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Solution

1. To derive the governing equations of motion we first write the radius vector to each mass.

r, =x% r, =[x+Lsin(0)]%-Lcos(0)y (1)
The velocities are:
t, =& £, =[%+LOcos(0)]k+LOsin(6)§ )
From that, we obtain:
e, [ =3, || =4 +L°6” +2Lcos(8) 10 3)

The kinetic and potential energies, Rayleigh dissipation function, and the Lagrangian are
T=1M +lm[x2 + 267 +2Lcos(6) 16 |
2 2
1
V = =lx* — mgLcos(6)
)
] e Q)
D=—¢i* +~c,b*
2 2

L=T-V= %(M+m)ic2 +%mL219'2 +mLcos(é’)J'cE’—%k:x2 +mgLcos(6)

2. To derive the state-space representation we begin with defying the state vector, and input vectors

X X X, x
6 i 6
T R = BN £ ] B s
5o X X, X
X, ] X, é
u=(F 1)
Then, from the equations of motion, we have:
e e oW e A S iE DR S
M LM M M M LM
, (m+M)c, G (m+M)g k u M+m
X, =St ——, ————— X, t——— X u,
L' Mm M LM LM LM L'Mm
Recasting into matrix form including the output we obtain: @ O
(0 0 1 0 ) o O
0 0 0 1 X 1 1
il k. om a4 o IR M M [”]
M M M LM X, 1 M+m\u
k (m+M)g ¢ (m+M)c, |\x, LM  ’Mm
LM LM LM LI'Mm )
1 L 00 g (1)
y=(0 0 1 O[x+[0 —|u
oL
0 0 0 L
0 0
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3.

The transfer function is obtained as follows, where 7=0 sine it is not an input.
%+8%—40+200x—-200 = 2F
6 +120 -16x + 600 — 400x = —4F

(s +85+200) X — (45 +20)@ = 2F
(s* +125+60)© (165 +400) X = —4F

~(5* +125 4 60)(45+20)@+ (s + 125+ 60)(s* + 85 +200) X = 2(s* +125+60) F
{(s2 +125+60)(4s+20)® - (45 +20)(165+400) X = ~4(4s +20) F

[(* +125+60)(s” +85+200) — (45 +20)(165+400) | X =[ 2(s* +125+60) - 4(4s+20) | F

G(s)=£= 2(s* +125+60) - 4(4s+20) _ 257 + 85+ 40
F (5" +125+60)(s* +85+200)—(4s+20)(165+400) s°+20s° +2925" +960s + 4000

Analyzing the numerator, we can find that we have a complex zero z,, =18i, suggesting a strong dip in the
Bode plot at 8 rad/s. From the denominator we can find:

w, =12rad/s, ¢, =0.75>0.707

, = 4rad/s, ¢, =0.03<0.707

This suggest a resonance peak at 4 rad/s and overdamped response, i.e., no resonance peak at 12 rad/s.
Therefore, the correct plot is b.

Since the transfer function has four complex poles (-271) and two real zeroes (+m), the phase after which
should be —mt (-180°).
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