, et sans calculer explicitement y(t), déterminer les termes
dynamiques (modes) présents dans la réponse. Quelles réponses ont un caractère
oscillatoire? Quelles réponses convergent pour t → ∞ ?

a)

b)

c)

d)

Solution

a)

non oscillatoire

b)

non oscillatoire

c)

non oscillatoire

d)

G s( )
s 0→
lim  s 3+

s s 2+( )
-------------------

s 0→
lim ∞= =

Y s( ) 2
s s2 4s+( )
------------------------=

Y s( ) 2
s s2 4s 3+ +( )
---------------------------------=

Y s( ) 2
s s2 4s 4+ +( )
---------------------------------=

Y s( ) 2
s s2 4s 8+ +( )
---------------------------------=

Y s( ) 2
s2 s 4+( )
--------------------- A

s
--- B

s2
---- C

s 4+
-----------+ += =

y t( ) Aε t( ) Btε t( ) Ce 4t– ε t( )+ +=
 y t( )

t ∞→
lim ∞=

Y s( ) 2
s s 3+( ) s 1+( )
------------------------------------ A

s
--- B

s 3+
----------- C

s 1+
-----------+ += =

y t( ) Aε t( ) Be 3t– ε t( ) Ce t– ε t( )+ +=
 y t( )

t ∞→
lim A=

Y s( ) 2
s s 2+( )2
--------------------- A

s
--- B

s 2+( )
---------------- C

s 2+( )2
-------------------+ += =

y t( ) Aε t( ) Be 2t– ε t( ) Cte 2t– ε t( )+ +=
 y t( )

t ∞→
lim A=

Y s( ) 2
s s 2+( )2 22+[ ]
-------------------------------------- A

s
--- B s 2+( )

s 2+( )2 22+
------------------------------- C 2⋅

s 2+( )2 22+
-------------------------------+ += =
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oscillatoire

avec .

Exercice 6
Soit le système dynamique suivant avec m = 1 kg et k = 500 N/m. La réponse

libre du système pour un déplacement de x0 et une vitesse initiale nulle est donnée à
la figure ci-dessous: 

• Si l’amplitude des vibrations décroît à 25% de x0 après trois cycles consécu-
tifs, déterminer le coefficient de frottement f.

Solution
– Modèle dynamique:

, 

y t( ) Aε t( ) Be 2t– 2t( ) Ce 2t– 2t( )sin+cos+=

y t( )
t ∞→
lim A=

k f

m

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
8

6

4

2

0

0.2

0.4

0.6

0.8

1
k=0

k=1

k=2

k=3

k=4

k=5

k=6

k=7

x0

x0/4

x(t)

t

mẋ̇ kx f ẋ––= x 0( ) x0= ẋ 0( ) 0=
L

m s2X s( ) sx0– 0–[ ] kX s( ) f sX s( ) x0–[ ]+ + 0=
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avec , 

– Réponse oscillatoire sous-amortie (0 ≤ ζ < 1)

Au maxima et minima de la réponse, tk, k = 0, 1, 2, …, on a:
et , ce qui donne:

Pour la situation donnée, k = 6 et , ce qui donne:

et ainsi 

Avec m = 1 kg, k = 500 N/m, on obtient .

Exercice 7

Un oscillateur est constitué de 2 boules métalliques de 1 kg reliées entre elles
par une barre rigide de 1 m et de masse négligeable. La barre est suspendue en son
milieu par un fil très fin qui se laisse tordre sans casser. La constante de rigidité en
rotation du fil est k = 2 · 10–4 Nm/(rad). D’autre part, on estime le coefficient de
frottement visqueux dans l’air du système boules/barre à 10–3 Nms/(rad). 

X s( )→
mx0s f x0+
ms2 fs k+ +
------------------------------

x0 ms f+( )
ms2 fs k+ +
------------------------------= =

x0 s f /m+( )
s2 f /m( )s k/m+ +
--------------------------------------------

x0 s a+( ) a/ω( )ω+[ ]
s a+( )2 ω2+

----------------------------------------------------= =

a f
2m
-------= ω 1

2m
------- 4km f 2–=

x t( ) x0ε t( ) e at– ω t( ) a
ω
----e at– ω t( )sin+cos=

ω tk kπ ω tk( )sin, 0= = ωkt( )cos 1=

x tk( ) x0e
atk– x0e a kπ/ω( )–= =

x t6( ) x0/4=

1
4
--- e

 6πf
4km f2–

------------------------–
=

f 2 km
6π/ 4ln( )2 1+
----------------------------------=

f 3,28 Ns
m
-------=

1 m

1 kg 1 kg
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a) Calculer le coefficient d’amortissement de cet oscillateur.
b)Sachant que l’oscillateur est chargé avec 10 tours (3600°) et lâché à vitesse
nulle, calculer sa réponse libre dans le domaine de Laplace.

Solution
a)Modèle dynamique:

(1)

Dénominateur de θ(s):

b)Réponse libre pour θ0 = 20π

J θ̇̇ kθ– f θ̇–= θ 0( ) θ0  θ̇ 0( ); 0= =

L

J s2θ s( ) sθ0– 0–[ ] kθ s( ) f sθ s( ) θ0–[ ]+ + 0=

θ s( )→
θ0 Js f+( )
Js2 fs k+ +
-----------------------------

θ0 Js/k f /k+( )
J /k( )s2 f /k( )s 1+ +
--------------------------------------------------= =

J 2 m l
2
---⎝ ⎠

⎛ ⎞ 2 ml2
2
-------- 1 kg 1 m2⋅

2
--------------------------- 0,5 kgm2= = = =

f 10 3– Nms
rad( )
-------------    k; 2 10 4– Nm

rad( )
-------------⋅= =

J
k
--⎝ ⎠

⎛ ⎞ s2 f
k
---⎝ ⎠

⎛ ⎞ s 1+ + τ2s2 2τζs 1+ +=

τ→ J
k
-- 0,5

2 10 4–⋅
------------------ 50s= = =

ζ f
2τk
--------- f

2 Jk
------------- 10 3–

2 0,5 2 10 4–⋅ ⋅
------------------------------------- 0,05= = = =

1( ) θ s( )→ 20π 2500s 5+( )
2500s2 5s 1+ +
-------------------------------------- 20π s 0,002+( )

s2 0,002s 0,0004+ +
--------------------------------------------------= =

20π s 0,001+( ) 0,001+
s 0,001+( )2 0,02( )2+
----------------------------------------------------- 20π s 0,001+( ) 0,05 0,02( )+

s 0,001+( )2 0,02( )2+
-----------------------------------------------------------= =

θ t( )→ 20πε t( ) e 0,001t– 0,02t( ) 0,05e 0,001t– 0,02t( )sin+cos[ ]=
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Exercice 8

Un système dynamique est représenté par l’équation différentielle

a) Evaluer la fonction de transfert Y(s)/U(s) pour le point de fonctionnement
correspondant à .

b)Pour quelles valeurs de α l’approximation linéaire de ce système sera-t-elle
stable et non oscillante?

Solution d’équilibre
a) A l’état d’équilibre: 

Pour des questions de notation, définissons .
Linéarisation de  autour de  et 

En variables écart

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

20

40

60

80

x(t)

t [s]
-60

-40

-20

ẏ̇ y α ẏ 4+( )+ 2u= y 0( ) 2= ẏ 0( ) 0=

u 4=

ẏ ẏ̇ 0= =
4y 2u 8  y→ 2= = =

v := ẏ
yv y 2= v 0=

yy ˙ g yv v y y–( ) y v v–( )+ + 2 v v–( )=
0 0

δ ẏ̇ 2αδ ẏ 4δy+ + 2δu= δy 0( ) 0= δ ẏ 0( ) 0=
L

Y s( )
U s( )
------------ 2

s2 2αs 4+ +
------------------------------ 1/2

1/4( )s2 α/2( )s 1+ +
-------------------------------------------------- 1/2

τ2s2 2τζs 1+ +
--------------------------------------= = =

τ2→ 1
4
---   τ→ 1

2
---= =
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b)Approximation linéaire non oscillante pour ζ ≥ 1, c’est-à-dire pour α ≥ 2.

Exercice 9

La réponse indicielle γ (t) d’un système inconnu a été mesurée comme suit:

a) Déterminer le retard pur de ce système.
b)Sachant que ce système ne possède pas de zéro, déterminer son gain statique
et ses pôles.

c) Déterminer sa fonction de transfert.

Solution
a) Le retard pur vaut 1 s.
b)Gain statique = 

On mesure un dépassement de 50%

2τζ α
2
--- ζ→ α

2
---= =

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

t [s]

(t)

γ t( )
t ∞→
lim 2=

γ tp( ) K 1 e ζ π/ 1 ζ2––+( )=

3 2 1 e ζ π/ 1 ζ2––+( )=

ζ⇒ 2ln

π2 2ln( )2+
-------------------------------- 0,2155= =
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On mesure une durée séparant le début de la réponse et le premier maximum
de 1 s, donc:

Ainsi 

Les pôles sont: 

c) La fonction de transfert est de la forme

et donc 

tp
πτ

1 ζ2–
------------------ 1= =

τ 1 ζ2–
π

------------------ 0,3108= =

p1 2,
1
τ
--- ζ ζ2 1–±( )– 0,69– πj±= =

G s( ) e s– K
τ2s2 2ζτs 1+ +
--------------------------------------=

G s( ) 2e s–

0,097s2 0,134s 1+ +
--------------------------------------------------=
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7.5 EXERCICES RÉSOLUS

Exercice 1

a) Tracer le diagramme de Bode asymptotique pour la fonction de transfert

b)Ajouter un terme multiplicatif à cette fonction de transfert afin que le
déphasage approche –90° à hautes fréquences.

Solution

a)

Diagramme de Bode asymptotique de G(s)

G s( ) 1
s s 3+( )
-------------------=

G s( ) 1
s s 3+( )
------------------- 1 3⁄

s s/3 1+( )
------------------------= =

10-1 100 101 102-180

-170

-160

-150

-140

-130

-120

-110

-100

-90

3

-135 °

[rad/s]ω

 [°]φ

10-1 100 101 10210-4

10-3

10-2

10-1

100

101

102

1/3

1 3

pente -1

pente -2

RA [-]

[rad/s]ω
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b)Le déphasage de G(s) vaut –180° à haute fréquence. Il convient donc d’ajou-
ter un terme avance de phase au numérateur. Par exemple, 

 aura un déphasage de –90° à hautes fréquences.

Exercice 2
a) Tracer le rapport d’amplitude asymptotique pour la fonction de transfert:

b)Déterminer  de façon à ce que le déphasage soit égal à –180° pour 
rad/s.

Solution

a)

b)

 rad

G' s( ) =
s 1+( )G s( )

G s( ) 5e θs–

2s 1+( ) s 5+( )
------------------------------------=

θ ω 1=

G s( ) 5e θs–

2s 1+( ) s 5+( )
------------------------------------ e θs–

2s 1+( ) s/5 1+( )
------------------------------------------= =

10
-1

10
0

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

1/2 5

1

RA
 [-]

[rad/s]

pente -1

pente -2

ϕ ω( ) θω– arctan 2ω( )– arctan ω
5
----⎝ ⎠

⎛ ⎞–=

ϕ ω 1=( ) θ– arctan 2( )– arctan 1
5
---⎝ ⎠

⎛ ⎞– π–= =

θ⇒ π arctan 2( )– arctan 1
5
---⎝ ⎠

⎛ ⎞– 1,84s= =
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Exercice 3

Soit un système dynamique caractérisé par un gain unité, un pôle à –1 et un
zéro à –1/α .

a) Ecrire sa fonction de transfert.
b)Esquisser le diagramme de Bode pour α = –1.

Solution

a)
           

 

b) Pour α = –1

Alternative:

Notons que l’approche alternative permet de conclure que arctan (2ω/(1 – ω2))
= 2 arctan(ω).

G s( )
A s 1

α
---+⎝ ⎠

⎛ ⎞

s 1+
----------------------= 1 G s( )

s 0→
lim A

α
---= = A→ α=

G s( )→ αs 1+
s 1+
---------------=

G s( ) 1 s–
1 s+
-----------=

G jω( ) 1 jω–
1 jω+
---------------- 1 ω2–( ) 2 jω–

1 ω2+
------------------------------------= =

G jω( ) 1 ω2–( )
2

4ω2+
1 ω2+

------------------------------------------- 1 ω2+
1 ω2+
--------------- 1= = =

G jω( )∠ arctan 2ω–
1 ω2–
---------------⎝ ⎠

⎛ ⎞ arctan 2ω
1 ω2–
---------------⎝ ⎠

⎛ ⎞–= =

G jω( ) 1 jω–
1 jω+
----------------

G1 jω( )
G2 jω( )
------------------= =

G jω( )
G1 jω( )
G2 jω( )
--------------------- 1 ω2+

1 ω2+
-------------------- 1= = =

G jω( )∠ G1 jω( )∠ G2 jω( )∠–=

arctan ω–( ) arctan ω( )– 2arctan ω( )–= =
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Diagramme de Bode 

Exercice 4

On a mesuré expérimentalement les réponses harmoniques suivantes sur un
processus physique: 

• Identifier ce système, c’est-à-dire déterminer sa fonction de transfert.

ω (rad/s) 0,1 0,2 0,5 1 2 5 10
RA (–) 19,3 9,8 3,6 1,95 0,45 0,08 0,02
ϕ (°) –101 –113 –145 –192 –268 – 455 –745

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

-90°

1

[°]

10-2 10-1 100 101 10210-1

100

101

RA[-]

[rad/s]

10-2 10-1 100 101 102[rad/s]
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Solution

Diagramme de Bode asymptotique à partir des données expérimentales

– Asymptote basses fréquences: RA → K /ω. 
Pour  → gain en vitesse 

– Retard pur à hautes fréquences:      
Pour ,  

→ 

10-1 100 101-800

-700

-600

-500

-400

-300

-200

-100

[rad/s]

[°]

10-1 100 10110-2

10-1

100

101

102

103

2

1

[rad/s]

pente -1

pente -2

RA [-]

ω 1 , RA 2= = K 2=
180°– θω 360°/2π( )–

ω 10= ϕ 745°–= θ→ 1s=

G s( ) 2e s–

s s 1+( )
-------------------=
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Exercice 5

On a mesuré expérimentalement les réponses harmoniques suivantes (malheu-
reusement incomplètes) sur un processus physique: 

• Identifier ce système, c’est-à-dire déterminer sa fonction de transfert.

Solution
Diagramme d’amplitude à partir des données expérimentales:

K = 2, τ1 = 10 s, τ2 = 1 s

→ 

Détermination de θ
ϕ = –θω - arctan(10ω) – arctan (ω)

Pour ω = 1,

⇒ θ = 1,5 s

⇒ 

ω(rad/s) 0,01 0,03 0,05 0,1 0,3 0,5 1 3 5 10
RA (–) 1,99 1,91 1,78 1,41 0,60 0,35 0,14 0,02 0,008 0,002
ϕ(°) – – – – – – –215 – – –

G s( ) 2e θs–

10s 1+( ) s 1+( )
---------------------------------------=

ϕ 215°– 3,75rad
s

---------– θ– arctan 10( )– arctan 1( )–= = =

G s( ) 2e 1,5s–

10s 1+( ) s 1+( )
---------------------------------------=

10-2

1 2

10
1 1

-1 10 0 10110-3

10-2

10-1

10
K

0

101
RA [-]

[rad/s]
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Exercice 6

Soit le système dynamique suivant:

a) Quel est son gain statique?
b)Ce système présente-t-il un effet de résonance? Si oui, à quelle pulsation?
c) Indiquer le déphasage asymptotique à basses fréquences et à hautes fréquen-
ces.

d)Construire le diagramme de Bode asymptotique.

Solution

a) Gain statique = 

b)Pôles: p1 = 0 p2, 3 = –1
Pôles réels, donc pas de résonance. Par contre, ce système possède un zéro,
ce qui peut modifier l’allure de la réponse.

c)

d)Diagramme de Bode asymptotique
• Diagramme d’amplitude (voir diagramme)
• Diagramme de phase

G s( ) s 0,2–( )e s–

s s2 2s 1+ +( )
---------------------------------=

G s( ) s 0,2–( )e s–

s s2 2s 1+ +( )
--------------------------------- 0,2 5s 1–( )e s–

s s 1+( )2
----------------------------------= =

G s( )
s 0→
lim ∞–=

ω 0→ ϕ 90°–→

ω ∞→ ϕ ∞–→

G s( ) 0,2
s
------- 5s 1–( ) 1

s 1+( )2
-------------------e s–=

G1 s( )G2 s( )G3 s( )G4 s( )=

G jω( )∠ ϕ1 ϕ2 ϕ3 ϕ4+ + +=

ϕ4 rad[ ] ω–= ω 0,1= ϕ4 5,7°–=

ϕ4 °[ ] 360°
2π
-----------⎝ ⎠

⎛ ⎞ ω–= ω 1= ϕ4 57,3°–=

ω 10= ϕ4 573°–=
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10 10 100 10110

10

10

100

101

102

103

104

10 10 100 101

0

100

0.2

0.2

.

.

pente -1

pente -2

pente 0

RA [-]

[°]

[rad/s]

0.2

φ

ω

[rad/s]ω

ω
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Exercice 7

Le diagramme de Bode d’un système oscillant du deuxième ordre caractérisé
par les pôles p1, 2 = –2 ± j et un zéro à –1 est donné ci-dessous.

10-2 10-1 100 101 102
10-1

100

10-2 10-1 100 101 102
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

RA [-]

[°]

[rad/s]

[rad/s]
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a) Calculer la constante de temps équivalente τ et le coefficient d’amortisse-
ment ζ.

b)Comparer le diagramme de phase avec celui donné à la figure 7.11 et discu-
ter les différences majeures.

c) Le système possède-t-il un effet de résonance? (expliquer).

Solution

a)

b)Figure 7.11 correspond à

c’est-à-dire à un système du 2e ordre sans zéro (ϕ compris entre 0 et –180°).

Ici, 

c’est-à-dire un système du 2e ordre avec un zéro → contribution de phase du
zéro: 0 → 90° ⇒ ϕ commence à 0 à basses fréquences, augmente légère-
ment à cause du zéro et diminue ensuite asymptotiquement vers –90°.

c) Résonance car RA(ωr) > 2 (gain statique)

Sans zéro, un système du 2e ordre avec ζ = 0,894 n’a pas de résonance. Ici,
la résonance est due à la présence du zéro à –1.

Exercice 8

Soit le filtre avance de phase F(s) en série avec la fonction de transfert G(s):

G s( ) K s 1+( )
s2 4s 5+ +
-------------------------- K' s 1+( )

1/5( )s2 4/5( )s 1+ +
--------------------------------------------------= =

1
5
---s2 4

5
---s 1+ + τ2s2 2τζs 1+ +=

τ2 1
5
--- τ→ 1

5
------- 0,447= = =

2τζ 4
5
--- ζ→ 4

5
--- 1

2τ
-----⎝ ⎠

⎛ ⎞ 2
5
--- 5 2

5
------- 0,894= = = = =

G s( ) K
τ2s2 2τζs 1+ +
--------------------------------------=

G s( ) K s 1+( )
τ2s2 2τζs 1+ +
--------------------------------------=

ωr g 1,86 RA ωr( ) g 2,8

U(s) Y(s)
F(s) = 

0,1s+1
1 G(s) = s+1 

s+3
6 e–0,1s
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a) Représenter G(s) dans un diagramme d’amplitude de Bode asymptotique.
b)Calculer la valeur de α pour que la sortie du système suive sans retard de
phase l’entrée u(t) = 2sin(3t).

c) Pour la situation donnée au point b), calculer l’amplitude de la sortie en
régime permanent.

Solution

a) G s( ) 6 s 1+
s 3+
-----------⎝ ⎠

⎛ ⎞ e 0,1s– 2 s 1+( )
s/3 1+( )
---------------------e 0,1s–= =
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100

10-1 100 101 10210-1
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2
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b)

ϕ = 0 pour ω = 3 rad/s donne:

c)

ce qui donne une sortie d’amplitude 8,64.

Exercice 9

Un phénomène de transport est modélisé par un retard pur de 2 s. A l’aide d’un
développement en série de Taylor, on obtient l’approximation de Padé suivante:

a) Représenter G(s) et son approximation de Padé dans un diagramme de Bode
asymptotique.

b)Calculer le rapport d’amplitude et le déphasage de G(jω) et de son aproxi-
mation de Padé pour ω = 5 rad/s.

c) Evaluer l’ordre et le gain statique de G(s) et de son approximation.

H s( ) F s( )G s( ) 2 αs 1+( ) s 1+( )
0,1s 1+( ) s/3 1+( )
----------------------------------------------e 0,1s–= =

ϕ H jω( )( )arg arctan αω( ) arctan ω( ) arctan 0,1ω( )–+= =

arctan ω
3
----⎝ ⎠

⎛ ⎞– 0,1ω–

arctan 3α( ) arctan 3( )– arctan 0,3( ) arctan 1( ) 0,3+ ++ 0,1278= =

α 0,1278( )tan
3

----------------------------- 0,043= =

RA H jω( ) 2 1 0,043 3⋅( )2 1 32+( )+
1 0,3( )2+( ) 1 12+( )

--------------------------------------------------------- 4,32= = =

0 1 2 3 4 5 6 7 8 9 10
-5

-4

-3

-2

-1

0

1

2

3

4

5

t

u

y

u, y

G s( ) e 2s– e s–

es
------- G 1 s–

1 s+
-----------= =
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Solution

a) GPadé jω( ) 1 jω–
1 jω+
----------------=

GPadé jω( ) 1 jω–
1 jω+
------------------- 1 ω2+

1 ω2+
-------------------- 1= = =

GPadé jω( )[ ]arg 1 jω–( ) 1 jω+( )arg–arg 2arctan ω( )–= =

10-1
100 101

10-1

100

-1200

-1000

-800

-600

-400

-200

0

[°]φ

φ1 = φ2 

φ

 [rad/s]

RA

 [rad/s]

Padé

ω 

ω 5
10-1

100 101
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b)Pour ω = 5 rad/s

c)G(s): ordre infini; gain statique = 1
GPadé(s): ordre 1, gain statique = 1

G 5 j( ) GPadé 5 j( ) 1= =
G 5 j( )[ ]arg 2 5⋅– 10 rad– 573°–= = =
GPadé 5 j( )[ ]arg 2arctan 5( )– 2,75 rad– 157°–= = =
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