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Boundary M(0) =0 V(I)=0 V(0)=0
Conditions M(l)=0 M(l)=0 M(l) =0
Constants C = %qol Ch = q,l Ch =
of integration Co=0 Cy = —%qol2 Cy = %qOZQ
Stress V = %qol (1 — 2%) V =gl ( — %) V = —q,x
Resultants M = %qol%}—: (1 — %) M = —%qoi2 (1 %)2 M = %qoiz (1 — (%)2)
Support A=V(0)= 3l A=V(0) = ql My = M(0) = g0l
Reactions B=-V(l) = 3ql My = M(0) = —1q,0* B =-V(l) = qol
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L14.2 Arches

Example 14.2 — An arch:. We consider an arch subjected to a concentrated force F’

The reactions can be readily obtained from the equilibrium of the whole structure

1 1
By:—F; AV:—By:——F; AH:F GIObaI

4 4 Equilibrium

The internal loads can be determined by segmenting the arch into two parts: part (1) for
0 < ¢ < 30° and part (2) for 30° < ¢ < 180°.




ZF/:0:

ZF\:():

ZMC:():

Equilibrium for part (1) (0 < ¢ < 30°):

N+ Ay cos¢p — Agsing =0 =
1

N(z) = (sinqﬁ+ Zcosgb) F

V —Aysing — Agcosgp =0 =

1

Vi) = (cosqb — 7 sin qb) F

M —rsingpAg —r(l —cos¢)Ay =0 =

1 1

M(x) = (singb+ Zcosqb— Z) rF



Equilibrium for part (2) (30° < ¢ < 180°): For simplicity, we introduce the angle
) = m — ¢ and write the equilibrium conditions for part (2).

ZF&=0: N+ Bcosy =0=

1 1
N(x) = —EFcosw = ZFCOSQO
Y F/=0: V+Bsing=0=
1 1
Viz) = —ZFsinw = _ZFSim’O
ZMO:(): — M+7r(1l—cosy)B=0=
1 1
M(x) = 1(1 —cosy)rF = Z(l + cos p)rF

Note that the jumps AN = F/2 in the normal and AV = /3F/2 in the shear force,
both at ¢ = 30° correspond, respectively, to the components of the forces tangential and
orthogonal to the arch there.
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