

ME-221

Addendum for week 5: Convolution

Linear system The output of a linear dynamical system is expressed as the superposition integral of the input and of the impulse response of the system:

$$y(t) = \int_{-\infty}^{\infty} u(\tau)g(t, \tau)d\tau \quad (1)$$

where $g(t, \tau)$ is the impulse response observed at time t , with an impulse applied at time τ .

Linear, time-invariant (LTI) system If the system is time-invariant, a delay in the impulse will cause the same delay in the output:

$$g(t, \tau) = g(t + \alpha, \tau + \alpha) \quad \forall \alpha \quad (2)$$

Therefore, the impulse response will not depend on t and τ independently but only on the gap between the observation time and the application of the impulse $t - \tau$.

By fixing $\alpha = -\tau$ and substituting, we get:

$$g(t, \tau) = g(t - \tau, 0) \quad (3)$$

which we will call $g(t - \tau)$.

Therefore for a time-invariant system, equation 1 can be written as:

$$y(t) = \int_{-\infty}^{\infty} u(\tau)g(t - \tau)d\tau \quad (4)$$

LTI, initially at rest For a system that is initially at rest, inputs $u(t)$ for $t < 0$ do not influence the output. Therefore, the lower integration limit is 0:

$$y(t) = \int_0^{\infty} u(\tau)g(t - \tau)d\tau \quad (5)$$

LTI, initially at rest and causal In a causal system, the output only depends on past inputs. Therefore, the upper integration limit will be t , because inputs $u(\tau)$ applied at $\tau > t$ cannot influence the output. The convolution integral is therefore written as:

$$y(t) = \int_0^t u(\tau)g(t - \tau)d\tau \quad (6)$$