

ME-221 — Sample Exam Questions (from 2017)

Problem 1

Consider the mechanical systems shown below. The system is initially at rest. The displacements z_1 , z_2 and z_3 are measured with respect to their equilibrium positions before the application of an external force F .

1. Derive the equations of motion. Note that O and O' points have zero mass. Does the displacement of the mass m depend on the stiffness coefficient k_3 ?
2. Formulate a state-space representation of the system by taking the force F as the input and the displacement z_1 as the output of the system.
3. Calculate the transfer function $\frac{Z_1(s)}{F(s)}$.
4. Propose a circuit diagram that is analogous to this mechanical system using the force-voltage analogy.

Problem 2

Consider the dynamical system described by the following state equations:

$$\begin{aligned}\dot{x}_1 &= 2x_1 + 2x_1x_2 + u & x_1(0) &= 0 \\ \dot{x}_2 &= x_2 + 3x_1x_2 & x_2(0) &= 0\end{aligned}$$

1. Calculate the equilibrium point if $\bar{u} = 1$ and $\bar{x}_1, \bar{x}_2 \neq 0$.
2. Linearize the system around this equilibrium point. Write down the state equations.

Problem 3

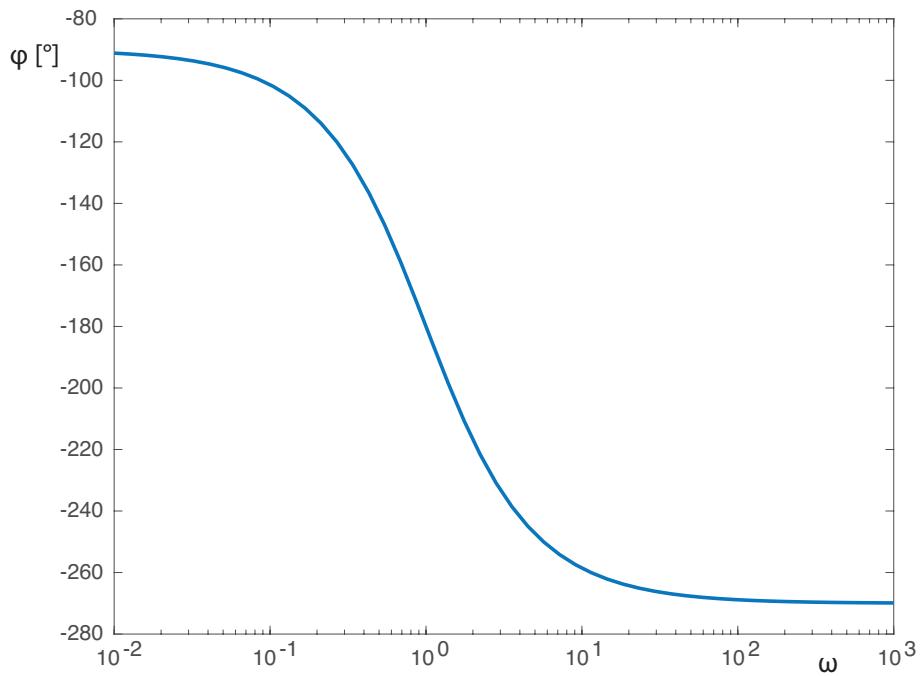
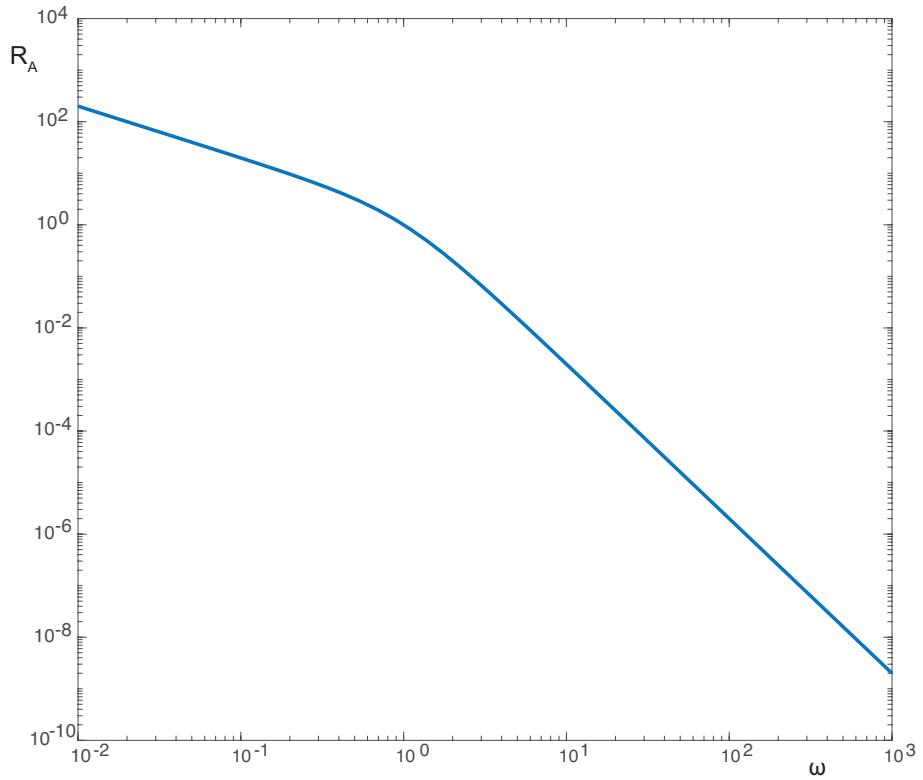
- a) Calculate the displacement $x(t)$ of a mechanical system described by the following differential equation:

$$m\ddot{x}(t) = F(t) - kx(t) - f\dot{x}(t) \quad x(0) = \dot{x}(0) = 0$$

The system parameters are measured as $m = 2$ kg, $k = 10$ N/m, $f = 8$ Ns/m, and the input force $F(t)$ is given by:

$$F(t) = \begin{cases} 1 \text{ N} & \text{for } t < 5, \\ 0 & \text{for } t \geq 5. \end{cases}$$

- b) Calculate the unit-step response of a system with the impulse response $g(t) = e^{-t} + e^{-2t}$ using convolution operation. Verify the result using Laplace transform.



- c) Find the output $y(t)$ of a system described by the following differential equation:

$$\ddot{y}(t) + 8\dot{y}(t) + 17y(t) + 10y(t) = 0$$

The initial conditions are given by $y(0) = 2$, $\dot{y}(0) = 1$, $\ddot{y}(0) = 0.5$.

Problem 4

Consider a dynamical system with the following Bode Diagram.

- a) Calculate the transfer function of the system $G(s)$. What is the order of the system and where are the poles located? Find the static gain and the time constant of the system.
- b) Imagine that we want to design a first order filter (denoted by the transfer function $F(s)$) with a zero at -1 . The filtered system is expected to have a magnitude of 1 and phase shift of -145 at $\omega = 1$. Find the gain and the time constant of $F(s)$ that would lead to the desired specifications. Note that, the transfer function of the filtered system $G_f(s)$ is simply the product of the transfer function of the original system and the transfer function of the first order filter (i.e. $G_f(s) = G(s)F(s)$).