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INTRODUCTION.

Le seminaire de l'Universite Paris VII sur les representations des

groupes reductifs (seminaire Rodier) etait consacre en 85-86 aux represen-

tations metaplectiques sur un corps p-adique. Les travaux sur ce sujet de

divers auteurs (Howe, Kudla, Rallis .•. ) ont ete exposes. Au cours de ce

seminaire un certain travail de mise en forme, de "polissage", a ete effec-

tue, tant en ce qui concerne les generalites sur les representations meta-

plectiques qu'en ce qui concerne les travaux recents evoques ci-dessus.

Certains points se sont eclaircis, au moins aux yeux des auteurs, et il a

semble qu'il n'etait pas inutile de mettre au net une partie du travail

effectue et de la publier. Ce livre contient done peu de travaux veritable-

ment originaux des auteurs, et doit etre concu comme un compte-rendu de

l'activite du seminaire.

Le premier chapitre contient des generalites "geometriques" sur les espaces

hermitiens: classification, theoreme de Witt, lagrangiens, groupes unitaires

et leurs sous-groupes paraboliques. En particulier, on y introduit et clas-

sifie les paires reductives duales. Le deuxieme chapitre contient des gene-

ralites sur les representations metaplectiques (ou "de Weil") sur un corps

p-adique: groupe d'Heisenberg, theoreme de Stone-Von Neumann, groupes meta-

plectiques. On y enonce la conjecture de Howe. Le troisieme chapitre se

decompose en deux. Dans un,premier paragraphe, on montre qu'un groupe inter-

venant dans une paire reductive duale irreductible est "scinde" dans le

groupe metaplectique, a l'exception du cas bien cannu du groupe symplec-

tique. Le second paragraphe est un expose de l'article de Kudla "On the

local theta correspondence", generalise au cas d'une paire reductive duale

quelconque: compatibilite de la conjecture de Howe avec l'induction parabo-

lique, demonstration de la conjecture pour les representations cuspidales

(ce dernier point s'appuyant essentiellement sur un travail de Rallis).

Le quatrieme chapitre contient quelques resultats se deduisant de l'etude
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des classes de conjugaison dans les groupes unitaires: determination des

contragredientes des representations de certains de ces groupes, commutati­

vite de l'algebre de Hecke d'un groupe metaplectique, commutant d'une paire

reductive duale dans la representation metaplectique. Le cinquieme chapitre

expose la demonstration de la conjecture de Howe pour les paires non rami­

fiees. Qu'il soit bien clair que cette demonstration est due a Howe, et

que c'est seulement parce que nous concevons ce livre comme un compte­rendu

de seminaire que nous nous permettons de la publier. Le sixieme chapitre

expose les travaux de Howe sur les representations de petit rang. On etend

cette notion dans Ie cadre des representations lisses, on classifie les

representations de petit rang, on etablit Ie lien entre cette classifica­

tion et la correspondance (conjecturale) de Howe.

Les chapitres 1 et 3 ont ete ecrits par Vigneras, les chapitres 2, 4,

5 par Waldspurger, Ie chapitre 6 par Mreglin. Bien que chaque auteur assume

plus particulierement la responsabilite des chapitres qu'il CelIe) a ecrits,

il y a eu des echanges et influences reciproques entre eux

trois. II y a eu egalement influence des autres participants au seminaire

de Paris VII, que les auteurs remercient.
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Chapitre 1. Espaces hennitiens.

I - Generalites surla classification des espaceshermitiens.

1.Definitions. Soit D un corps (pas necessairemenr commutatif, mais de dimension finie sur

son centre), muni d'une involution t, i.e.d'un anti-automorphisrne de carre I'application identique.

On a done

t(d+d')=t(d)+t(d') , t(dd')=t(d')'t(d) , 'tCt(d»=d, pour d.d' e D.

On note F le corps commutatif forme par les points fixes de 'to Soit W un espace vectoriel adroite
sur D , de dimension n, muni d'un produit £-hermitien, i.e. d'une application sesquilineaire <, >

de WxW dans D, lineaire en la seconde variable, i.e, -cwd.w'dc-etrdj-cw.w'xd' , non degeneree,

telle que

<w',w> = £ t«w,w'».

Pour que cette definition ait un sens, I:: doit appartenir au centre F' de D, et verifier I::t(£)=l.

Deux elements de W sont orthogonaux si leur produit hermitien est nul.

Deux D-espaces e-hermitiens sont Isometriques (resp. sembI ables) s'il existe une application

Dslineaire bijective de l'un sur l'autre conservant le produit hermitien (resp. amultiplication pres par

un element du centre de D). Une telle application s'appelle une Isometric (resp. similitude).

L'ensemble des isometrics de (W,<, » dans lui-meme forment un groupe V appele le groupe

unitaire de (W,<, ».

Ces definitions se generalisent au cas ou D est un anneau ainvolution [Sc 7.1].

Remarques: Un D-module agauche Vest canoniquement un DO-module adroite, OU DO est Ie

corps oppose a D (la multiplication est definie par dxd' = d'd). L'involution permet de convertir un

D-module adroite en un D-module agauche, en posant dxv=n(d) si ve V,de D. Une application

sesquilineaire sur un D-module agauche V ava1eurs dans D est lineaire en la premiere variable:

si v.v'e Vet d.d'e D, on a -cdv.d'v'xed-cv.v'c-ttd'). Inversement, tout D-module agauche peut etre
eonverti en un D-module adroite.
L'ensemble V*=Hom(V,D) est muni naturellement d'une structure de D-espace agauche donnee
pas (df)(v)=d(f(v» si fe V*. Nous considerons toujours V* avec sa structure d'espace adroite
definie comme ci-dessus, meme si D est commutatif... et nous l'appelons le dual de V. Avec cette

definition, le produit hermitien definit un D-isomorphisme entre W et son dual : ,

w*(v)=<w,v> si w,veW.

II definit sur l'algebre A=EndDW une involution : ,ou

<f(w),w'>=<w,f*(w'» si w,w'eW;

f* est l'adjoint de f. Le groupe unitaire V (W) est egal a{ue A, uu*=id. } II est bien connu que

l'application W A=EndDW induit une bijection entre

a) 1esespaces hermitiens de dimension finie, asimilitude pres,

b) les algebres centrales simples ainvolution de dimension finie, aisomorphisme pres.
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2. Exemples. Les espaces e-hermitiens sont des generalisations des espaces

1) quadratiques (D=F, £=1)

2) symp1ectiques (D=F, £=-1, caracteristique differente de 2)

3) hermitiens (D=F' est une extension quadratique de F ,£=1)

Dans le cas 1) le groupe U est le groupe orthogonal de W , note aussi O(W), dans le cas 2) le

groupe U est le groupe symp1ectique de W, note encore Sp(W).

Les exemples fondamentaux :

4) les espaces e-hermitiens D(a) de dimension 1. Soit aED tel que a=e't(a). On note D(a)

le D-espace vectoriel adroite D muni du produit e-hermitien <d,d'> 't(d)ad'.

5) le plan hyperbolique s-hermitien H egal au D-espace vectoriel adroite DxD muni du

produit s-hermitien «d1,dz),(d\ ,d'z» = 't(d1)d'z+£'t(dz)d'l .

6) Si Y est un D-espace a droite, W=Y+y* muni du produit hermitien

«v,f),(v',f»=f(v)+£'t(f(v'»

est un espace s-hermitien canonique associe av generalisant 5).

3. Involutions. La classification des involutions sur une algebre simple est bien connue. Une

involution 't sur D envoie le centre F de D sur lui-memo, ce qui ouvre la voie adeux
possibilites :

1) c'est l'identite sur F , on dit alors qu'elle est de premiere espece, alors e = +1 (l'espace sera

dit hennitien) ou -1 (espace antihermitien). On doit avoir D",Do. C'est un theoreme [Sc. 8.4] que D

adrnet une involution de premiere espece si et seulement si D",Do.

2) Fest une extension quadratique separable de F, 't restreint aF est le F-automorphisme non

trivial o de F'. On dit alors que 't est de seconde espece. Mais par Ie theoreme 90 de Hilbert, si

£EF verifie ee(f=l, il existe I!EF tel que £=I!(f/I!. Ona

l!<w,w'>=I!£'t«w',w»='t(I!<w',w».

La multiplication par I! fournit une bijection entre les espaces e-hermitiens et les espaces

l-hermitiens (dits hennitiens). Onse lirnitera done aux espaces hennitiens, quand l'involution est de

seconde espece.

Si D(f est le corps conjugne de D, on doit avoir D",D(fo. Inversernent, si D",D(fo, il existe un

anti-automorphisme t de D prolongeant o . Comrne tZest un automorphisme , il existe aED, tel

que tZ(d)=ada- 1 , de D. C'est un theoreme [8.8.2] que a=at(a) E F ne depend que de D, et que D

admet une involution prolongeant o si et seulernent si a est norme d'un element de F. Si D est un

corps de quaternions, on peut montrer qu'une involution de seconde espece existe sur D, si et

seulement si D = D1®pF ou n' est un corps de quaternions sur F.
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4. Involutions sur un corps fini, local, ou global.

1) Si Fest fini, tout corps fini etant commutatif, on a seulement deux cas: D=F , ou D=F est

l'unique extension quadratique de F.

2) Si F =C , D=C , l'involution est triviale, ou l'unique automorphisme non trivial d'ordre 2 de C ,

la conjugaison complexe.

3) Si F=R, D=R, ou Ie corps des quaternions H de Hamilton. Comme R n'admet pas

d'automorphisme d'ordre 2, l'involution dans ce cas est triviale. De plus, H n'admet pas

d'involution de seconde espece, Le theoreme de Skolem-Noether montre que la conjugaison

canonique de H sur R est amultiplication par un automorphisme interieur pres, I'unique

involution de premiere espece sur H.

4) Si F est un corps local non archimedien, par le meme raisonnement, on trouve :

a)D=F

b) D=F , une extension quadratique separable de F

c) D=le corps de quatemions H sur F (unique aisomorphisme pres), involution canonique a
automorphisme interieur pres, et F=F .

nn'y en a pas d'autre, la condition de (3.2) etant impossible.

5) Si F est un corps global, on a encore les trois cas a),b), et c) pour un corps de quaternions

quelconque, mais ce n'est pas tout: il y a des cas d'involution de seconde espece.

d) Si Fest une extension quadratique separable de F, Do un corps de quaternions de centre F,

est muni de l'involution de seconde espece, produit tensorielde l'involution canonique

de Do sur F et de 0' .

Soit p une place quelconque de F' et e Q IZ !'invariant local en p du corps gauche D. On a

= 0 (i.e. est une algebre de matrices),pour presque tout p, et Ldp 0 .

A isomorphisme pres, D est caracterise par ses invariants locaux.

d general) F' est une extension quadratique separable de F, d'automorphisme non trivial 0' , D un

corps gauche de centre F, tel que

= 0 , si p=pO' et 0' = 0, sinon
p

Alors D admet une involution prolongeant 0'.

Ces conditions sont evidemment necessaires car -d 0" par (3.2) et (4). Inversement, elles
p

impliquent D,·nO'o , et ue F de (3.2) est une norme locale partout, done la norme d'un element de

F.
La liste est complete.



4

5. Somme orthogonale.

Si Wet W' sont deux espaces e-hermitiens adroite sur D, alors la somme directe W"=W+W' est

un espace adroite sur D, muni de l'unique produit e-hermitien tel que W et W' soient orthogonaux,

prolongeant les produits e-hermitiens de W et W'. C'est par definition, la somme orthogonale de W

et W', notee W$W'.

Un espace e-hermitien degenere est somme orthogonale W+V d'un espace e-hermitien (non

degenere) W et d'un espace V sur lequelle produit est nul. On adopte la convention: un espace W

muni d'un produit hermitien nul est dit de type 2. C'est simplement un espace vectoriel de

dimension finie sur D (plus d'involution), son groupe unitaire est Ie groupe des isomorphismes

GLD(W). C'est commode, pour avoir des resultats unifonnes sur les groupes lineaires et unitaires,

Par ricochet, un espace s-hermitien (non degenere) est dit parfois de type 1.

La somme orthogonale est compatible avec l'isometrie : elle munit l'ensemble des classes

d'isornetrie des espaces e-hermitiens sur D d'une structure de semi-groupe abelien, C'est Ie

semi-groupe de Witt-Grothendieck des espaces s-hermitiens sur (Drt). Le groupe construit

avec ce semi-groupe est Ie groupe de Witt-Grothendieck des espaces e-hermitiens sur (Drt).

Soit H le plan hyperbolique s-hermitien sur D. Le quotient du groupe de Witt-Grothendieck des

espaces e-hermitiens sur D par le sons-groupe, isomorphe aZ , engendre par la classe d'isometrie

de H s'appelle le groupe de Witt des espaces s-hermitiens sur (D,"C).

6.Nous dirons que West alterne si <W,W> = 0 pour tout WE W. Cette relation appliquee aw+w'
donne E"C«W,W'»+<w,w'>=O, ce qui implique que "C est triviale. Si la caracteristique de F n'est pas

2, E=-I, West symplectique.

Theoreme d'orthogonalisation. West isometrique aune somme orthogonale

W "" $ D(aj) $WO,

oil WO est un espace alterne,

Corollaire. Si la caracteristique n'est pas 2, tout espace non symplectiqueWest isometrique a
une somme orthogonale W .. $ D(aj)'

La decomposition n'est pas unique, comme le montre l'exemple des espaces quadratiques. EI1e

pennet de definir les invariants.

Invariants. Si West quadratique, ee sont le determinant d(W)e F*/F*2 represente par le

produit des aj ,l'invariant de Hasse heW) = llkj(aj,aj) oil ( , ) est le symbole de Hilbert si Fest

local ou global, la signature si F=JR egale asCW) = p-q oil p est le nombre de aj positifs et q le
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nombre de !Ij negatifs (la dimension et la signature determinent (p,q) et inversement).

Dans le cas general, le determinant se generalise et donne un invariant. Soit N : D -...? F' est la norme

reduite, NF/F:F'-...?F la norme. Le determinant d(W) est l'image de N(I1!1j) dans F*IF*2 ou

d(W)E F*INF/F(F*) selon que t est de premiere ou de seconde espece.

La signature s(W) se generalise aux espaces hermitiens sur C (meme definition).

Nous verrons que ces invariants, et la dimension, suffisent Ii classer les espaces hermitiens si Fest

fmi ou local, Ii une exception pres (les espaces anti-hermitiens sur un corps de quatemions muni de

l'involution canonique).

Preuve du theoreme par le classique precede d'orthogonalisation de Schmidt: si W non alterne.soit

WEW, tel que a =<w,w>;t(). On a: a=et(a). On complete Wen une base (w,v2, .....,vnJde W sur

D. On choisit de D tel que wd+v2 soit orthogonal aw, ... etc. On peut done supposer les Vi

orthogonaux Iiw. L'espace qu'ils engendrent est un espace s-hermitien de dimension n-I, s'il n'est

pas alterne, on peut continuer,etc.

7. Theoreme, Si West alterne, i1est isometrique Ii mH ,et n=2m.

Preuve. Si w;t(), il existe VEW, d <w,v>;t() ,puisque la forme n'est pas degeneree, Soit w'=vd-1•

Le sous-espace WIde W engendre par (w,w'} est isometrique aH. Soit W2 son orthogonal dans

W. Comme WI n'est pas degenere, West la somme orthogonale de WI et W2 -Cornme W2 est

alteme, de dimension n-Z, on recommence, etc.

On a ainsi une decomposition (non unique) de W en somme d'espaces elernenraires D(a) et H.

Les espaces alternes sont classes par leur dimension ne 2iN,

D(a)+D(-a) est isometrique a H, car isotrope de dimension 2.

On note -W l'espace e-hermitien d'espace W, de produit -<, >, alors W + (-W) est isometrique a
nH. Un espace isometrique Ii nH est dit hyperbolique.

La meme demonstration fournit aussi :

8. Proposition (Base hyperbolique). Si VeW est un sous-espace vectoriel adroite sur D,
tel que le produit hermitien soit nul sur VxV, pour toute base (ei) de V sur D, il existe des

elements (fi} de W , teIs que <ei,f?=oij' et le produit hermitien est nul sur l'espace V* engendre

par les (fi).

Si r=dimV, l'espace V+v* est s-hermitien, isometrique arfl, La base (ei,fi) de V+V* est appelee

une base hyperbolique de V+V*. On dit que Vest totalement isotrope, s'il verifie les
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conditions ci-dessus, S'il existe WE W, non nul, et <w,w>=O, on dit que west isotrope. Alors W

contient un sous-espace isornetrique it H. Un espace sans elements isotropes est appele un espace

anisotrope,

Corollaire (decomposition de Witt). West isometrique it une somme orthogonale

W", mH 9Wo,

ou WO est anisotrope.

Le theoreme de Witt ci-dessous montrera que l'entier et la classe d'isometrie de Wo sont

uniques. On appelle m l'indice de Witt de W. La classification des espaces e-hermitiens est
ramenee it celIe des espaces e-hermitiens anisotropes, ou encore it la determination du groupe de

Witt.

9. Le theoreme de Witt est valable si l'on n'est pas dans Ie cas exceptionnel suivant :

(*) F est de caracteristique 2, West quadratique et non alterne.

Notre reference est [Dieu. 1.11].

Theoreme de Witt. Si VeW est un sous-espace vectoriel it droite sur D, une application lineaire

injective f de V dans W telle que <f(v),f(v'» =<v,v'> pour tout V,V'E V peut etre prolongee en

une isometric de W .

On en deduit que l'entier m de (8) est unique, c'est la dimension d'un sous-espace totalement

isotrope maximal de W. Si West hyperbolique, un tel espace est appele un Lagrangien de W.

Tout sous-espace totalement isotrope se plonge dans un sous-espace totalement isotrope maximal.

Le but des paragraphes suivants 10 a15 est de donner les resultats de la classification des espaces

e-hermitiens sur les corps finis, locaux et globaux. Ce sont essentiellement un resume de [Sc.ID].

Ces paragraphes ne sont pas utiles pour l'etude de la representation de Weil et de la correspondance

de Howe.

10. Invariants: donnees associees it un espace s-hermitien, telles que deux espaces e-hermitiens

sont isometriques si et seulement s'ils ont les memes invariants. Les invariants donnes en (6)

foumissent un systeme complet d'invariants (parfois redondant) sur un corps fini ou local .

La classification des espaces hermitiens W sur un corps commutatif ou egal aun corps de
quatemions muni de l'involution canonique se ramene it celle des espaces quadratiques. L'espace W

considere comme un espace vectoriel sur F, muni de la restriction du produit hermitien :

est un espace quadratique WpoDeux tels espaces W et W' sont isometriques si et seulement si WF
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et W'p Ie sont. L'espace West isotrope si et seulement si Wp l'est,

11. Classification des espaces hermitiens sur un corps fini ou local. de

caracteristique differente de 2.

1) Si Fest fini,

a) les espaces quadratiques anisotropes sont : F(a), ou ae F* modulo F*·2, et V=E l'unique

extension quadratique de F, munie de la norme sur F.

b) il y a un seul espace hermitien anisotrope, E

Invariants des espaces quadratiques : la dimension ne N et le determinant ds F*IF*2

Invariants des espaces herrnitiens sur E : la dimension ne N , nz l.

2) Si F=C , C (1) est l'unique espace (quadratique) anisotrope. II y a un seul invariant, la dimension

nz l.

3) Si F=R, les anisotropes sont : nR (1) , -nR (1) n , pour les quadratiques, nC , - nC ,

pour les hermitiens sur C , H hermitien de dimension 1 sur H .

Invariants des espaces quadratiques: la dimension l,la signature SEZ .

Invariants des espaces hermitiens sur C : la dimension la signature SEZ .

Invariant pour les espaces hermitiens sur H : la dimension nzl ,

4) Si F est local non archimedien, les quadratiques anisotropes sont

a) F(a) , pour ae F* modulo F*2, de dimension 1,

b) E, E(f) ,pour chaque extension quadratique EIF,munie de la norme sur F, fE F* n'est pas norme

d'un element de E, de dimension 2 .

c) H *(a) ou H , si H est l'unique corps de quaternions sur F , muni de la norme reduite, H *0

etant le sous-espace des elements de trace nulle, ae F*IF*2 , de dimension 3 et 4 respectivement.

Invariants des espaces quadratiques : la dimension nz1, le determinant dE F*IF*2 , et en dimension

n> 1 le symbole de Hasse h 1 ou -1.

Espaces hermitiens sur E . Les anisotropes: b) et H . Invariants: la dimension, le determinant.

Espaces hermitiens sur H . Invariant: la dimension. Un seul espace anisotrope, celui de dimension

1

12. Dans Ie cas ou Fest fini ou ega! aC , la classification est faite. Dans Ie cas F= R ou est local

non archimedien, il reste aclasser les espaces anti-hermitiens sur Ie corps des quaternions H . Si

ae H 0, _a2 est sa norme reduite, c'est un element quelconque de F-{ - F 2}. La proposition

ci-dessous est une version corrigee par cette remarque de [Sc.3.6].

Classification des espaces anti-hermitiens sur un corps de quaternions local

Classes d'isometries des espaces anisotropes: a) si F;tR ,
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- 3 espaces de dimension 1 , leur determinant peut prendre toutes les valeurs possibles sauf _F*2 ,

- 3 espaces de dimension 2 , de determinant different de F*2 ,

- un espace de dimension 3, de determinant _F*2.

Invariants: la dimension nz l, le determinant de F*/F*2 , d;t:-F*2 si n=1.

b) Si F=lR , un unique espace de dimension 1. Invariant: la dimension nz l.

Exercice (utile) : soit A=M(2,F) muni de l'involution canonique, conjuguee de la transposition par

u=(O,I;-I,O), les matrices etant ecrites en ligne. Si Vest un A-module antihennitien libre de rang n,

alors Ve, ou e=(I,O;O,O)est un F-espace vectoriel quadratique de dimension 2n (pour la restriction

aVe du produit hennitien sur V). Par passage au quotient, on obtient une injection du groupe de

Witt-Grothendieck des espaces anti-hermitiens sur M(2,F) dans celui des espaces quadratiques sur

F.

13. La classification des espaces e-hermitiens si F est un corps global, de caracteristique differente

de 2, se deduit de la classification locale (11,12), de la description des corps ainvolution globaux

(4), au moyen des principes de Hasse A et B de passage du local au global

A - Deux espaces e-hermitiens sur D sont isometriques, si et seulement s'ils sont isornetriques en

route place p' de F'.

B - Un espace s-hermitien sur D est isotrope, si et seulement s'il est isotrope atoute place p' de F.

et au moyen de la caracterisation des systemes locaux (Vp') d'espaces e-hermitiens sur Dp' (qui

n'est pas un corps gauche en general) provenant par localisation d'un espace e-hermitien sur D.

Theoreme. Les deux principes de Hasse A et B sont vrais sauf dans le cas exceptionnel ou D est

un corps de quatemions muni de l'involution canonique, et e=-1.

Voir [Sc. 10].

14. Dans le cas exceptionnel (12), la deviation au principe de Hasse se voit en dimension 1, et

la generalisation n'est pas difficile; soit D un corps de quaternions sur F, muni de l'involution

canonique, et ieD", Soit s le nombre de places p de F ramifiees dans D. Procedant comme en (13),

si W=D(i), et W' sont localement isometriques, Us ont meme determinant, et l'on se ramene a
W'=D(fi) , fe P..Soit cx=i2, et l3eF tels que D soit engendre par i,j te1sque i2=cx, P=I3, ij=-ji. Pour

que D(fi) soit isometrique aD(i), il faut et il suffit qu'il existe de D tel que di't(d)=fi. On ecrit

d=x+yj , ou x,ye F(i). La condition implique x ou y O.On obtient les equivalences (en utilisant

(6),(11),(13»:

D(i) ""D(fi) il existe x,yeF tels que x2_cxy2 = f ou I3f l'espace quadratique F(f)+P(-cxf;

est isometrique aF+F(-cx) ou aF(I3)+F(-cxl3) (f,cx)p=1 en toute place p de F , ou (f,a)p=(I3,a)p

en toute place p de F.

En une place p ramifiee dans D , les espaces Dp(i) et Dp(fi) sont isometriques. Ailleurs Dp""M(2,Fp)

et un cas particulier de la theorie de Morita, facile averifier (12), montre que

Dp(i)""Dp(fi) (f,cx)p=1 =(I3,cx)p'
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n y a 28-1choix possibles pour ')'(f) = (f,a)p'p ramifie dans D), si D(fi) est localement

isometrique 11 D(i). Pour que D(fi) soit globalement isometrique 11 D(f'i), il faut et il suffit que

y(f) =±"f(f).

On en deduit la premiere partie du resultat suivant pour n=1. La generalisation n'est pas

difficile(Sc.8.4). La deviation au principe de Hasse d'isotropie est plus difficile.

Proposition. A- II y a exactement 2s-2 classes d'isometries d'espaces anti-hermitiens localement

isometriques 11 un espace anti-hermitien donne.

B - Si dimD et si West localement isotrope, alors West isotrope.

Notons que la demonstration foumit la structure du groupe unitaire de D(i), qui ressemble 11 celIe

d'un groupe orthogonal. Soh F(i)1 l'ensemble des elements de F' F(i), de norme I sur F.

Lemme. Le groupe unitaire de D(i) est isomorphe 11 celui de F'(l) i.e. 11 F(i)l.

Remarque. Si F est un corps local, il est facile de verifier (voir aussi le lemme 5 de IT) que

l'algebre engendree par U(W) dans A = EndDWest egale 11 A sauf dans les deux cas suivants :

- West hyperbolique orthogonal de dimension 2 sur F3 (Ie groupe orthogonal est d'ordre 4, non

cyclique)

- West anti-hermitien de dimension I sur Ie corps des quaternions.

15. Invariants des espaces e-hermitiens sur un corps global.

Espaces quadratiques: la dimension nz l, le determinant de F*/F*2, les invariants de Hasse

(±l} aux places non complexes de F, soumis 11 la condition m,,=l

Espaces hermitiens sur D commutatif au corps de quaternions muni de l'involution canonique : se

ramene au cas precedent par (10).

Espaces hermitiens sur D de centre F', muni d'une involution de seconde espece, F'/F quadratique.

Pour D=F', voir Ie resultat precedent.

Deux cas differents :

a) pest une place de F decomposee en deux places p',q' de F' permutees par l'involution. Les

algebres Dp' ,Dq, sont anti-isomorphes. Les Dp,xDq,espaces hermitiens de dimension n sont

isometriques.

b) sinon, il existe une seule place p' de F' relevant p, l'extension F'/F est quadratique, D = M(r,K)

ou K=F'. La theorie de Morita montre quil existe un isomorphisme de categories entre les espace

hermitiens sur M(r,K) de dimension n et les espaces hermitiens sur K de dimension nr. Ces espaces

sont classes par leur determinant (12) si p est non archimedienne, et par la signature sinon.

Invariants: la dimension ne N le determinant de F*IN(F'*), les signatures sp de W aux places
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reelles p de F non decomposees dans F' , soumis aux conditions: pour p reelle non decomposee,

a) sp::::on , ou [D:F']=8z

b) sp-ondivisible par 4 si

sp-Sn pair, non divisible par 4, si <0.

2) Espaces anti-hermitiens sur un corps de quaternions. Le principe de Hasse pour l'isometrie ne

s'applique pas. A presque toutes les places, Ie corps de quaternions est deploye : isomorphe a

M(2,F) muni de l'involution canonique symplectique (ex.(l2)). Les espaces anti-hermitiens sur

M(2,F) muni de cette involution sont identifies a des espaces quadratiques sur F. Nous laisserons la

classification inachevee a ce point.

16. Produit tensoriel hermitien.

Soit W un a droite de dimension finie e-bermitien. Supposons que W =WI®o Wz1

est le produit tensoriei d'un espace WI a droite sur DI etd'unespace Wz a gauche sur Dr,a

droite sur D,ou Dr est un corps de centre contenant le centre F' de D. Si les algebres

B = End0 1WI ' B' = End(Ol'O)WZ

sont stables sous l'involution adjointe de A = EndoW , nous dirons que Ie produit tensoriel est un

produit tensoriel hermitien. Alors WIest un espace EI-hermitiensur Dl et WZ est un espace

adroite sur DZ' ou Dz est un corps dans la classe de Brauer de Dro®FD , de centre

ega! a celui de Dl . Les structures hermitiennes ( ')1 et (,)z de WI et WZ sont definies par la

structure hermitienne (,) de W , a similitude pres.

Dimensions: on a DIo®pD "" M(r,Dz), A"" M(n,DO), B "" M(nl,DIO), C"" M(nz,DzO)

n = nl nz dl r-
l, n2d = n12dlx n2ZdZ' dd. = rZdz

ou n « dimoW, nl = dimo WI' nz dimo WZd =dimF'D, dI = dimFD I ' dz =dimpDz·
1 2

Nous etudierons en detail au §20 les decompositions d'un espace symplectique en produit

hermitien, en detail.

17. Paires duales.

Definitions, Soit G un groupe. Un sous-groupe HcG, tel que Ie double commutant de H

dans G soit egal a H sera appele un sous-groupe de Howe de G. Si H'= Zo<H) est le

commutant de H dans G, on dira que (H,H') est une paire duale dans G.

On note que:

0) si Z est le centre de G, on a dans G la paire duale trlviale (Z,G).

1) Pour tout sous-groupe HcG, le double commutant ZoZo<H) de H d9TIS G est un sous-groupe

de Howe de G contenant H. Tout sous-groupe de Howe de G contenant H contient

ZaZo(H).
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2) Si H, H' = c G1xG2 C G ,ou G1, G2 sont deux groupes, alors H est un sons-groupe

de Howe de G si et seulement si H=H1xH2 , ou les Hi sont des sous-groupes de Howe des Gi ·

Par definition, on dit alors que la paire duale (H,H') = (H1,H'I)x (H2,H'2) est produit de paires

duales.

3) Une paire duale balancoire de G est un couple de paires duales (H,H'), (K,K') de G

telles que H c K' , K c H' . On les represente par Ie dessin :

K' H'

IXI
H K

les traits verticaux indiquant l'inclusion, les obliques la dualite.

Soh A un anneau, BcA un sous-anneau, On dit que B est un sous-anneau de Howe si Best

egal ason double commutant dans A. Les proprietes 1),2) ci-dessus s'etendent aux anneaux. En

particulier, si BcA ,Ie double commutant de B dans A est l'intersection des sous-anneaux de

Howe de A contenant B, et ZA (B) est un sous-anneau de Howe. Ces notions s'etendent aussi

aux algebres.

Nous allons main tenant classer les sous-algebres de Howe des algebres centrales simples, puis les

sous-groupes de Howe des groupes classiques, (unitaires de type l ou 2).

Soh W un D-espace adroite e-hermitien de type 1 ou 2. Une paire duale (H,H') de U(W) est dite

reductive si

(i) West HD, et H'D -semi-simple,

(ii) H et H' sont reductifs

(ces deux conditions sont probablement equivalentes), On dit alors que H est un sous-groupe de

Howe reductif de U(W).

On definit de meme les paires duales reductives de Endn(W).

Une paire duale (H,H') de U(W) est dite irreductible s'il n'existe pas de decomposition

orthogonale de W stable par HH'D.

Rappelons que l'on traite simultanement tous les groupes classiques, en admettant que le produit sur

W peut etre nul (i.e. W de type 2), auquel cas U(W) = GLn(W), et une decomposition orthogonale

de West une decomposition en somme directe.

West par definition un espace adroite sur D, on le considere aussi comme un espace agauche
sur EndW; noter que le corps oppose DO est contenu dans EndW.

Notation: etant donnee une action d'un ensemble X sur le Z -module W, agauche ou adroite, on
note EndxW l'ensemble des Z -endomorphismes de W qui commutent avec l'action des elements

de X.

18. Proposition. Classification des sous-algebres de Howe des algebres centrales

simples. 1) Toute sous-algebre de Howe reductive B d'une algebre centrale simple est produit de



12

sous-algebres de Howe irreductibles B, d'algebres centrales simples.

2) Pour toute decomposition W = WI®D W2 en produit tensoriel, la paire

(EndD WI' End(D D)W2) 1
1 l'

est une paire irreductible duale.

3) Toute paire irreductible duale est de la forme 2)

Cette proposition est une variante du theoremeclassique de H. Weyl : une sous-algebre simple

d'une algebre centrale simple est egale ason double commutant . Elle se deduit facilement de

[B, ch.8,§4].

nest remarquable qu'une paire reductive duale de EndDW soit aussi duale dans EndpW.

Preuve. Soit A = EndDW , ou West comme en (17).

Soit BeA une sous-algebre operant sernisimplement sur W , alors W = 6:'>ll\Vi oii les Vi sont

des (B,D) -sous modules simples de W , deux adeux inequivalents sous l'action de B . Utilisant le

lemme de Schur, on voit que le commutant de B dans A est isomorphe a 6:'> M(mi ' D, ) ou Di est

un corps. Le commutant de B dans A est done reductif, et opere serni-simplement sur W . En

particulier, on voit qu'en (17), les hypotheses (i) , (ii) pour une paire duale de A sont redondantes.

1) (Soit (B,B') une paire duale de A, operant semi-simplement sur W. On decompose W comme

ci-dessus. Soit Ai = EndD ll\Vi' Alors par (17), B, B' s'identifie ala somme directe de leurs

images canoniques Bi, B', dans les Ai' et la paire (Bi ' B'i) dans Ai est irreductible duale.

2) Soit B=EndD WI et B' = End(D D)W2 . II est clair que B et E' commutent. Si Y est une
1 i:

base de B sur D1et Y' une base de B' sur DI°I8>FD, alors les Y®D y' , YE Y , y' E Y' forment
1

une base de A. Pour que u E A commute avec B, il faut et il suffit que u =L f1(y')®D y' ,OU
1

f1 est une application de Y' dans le centre de B . Ce centre est eontenu dans DIo®pD, done Ie

commutant de B dans A est contenu dans B'. 11 est done egal a B' . On fait le meme

raisonnement en inversant les roles de B et de B'.

3) West (BB',D)-irreduetible, ce qui implique qu'il est (B',D)-isotypique: W = mW' ou W' est

(B',D)-irreductible. Alors End(B',D)W' est un corps D l dont le centre contient celui de D.

Inversement B' = End(D
1,D)

W'. On peut ecrire W = W{8J
D1

W2 ,0:'1 WI est un DI-espace a

droite de dimension m , et W2 =W' . Le commutant de B dans A est B=EndD WI' Le
1

commutantde B' dans A est B'=End(D
1,D)W2 = End

D2W2 ,ou D2 est defini comme en flo).
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Lemme. Soit G = U(W) de type 1 ou 2. Si (H,H') est une paire duale irreductible dans G,

algebres B = EndDHW , B' = EndDH,W forment une paire duale irreductible de A = End-,W .et

BnG = H , B'nG = H'.

La reciproque du lemme n'est pas vraie : si k IF est une extension separable finie de F, et G le

groupe orthogonal de la forme quadratique trK/F(x2) , B=B'=k forment une paire duale dans EndFk

knG={± id} n'est pas son propre centralisateur dans G * {± id],

Preuve du lemme. B' EndDHW est une sous-algebre de Howe de EndDW , et B'nG = H' .

Soit B = EndDB,W , la paire (B,B') est une paire duale reductive, irreductible dans A = EndDB

(note: H, B operentagauche, D it droite). Si elle etait reductible, une decomposition orthogonale de

W serait fixee par (H,H'), ce qui n'est pas. Elle est reductive, d'apres la remarque debutant la

preuve de la proposition 18. Par cette proposition, il est clair que

EndDBW = EndDHW et BnG = H .

La recherche des sous-groupes de Howe des groupes classiques se ramene aune reciproque du

lemme ci-dessus. Elle utilise un resultat geometrique demontre en (II,S).

19. Classification des sous-groupes de Howe reductifs des groupes c1assiques. 1)

Toute paire reductive duale de 'U(W) est produit de paires reductives duales irreductibles,

2) toute paire reductive duale irreductible non triviale dans U(W) est isomorphe a
a) (U(Wl),U(W2» pour toute decomposition de W en produit tensoriel herrnitien W=W1&JD,W2,

telle que chaque facteur ne soit pas du type suivant :

- orthogonal hyperbolique de dimension 2 sur D' F3,

- anti-herrnitien de dimension I sur un corps de quatemions D' , et D = F

b) ou (OLD (X1),OLD (X2» si West totalement isotrope, et non degenere (de type 1), pour toute
1 2

decomposition d'un Lagrangien X de Wen produit tensoriel X=X1®D'X2,

Preuve.

1) se deduit de 17.2).

2) Si West de type 2 , la proposition se deduit de (18).

Supposons done que West un espace e-hermitien non degenere,

Aucun sous-espace non degenere de W n'est fixe par HR'D, rnais il est possible qu'un D-espace

XcW, tel que Xo=xnX.l * {OJ le soil. Alors l'espace totalement isotrope X? est fixe par HR'. Soit

P(XO) le stabilisateur de XO dans U(W) (III,!).
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Comme HH' est reductif, son intersection avec Ie radical unipotent de P(XO) est nul. On peut

identifier (H,H') aune paire duale reductive (K,K') d'un sous-groupe de Levi M de P(XO). Mais

M ",GLD(XO)xUCW') ou W' est non degenere ou nul. Si W':;t{O}, alors (K,K') n'est pas irreductible

dans U(W). Si W'={O},West hyperbolique, XO=X est un Lagrangien et (K,K') est une paire duale

irreductible de GLD(X).

Inversement, une paire duale reductive irreductible (H,H') de GLo(X) est une paire duale dans

U(W) si X est un Lagrangien de W, et GLD(X) plonge naturellement dans U(W). En effet, soit

une decomposition X =X1®D'X2 , telle que (H,H') (GLD (X1),GLD (X2»;si1 2

g = abe UCW) , aeGLD(X) , de GLD(X*) , be HomD(X*,X) , ce HomD(X,X*)

c d

commute aux elements de H, alors pour tout he H , bh*-l hb ; ceci implique que le noyau et

l'image de b sont H-invariants; la decomposition canonique de h foumit une bijection

11: X1®D.Y2 '" (X1®D.Y2)* , y2cx2 , verifiant brj*-l =l1b.

II existe b de norme reduite sur F , detFb :;t ±1 . Comme la norme reduite est multiplicative, on en

conclue que Y2 = {O} ; done b = 0 . On demontre de la meme facon que c=O.

On s'est ramene asupposer que W ne contient aucun sous-espace stable par HH'D. Par Ie lemme

(18), i1existe une decomposition W =WI®D W2 telle que
1

H=U(W)(')B, B=End
D1W1 et H' UCW)(') B' , B'=EndCD1,D)W2 ,

Un sous-groupe de U(W) est evidemment stable sous l'involution adjointe (1.1). Done B et B'

sont stables sous l'involution adjointe. La bijection entre espaces s-hermitiens et algebres a
involutions implique que pour i = 1,2, Wj est un Drespace adroite erhermitien, de produit note

< , >j , defini asimilitude pres (1,1) , et H = UCWl) , H' = U(W2) •

Inversement toute decomposition de W en produit tensoriel hermitien sauf dans Ie cas exclus dans

Ie theoreme fournit une paire duale (voir la remarque de 1,15).

20. Decompositions d'un espace symplectique en produit tensoriel.

Soit CW, <, » un espace symplectique sur F de dimension 2n. Par (19) chercher les paires

duales irreductibles de SpCW) est equivalent achercher les decompositions de W en produit

tensoriel hermitien.

Soit tD/Fe HomFCD,F) tel que la forme bilineaire ,d,d'eD, soit non degeneree

(la trace reduite en general).

Lemme. Si (WI' < , >1) , CW2' < , >2) sont deux espaces sur D respectivement adroite et a
gauche, Ej-hermitienstels que -1 = 101Ez ' alors Ie produit tensoriel W = WI®DW2 muni de la
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forme

<<w1<8>w2,w'l<8>w'2» = to/F«Wl,W'l>l 't«w2,w'2>2»' wi'w\ E Wi

est symplectique. Inversement, toute decomposition de (W, <, » en produit tensoriel hermitien

est de ce type.

Preuve. Montrons la seconde partie (la premiere partie se verifie directement).

Soit W = WI <8>0W2 une decomposition de (W, < , » en produit tensoriel hermitien . La forme

«,» induit sur EndFW une involution coincidant avec l'involution adjointe associee a <, >i'

sur End-,Wi' i=1,2. Deux involutions de EndFW different par un automorphisme interieur, Un

automorphisme interieur de EndFW trivial sur EndoWi' i=1,2 est donne par conjugaison par un

element non nul du centre de D. On peut modifier les produits <, >i tels que «,» = < , >.

Restriction des scalaires. 1) Pour tout espace (W, <, » anti-hermitien sur (D,'t) et tout

homomorphisme to/F E Homp(D,F) tel que (x,y) to/F(xy) soit une forme bilineaire non

degeneree DxD F (la trace en general), l'espace (W, to/F<' » symplectique sur F , sera dit

deduit de (W, < , » et to/F par "restriction des scalaires ".

2) Une paire duale dans Sp(W) reste une paire duale dans Sp(W') , si W' est deduit de W par

restriction des scalaires, sauf si la paire est la paire triviale ({±1}, Sp(W».

Liste des paires duales irreductibles de Sp(2n,F), ne provenant pas pax restriction

des scalaires de Sp(2n',F'), n'[F:F'] = n .

a) paires de type 2 : (GL(m,D), GL(m',D» , D corps de centre F, [D:FJ = d, n = mm'd

b) paires de type 1 :

- (O(m,F), Sp(2m',F», O(m,F);tO(2,F3), nernm'

- (U+(m,D), U'(m',D» , D'/F extension quadratique ou corps de quatemions muni de l'involution

canonique, U±(m,D) groupe unitaire d'une forme ±-hermitienne am variables sur D , m' ¢ 1 si D

est un corps de quatemions, mm'd = 2n.

Si W n'est pas symplectique, on peut decrire sans difficulte les decompositions de W en produit

tensoriel, et terminer la classification des paires reductives duales dans U(W) sur un corps fini, local

Nous ne Ie faisons pas, car cela n'est pas utile pour la correspondance de Howe. C'est un peu plus

complique que dans le cas symplectique, dl1 au fait que le groupe de Witt n'est pas trivial.

On peut aussi definir une "restriction des scalaires".
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II - Lagrangiens (caracteristlque e 2).

Soit W un espace s-hermitien adroite sur (Drt) ou un espace adroite sur D de dimension n (type

1 ou type 2). Soit F' Ie centre de D et FcF' celui de l'involution, Nous convenons d'appeler

Lagrangien de W soit un sous-espace totalement isotrope maximal si West hyperbolique (type 1)

soit un sous-espace quelconque non nul de W (type 2).

Soit 0 = O(W) 1'ensemble des Lagrangiens de W. On a done 0=0 si et seulement si W et de type

1, et non hyperbolique. Soit O(r) 1'ensemble des Lagrangiens de dimension r. On a done 0 = O(m),

si West de type 1, hyperbolique, d'indice de Witt m, et O(r) est la grassmanienne des sous-espaces

de W de dimension r sinon.

L'action de U sur 0 a pour orbites les O(r). Elle est transitive si West de type 1.

1. Parametrisation de n associee ll. une polarisation.
Si W=rnH, la donnee d'une polarisation complete de W, i.e, une decomposition W=X+Y ou X,Y

sont deux Lagrangiens (9) , induit une parametrisation naturelle de O. Soit S2(V,e)* 1'ensemble des

formes sesquilineaires sur un espace vectoriel V adroite sur D, verifiant la propriete de symetrie

e-hermitienne (mais pouvant etre degenerees).

Lemme. On a une bijection canonique :n "" UVEfl(X) S2(V,-E)* .

Preuve. Notons 1t la projection sur X parallelement Ii Y. Soit ZcW un Lagrangien. Posons pour

Z,Z'E Z ,B(z,z') <1t(z),z'>. Comme Z est un Lagrangien, si z=x+y est la decomposition associee a
la polarisation complete, on a

O=<Z,Z'>=<X,y'>+<y,X'>=<X,y'>+E't(<y',x»

done B induit sur V=1t(Z) nne forme -s-herrnitienne. Inversement, Z={x+Y, tels que pour tout

X'EV, ron ait <x',y>=B(x',x)}.

2 . Parametrisation de n associee ll. nne decomposition orthogonale.

Si W=rnH, Ia donnee dune decomposition orthogonale W=W 1+(-W2) en espaces e-hermitiens

induitune autre parametrisarion de O. On note Z/ l'orthogonal de Zi dans Wi'

Lemme. II existe une bijection 0 "" ,Zi sous-espace isotrope de Wi' ¢ isometric de

Zl-LfZ1

Preuve. Soit Z un Lagrangien, 1tl(Z) sa projection sur WI parallelement aW2' ZI son intersection

avec WI' On a

a) Z l -L=1t1(Z)
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par un calcul elementaire sur les dimensions. Soient rj,nj l'indice de Witt, la dimension de Wi' On a

nj=2rj+nt ' avec ni o=nz° puisque les classes de Witt des Wj sont les memes. Soient d = dimZ, dj

=dimZi, Aj= dimZ/ -dim1tj(Z), Il est clair que 1tj(Z)c2i.l, done On montre Aj=O en ecrivant

d=rI+rZ+njO

= dim (1tI(Z)+Zz d1+2(rrd1)+nlo-A1+dz

d'ou (r1-d1)-(rz-dz) = -AI et aussi = Az par symetrie, D'ou Aj=O.

b) Pour z=zl+Zz, z'=z'I+z'ZeZ, on a <z,z'>=O, i.e, <Zl,z'I>-<Zz,z'z>=O.

La correspondance entre Zl.l et Zz.l de graphe Z induit une isometrie.

c) Inversement la donnee d'un triplet permet de construire un espace totalement isotrope de W :

Z={zI+ZzeZ1.l+Zz.l, tels que <1>(zl+Zl)=zZ+Zz} , de dimension n, i.e, un Lagrangien. Cette

construction est l'inverse de la construction precedente,

Si r1£,z ' les dimensions des Zi prennent les valeurs entieres verifiant

O5d1£'1 ' dz d1+ (rz-r1)

Soit U le groupe unitaire de W. Avec Ies hypotheses de (2), le groupe unitaire Ui de Wj est

canoniquement plonge dans U , l'action de Uj sur Wj' j;toi , etant l'identite. On a uluZ=uZuI ' pour

ujeUj . L'action de U1UZsur Q est donnee par (u1,uZ)(Zl,ZZ,<1»=(u1Z1,uZZz,uZ<1>ul-l). On en dedun

Lemme. Si rI£'Z ' deux Lagrangiens Z, Z' sont dans Ia meme orbite sous U1Uz si et seulement si

dimZI=dimZ{ n yarl+l orbites, Le stabilisateurde (ZI,Zz,<1» dans UIUz est

(u1uZePI(ZI)PZ(ZZ)' uZ=<1>u1<1>-1 .

Si West de type 2, la decomposition de W en somme directe induit une parametrisation des

grassmaniennes Q(r) dont les lemmes 2,3 sont la version e-hermitienne,

Lemme. Il existe une bijection :

Q(r) '" {(ZI,T1,Zz,TZ''¥), ZjCTj sous-espaces de Wi' 'P isomorphisme de TIIZ1 sur TzlZz}·

Les dimensions des Zi' Tj prennent Ies valeurs entieres verifiant

r = ez+d I e1+dz , ej,di:S ni .

Ce sont les invariants des orbites de Q(r) pour l'action de U1Uz .

Le stabilisateurde (Zl,T1,Zz,Tz,'¥) dans U1Uz est

(glgzeP1(ZlcT1)pz(ZzcTz), gz='Pg1'P· I}
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Indications sur la preuve. Si ZEX(r) , r-:ill1+n2 ,poser Zi = V('"Z , Ti=1t/Z) .

3. Quelques lemmes geomettiques.

Soit W de type 1.Deux elements (wi) et (vi) de mW (typel) , mzl , sont dans la meme orbite

pour l'action naturelle de U, si et seulement si leurs coordonnees ont la meme matrice de Gram

(ou Mattice moment) (<wi,W?)=(<Yi'Vj» et engendrent des sous-espaces vectoriels de meme

dimension. Ceci resulte du theoreme de Witt. De facon equivalente, soit V un D-espace vectoriel a
droite de dimension m, HomD(V,W) est muni d'une action de U : , si fEHom(V,W),

UE U; Pour que gs Hom(V,W) verifie g=uf, il faut et il suffit que Z=Kerg=Kerf, et que les espaces

V/Kerf et V/Kerg soient isometriques pour les formes induites par < , > , via f et g. Ces formes

induites peuvent eire degenerees. On en deduit

Lemme. Il Ya une bijection entre les orbites de Hom(V,W) pour l'action de U et l'ensemble des

couples (Z,B), Z sous-espace de V, B forme e-hermitienne degeneree ou non sur z, (Vrz,B)

isometrique aun sous-espace de W}. La derniere condition est automatique si rzm,

La description des Usorbites de HomD(V,W)xHomD(W,V') oa V,V' sont deux D-espaces adroite
de dimension frnie m et m',

u(f,g)=(uf,gu-1), si UE U, fEHom(V,W), geHom(W,V') .

se ramene ace lemme al'isomorphisme entre W et W* donne par Ie produit hermitien.

Soit W de type 2, et V , V' comme ci-dessus, Les invariants d'une U'-orbite de

HomD(V,W)xHomD(W'V') sont Z=Kerf, Z'=Img, cp=gf.

Lemme. Les U-orbites de HomD(V,W)xHomD(W'V') sont en bijection avec l'ensemble des

triplets (Z,Z',cp), Z, Z' sous-espaces de V, V', cpEHom(Vrz,Z') tels que dimv/Z, dimZ',

dimKercp+dirnZ' $ dimW }. Cette condition est automatique si m+m' $ n .

4 • Lagrangiens fixes par un sons-groupe de Howe reductif,

Soit (U l'U2) une paire reductive duale irreductible dans U(W) (1,17).

Soit n l'ensemble des Lagrangiens de W, le sons-ensemble n1des Lagrangiens de W fixes par Ul'

est stable pour l'action de U2. Notons par l'ensemble des Lagrangiens de W. Ces ensembles

peuvent etre vides.

Lemme. On a une bijection canonique :n1 , compatible avec l'action de U2, si W1 n'est pas

le plan hyperbolique orthogonal sur F3,
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Preuve: a) type 1. Si WI n'est pas le plan hyperbolique orthogonal sur F3, tout sous-espace

invariant par U1 est de la forme WI®Z' Oil Z' est un sous-espace de W2 (II,5). nest isotrope si et

seulement si Z' l'est. C'est un Lagrangien si et seulement si dimZ'=n2/2.

b) type 2. Tout sous-espace invariant par U1est de la forme

CW1®Z')+ CW1*®Z"), Oil Z',Z" sont des sous-espaces de W2' C'est un Lagrangien si et seulement si

Z" est l'orthogonal de Z' dans W2*.

5. Lemme. Commutant de U(W) dans EndW.

II est

a) isomorphe aF3xF3, si West le plan hyperbolique orthogonal sur F3,

b) egal a EndW , si West orthogonal de dimension 1 ,

c) isomorphe a D sinon.

Preuve. On suit la methode de Dieudonne [Dieu, p.4l-42]. Soit A=EndW l'ensemble des

endomorphismes du Z -module W ; si k est le sous-corps premier de D, on a EndW = EndkW

Si ZE A commute avec hEA, alors Zstabilise le sous-espace des points fixes de h. Si Zcommute

avec UCW) il commute en particulier avec les symetries et les transvections de UCW), et laisse stable

les hyperplans non isotropes de W (i.e. sur lesquels la restriction du produit de W reste non

degeneree) et si W n'est pas orthogonalles droites isotropes. On en deduit que si West anisotrope,

ou non orthogonal, Zlaisse stable toutes les droites de W (sur D). Si West orthogonal, de

dimension on montre que toute droite isotrope est l'intersection de deux plans non isotropes, et

ron a le meme resultat,

Si dimD W > 1 et si Z stabilise les droites de W sur D , alors il existe de D tel que z(w)=wd

pour tout WEW . Inversement, il est clair que tout z de cette forme commute avec UCW). Done

EndW",D.

Soit W un plan orthogonal hyperbolique. Sur une base hyperbolique {e,f} , UCW) est represente
par les matrices diagonales ou antidiagonales (a,O;O,l/a), (O,a; l/a,O), ae F non nul. Soit ZE A

commutant avec UCW). Alors on verifie facilement que z(xe+yf) = A(x,y)e+B(x,y)f , Oil X,YE F

pour toutes fonctions A,B: FxF F telles que A(x,y) = B(y,x) ,A(xa, y/a) = a A(x,y), aE F,

et A(x,y) = A(x,O)+A(O,y). On a done en posant «=A(l,O) et f3 = A(O,l)

z(xe+yf) = «(xe+yf) + f3(e/y+f/x) , «,PE F

S'il existe ae k tel que a2;t1 ,alors z est un k-endomorphisme de W si et seulement si f3 = °,et
UCW) '"F.
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n reste le cas oir dimDW = 1 . Soit W=D(a), avec "C(a)= ea , alors

U(W)'" Da= {deD, da"C(d)=a}.

Soit E(a) le sons-corps de D engendre par Da et le sous-corps premier de D. Le commutant de

U(W) dans EndW est egal a EndECa)W, Pour tout corps keD, D est le commutant de U(W)

dans EndkW, si et seulement si kE(a) = D.

1) Si l'involution "C sur D est triviale, on a W orthogonal, U(W)={±id} , tout element de EndW

commute a U(W).

2) Si 't n'est pas triviale , et a dans Ie centre de D, alors

U(W) ,., {de D, d"C(d)=l} ne depend pas de a, et E=E(a) non plus.

Lemme. Soit F'IF une extension quadratique , ou F est un corps fini ou local non archimedien

de caracteristique differente de 2. Soit P- une cloture algebrique de F' . II n'existe pas

d'homomorphisme non trivial de F' dans F- , trivial sur toutes les unites de F' de norme 1 dans F.

Supposons que Fest fini ou local non-archimedien, alors par (1,4) :

- si D est fini, D=F' est commutatif, et de degre 2 sur le corps F des points fixes de "C. On a

E = F' par le lemme. Le commutant de U(W) dans EndW est egal a F'.

- si D est local non-archimedien, soit D = F' commutatif, soit D est Ie corps des quatemions et

West hermitien. Par le lemme, D = E , si D est commutatif. Si D est un corps de quaternions, E

contenant tout sous-corps commutatif maximal de D est aussi egal a D.

3) Si D est un corps de quatemions et a un quatemion pur, alors E(a) contient F(a) par le

1emme. On verifie que E(a) n'est pas eommutatif, ce qui implique E(a) = D.

Corollaire. Si W n'est pas le plan hyperbolique orthogonal sur F3, il n'existe pas de

D-sous-espace non trivial V de W qui soit stable par U(W).

Preuve: si Vest stable, alors V n'est pas totalement isotrope (par I (8),(9)), et V1.est aussi stable.

Comme Vo=V(lV1.est totalement isotrope, et stable, il est nul. Done Vest non isotrope,

w=ve V1., U(W)=U(V)xU( V1.)

ce qui est absurde par le lemme ci-dessus si Vest non trivial.



21

ill . Paraboliques.

1. Extension des scalaires.

Soit F- une cloture algebrique de F et L un corps contenant F , et contenu dans F- . Soit W un

espace e-hermitien de dimension n sur (Drt), Le groupe U(W) est le groupe des points rationnels

sur F d'un groupe algebriqueU. On a U(L)=U(WL) ou WL = W®FL est le DL= -module 11

droite muni du produit prolongeant celui de W. Si test l'involution de A=EndD(W),

U(L) = {ae Au t(a)a=id}.

On definit le groupe SU egal au noyau dans U du determinant. Notons O(n), Sp(2m), GL(n) les

trois groupes unitaires sur F".On suppose que Fest fini, local ou global.

Lemme. Le groupe UW) est egal 11

GL(m) dans les deux cas:

- 't est de seconde espece, avec r=l si D=F' et r=2 si D est un corps de quatemions,

- West de type 2 avec z2= [D:F]

Otrn) si 't est de premiere espece, avec £=1 , r=l si D=F et £0=-1, r= 2 si D est un corps de

quatemions.

Sp(m) si t est de premiere espece, £0=-1 r=l si D=F et r= 2 si D est un corps de

quatemions.

Corollaire. U est un groupe reductif Zariski-connexe, sauf si West orthogonal ou anti-hermitien

sur un corps de quaternions muni de l'involution canonique. Dans ce cas, SU est un groupe reductif

connexe.

Corollaire. Si West orthogonal, SU(W)cU(W) est d'indice 2 , et U n'est pas le groupe des

points rationnels sur F d'un groupe reductif connexe. Si West e-hermitien sur un corps de

quatemions muni de l'involution canonique, alors SU(W)=U(W) (mais est le groupe des

points rationnels sur F d'un groupe semi-simple connexe.

Indications sur les preuves : Si l'involution est de seconde espece,

Ap- '" M(m,F-)xM(m, F-) munie d'une involution t permutant les deux facteurs

U( F-) "'GL(rn, F-).

Si W = Ef) ou Ef)mH est orthogonal ou symplectique,

A"'M(n,F) mum de l'involution a-eh'ah! ou h =diag(aj) ou diag(u) , et u=(O,l;-l,O),

AF- '" M(n,F-) muni de la meme involution.

Si D est le corps de quatemions muni de l'involution canonique, AF- "'M(2n,F-) muni de
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l'involution et hu est -s-symetrique si h est e-symetrique (1,12). Si D est

un corps de quatemions, le determinant de Dieudonne : AX DX/(DX,DX)est trivial sur U(W),

done SU=U. La connexite de GL(n), Sp(n), SO(n) est bien connue [H 7.S,p.5S].

2. Groupes paraboliques.

L'ensemble des drapeaux totalement isotropes <1> ={OetX1<Z....<UCr} totalement isotrope,

est muni d'une action naturelle de U.

a) Orbites : par le theoreme de Witt, le seul invariant est ..... oir ni=dimDXi'

b) Orbites SOllS SO : si West orthogonal, une O-orbite est une SO-orbite sauf dans Ie cas

exceptionnel : W=mH hyperbolique et nr=m, ou une O-orbite est l'union de deux SO-orbites.

Alors <1> n'est pas SO-conjugue au drapeau <1>'= (OetX'1<Z....etX'r) ou X'j=Xi, si i<r et X', est

engendre par {ei' fm} ou {ei,fi' est une base hyperbolique de W telle que

{ei' est une base de X,

c) Paraboliques. Nous appellerons sous-groupe parabolique de U (resp, SU) le stabilisateur

dans U (resp. SU) d'un drapeau totalement isotrope <1> de W, et nous le noterons P(<1» (resp.

P+(<1»).

Par b), P+(<1»cP(<1» est d'indice 2 sauf dans le cas exceptionnel ou P+(<1»=P(<1».

Dans Ie cas tres exceptionnel : W '" mH est orthogonal hyperbolique, nr=m, nr=m-l.

Soit <1>' le drapeau construit en b) et <1>" celui obtenu en supprimant de <1>. On a

P+(<1» = P+(<1>') = P+(<1>") ,

mais seulement P(<1» = P(<1>')

Proposition. Si P+(<1»= P+(<1>1) alors <1>=<1>1 sauf dans le cas tres exceptionnel, OU

<1>1 E {<1>, <1>', <1>"} .

La preuve est donnee au paragraphe 4. La proposition est vraie avec P(<1», en supprimant <1>".

3. Cette proposition a pour corollaires :

Normalisateurs. P(<1» est egal It son normalisateur dans U , sauf dans le cas tres exceptionnel,

ou il est d'indice 2 dans son normalisateur. P+(<1» est egal It son normalisateur dans SUo

Classes de conjugaison. P(<1» est conjugue dans U il. P(<1>1) si et seulement si <1> et <1>1 sont

dans la meme U-orbite, Le seul invariant est done (n 1:::;;..... En effet, dans le cas exceptionnel
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<1>'=u<1> OU UE 0 (non it SO).

Classes de conjugaison dans SO. P+(<1» est conjugue dans SU it P+(<1>l) si et seulement si

<1> et <1>1 sont dans la meme U-orbite, dans Ie cas non exceptionneL Le seul invariant est alors

Dans le cas tres exceptionnel, <1> et <1>" ne sont pas dans la meme U-orbite. Dans le cas

exceptionnel, non tres exceptionnel, P+(<1» n'est pas SU conjugue it P+(<1>').

Paraboliques maximaux. P(X)=P(O<ZX), it conjugaison pres il y en am si m est l'indice de

Witt de W, classes par dimoX.

Paraboliques maximaux de SO. P+(X), avec dans le cas exceptionnel dimX;em-1

(P(X)rlP(X')=P(XrlX') si X est un Lagrangien.) A conjugaison pres, il y en a m classes par

dimDX saufdans Ie cas exceptionnel, ou on a une classe pour chaque dimension <m-I, aucune

pour m-I, deux pour m.

4. Preuve de la proposition 2.

Soient <1>1=( O<zY1<Z....<ZYs} tel que P+(<1»=P+(<1>I)'

On montre d'abord qu'il existe k tel que pour Xi=Yi et pour i>k, Xi=Xk+Zi ' Yi=Xk+Zi* ,

ou l'accouplement sur Zi x Zi* donne par <, > est non degenere, En effer, soit i(l) Ie sup des i tels

que YlrlXi=Xi, Pour i=i(l)+l, on a YlrlXi=Xi(I)' sinon on aurait un drapeau strictement plus fin

que <1>

{O<ZXI<Z"'<ZXi(l)<ZYIrlXi(I)+I<ZXi(l)+I<Z ···<ZXr}

stabilise par P+(<1». C'est impossible (se voit sur un Levi (5».

Pouri=i(I)+2,onaencore Y1rlXi=Xi(I) sinon, YIrlXi=Xi(l)+T ou TrlXi_I={O} et

Xi-1<ZXi_ I+T<ZXi est stabilise par P+(<1». C'est impossible de la meme facon. On demontre ainsi

l'existence de k, avec Xi=Y i et pour i,j >k, XirlYj=Xk

On choisit alors une base B=( de Xcet une base C= (ei,ft,vt} de Ys telles que (ei} soit une

base de Xk,

<fj, f/>=ojj" <uk'Ys>=<vt,Xc>=(O}.

Alors l'espace Xc+1=(Xc+YJrl (Xe+yt)J. est totalement isotrope, stabilise par P+(<1» et contient Xc·

Par le meme argument que precedemment, sauf si West orthogonal hyperbolique et dim X, = mol,

on en deduit Xr+I=Xr, il n'y a ni v ni u, et Xr=Xk+Zc, Ys=Xk+Zc*.

On precede de meme avec Xc-I et Ys' On obtient un espace totalement isotrope X"r-I.s contenant

Xr_I stabilise par P+(<I» admettant une base (ei,fj,ft*} ou {eJj} est une base de Xr-I' (ei,f/t} une
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base de XI' On a

P+(cI» = P+(cI»nP(Ys) P+({O<ZXl<Z....CZXr_lCZX"r_l,s}).

On precede de meme avec Yr-l et Ys-l' On obtient X"r-l,s-l engendre par Xr-l et les ft* de Ys-1

orthogonaux aXr_ t' contenu dans X"r-l,s' stable par P+(cI». Pour la memeraison que

precedemment, il ne peut y avoir de ft. Done

Ys-1

Au bout d'un nombre fmi d'etapes, on demontre ce que l'on voulait, sauf si W"" mH est

orthogonal hyperbolique, et l'un des Xi a pour dimension mol.

On decompose W= (Xk+Xk*)$(Zr+Z/)Ef)Wo, OU l'accouplement sur XkxXk* est non degenere. II

faut que WO={O} et S2(Z,-e)*=(O} cf.la description de P(cI» en (5). On a S2(Z,-e)*={O} si et

seulement si Z={O} ou dirnZ=I, e=l, D=F.

C'est le cas tresexceptionnel, pour lequel on verifie directement l'assertion.

5. Description de P(X). n y a une suite exacte scindee

1 N(X) pex) M(X) 1

N(X) est le radical unipotent de P(X), il est nilpotent adeux pas.

Si W=(X+X*)Ef)Wo,Mex) ""GLo(X)xU(W°) et on a une suite exacte

1 N(X) Homo(W°,X) 1

L'extension est centrale.

S'il existe un accouplement degenere sur XxX* et sur YxY*, note <, >x et <, >y ,

si fe Homo(X,Y) , l'application adjointe f*e Homo(Y*,X*) est definie par

<f(x),y*>y=<x,f*(y*»x .

Le sous-groupe de Levi M(X) de P(X) associe ala decomposition W=X+Wo+X* est forme des

m(g,u) de matrice

diag(g,u,g*-l) ge GLo(X), ue U(W°)

Le radical unipotent N(X) de P(X) contient le sous-groupe distingue N1(X) forme des nl (s) ,

se Homo(X*,X) s*=-s, de matrice

0 ;J
N1(X) s'identifie aau groupe S2(X,-e) des formes sesquilineaires sur X* , - symetrique.

Soit N2(X) c N(X) forme des n2(h), he Homo(WO,X) , de matrice
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h -hh*/

Jo 1 - h*

o 0 1

Tout n e N(X) s'ecrit de facon unique n = nl(s) n2(h).

On ales fonnules

(a) m(g,u)nl(s)m(g,utl= n1(gsg*)

(b) m(g,u)n2(h)m(g,utl= n2(ghu- l)

l'action de M(X) sur N(X) est done l'action naturelle,

(c) n2(h)n2(k) = n2(h+k) nl «-hk*+kh*)/2)

le cornmutateur de deux elements de N2(X) est donne par

(d) (n2(h), n2(k» = nl(-hk*+kh*)

Lemme. 1) Le groupe des commutateurs de N(X) est NI(X) si Wo *" {O} .

2) N(X) est abelien si et seulement si

a) Wo= {OJ ,etalors N(X) = N1(X)

b) Wo est orthogonal et dimoX = 1 , et alors N(X) = N2(X) .

Preuve. {N2(X)=0} {a)} et (NI(X)=O} (b)}. II est done clair qu'il suffit de montrer 1)

en supposant que ron a ni a) ni b).

Par le theoremed'orthogonalisation (1,6), il suffit de montrer que le groupe des cornmutateurs de

N(X) contient les nl(s), seHomo(X*,X) s*=-s,

rang s = 1 ,si W non orthogonal

rang s = 2 ,si W orthogonal.

Par (d), il contient les nl(s-s*), seHomo(X*,X) se factorisant par Wo , i.e, rang s dimoWo .

On en deduit (l), sauf si West orthogonal et

dimoWo = 1.Dans ce cas, le plus facile est de le verifier directementpar un calcul simple.
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Chapitre 2. Representations metaplectiques et conjecture deHowe

Remarques preliminaires. On renvoie a [HZ) ou [LV) pour la theorie sur

un corps de base egal a ou • On renvoie a (BzJ pour la theorie des

representations des groupes localement compacts totalement discontinus.

Precisons simplement que si G est un tel groupe, les representations de G

qu'on considere ici agissent dans des espaces vectoriels complexes. On note

(r,S) la donnee d'un tel espace 5 et d'un homomorphisme

I. Le groupe d'Heisenberg.

1.1. Soit F un corps de caracteristique differente de Z, qui est so it

local non archimedien, Boit fini. Dans Ie premier cas, on note &, ou

son anneau des entiers. Soit W un espace vectoriel de dimension finie sur

F, muni d'une forme symplectique < , >. Le groupe d'Heisenberg associe H,

ou H(W,< , », est l'ensemble WxF, muni de la topologie produit, et de la

loi de groupe

(w,t)(w' ,t')=(w+w' ,t+t'+<w,w'>/Z).

Notons S:F----+H Le monomorphisme S(t)=(O,t). Son image est Le centre

de H. Notons l'injection Ce n'est pas un morphisme

de groupes.

Remarques (1) Soit L'application

H(W,< , » , »

(w,t) I (w,at)

est un isomorphisme.

(Z) Soient WI' Wz deux espaces symplectiques, et W=W1&WZ leur somme ortho-

gonale (cf. chap.l,I.S). L'application

H(Wl,< , »xH(WZ'< , » )H(W,< , »

«w1,t1),(wZ,tz» I :>(wl+wZ,tl+tZ)

est un homomorphisme surjectif, de noyau l'ensemble des elements (S(t),S(-t»

pour teF.
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1. Z. Soit IjJ:F --+ d:" un homomorphisme continu non trivial. Un tel carac t e r e

est localement constant: soit D un voisinage de 1 dans C" ne contenant pas

de sous-groupe autre que f1t, est un voisinage de 0, done contient

un sous-groupe ouvert L de F; est un sous-groupe de D, done egal a {11·

D'autre part, comme F est reunion de sous-groupes compacts, les valeurs de

sont de module 1.

Theoreme (Stone, Von Neumann). A isomorphisme pres, il existe une et une

seule representation (i'S) H, lisse et irreductible, telle que

1.3. Commencons par construire de telles representations. Nous aurons

besoin des rappels suivants (cf. [B]).

L'application qui a weW associe Ie caractere w'r--+o/«w,w'» de West

un isomorphisme de W sur son dual topologique (Ie groupe des homomorphismes

continus de W dans Ie groupe des nombres complexes de module 1). Soit A un

sous-groupe ferme de W, posons

pour tout a A,

Alors est un sous-groupe ferme de W, et s'identifie au dual de W/A. On

a l'egalite Si A1,AZ sont deux sous-groupes fermes de W, on a l'ega-

I . . ( ).1. j. ..1. J. • ( .1.1te A1+AZ =A1nAZ' et, Sl A1+AZ est ferme ce qui est Ie cas si A1 ou AZ

est compact), on a l'egalite

Soit A un sous-groupe f e rme de W, supposons Soit c H. C' est

un sous-groupe de H, dont l'image dans 1jI) est un sous-groupe commutatif

maximal de ce groupe. Soient o/A un carac t e r e de tel que '1'A''s=o/, SA l'espace

des fonctions f:H telles que

pour tous heH,

(ii) il existe un sous-groupe ouvert compact LeW tel que

f(h&(£»=f(h)

pour tous £E L, hEH.

Je dis que si f SA' f est a support compact modulo En effet soient
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L tel que (Lt.) soI t ver i.fLee , et weW tel que fof(wHO. Pour e :. LOA, on a

d'oll

Alors l' image de w dans wI (Lf:lA)l. est bien de t ermt.nee . Or (WAf =L.l.+A, et

est compact. Donc l'image de w dans W/A est dans un compact bien determine.

Soient WEW, L un sous-groupe ouvert compact de W, supposons que est

egal a 1 sur II en est ainsi si Lest assez petit. On

definit une fonction f L sur H parw,

si REL,

fw,L(h)=O, si

Cette fonction appartient a SA' Donc SAftol. La propriete ci-dessus montre

que si pour tout weW, on se donne un sous-groupe ouvert compact Lw "assez

petit", les fonctions f L' pour weW et LcL , engendrent lineairement l'es-w, w

pace SA'

Soit i la representation de H dans SA par translations a droite. II est

clair que lest lisse et verifie pour tout t F. Montrons que
A

rest irreductible. Soient s' un sous-espace non nul de SA invariant par H,

et feS', frO. Soit En translatant f, on peut supposer Soit

L un sous-groupe ouvert compact de W tel que f soit invariante par ), etw w

soit L un sous-groupe ouvert de L
w'

Fixons une mesure de Haar sur A. Gomme A

s'identifie au dual de W/A, la theorie de la transformation de Fourier montre

qu'il existe une fonction localement constante a support compact sur A

telle que pour w'EW

fA 4J«W' ,a»Cf' (a) da {

1, si w' A+w+L,

0, si w'lfA+W+L.

Posons On peut definir l'operateur de SA' Pour

w' .W, on a

)A da ,

rA f«a,<w' ,a»d(w'»<f(a) da ,
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t
f Ob(W' ) ' si W'EA+W+L,

= fA tp«w' da
0, si w'1 A+W+L.

Gomme fest invariante par est donc non nulle et proportion­

nelle a f L' Gomme on obtient f Ges fonctions engendrantw, \ W,

SA' on a S '=SA' et fest Lrr educ t LbLe,

1.4. Exemples. (1) Soit W=X+Y une polarisation complete. Posons A=X. On

peut choisir o/A tel que Alors SA s'identifie a l'espace des

fonctions localement constantes a support compact sur Y. On a la formule

,x>+<y,x>/2+t)f(y+y'),

pour tous xeX, y,y'6Y, t s F',

(2) Supposons F local non archimedien. Notons le plus grand sous­&­

module de F incIus dans Soit A un reseau de W, i.e. un

de type fini, de rang maximal. Alors

A....={WGiW; pour tout a cA, •

G'est encore un reseau de W. A l'aide d'une base hyperbolique, on verifie

qu'il existe toujours des reseaux A de W tels que

1.5. Demontrons maintenant l'unicite de la representation

une representation verifiant les conditions du theoreme. Soit

Soit

" sa contra­

grediente, est donc l'ensemble des points lisses du dual de S. NotonS j(H,o/)

l'espace des fonctions localement constantes, a support compact

modulo 3;(F) , telles que f(h S(t) )=\i!(tH (h) pour tous he­H, tEF. L' application

identifie j(H,\fI) a 5(W). Notons fd' r esp . es' la representation de H

dans par translations a droite, resp. a gauche. Pour SES, SES, on

definit Ie coefficient pour tout heH. Je dis que est

a support compact modulo Soient en effet weW tel que .r(w)10, et L
s,s

un sous­groupe ouvert compact de W tel que s et soient invariants par [(L).

Pour If:L, on a

=\f( <w,b) ['l • s)= 0/(<w , >Hv 0 r(w) •
\. \ s,s

Donc o/«w,e»=1 et qui est compact. 11 est alors clair que
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et que l'application se prolonge en une application lineaires,s

'Sc&S ---» qui entrelace les representations et ('sx'd de H><H. En par-

ticulier pour l'application identifie a une sous-repre-:;,s

sentation irreductible de Pour demontrer l'unicite de f' il reste

a montrer que est isotypique.

Considerons la representation de l'exemple (i), et la representation

(e',j(X» obtenue en echangeant les roles de X et Y et en par

Le carac t ere t On de f LnLt une dua LLte entre j(X) et :S(Y) par

<s',s>=)x><y s'(x)s(y)W«x,y» dx dy,

pour sEf(Y), ou on a fixe des mesures de Haar sur X et Y. On verifie

que s'identifie ainsi a la contragrediente de D'apres

les considerations ci-dessus, on a une application (s',s)\--f, quis ,s

entrelace et ld' Mais un calcul explicite donne

f, Y s' (x')s(y')W«y' ,x>-<x' ,y»ljI«x' .v'> dx' dy',s ,s

pour tous xeX, yeY. En identifiant et a 3(W) , l'application

_ devient essentiellement une t r ans fo rmee de Fourier, et

est done bijective. Donc est isomorphe a et, comme est irreduc-

tible, id est isomorphe a une somme directe de representations isomorphes

a (e,j(y». Cela acheve la demonstration. a

1.6. On appellera representation metaplectique, et on notera la (classe

de la) representation de H dont l'unicite est affirmee par Ie theoreme.

L'assertion suivante resulte de la demonstration du theoreme.

Lemme. La representation de H><H dans est isomorphe a \iii O\'l!

( ijiest Le conj ugue complexe de IfJ). 0

Les proprietes suivantes sont immediates:

(i) so it aEF", notons Ie caractere 'Va(t)=w(at), et j l'isomorphisme
a

defini a la remarque (i) du l.i. Alors e oj (avec un abus de notation:
\II a ,"Va

,w et sont ici des representations de deux groupes differents);

(2) si W=W i6lW2, somme orthogonale, notons ('IV' ('\lIi, Les representations
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des groupes H(W,< ,», H(W1,< , », H(WZ'< ,», et j l'homomorphisme de la

remarque (Z) du 1.1. Alors eljr0 j

(3) f"" est admissible;

(4) est la representation contragrediente de

1.7. Changement de modeles. Pour tout sous-groupe ferme A de W tel que

on a construit un modele SA de la representation fw(cf.I.3). Soient

.1. ..\..
AI' AZ deux sous-groupes fermes de W tels que A1=A1, AZ=AZ' Supposons A1+AZ

ferme.

Remarque. Cette condition est evidemment automatique si Fest fini. Elle

l'est aussi si F est local de caracteristique nuIIe. En effet si pest la

caracteristique residuelle de F (i.e. Fest une extension finie ), un
p

sous-groupe A de West ferme si et seulement si A est stable par multiplica-

tion par lp' Si Al et AZ sont stables par lp' A1+AZ l'est aussi.

1
On choisit ' fA (cf.I.3). Alors IA nA est un caractere de AlnAZ'

1 Z 1 Z 1 Z
-1

done il existe wE:W tel que LpA IVA (a)='l!«a,w» pour tout aeAl\AZ' Pour fE-SA'
1 Z 1

considerons la fonction

("" -1
a (a)

Z
pour aE:AZ,H' Elle est invariante a gauche par Elle est a support

compact modulo A1,HOAZ,H' En effet on a vu que f est a support compact modulo

A1,H et, d'apres notre hypothese, l'image de AZ,H dans est fermee.

On peut definir une fonction If sur H par

()A da ,
I,H Z,H Z,H Z

Lemme, L' application I SA sur
1

representations de H sur ces espaces.

SA qui entrelace les
Z

Demonstration. II est clair que I est a valeurs dans SA et commute aux trans-
Z

lations a droite, les representations etant irreductibles, il suffit, pour

prouver que I est un isomorphisme, de montrer que I est non nul, On prend

pour f une fonction f L (cf.I.3). Pour L suffisamment petit, on verifie quew,

If L( 1)'1'0, 0w,
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fA(h)=

0, sinon.
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1.8. On peut preciser la structure des representations lisses de H.

Lemme. Soit (f'S) une representation lisse de H. Supposons que

pour tout teF. Alors \ est isomorphe a une somme directe de copies de

Demonstration. Si Fest fini, H est un groupe fini, et ses representations

sont semi-simples. Supposons F local non archimedien, soient A un reseau

de Wtel que et un caractere de Pour toute repre-

sentation lisse de H verifiant notons S'(o/A)

l'espace des vecteurs s'es' tels que t'(a)s'=l\IA(a)s' pour tout Le foncteur

est exact. Utilisons Ie modele de construit au 1.3. II est

immediat que est de dimension 1. et l'espace des

fonctions fei( telIes que fs(a)('d(a')f='¥A(a)'VA(a')f pour tous Le

lemme 1.6 montre que est de dimension 1, il est engendre par la fonction fA

de f LnLe par

Fixons une mesure de Haar sur W telle que A soit de mesure 1. L'espace

muni du produit de convolution est une , et pour (i',S') comme ci-

de s sus , ')C agit naturellement dans S'. L' cpe r a t eur f (fA) est un proj ecteur

de S', d'image Soient alors S l'espace de l'enonce,

et S' Ie sous-H-module de S engendre par s. On a done

Par exactitude, et grace au t he orerne ,

S' admet done au plus un sous-quotient irreductible, i.e. S' est irreductible.

Soit alors S" Ie sous-module de S engendre par S(o/A)' D'apres ce qui precede,

s" est engendre par ses sous-modules irreductibles et est done somme directe

de tels sous-modules. D'autre part done par exactitude

et S/S"={OJ comme ci-dessus. D'otl S=S", ce qui acheve la

demonstration. D
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II. Le groupe symplectique, la representation metaplectique.

11.1. Soit SpeW) Ie groupe symplectique. II agit sur H par g(w,t)=(gw,t)

pour g Sp(W), t F. Soit un modele de la representation metaplec­

tique de H. Pour geSp(W), l'application h est une representation

de H dans S verifiant les conditions du theoreme 1.2. Elle est donc equiva­

lente a

(A)

i.e. il existe MEGL(S) tel que

-1
M = f\ll(gh), pour tout heH.

""De plus M est unique a un scalaire pres. On note Ie sous­groupe topo­

logique de Sp(W)xGL(S) forme des couples (g,M) verifiant l'equation (A).

A isomorphisme pres, il est independant de la realisation de On a une

suite exacte

(B) 1_ Sp(W) __ I.

On peut parfois remplacer Ie groupe par un revetement d'ordre au plus

2 de SpeW) grace a la proposition suivante.

Proposition. (1) Si F est fini, il existe un homomorphisme

qui scinde la suite exacte (B). A l'exception du cas dimFW=2, cet

homomorphisme est unique.

(2) Si F est local non archimedien, un tel homomorphisme n'existe pas.

Par contre il existe un unique sous­groupe de sp (W) tel que la restric­
T ­ 'V

tion de p a ce sous­groupe soit surjective et ait un noyau d'ordre 2.

sous­groupe est ferme, et la restriction de p a ce sous­groupe admet des

sections locales.

Cf. [S] th.33 pour (1) ,lW1§43 pour (2). 0

Si F est local non archimedien, on sait qu'a isomorphisme pres, il n'existe

qu'un revetement d'ordre 2 de Sp(W), non trivial. En effet un tel revetement

2est determine par un cocycle dans H Or ce groupe est isomorphe

a ([M1 th.IO.4). Fixons un tel revetement speW). On renvoie a [P] pour

une expression du cocycle associe. Le groupe metaplectique est l'extension

>< u: obtenue en identifiant {!1}c6:" au noyau de la projection de
tH 1
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sur Sp(W). II existe un unique isomorphisme SP(W) --'>sPq;(W) commutant

aux projections sur Sp(W) et equivariant pour l'action L'image par

cet isomorphisme de SP(W) est Le compose de cet isomorphisme avec

la projection sPo/(W) est une representation du groupe metaplectique,

qu'on note wo/' et qu'on appelle la representation metaplectique, ou la repre-

sentation de Weil.

Si Fest fini on pose SP(W)=Sp(W), On poursuit la construc-

tion comme ci-dessus. Dans Ie cas particulier F=W3, dimFW=2, on doit choisir

l'homomorphisme Sp (W) --'J> sPo/(W), Nous Le choisirons tel que la representation

Wwde Sp(W) qui s'en deduit soit donnee sur les elements unipotents superieurs

par les formules usuelles, quand on la realise dans un modele de Schrodinger

(cf. plus loin 11.6).

A
Remarque. Soient G un groupe localement compact totalement discontinu, n

A
un entier Q 1, »r; (4:.) --,.G un plongement central du groupe des racines u-d.emes

complexes de 1 'unite dans G, et GLe produit G=G I< c". On a un diagramme
f-n ( .)

commutatif

ffi.Soit mE!. Une representation de G telle que 1dV pour tout

zeC" s'identifie a une representation de Gve r Lf Lan t :fl.i(z)=zmi dv pour tout

D'ou:

(1) si m, m'IS2'L, m-m'E:n71., on peut identifier les representations (It,V)

m m'
de G verifiant noi(z)=z idv a celles verifiant noi(z)=z idV;

(2) On peut etendre a ces representations les notions definies pour les

representations des groupes localement compacts totalement discontinus (lis-

site, etc ... ).

La representation metaplectique verifie les proprietes ci-dessous:

(1) est lisse, et meme admissible;
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(2) so it Les groupes symplectiques de Wmuni de < , > et de Wmuni

de a< , > sont egaux. Les representations de H(W,a< , » et e de
\Va

H(W,< , » peuvent se realiser dans un meme espace S (cf. 1.6.1). Alors Ie

groupe Spo/(W) construit a partir de la forme a< , > et du caractere V' et

Ie groupe sp (W) construit a partir de la forme < , > et du caractere
Ij'a

qui sont tous deux des sous-groupes de sont egaux. Autrement

adit, changer < , > en a< , > equivaut a remplacer par ;

(3) Ie groupe GSp(W) des similitudes symplectiques agit sur H par

pour W W, ou est Ie rapport de simili-

tude de Y. Realisons dans un espace S. Pour l'application

ht--»e
4l
('(h) est une realisation de f dans S. Si (g,M) .Si\,,<W), on a d l ap r e s

tV
(A)

pour tout htH, d'ou

-1 -1
glS"h).

-1 "- -1 ""Done (Il (W) et g't,M) est un isomorphisme de SP<v(W)

sur Par composition avec les isomorphismes de ces groupes sur

speW), on obtient qu'il existe un automorphisme de speW), d'ailleurs unique

(sauf si F=Uj, dimFW=2), relevant la conjugaison par qu'on note encore

g t---»lS" gy, et la representation gl-WWN('l() (Y g'() est equLvaLen t e a W'i
(4) soit aEFx• Appliquons (3) pour 1!=a id

W'
Necessairement pour

'" 2tout Done W best equivalente a W si b=a . II est par contre aise

de verifier que W'!'b n ' est pas equ tval ent.e a Ww si b n' est pas un car r e de F)(

(par exemple en calculant des modules de Jacquet "tordus" de uJ
Wb

et WI\!' c f ,

chap. S );

(5) La con t r agr edLent;e de Will est W
lii
(en utilisant I' identification du

(1) de la remarque ci-dessus);

(6) Soient WI' W2 deux espaces symplectiques, et W=W1$W2 leur somme ortho-

gonale. Pour i=1,2, soit l'espace d'un modele de la representation metaplec-

tique de H(Wi,< , ». Realisons la representation metaplectique de H(W,< , »
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dans S=Sl&SZ (cf. 1.6.Z). On a un plongement

Sp (W1)'" Sp (WZ) ---,.Sp (W) ,

et un homomorphisme

GL(S1)xGL(SZ) ---,.GL (S)

de noyau l'ensemble des (z idS ,Z-lids ) pour D'ou un homomorphisme
1 Z

L'image par cet homomorphisme de est incluse dans En

d'autres termes, il existe un homomorphisme (unique si F*F3):

j: speWl)xSP (Wz)-5P(W)

de noyau plonge antidiagonalement dans Ie produit de gauche, commutant

avec les projections sur les groupes syrnplectiques, et equivariant pour

l'action de La representation est equivalente au produit tensoriel

externe will, Z' avec une notation ev Lden t e ,

II.Z. Soit (eo/,S) un modele de la representation rnetaplectique de H. Soit

g6Sp(W). Fixons une rnesure de Haar sur l'espace vectoriel W/Ker(l-g). On

verifie que la fonetion sur W: est eonstante sur les classes

modulo Ker(l-g). Si Fest fini, on peut definir un endomorphisme M, ou Meg),

de Spar

Ms=Sw/Ker(l_g) dw

pour tout seS. Supposons rnaintenant F local. Soit L un reseau de W/Ker(l-g).

Pour on definit un element par

dw.

Lemme. Pour tout seS, il existe un reseau L c W/Ker(l-g), et un element
s

MseS tels que si L est un reseau de W/Ker(l-g), si L cL, on a l'egalite
s

Demonstration. Soit un reseau de W/Ker(l-g) tel que tout

eEL l (c f , 1.4.Z) et que s soit invariant par f'l!l$,,(l-g)e) pour tout PeLl • Un

tel r eseau ex i s t e , Pour L.:::>L 1, on a l'egalite

(C) L SL 1jX<w+e,g(w+e»/Z)fo/(fo(l-g) (w+6)s de.
weL/Ll 1

Comme



38

(w+e)= $e t>(l-g)e. S«(l-g)w, (l-g){>/2),

l'integrale interieure vaut

t¥«w,gw>/2) 3L 4J(X/2) de,
I

ou

x=<w,gb+< e,gw>+<f,gl>+<(l-g)w, (l-g)f>=2<(l-g)w,b+< e,g6.

Remarquons que \jl«t gb/2)=1. Le b t carac t ere (wl,w2)'-\fI«(l-g)wl,w2» de

W/Ker(l-g) est non degenere. Alors la fonction

est a support

W'--\L 4J«(l-g)w,b) de
I

compact, i.e. il existe un reseau L C:W/Ker(l-g) tel que
s

l'inte-

grale ci-dessus soit nulle si On peut supposer LIC Ls' Supposons LsC L.

Les termes de la somme (C) sont nuls si wfLs/L l. Alors Mts=Mt s, d'ou Ie
s

lemme.O

Ce lemme definit un endomorphisme M, ou M[g], de S.

11.3. Dans les demonstrations des trois lemmes suivants, on traite Ie

cas d'un corps local, Ie cas d'un corps fini etant plus simple.

Lemme. Pour tous geSp(W), hER, on a l'egalite

Demonstration. Posons M=M[g], supposons h=S(wO), et soit SGS. Pour un reseau

L assez grand, on a

(gwO))Ms= fltl( b(gwO»Mts

= }L dw.

On a

d(gwO) +(l-g)w) (l-g)w> / 2)

=

Enfin

<w,gw>+<gwO,(I-g)w>+<wO' (I-g) (w-wO)>=<w-wo,g(w-wO)>.

Alors
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Pour 1 assez grand, on a wO£L. On effectue Ie changement de variable

w-wO 1e deuxieme membre devient Pour L assez grand, c'est

11.4. Pour tout geSp(W), il existe c(g)elR: tel que

-1
M[g ] ..M[gl=c(g)ids.

-1
M=M[g), M'=M(g 1. Soit S6S, posons s'=Ms. Soient

-1
1 c WiKer (1-g), resp. L ,CWiKer (1-g ), deux r eseaux ve r LfLant; les conditions
s s

-1du lemme 11.2 relativement a s et g, resp. s' et g Remarquons que

-1
definit un isomorphisme de W/Ker(1-g) sur W/Ker(l-g ). Si L est un reseau

de W/Ker(l-g) tel que 1
sUg ,C L, on a done

Ms=M_s M's'=M' s'-1. , gL '

d'ou (a une constante positive pres provenant d'un changement de mesure de

Haar):

M'MS=)1 dw'

dw dw'

SLx1 <jI«gw' ,w'>/2+<w,gw>/2+«g-1)w', (1-g)w>/2)elj./(J o(1-g) (w-w'»s dw dw'.

Prenons pour variables w', w"=w-w'. On obtient

M'Ms= LX1 qJ(<(l-g)w",w' >+<w" , gw">/ 2)fljJ( $o(1-g)w") s dw" dw'.

Comme Ie bicaractere de W/Ker(l-g) est non dege-

nere, l'integrale interieure en w' vaut Ia fonction caracteristique d'un

certain reseau 1*, multipIiee par la mesure m(L) de L. Alors

M'Ms= mtL) )1(\1" \jI«w" ,gw">/2>f.q,(d o(1-g)w")s dw".

Quand L devient grand, devient petit. On peut choisir 1 assez grand pour

que L et que Ie terme a integrer soit constant, egal a s. Alors

0

Coroliaire. Pour tout geSp(W), on a (W).
-- 'V

Demonstration. D'apres Ie lemme ci-dessus, M[g1 est inversible. L'assertion

resulte du Iemme 11.3. 0

11.5. Lemme. Soient g1' g2 Sp(W). Supposons que glg2=g2g1' Alors

M[g1)Mlg 21=M[g21M[g11.
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Autrement dit, si deux elements de SpeW) commutent, deux images recipro­

ques (quelconques) de ces elements dans speW) commutent aussi.

Demonstration. Soient SES, L un reseau de W/Ker(l­gZ)' Si Lest assez grand,

o/«w,gzw>/Z)M(glJ\\lI(&'(l­gz)w)s dw.

D'apres Ie lemme 11.3, on obtient

M[g11 M\gZJ s= 1\I«w,gzw>/Z) tw(.logl (l­gZ)w)Mtg11s dw.

Effectuons Ie changement de variables Son jacobien vaut:

W/Ker(l­gZ»! IdetCg11 W) 1­1Idet(gl!KerCl­gz)!

Le premier terme vaut 1 car gfSp(W). En utilisant la description explicite

du commutant de gz ([ss1 gIV. Z), on montre que Le second terme vaut 1 lui

aussi. Comme gl et gz commutent, on obtient

MCg 11M(gz]s= 5 L "V«w,gzw>/Z) {tjI(6 o(l­gZ)w)M[g11 s dw
gl

Pour L assez grand, c'est M[gZ]M[g11s. 0

11.6. Modele de Schrodinger. Dans ce paragraphe et les suivants, on intro­

duit differents modeles de la representation metaplectique. Certains termes

seront notes Mfg] dans chacun des cas. Mais ils sont en general differents

selon les modeles et sont differents du Mlg} defini au II.Z.

Soient W=X+Y une polarisation complete. Identifions Y a X*. Realisons

dans j(X*) (cf. 1.4.1). Un element g de SpeW) s'identifie a une matrice

(: :) , avec aEEnd(X), b Hom(X*,X), c Hom(X,X*). Pour un tel g,

fixons une mesure de Haar sur X/Ker(c), et definissons j(X*) par

M(g1f(x*)=\X/Ker(c) W«a*x*,b*x*>/Z+<c*x,b*x*>+<c*x,d*x>/Z)f(a*x*+c*x) dx

pour fG.f(X*), x* X*. Alors (g,MtgJ)I::5Pl\/W) (cLLPj th.Z.Z).

En particulier, en normalisant convenablement les mesures, on obtient

les formules plus usuelles:

­ pour a(GL(X), et g=(a ,
o a*

l/Z
M[g1f(x*)=ldetxaj f(a*x*),

­ pour b SZ(X)CHom(X*,X) , et g=(b i),
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- pour b&Isom(X*,X), et g;( 0_1 b),

b* °
f -1M(gJf(x*); JX x) dx.

Les deux premieres formules definissent une representation du sous-groupe

parabolique P(X) de Sp(W) (cf. chap.l, 111.3). On peut les obtenir de la

facon suivante: considerons Ie produit semi-direct HP et son sous-groupe

A;(XxF)P. L'applieation X:6.--i>Q:/' de f LnLe par

f((x,t)(a Idetxa 11/2ql(t)°a*
est un earaetere de 6.. On peut identifier j(X*) a l'espace des fonetions

lisses f sur HP telles que f (h); i'\(S ) f Q() pour tous &..6., '(e. HP. Le groupe

P opere par translations a droite dans cet espaee de fonctions, done dans

C'est l'operation donnee par les formules ci-dessus.

Notons P(X) l'image r eci.proque de P(X) dans sP(W). On a done P(xr-:-P(X)",c.><.

II. 7. Modele de Schr1idinger "mixt<'. Soit X un sous-espaee totalement

isotrope de W, non nul et non maximal. Identifions Wa X+WO+X* (cf. chap.l,

111.5). Soit un modele de la representation metapleetique de

H(WO,< , ». Realisons la representation metaplectique de H(X+X*,< , » dans

j(X*). Alors j(X*)&SO est un modele de la representation metaplectique de

H(W,< , » (cf. 1.6.2). Identifions j(X*)&SO a l'espace des fonctions

de Schwartz sur X* a valeurs dans sO. Utilisons les notations du chap.l,

111.5. II Y a un homomorphisme nature1 (j(n);l si ne.N(X),

° .. 'V ° °j(m(a,u));u pour U Sp(W ), aEGL(X)). Notons lCl p:Spo/(W ) la

projection. Soit P'(X) l'ensemble des tels que

Pour certains elements de P'(X), on definit M(g,uJ£End par

les formules suivantes, ou et x*EX*:

- pour U Sp(WO), g;m(a,u), u=(u,MOCu1),

1/2 °M!;g,u)f(x*); Idetxa I M(u1f(a*x*),

2
- pour seS XCHom(X*,X), g;nl(s), u;l,

(comme au 11.6, ces formules se retrouvent par un procede d'induction);
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- pour h Hom(WO,X), g=n2(h), \1=1,

Mlg, u]f (x*) h* (x*»)f (x*) .

Ces formules se prolongent en une representation (g,u)I_M[g,u] du groupe

p'(X). On a pour tout En particulier l'image

reciproque P(X) de P(X) dans sPew) est isomorphe a P'(X).

11.8. Modele latticiel. Supposons F local de caracteristique residuelle

differente de 2. Soit A un reseau tel que (cf. 1.4.2). Grace a notre

hypothese sur la caracteristique residuelle, on peut choisir Ie caractere

du 1.3 tel que pour tout aeA. L'espace SA du 1.3 s'identifie a

l'espace des fonctions localement constantes, a support compact,

telles que

pour tous w W, a A. Pour gESp(W), definissons M[g]eEnd(SA) par

M[g]f(w)= z=
aeA/gAf)A

Alors (g,M[g])e SPIj/W),

En particulier, soit K Ie stabilisateur de A dans SpeW). C'est un sous-groupe

compact maximal de SpeW). Si gEK, on a simplement

-1
(D) M(glf(w)=f(g w).

Cela definit une representation de K, et l'image reciproque de K dans speW)

est isomorphe a K,,{".

11.9. Soient Gun sous-groupe ferme de SpeW), Gson image reciproque dans

sPeW). On a une suite exacte

On dit que G est s cLnde dans Sp(W) s'il ex Ls t e un homomorphisme I>:G G

qui scinde la suite ci-dessus. Dans ce cas G

Remarque. On peut definir une notion analogue en remplacant sPew) par

Si G est scinde dans speW), il l'est a fortiori dans speW). La reciproque

est fausse car l'application
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n'est pas injective en general. C'est la justification de notre preference

pour l'extension sP(W).

Soient f={0$Xl" ••• un drapeau totalement isotrope, P(<!) son norma-

olisateur dans Sp(W). Si X
r
n'est pas maximal, decomposons W en Xr+W

soient la projection naturelle, et son noyau. Si Xr

est maximal, posons Les formules des paragraphes 11.6, 11.7 mon-

trent que P1(i) est scinde dans SP(W). Et ce scindage est normalise par
_ _-1 -1

i.e. si on note Q Ie scindage, on a l'egalite =Giqgq ) pour tous

gEP1(i ) , ou q=p(q). La meme propriete s'ensuit pour Ie radical uni-

potent de Plus precisement:

Lemme. II existe un scindage normalise par P@». A l'exception

du cas F=F3, Wde dimension 2, ce scindage est unique, et est a valeurs dans

'"Sp(W).

Demonstration. Soit t> un tel scindage. Pour n t N( et qeP(Ii ), on a

-1 -1 -1t>(qnq n )=q q o(n) ,

ou q=p(q). Le membre de droite est bien determine car <>(n) l'est a un element

A
central pres. C'est un element de Sp(W), comme tout commutateur, car

$p(W)/sP(W) est abelien. Donc Q est bien determine, et a valeurs dans sP(W),

-1 -1
sur les elements de la forme qnq n • A l'exception du cas indique dans

l'enonce, ces elements engendrent N(!).Q

11.10. Supposons F local de caracteristique residue lIe differente de 2.

Soient A et K comme en 11.8. Alors K est scinde dans SP(W).

Lemme. Le scindage de K defini par la formule (D) de 11.8 est a va leurs dans

SP(W).

Remarque. Si Ie corps residuel de F a au moins 4 elements, K est egal a son

sous-groupe des commutateurs, et Ie lemme est immediat (cf.(Ml lemme 11.1).

Demonstration. Notons ce scindage. Pour tout modele (fw'S) de la representation

metaplectique de H, il Y a, a une constante pres, un unique vecteur sAES fixe
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par to/0a(A). Pour geK, \I(g) est determine par l'egHite 1.!ll'0<r(g)sA=sA'

On peut trouver une polarisation complete W=X+Y telle que A=XOA+YAA. Identi-

fions Y et X*. Dans Ie modele de Schrodinger 11.6, l'element sA est la fonc-

tion caracteristique fx*nA de X*AA. Le groupe a deux scindages possibles:

Ie scindage et celui, qu'on note ici 11', decrit en 11.6. On constate

que pour n(N(X)f\K, ""'V0II'(n)fX*t\A=fX*{)A' Cela carac t e r Lse Il'""Cn), d'ou <r(n)=a-'(n),

et d'apres Ie lemme 11.9. En inversant les roles de X et X*,

on a la meme relation pour tout ncN(X*)nK. Or N(X)nK et engendrent

K. Doric (f(g)EsP(W) pour tout geK. G

Remarque: cette demonstration montre que Ie scindage choisi est independant

de pourvu qu'on ait

Pour F local quelconque, une construction un peu plus fine que celIe de

11.8 montre qu'il existe un sous-groupe ouvert KcSp(W) qui soit scinde

dans sp(W).

III. La conjecture de Howe.

111.1. Soit (Hl,H2) une paire reductive duale de SpeW) (cf. chap.l, 1.17).

On s'interesse a leurs images reciproques Hl,H2 dans speW), et aux restric-

tions de W\ji a HI et II;.
""Lemme, Pour i,j tl,21, itj, Hi est Ie commutant de

Cela resulte du lemme 11.5.0

Si Fest fini, HI et sont evidemment scindes, puisque SpeW) l'est.

Si F est local non archimedien, supposons W=W I0DW2, avec Wi

(de type I), et Hi=U(Wi) pour i=1,2. Alors HI est scinde sauf si D est com-

mutatif muni de l'involution triviale , £1=-1 (i.e. WI est symplectique) et

"- "'--'est impaire. Dans ce cas HI (c f . chap.3).

Pour F quelconque, supposons W=X l X2 +(X l X2)*, et Hi=GLD(Xi) pour

'V
i=1,2. Alors HI et H2 sont scindes dans SpeW). En fixant un scindage convenable,

on voit grace a un modele de Schrodinger que la restriction de wll' a est la

representation de ce groupe dans l'espace de Schwartz f(XltX2) definie par
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ou et det hi est Ie determinant de hi considere comme endomorphisme

du F-espace vectoriel Xi'

IlI.Z. Soit Gun sous-groupe ferme de SpeW). Notons l'injection

eVidente. Dans la suite, les representations (n,V) de Gqu'on considerera

seront supposees verifier l'hypothese:

lfoi(z)=z idv

pour tout z C
x• On note l'ensemble des classes d'isomorphie de represen-

tations admissibles irreductibles (rr,V) de Gtelles que ou

est la representation metaplectique de sPew).

Soit (HI,Hz) une paire reductive duale de Sp(W). Soit II

existe des representations admissibles irreductibles TIl de HI et TIZ de HZ'
uniques a isomorphisme pres telles que n so it obtenue en factorisant la

representation "10TIZ de HlxHZ par la projection HlxHZ (cL\:F1 th.l).

Ce qu'on notera abusivement 1T=nI6 1TZ' Comme TI est un quotient de w<v' 1f1 et iTZ

en sont ega l.etnen t , d'ou ll ieiRl\J(Hi)
pour i=I,Z. Done s'identifie

a un sous-ensemble de -Conjecture (Howe). Si F est local non archimedien, &':.1j.J(Hl"HZ) est Ie graphe

d'une bijection entre et

(cf , tHlJ paragraphe 6).

On donnera plus loin une forme plus precise de cette conjecture, incluant

Le prob l eme des mul t LpLf.c Lt e s , On a besoin des lemmes techniques ci-dessous.

111.3. Lemme. Soient Gl, GZ deux groupes localement compacts totalement

discontinus, (TII,V l) une representation admissible'irreductible de GI,

("ifZ'VZ) une representation lisse de GZ' V un sous-espace GlxGZ-invariant de

Vlfi;VZ' Alors il existe un sous-espace Vi VZ' invariant par GZ' tel que

V=V l(EJVi·
Demonstration. Posons
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pour tout V1E:V1, VfS>VzEV}.

Cet espace est invariant par GZ' et Quotientons par V10Vi. On est

ramene au cas ou et on veut rnontrer qu'alors V={OS' Si Vr{O!, soit

V V, vtO. On peut ecrire

n i i
v= I v 118lVZ'
i=l

i iavec des vecteurs VI lineairernent independants, et vZfO pour tout i=l, ..• ,n.

Soit K un sous-groupe ouvert de G1 tel que pour tout i=l, ••• ,n, vi appartienne

K
au sous-espace VI des vecteurs de VI invariants par K. Soit l'algebre des

distributions sur G1 a support compact, biinvariantes par K. La representation

deduite de de dans est irreductible (lBZ] I.Z.10) et est de dimen-

sion finie. Donc l'application est surjective, et il existe

f£ 1l.K telle que

i_ 10' si il'l,
ir1(f )v 1- 1

VI' si i=l.

1 1
Alors v lOWZ=1T1(f)v . V. Soit v lEV1 quelconque. D' ap r es I' Lr r educ t f.bf I.Lt e de ITl'

il existe une distribution f' a support compact sur G1 telle que 1I1(f')vi=v1•

Alors (f') v. D'ou contradiction. D

111.4. Lemme. Soient GI,G Z deux groupes localement compacts totalement dis-

continus, (lTI,V I) une representation admissible irreductible de GI,

une representation lisse de GIxGZ' Supposons que (\ Ker (f) = 0'1, ou f parcourt

HomG (V,VI). Alors il existe une representation lisse de GZ' unique
I

a isomorphisme pres, telle que TI soit isomorphe au produit tensoriel externe

Demonstration. Pour tout GI-module

sur lequel G1 agisse trivialement.

U1, no tons UI[G I] son plus grand quotient
.., ..,

Soit (IT1, V1) la representation contragre-

"diente de (VI'VI)' Comme 1TI est Lr r educ t LbLe , on a (V I)lGIl :ldc' Supposons

que 1(Z existe. Alors

(VI&V)(GI] Vz·

D'ou l'unicite de VZ' Reciproquement posons ' "soit .-->Vi



47

la projection naturelle. L'espace Vz est naturellement muni d'une action

lisse de GZ. On definit une application lineaire

"<e: V Hom«:(V l'VZ)

Cette. application entrelace IT avec I' action de GIJ<.GZ sur Homc(Vl'VZ) de duLt e

de *1 et Soient VEV, K un sous-groupe ouvert de Gl fixant v, eK l'idem-

potent associe de l'algebre des distributions a support compact sur Gl" Pour

V{V l , on a

( ( " ) " v ( v v "<{ v) VI eK)v)=p(iil (eK)vlqgv),

v -1
ou eK est l'image de eK par l'antiautomorphisme gr-+g Mais eK=eK, d'ou

Autrement dit se factorise par *l(eK). On a un plongement naturel

" L'admisssibilite de implique que son image est Ie

sous-espace des f Hom(Vl,VZ) tels qu'il existe un sous-groupe ouvert compact

K de Gl tel que f se factorise par *1 (eK). Alors se factorise par

/f':V--Vl@VZ. Montrons que cr' est injective. Soit veV, viO. 11 existe par

hypothese fEHomG (V,Vl) tel que f(v)rO. Fixons un tel f, et tel que
1

Par fonctorialite, f definit une application

f': (VlqgV1)[Gil:.-C.

On a f'op(vlev)=-II-l0f(v)rO. Done p(-II-{i'ov)7'O, et 'f(V)FO. Doric est injective et

l'est a fortiori. Alors V s'identifie a un sous-Gl",GZ-module de Vl&VZ,

et l'existence de resulte du lemme 111.3.0

Posons

S(1l1)=f)Ker(f), ou f parcourt Homa (S,V l),
1

SLrr i1 =S/S (rr 1) •

L'espace S(n l) est stable par HI (chacun des Ker(f) l'est), et par HZ (qui

permute les f car HZ commute a HI)' Par passage au quotient on obtient une

representation de dans StITl]. Soit (oZ,V Z) la representation lisse de

HZ telle que (c f , lemme III.4).
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Conjecture. Si F est local non archimedien, il existe un unique sous-espace

Vzde Vi' invariant par HZ' tel que Vi!Vzsoit irreductible.

"'"'Si cette assertion est vraie, on note Vz=Vi!Vz,"Z la representation de HZ

dans VZ' On dit que 11"Z correspond 11 ll" I.'

Remarques. (1) Cette conjecture implique la conjecture III.Z.

(Z) Grace 11 11.1.6, et au chap.l,I.I?, si la conjecture est vraie pour

toute paire reductive duale irreductible, elle est vraie pour toute paire

reductive duale. De meme pour la conjecture III.Z.

(3) Plusieurs cas particuliers de cette conjecture sont aujourd'hui demon-

tres (ou quasi-demontres ..• ).

(4) L'analogue pour F=iR a ete demorrt r e par Howe ([HZ]).

(5) L'analogue de la conjecture pour F fini est faux (voir [H3]).

(6) Supposons la paire duale irreductible de type I. II resulte des travaux

de Kudla (cf. chap.3) que si TIl est cuspidale, la representation TIi introduite

ci-dessus est irreductible (ce qui est plus fort que la conjecture ci-dessus).

Et quelle que soit "Ttl'"i est de longueur finie.

(7) Supposons la paire duale irreductible de type I, "non ramifiee" (cf.

chap.S). Alors la conjecture est vraie (Howe). Si de plus ll"l est "non rami-

fiee", \\Z l'est aussi.

111.6. En admettant que la conjecture ci-dessus soit vraie, plusieurs

questions se posent sur la correspondance Par exemple:

(1) soit"Tt1 une representation admissible irreductible de HI' A quelles

conditions a-t-on 'IT1 '\,(H1) 1

(Z) soit 1r1 supposons tr 1 et liZ cuspidales. La representation ITZ

se deduit-elle de TIl par une fonctorialite a la Langlands? Plus concretement

peut-on calculer Ie caractere (ou un caractere tordu) de 'lTZ en fonction de

celui de 1\1?

(3) Kudla a mont r e que la correspondance 111 2 est plus ou moins compa-

tible a l'induction. On obtient alors une correspondance entre sous-quotients
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de certaines representations induites. II serait interessant d'avoir des

precisions sur cette correspondance.

(4) comment la correspondance varie-t-elle en fonction Une question

liee est de savoir si on peut adapter la theorie des paires reductives duales

au cadre des groupes de similitudes GSp(W). La premiere difficulte est que

"pour l'extension metaplectique d'ordre 2 l'analogue du

lemme 11.5 est faux.
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Chapitre 3. Correspondance deHoweet induction

I - Restriction de l'extensionmetaplectique auxpaires duales.

1. Soit (W,<, » un espace symplectique sur un corps local non-archimedien F (toujours de

caracteristique differente de 2) et (H,H') une paire duale dans Spew). La restriction de l'extension

metaplectique de Spew) aHH' est scindee si la paire est de type 2 (ch.2,II,7). Que se passe-toil

pour une paire de type 1 ?

Il existe par (ch.l,I,20) un corps ainvolution (D,1:) tel que F soit contenu dans l'ensemble des

elements du centre de D, fixes par 1: , et une decomposition en produit tensoriel hermitien

W=W1®OW2 telleque H=U(W1),H'=U(W2)'

Par (ch.2,III,1) , 1'imageinverse (Ir,H'-) de (H,H') dans le groupe metaplectique de Spew) est
une paire duale, Pour ne pas confondre H- et l'extension metaplectique de SpeW1) , lorsque WI

est symplectique, nous noterons souvent dans ce chapitre par Mp(W) l'extension metaplectique de

W (au lieu de Sp(W)).

Theoreme. L'extension H- est scindee sur H, sauf si H '" Spew1) , oii WIest un espace

symplectique sur une extension F' de F, et dim--W2 impaire, ou l'extension n'est pas scindee,

Preuve. . Le resultat semble nouveau dans le cas general, mais il est bien connu pour H

orthogonal ou symplectique; il est demontre dans [K] que le cocycle metaplectique est scinde sur le

groupe special unitaire, si WIest hermitien sur une extension quadratique de F. La demonstration

generale n'est pas tres differente de celle de [K]. Chaque type de groupe sera examine separement,

Si W2 est hyperbolique, X un Lagrangien de W2 ' WI®X est un Lagrangien de W , et par

(ch.2,II,6) H- est scindee sur H. Ceci traite le cas ou H est orthogonal.

Si W20 est la partie anisotrope de W2' H" = U(W20
) , W" WI®OW20

, la paire (H,H") est

duale dans Sp(W"). Par (ch.2,II,1,6» , H- est scindee si et seulement si l'image inverse de H

dans Mp(W") est scindee, On peut done supposer W2 anisotrope. On diagonalise W2 (ch.l,I,5).

Par (ch.2,II,1) si Ez=1 et dimo W2 = 1 , la classe de l'extension H" ne depend pas de W2 . Elle est

d'ordre 1 ou 2. Par (ch.2,II,1,6» si dimo W2 est paire, H- est scindee sur H. Sinon, la c1assede

l'extension est celle que ron a pour dimoW2 =1. Ceci traite le cas ou WIest symplectique sur

E = F . Si E :;: F , le theoreme resulte de la compatibilite du cocycle metaplectique avec la restriction

des scalaires, donnee au lemme suivant.

Rappelons (ch.l,I,20) qu'une paire duale (H,H') non triviale de Sp(WE) est aussi une paire duale

dans Sp(W), pour toute extension finie FjF (munie de la trace trE/F E Homp(E, F» si West

deduit de WE par restriction des scalaires. Posons 'l'E = 'l'otrE/F'
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n est commode d'appeler representation metaplectique de Sp(W) associee lV, Ia

representation projective de Sp(W) dans S verifiant (ch.2, II,1 (A», pour tout modele (P'l"S) de Ia

representation irreductible de caractere central urdu groupe d'Heisenberg H(W).

Lemme. La representation metaplectique de Sp(WE) associee a 'liE est egale ala restriction a
Sp(WE)de Ia representation metaplectique de Sp(W) associeea'1'.

La correspondance de Howe pour une paire duale (H,H') non triviale est done invariante par

restriction des scalaires.

Preuve. On a 'I'E«' ='1'«, » , et ron compare les formules de la representation

metaplectique sur un modele de Schrodinger (ch.2,1l,7).Voir aussi Ia formule explicite du cocycle

metaplectique au paragraphe 3.

2 • Soit E Ie corps forme par les elements du centre de D fixes sous l'involution. Par restriction

des scalaires, on peut supposer que

-F=E.

Rappelons que ron s'est ramene a
H ni orthogonal, ni symplectique, done D est une extension quadratique de F ou un corps de

quatemions de centre F, 't est l'involution canonique,

dL"11DW2 =1,

et l'on veut montrer que H" est scindee sur H. Si cette propriete est vraie pour W1 hyperbolique,

elle est vraie pour tout W t : En effet, U(W1) se plonge dans U( W1$(-W1» en operant par

l'identite sur Ie second facteur, et l'on utilise (ch.2,II,1,6». On est ramene a
W1 hyperbolique.

Si W1 est anti-hermitien sur (Dvt), on peut supposer que W2=D(I), W =(Wl > tD/F<' >1) .

Supposons que W1soit Ie plan hyperbolique anti-hermitien sur D, de base hyperbolique (e,f) .

Muni du produit de W1 ' le sous-f-espace vectoriel W'de W1 de base {e,f} est un espace

symplectique. Soit PIe stabilisateur dans U(W1) de Ia droite eD, alors (ch.l,III,5), Ie radical

unipotent N et un Levi M de P sont

N = {(l,x; 0,1), xe F} , M = {(d,0;0,'t(dt1), de D"}.

ana

U(W1) = P Sp(W') "" DX SL(2,F).

Lemme. Le groupe unitaire H d'un plan hyperbolique anti-hermitien sur une extension

quadratique, ou un corps de quatemions D/F, est isomorphe au sous-groupe de GL(2,D)

engendre par SL(2,F) et M ={(d,O;O,'t(dt1), deDX}. On a une suite exacte :

1 SL(2,F) H DX/Fx 1 .
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Nous montrerons au paragraphe 4 que 1'extension metaplectique est scindee sur H U(W1)' si WI

est un plan antihermitien (d'apres [K], ce resultat est montre dans [T]; nous donnerons une autre

preuve). Par un theoreme general de Prasad et Ragunathan [PR,th.9.5] ceci implique que SU(W1)-

est scindee sur SU(WI)' pour tout espace anti-hennitien WI sur une extension quadratique DIF .

Le determinant induit une suite exacte :

1 SU(W1) U(W1) D1 1,

ou DI est Ie noyau de Ia nonne ND/F: Comme HI(SU(WI)'C X) =0 , on de Ia

suite d'HochschiId-Serre, Ia suite exacte :

1 H2(DI,C X) H2(U(W1)'C x) H2(SU(WI)'C X).

Si c est Ie 2-cocycle metaplectique restreint a U(W1) , sa restriction a SU(W I) etant triviaIe, il

existe un 2-cocycle X sur Dl tel que

c(g,g') XCctetg,detg') modulo un cobord,

Si HeW1 est un pian hyperbolique, Ia restriction de c a U(H) est triviale : ceci irnplique que X

(done c) est triviaL Done, U(WIf' est scindee sur U(W1) si WIest anti-hermitien sur une

extension quadratique.

Le cas des espaces hermitiens sur une extension quadratique se rarnene acelui des espaces
anti-hermitiens (ch.l,I,3,2».

n reste aconsiderer Ie cas oii WIest e-hermirien sur Ie corps des quatemions D . On va se

ramener au cas precedent. Si WIest hennitien, W2 = D(i) au ie D est de trace nulle, soit F' = F(i)

et je D tel quePe F , ji =-ij ; alors D =F' + j F' . On note par r : la projection sur le

premier facteur. L'espace (WI' rei< ,>1) est un espace anti-hermitien sur F' que 1'onnotera W' .

On a U(W I) e U(W') . L'espace West 1'espace symplectique sur F, d'espace vectoriel WI' de

produit trD/Fi<, >1 = trF'/Fr(i<, >1) . On a montre que U(W')- est scinde sur U(W') . On en

deduit que D(W1)- est scinde sur U(W I)'

Si WIest anti-hennitien, on fait le meme raisonnement, en plus simple. On choisit n'importe quelle

extension quadratique F'IF,FeD, et 1'0nnote W· = (WI' r«, >1) l'espace hermitien sur F' , etc...

Ceci termine Ia demonstration du theoreme, si 1'onadmet Ie resultat pour un plan hyperbolique

anti-hermitien sur une extension quadratique.

3. Formule explicite pour Ie cocycle metaplectique [Rao].

Pour pouvoir presenter la formule, quelques definitions sont necessaires. Soit W un espace

symplectique de dimension 2n sur F, Q l'ensemble des Lagrangiens de W (ch.I.Il) ,

({ei},{ei*})I:5 i s n une base hyperbolique de W, X, resp. X*, le Lagrangien engendre par Ies ei

resp. ei*' P =P(X) •N =N(X) son radical unipotent. Pour qe S2(X), soir nq E N associe a q par

l'isomorphisme N(X) "" S2(X) defini par la polarisation W X+X* (ch.I,III).
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On a une decomposition de Sp(W) en doubles classes mod P :

Sp(W) =u ._0 C.J - , ..., n J Cj (a b , rang c = j ) ,

c d

Pour S c {l, ..., n}, soit 'tS E CISI' 'tS(ej) = -e/, si i E S,

ej , sinon.

ainsi Co =P.

L'invariant de Leray.

Soient Xl' X2 En, on verifie facilement que

(i) {il existe ne N , X2 = nX l } <=> {Xr1X1=XrX 2 }; si cette intersection est nulle (i.e, X

transversal a Xl et a X2), n est unique.

(ii) (il existe pe P , X2 =pX1 } <=> {dimF XrlX1= dimF XrlX2 }

Definition. Si (X, Xl' X2) est un triplet de Lagrangiens deux adeux transversaux, l'element

nEN de (i) s'identifie dans la polarisation

W = X+X1 a un element qE S2(X) non degenere. La classe d'isometrie de q est l'invariant de

Leray du triplet.

Soit (Xo, x.,X2) , (yo' Yl' Y2) deux triplets de Lagrangiens deux adeux transversaux. On verifie

facilement que

(iii) {il existe pe P , Yo = pXo ' Y1=pX1 ' Y2 = pX2 } <=> { les deux triplets ont meme invariant

de Leray}

On etend la definition de l'invariant de Leray aux triplets (Xo' Xl' X2) de n non transversaux deux

adeux. Soit M =(XorlX1)+ (X2rlX1)+ (XorlX2) , et

WM MJ./M l'espace symplectique assode. Les images Zj =«Xj+M)rlMJ.)/M des Xi sont des

Lagrangiens de WM ' transversaux deux 11 deux. Par definition, leur invariant de Leray (note p)

est celui de (Xo' Xl' X2).

On demontre [R] que la propriete (iii) reste (presque) vraie. Soit (Xo' x.. X2) (yo' Yl' Y2) deux

triplets de Lagrangiens,

(iv) {it existe pe P , Yo =pXo ' Y1=pX1 ' Y2 pX2} <=> { les deux triplets ont meme invariant

de Leray, et dim X{lXj =dim YjrlYj pour dim XorlX1rlX2 =dim XorlX1rlX2 }

On dira que qe S2(X) est de classe p si la forme quadratique non degeneree associee 11 q est de

dimension (dimWM)/2 etde classe p.
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Theoreme. Si gl ,g2 E Sp(W) ,il existe p, PI' P2 E P, S, S' c {I, .., n} .qe S2(X) de c1asse

l'invariant de Leray du triplet (X, glX, g2X) tels que

gl =p'tS nq PI' g2 =P'tS'P2

Preuve ([Rao]). Soient les deux Lagrangiens Xl glX ,X2 = g2X, Le theoreme consiste a
dernontrer que les triplets (X, Xl' X2) et (X, 'tSnqXI, 'tS,x2) verifient (iv). On decompose

{I, ....n] en 5 parties eventuellement vides :

So = l'ensemble des no = dim XflXl!1X2 premiers elements

Sl = l'ensemble des dim XlnX2 - no elements suivants So

S2 = l'ensemble des dim xnX l - no elements suivants Sl

S3 = l'ensemble des dim XnX2 - no elements suivants S2

S4 = les elements restants.

On prend S = Sl V S3v S4' S' = Sl V S2v S4 ' q non degenere et de c1asse !'invariant de Leray

de (X, x., X2) sur l'espace X4 engendre par les ejE S4'

q(x,z) = qfz.z) 0 pour XE X4 ,Z dans l'espace Z4 engendrepar les S4

Cocycle metaplectique (premiere formule),

Soit X un Lagrangien de W , 'If un caractere continu non trivial de F, et y l'invariant de Weil

[R] . Pour (g.g'je Sp(W) ,soit q(g,g') l'invariant de Leray du triplet (X, g-l(X) , g'(Xj) .

Theoreme [P], [Rao] . La c1asse du 2-cocyc1e c(g,g') = YC'If(q(g,g'»/2) dans H2(Sp(W), ex)

est non triviale. Elle est d'ordre 2 .

On note que

a) pour P,PI,P2 E P(X) ,on a q(PIgp, p-lg'P2) = q(g,g')

b) c(g,g') est une racine huitieme de l'unite, depend du choix de 'Jf , X, mais sa classe dans

H2(Sp(W), C X)est l'unique classe "metaplectique" d'ordre 2.

c) on deduit du theoreme le lemme du paragraphe 1.Un Lagrangien X de WE est aussi un

Lagrangien de W ,et si cE est le cocycle de Sp(WE) associe a (X ,'JftrE/F)' c celui de Sp(W)

associe a (X, 'Jf) , le theoreme implique

c(g,g') = cE(g,g') , g.g' E Sp(WE) C SpeW).

Deuxieme formule. Nous allons donner maintenant un cocycle equivalent au precedent, a
valeurs dans {±1}. Soit

x : Sp(W) -t FX/Fx2 , x(p 'tS p') = det(pp'IX) modulo Fx2 .

d = det(-q(g,g'» E FX/Fx2 ,h = h(-q(g,g'» E (±l} .Ie determinant et l'invariant de Hasse

(ch.l,I,6) de -q(g,g')
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( , ) : FX/Fx2 x FX/Fx2 {±1} Ie symbole de Hilbert

r = r(g,g') = (1/2) (s + s' - s" - dim q(g,g'» , OU g E Cs ' g' E C's' gg' E Cs" ,

ou s est Ie cardinal de S, et s', s" ceux de S' , S" .

Theoreme [Rao]. On peut choisir Ie cocycle c : Sp(W)xSp(W) {±1} foumi par la fonnule

explicite

c(g,g') = (x(g)., xtg') (-x(g)x(g'), x(gg'» «_1)f, d) (_I,_1)f(£+I)/2 h

Exemple : pour SL(2,F), on a r = 0 sauf si g,g' '" P mais gg'e P ou r = 1,

{ q :#: O} <=> (s=s'=s"=I}) , et ron obtient la formule de Kubota [Kub] :

c(g,g') = (x(g) ,x(g'» (-x(g)x(g') ,x(gg'»

ou x(g) = d Fx2 si c = 0 ,g =(a b1
cFx2 sic;tO cd

4. Nous allons montrer en la calculant que la restriction de c a U(H) est cohomologiquement

triviale, si H est Ie plan hyperbolique anti-hermitien sur D ,lorsque West l'espace

symplectique canoniquement associe a H par restriction des scalaires.

On pose n = 1 ou 2 selon que D/F est quadratique ou un corps de quatemions [En fait, il suffirait

de supposer D/F quadratique, mais cela ne simplifie pas].

On fixe une base hyperbolique {e,i} de H et une base de D/F

{1,i] ,i2=-ae FX , si n=1

{1,ij,ij} ,i2=-ae FX FX,ij=-ji ,si n=2

La base hyperbolique associeede West

{e, ei/a ; f, fi} ,si n =1

{e, ei/a, ej/l3, ; f, fi, fj, fij} ,si n = 2

Soit h la bl E SL(2,F) , k = x + iy ED, si n = 1

c d k = x + iy + jz + ijt ED, si n = 2

Soient H, K les plongements de h , k dans Sp(W) , sur les bases donnees

H:= fal bal 1 := id 2x2' a = diag(l,a) si n:= 1

lca- 1 dl J 1 = id 4x4,8 = si n=2

K = «P(k) 0 I cp(k), = matrices de la multiplication par k

10 J dans D sur les bases {l {I ,i,j,ij}

Calcul de x .

x(K) = det cp(k) = k't(k) Fx2 ou Fx2 selon que n = 1 ou 2

x(H) = Fx2 , si c = 0

Supposons c;t 0, posons 't = (0,1;-1,0) , ecrivons h = (u,v;O,w)'t(r,s;O,t) ,

alors un calcul facile montte que H =(ua- 1,vl;Ol,w8)'t(rl,sa-1;Ol,tl),

't = 'tS ' IS: = 2n . Done x(H) = a Fx2 ou Fx2 selon que n = 1 ou 2,

x(H)x(K) = x(HK) = x(KH)
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Calcul de l'invariant de Leray q(g,g').

q(KH,H'K') = q(H,H') . Un calcul facile montre que -q '" cc'c" N ,

ou Nest la norme (reduite si n = 2) de DIP . Son invariant de Hasse est
h = (cc'c", cc'c'rr) , si n = 1, et h = -1 ,si n = 2.

Si dim q > 0 , alors r = 0 ,

Si dim q = 0 ,alors r = 2n si ce';t:() , c'' =0 et r = 0 sinon

Caleulde e.

Si n = 1, c(KH,H'K') = (-1, -o) (a, Ntkk') (N(k) ,N(k'», cc';t:() , c'' = 0

(N(k) , aN(k'») , c'c";t:() , c=O,

(N(k) , N(k'»), c=c'=c"=O

(cc'c" , -a) (N(k) , N(k'»), cc'c..;t:()

Si n = 2, c(KH,H'K') = lou -1 selon que cc'c"=O ou"# O.

Montrons que la classe de c est triviale, i.e. c(g,g') = b(gg')/b(g)b(g') ,i.e. c = lib.

Si n = 2 , on peut prendre b(KH) = b(HK) = 1 ou -1 selon que c=Oou non

Si n = 1 , on verifie que la restriction de c a SL(2,F) et a DX est triviale.

On a elSL(2,F) x SL(2,F) = lip, elI»< x 1ft =

ou p(H) = (c,-a) si c;t:() ,et p(H) =: (d,-a) si c = 0 .

='Y<'Ijf(N(k)x2)fy('Ijf(x2»)X(N(k»
y etant Ie facteur de Weil deja rencontre, Xe Hom(FX,C X), X2(d) = (d,-a) , de FX. Ces

trivialisations sont compatibles. Soit e(HK) = e(KH) = (Nk,a) ou 1 selon que c;t:() ou non. Alors

si l'on pose b(HK) = p(H) e(HK) , on a c = Sb,
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IT - Remarques surles representations des groupes p-adiques.

Soit F un corps fini ou local non archimedien, de caracteristique s 2.

1. Definitions [BZl], [BZ2] •

Soit G un groupe localement compact totalement discontinu, AlgG la categoric des

representations lisses complexes de G, 1t*eAlgG la contragrediente lisse de 1teAIgG. Soit

IrrG l'ensemble des representations lisses complexes irrreductibles de G. Pour tout sons-groupe

ferme H c; G , on ales foncteurs : AlgH AlgG

- ind(G,H,): le foncteur d'induction asupport compact

- Ind(G,H): Ie foncteur d'induction asupport non compact

- iG,H' IG,H : les foncteurs d'induction unitaire asupport compact, asupport non compact.

ana:

ia,H(1t)* Ia,H(1t*) pour 1tEAlgH

Si est un homomorphisme continu N C x defini sur un sous-groupe ferme N de G, et

Hc:G un sous-groupe ferme normalisant N et definit des foncteurs : Aig G Alg H :

- 1t d'espace engendre par les vecteurs , nEN, VE E ,ou E est

l'espace de 1t, et muni de l'action de H par restriction. On supprime de la notation si est

trivial.

- 1t : d'espace les coinvariants =

Alors, est l'adjoint agauche de Ind(G,H, ) ; on note par rH,G celui de Ia,H'

Nest dit limite de ses sous-groupes compacts, si route partie compacte de Nest contenue dans un

sons-groupe compact de N. C'est une hypothese tres utile des que l'on utilise des foncteurs de

coinvariants, car elle entraine qu'ils sont exacts, via l'astuce :

VE ¢::) il existe un sous-groupe ferme ouvert N, de N tel que IN 1t(n)vdn = 0 .
v

Les foncteurs d'induction sont toujours exacts.

2.Induction, restriction pour un produit semi-direct. Soit M un sous-groupe ferme de G

normalisant N, HeM, MnN ={I} , 1tE AIg(NH).

Lemme. 1) ind(NM, NH, 1t)IM "" ind(M, H, 1tIH)

2) ind(NM, NH, 1t)(N)"" ind(M, H, 1t(N)

Preuve. 1) est facile, l'isomorphisme est F f(F) =FIM

2) On utilise Ie faisceau associe aune representation induite ([BZ1]). Le membre de gauche definit

un faisceau sur H\M, muni d'une representation de M. L'action de H sur la fibre au point

HEH\M est egale a 1t(N).
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3. L'algebre S(G,C ) des fonctions localement constantes it support compact sur G , it valeurs

complexes (Ieproduit est la convolution) est munie dune representation naturelle p de GxG:

P«gl,g2))f(g) = f(g(lgg2)

On plonge diagonalement G dans GxG; la representation ind(GxG,G,I) est isomorphe it p

Lemme. Pour tout 1te IrrG , Ie plus grand quotient rc-isotypique de plGxl est isomorphe it

1t®1t* comrne GxG-module.

Preuve. On note par V l'espace de 1t, V* celui de 1t*. L'espace des endomorphismes de V

d'image de dimension fmie est Vf8lV* . Le GxG-homomorphisme non nul

fe S(G,C ) -+ 1t(f)= faf(g) 1t(g)dg e V®V*

Montrons que son noyau Sen) est egal al'intersection N(1t) des homomorphismes non nuls

Ae H0IDaXI(S(G,C ), V). On a

a) A(f.cp)=1t(f)A(cp) , pour f, cp e S(G,C ) . Si 1t(f)= 0, alors pour tout cp, f.cpe KerA, en

particulier pour un cp tel que f.cp=f. Done: fe N(1t)

b) Soit ve V non nul. Alors Av: f -+ 1t(f)v appartient a H0IDaXI(S(G,C ), V). Si fe N(1t) , on

a 1t(f)= 0.

4 . Si G est un groupe reductif connexe, Ia theorie de l'induction permet de construire IrrG , a
partir du sons-ensemble Irr°G forme des representations irreductibles cuspidales :

1te AIg G est dite cuspidate, si pour tout sons-groupe parabolique PeG, distinct de G, de

radical unipotent N , on a 1tN= (O}.

n est equivalent dedire que nest finie (ses coefficients sont it support compact, i.e. 1tse pionge

dans pIGXI)' dans Ie cas local non-archimedien, si le centre de G est fmi.

Les groupes figurant dans les paires duales du groupe metaplectique ne sont pas toujours

algebriques ou connexes : les exceptions sont Mp(W) qui n'est pas algebrique, O(W) qui n'est pas

connexe

Les resultats de [BZ2, §2] sont tous valables pour G = Mp(W), si ron utilise la definition

suivante pour un groupe parabolique : un parabolique de Mp(W) est l'image inverse P- d'un

sous-groupe parabolique P de Sp(W); une decomposition de Levi P =MN se remonte en une

decomposition dite encore de Levi: P- = M-o-(N), oil 0- est une section comrne en (ch.2,n,9). On

fixe un un drapeau complet totalement isotrope <1>0 dans W . Pour tous les sous-groupes

paraboliques standards P,Q(stabilisant des drapeaux <1>,<1>' extraits de <1>0) on a

P\G/Q- '" Np(W)/Q.
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D'autre part l'automorphisme interieur de G induit par un element ge Mp(W) ne depend que de sa

projection dans Sp(W). Ceci permet de donner un sens dans Mp(W) aux resultats de [BZ2,§2]

qui restent tous valables, en definissant le groupe de Weyl de Mp(W) egal a celui de Sp(W).

5. Representations de O(W) •

Leur theorie se ramene a celle de la composante connexe SO(W) d'indice 2. Soit sign le caractere

non trivial de O(W)/SO(W), et e un element de O(W) n'appartenant pas a SO(W). On note pE

l'image de p E IrrSO(W) par conjugaison par e :

pE(ese-I ) = p(s), SESO(W)

La classe de pEne depend pas du choix de e.

Lemme. (i) Soit 1tE IrrO(W), on a

{1tlso est irreductible] ¢:} {1t non equivalent a 1t®sign} ;

alors si P = 1tlso ' 1t+1t®sign= ind(O,SO,p) et p '" pE

(ii) Soh pE IrrSO(W) , on a

{ind(O(W),SO(W),p) est irreductible] ¢:} { p non equivalent apE} ;

alors si 1t= ind(O(W),SO(W),p), 1tISO = p+pE et 1t 1t®sign.

6. Exemples: Groupes orthogonaux en petite dimension.

Pour les obtenir tous, il suffit de decrire les espaces orthogonaux a similitude pres. Soit n = dim W

et W = we + mH , oil we est anisotrope, H l'espace hyperbolique orthogonal de dimension 2.

- n=l , SO(W) = {I} , O(W) = {±1} , on a deux caracteres sur O(W) , le caractere trivial et le non

trivial: sign.

- n=2 , SO(W) est commutatif. Si W = H est isotrope, sur une base hyperbolique

SO(W) = {fa 01, ae FX }, e =[0 1 ]

lo 1 0

Les representations irreductibles de SO(W) s'identifient aux caracteres X de FX sur lesquels e

opere par X x-I. Par le lemme 5, les representations irreductibles de O(W) sont a equivalence

pres,

- de dimension 1 , prolongements des caracteres d'ordre 2 de FX: it y en a 2 [FX: Fx2]

- de dimension 2 , induites des caracteres non quadratiques de SO(W).

Si West anisotrope, c'est une extension quadratique F'IF munie de la norme NF/F : F' F ,

SO(W) se KerNF/F' e est la conjugaison canonique, et l'on a la meme classification en remplacant

FX par KerNF/F'
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- n=3 , W '" DO muni de la nonne reduite DO -+ F ,ou DO est l'ensemble des quatemions de trace

nulle d'une algebre de quatemions D/ F; West isotrope (m=1) si et seulement si D '" M(2,F). Les

automorphismes interieurs de D stabilise DO et fonnent SO(W) '" DX/Fx (PGL(2,F) si m=1). On

peut prendre pour E la multiplication par -1, O(W) '" SO(W)x{:!::1} . Done les representations

irreductibles de DX triviales sur le centre, s'identifient aux representations irreductibles p de

SO(W).

- n=4. Si m #1, alors W = D muni de la nonne reduite ND/F( {m=2} <=> (D'" M(2,F)} ).

L'action naturelle d -+ adb! de OXxDx sur D identifie

SO(W) '" ( (a,b) E DXxDx , = ND/F(b) },

la nonne induit une suite exacte :

{1} -+ (KerND/F)2 -+ SO(W) -+ FX-+ {I}

La conjugaison canonique 1: appartient it O(W) mais n'appartient pas it SO(W). Par conjugaison

sur SO(W), elle envoie (a.b) sur ('t(by1,'t(ayl). Son action sur (KerND/F)2 est (a,b) -+ (b,a).

Si m = 1, il existe une extension quadratique F/F telle que

W = {ra zl, a.d E F , Z E F' } , muni du determinant

l't(z) dJ

i.e. l'ensemble des elements de M(2,F') fixes sous l'involution x -+ t.e(x).

Le groupe G = ( ge GL(2,F') , NF/F(detg) = 1 } opere sur W par l'isometrie

x -+ t.e(g)xg. Le groupe SO(W) est engendre par l'image de G ('" G/KerNF/F) et par la

multiplication par -1 si -Ii!: NF/FF'.

L'application (a,d,z)-+ (d,a,'t(z» appartient it O(W) et non it SO(W).

Pour , les espaces orthogonaux sont isotropes, i.e, 021 .n existe encore des isomorphismes

classiques pour n =5 ou 6 (voir [Dieu],IV,§8,p.109)

Si n = 5, m=2 ,lien avec Sp(4) ; m=1 ,lien avec U(D(l»

n=6, m=3 ,lien avec SL(4), m=2lien avec un groupe unitaire sur une extension quadratique

U(2H), m=1,lien avec SL(2,D).

7. Induction dans les groupes orthogonaux.

Nous dirons qu'un sous-groupe de O(W) est parabolique s'il est le stabilisateur d'un drapeau

totalement isotrope de W. La definition analogue pour SO(W) fournit les sous-groupes

paraboliques non triviaux de SO(W), sauf dans Ie cas exceptionnel W = H , ou SO(W) est Ie

stabilisateur d'une droite isotrope, et commutatif : tous ses caracteres sont "cuspidaux", tandis que

O(W) ayant SO(W) comme sous-groupe parabolique (avec Ia definition donnee) de radical

unipotent nul, n'a aucune representation "cuspidale".
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On fixe une base {ej} d'un sous-espace totalement isotrope maximal, d'ou un drapeau complet

totalement isotrope <1>0' un tore deploye maximal Ao dans SO(W). Le groupe de Weyl de O(W)

sera par definition Ie quotient du normalisateur de Ao par son centralisateur dans O(W). On

remarque qu'il est isomorphe a celui de SO(W) sauf si W:.=mH est orthogonal hyperbolique .

Dans ce cas, il contient Ie groupe de Weyl de SO(W) comme sons-groupe d'indice 2. Les resultats

de [BZ2,§2] sont vrais des que ron peut choisir un systeme de representants admissible au sens de

[BZ2,2.11] pour P\O(W)/Q pour tous les sous-groupes paraboliques standard P, Q (stabilisant un

drapeau extrait de <1>0)' C'est clair si P ou Q est different de son intersection avec SO(W), ou bien

si Ie normalisateur du Levi de P ou Q dans SO(W) est different de celui dans O(W). Ceci

implique que les resultats de [BZ2,§2] sont vrais, sauf peut-etre si W :.=mH est orthogonal, m pair.

Dans ce cas, par restriction a SO(mH), on verifie encore que [BZ2,§2] reste vrai.

m. Paires duales de type 2.

1. Soit (H,H') une paire duale irreductible de Sp(W) de type 2 (ch.I,20). Autrement dit, soit D

un corps de centre F , m , rn' 2:1 deux entiers , H GL(m,D), H' = GL(m',D) . On considere la

representation naturelle o de HH' dans l'espace S=S(M(m,m'; D), C) des fonctions a valeurs

complexes, localement constantes a support compact sur 1'ensemble M(m,m'; D) des matrices am

lignes, m' colonnes, a coefficients dans D

cr(gg')f(x) =f(tgxg') , geH , g'eH' , fE S

A un caractere pres, c' est la representation metaplectique M (ch.2,II,c) restreinte a HH' :

M= cr®v m'f2®v ,m/2m m'

ou vm est Ie caractere IctetFle du groupe H =Hm =GL(m,D) ,et e2 =[D:F] .

Soit E(H) 1'ensemble des classes d'equivalence de lITH. La representation o definit une

correspondance entre E(H) et E(H'), de graphe

R(HH') = {classes des x®x' E Irr(HH') , quotient de o }.

La correspondance associee a o sera parfois appelee "correspondance de Howe modifiee" . Les

conjectures sur la correspondance de Howe (ch.2,III,2 et 5) sont equivalentes aux conjectures

analogues sur la correspondance de Howe modifiee,

Remarque : l'application B: bilineaire non degeneree

B(f,f) =fM(m.m'; D) f(x) f(x) dx ,

est invariante par M(HH').
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2. Filtration.

On filtre M(m,m'; D) par le rang i , 0 i k = inf(m,m'). Le rang classe les orbites de HH', pour

l'action «g,g'),x) tgxg' . On obtient une filtration decrcissante Hff-equivariante de o :

o c Sk c ...... c SI c S

de quotients isomorphes aux representations induites ind(HH', Tj , I) , ou Tj est le stabilisateur

dans HH' d'un element Xj de rang i .

On choisit et ron calcule le Tj correspondant

gtl' g't::J 'it
On note Pr le stabilisateur dans H de Drx{O}rn_r'de meme P', pour H' .

Pour que tg Xj g' = Xj , i.e. gg'e Tj , il faut er il suffit que

- c =c' =0, i.e. Tj c Prn-j P'rn'-j

- tctd' = id.

Pouri =0, Tj = HH'. On a Pm = Po = H, de meme pour P'.

fe S(Hj, C ), d,h,d'e 1\

On induit la representation triviale de Tj au parabolique Pm-i P'rn'-j . Par (II,3),

representation Ili de Pm-iP'rn'-j d'espace S(Hj, C )

Jlj (Pp')f(h) = f(ldhd') , P =ra b1 p' = fa' b']'

Lo dJ [o d'

on obtient la

Lemme. La representation 0" admet une filtration decroissante de quotients, pour i = 0 , .... k

O"j = ind(HH' , Prn-i P'rn'-j , Jlj) .

3.Corollaires. a) cro est la representation triviale de HH' et quotient de cr, O"k est un

sous-module de cr.

b) Si 1t e IrrH, alors le plus grand quotient x-isotypique de S, note Sn est de longueur finie; s'il

n'est pas nul, il admet un quotient Hvirreductible.

Preuve. a) est trivial

b) Soit crn le plus grand quotient n-isotypique de crbxl . On a (iii)=>(ii)=>(i) , ou

(i) crn est une Hxlf-representarion de longueur time

(ii) (crj)n est une HxH' -representation de longueur finie, pour tout i

(iii) est une 1\xHj-representation de longueur finie pour tout i (ind envoie representations de

longueur finie sur representations de longueur finie), pour tout Jle IrrH j tel que 1t soit quotient de
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ind(H,Pm_i,10J.l.) (le nombre de Il possibles est fini, Ii. equivalence pres par [BZ]).

Or par (1,3), '" J.l.0J.l.* est une representation irreductible de HixHi

Remarque. Si F est un corps fini, les representations considerees etant complexes sont

semi-simples, et les quotients irreductibles de o sont les quotients irreductibles de

ind(HH', Pm-iP'm'-i' (l®n)®(l®n» , pour tout i = 0, ..., k , tout nE IrrHi .

Sur un corps fini, la "correspondance de Howe" n'est pas bijective, et il n'y a pas de "conjecture de

Howe".

4. Quelles sont les representations nE IrrHm qui sont effectivement quotients de S? Laissons

varier m' , notons alors 0= 0m,m' , m=m(n).

Definition. posons m'(lm) = 0 ,

m'(n) = inf[rn' 2:1,n quotient de 0m,m'} , si n¢lm'

Lemme. Pour tout nE IrrHm, on a m'(n) men).

Nous demontrons ce lemme plus loin (§7).

Corollaire. Chaque representation irreductible de H apparait dans la correspondance de Howe.

5. Lemme. Si m' 2: m'(rc) , alors n est quotient de om m' .

Preuve. On plonge trivialement H', dans H'm' par g diag(lm'_i' g» , M(m,i;C ) dans

M(m,m';C ) par x (Om,m'-i' x) , si i m', La restriction de M(m,m';C ) Ii. M(m,m'(n);C ) induit

un HxH'm'(1trhomomorphisme surjectif de 0m,m' sur 0m,m'(1t)'

6. II est naturel d'introduire un autre entier u'(n) rn'(x) ,

J.l.'(lm) =0,

J.l.'(n) = inf{i2:1 , tel qu'il existe pE Hom(ind(H,Pm_i,lm_i0p,n)¢O}, si n¢lm

Sur un corps fini on a l'egalite J.l.'(n) = rn'(rr) . On suppose dans la fin de III que F est un corps

local non-archimedien. Liee Ii. la conjecture de Howe, nous formulons la

Conjecture. 1) Pour tout P E IrrHi, ind(H, Pm-i,1m_i®P) admet un unique quotient irreductible,

On Ie note par nm(p).
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2) Pour tout 1tElrrHm ' il existe aequivalence pres un unique PEIrrI\t'(tt) tel que 1t= 1tm(p). On

note P = 'i)(1t).

3) Si 1t= 1tm(p) , alors {p = 'i)(1t)} {Il'(p) = m(p) = 1l'(1t)}.

Notons Irr = IrrHm ' et Irr* = { pe Irr, m(p) u'(p) }. On associe a pE Irr* une serie de

representations irreductibles 1tm(p), m m(p). Si cette conjecture ainsi de la conjecture de Howe

sont vraies, la correspondance de Howe modifiee (associee a o) est la bijection

1tm(p) -t 1tm'(p) , pour tous m, m' entiers , pe Irr* , m(p) inf(m,m')}

7. Demonstration du lemme 4. Commencons par le cas le plus simple m = I , D F.

Quels sont les quotients irreductibles 1t' de S =8 (Fm', C) pour l'action de H' par o : La

filtration est foumie par la suite exacte deduite de l'application f-tf(O)

{OJ -t S (pm'-{O), C) -ss (Fm',C) -t C -t (O}

On fixe le caractere central de 1t': c'est un caractere X du centre FX identifie aH.

a) si X '# id. , montrons que m'(x) = 1 . Ceci se voit sur la fonction

Jpx f(gx) X(g) dg , XE F"u

convergente pour Re s >>0 , on SEC est defini par IX(x)1 = lxls . On la note par L(f(x),X). On a

L(f(x),X) = L(f(ax)x(a),X) pour tout ae F" si Re s »0. Pour tout X'# id. L(f(x),X) est defini ,
quoique l'integrale ne converge plus, et 1'egalite precedente reste vraie. On en deduit que m'(x) = 1 ,

et Ie plus grand quotient X-isotypique est 1'unique quotient irreductible de ind(H', Pm'-l ,1m'_1®X)·

b) si X= id. evidemment Sid'# (O}.

Noter que ron ne peut pas decider avec les methodes donnees si la conjecture de Howe est vraie car

1m, est sous-module et non quotient de ind(H', Pm'-l ,lm'_1®1 1) .

La methode pour m=l se generalise. Supposons m'=m, les fonctions L de Tate ont ete

generalisees par Godement et Jacquet [GJ,th.3.3(2»). Soit fE S ,et 1tEIrrH . Considerons un

coefficient de 1t (quijoue le role de X) ,c'est une fonction sur H de la forme <I>(g) <v*,1t(g)v>,

V*E1t* , VE1t. L'integrale L(s,1tf 1fH <v*,1t(x)v> est definie pour Res» 0, c'est

un polynome en q-S,et qS, si ron note par d2le degre de D sur F, par q le nombre d'elernents du

corps residuel de F, par L(s,1t) la fonction L de 1tet par dHx =v-m(x)dx une mesure de Haar sur

H, par dx est une mesure de Haar sur M(m,m;D). On Ie note par P(v*,v,f, 1ts ), ou

1ts =1t®vs. L'application (v*,v,f) -t P(v*,v,f, 1ts) E C n'est pas identiquement nulle, et verifie

P(v* ,v,f, 1ts ) = P(1ts*(tg-l )v* ,1tig')v,cr(gg')f, 1ts )

Elle entrelace 1ts®1ts et crm,m . Cette egalite reste vraie pour tout s qui n'est pas pole de L(s,1t).Si

qa est un pole de L(s,1t) d'ordre r, ce pole est isole et liIDg..-?a(qs_qa)fp (v*,v,f, 1ts) = Q( (v*,v,f,

1ts ) est non identiquement nul, et verifie la meme egalite, Le lemme est montre.
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IV. Paires duales de type 1.
Soit F un corps fini ou local non arohimedien de caracteristique :!' 2.

1. Soit (R,H) une paire duale (irreductible, reductive) de type 1 . La representation metaplectique

de HR' est plus compliquee et interessante que pour les paires de type GL(n). Cependant, on

demontre (thA) essentiellement les memes choses, c'est-a-dire la conjecture de Howe pour les

cuspidales ainsi que la compatibilite de la correspondance de Howe avec l'induction de

Bernstein-Zelevinski [Ku] . On considere ici toutes les paires de type 1 ( [Ku] ne conceme que les

paires orthogonales -symplectiques). C'est Waldspurger qui a remarque que les methodes de [Ku]

foumissent :

- la conjecture de Howe pour les cuspidales

- la propriete que Slt est de longueur finie (ch.2,III,5).

L'article tres clair de [Ku] s'appuie beaucoup sur des idees dues aHowe [H] et aRallis [R].

Notations. On fixe les parties anisotropes W0' W'o de W et W' , et l'on considere les indices de

Witt m, m' comme variables. On fixe un caractere non trivial 'l' de F . On note

W=Wm, W'=W'm" U(W)=H=Hm, U(W') =H' =H'm' n =dimoW, n'=dimoW',

G j = GL(i,D), O\v la representation metaplectique de Mp(Wm@OW'm') .

Toutes les representations 1t de H- ont la propriete que 1t(zh) = zmh) , ZE C x, heH"

Les images inverses H-W' de U(W) dans les differents Mp(W@W') sont toutes isomorphes

commes extensions centrales de U(W) au groupe

H- = U(W)xC x , si W'o = {OJ

l'irnage inverse de U(W) dans Mp(W@W'o) sinon

Les isomorphismes (d'extensions centrales sur U(W), induisant l'identite sur U(W» ne sont pas

uniques si H possede des caracteres non triviaux. On fixe des isomorphismes (voir plus loin)

jm': H- W' ,j'm: H-

et l'on considere les representations O}m.m' de HtI'- :

O}m,m' (hh') O\v (jm,(h-)j'm(h') ), he H- , h's H'-

Si West hyperbolique, on convient que O}o m' est la representation triviale sur H'xl l }.

Elles definissent des correspondances entre E(Ir") et E(H'-) comme en (III,l) , que nous

appellerons parfois "correspondances de Howe modifiees'' .

Si H- = HxC x, par restriction a Hx{1} = H , on obtient des correspondances entre E(R) et

E(H'}, appelees encore "correspondances de Howe modifiees''.

Les conjectures de Howe (ch.2,III,2 ou 5) sont equivalentes aux conjectures analogues pour les

correspondances de Howe modifiees,

Remarque. Les correspondances de Howe modifiees qui dependent du choix de jm' , jm sont
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parametrees par les caracteres de H, H' . Les caracteres de H opere par produit tensoriel sur IrrH

et sur E(H). Soit 1tE IrrH , et posons

e(1t) = {classes des 1t'E IrrH' tel que soit quotient de com,m' pour des ,

caracteresde H, H' }

e(1t) est l'ensemble des images de la classe de 1t par toutes les correspondances de Howe

modifiees,

Construction de jm': on precede comme pour le type 2 (III) ; soit So un modele de la

representation metaplectique de MP(Wm®oW'oH So = C si W'o = {O}) et S =S(Wm', C) un

modele de Schrodinger de celle de Mp(Wm®Om'H'), l'action naturelle de U(W) sur S est notee

cr. Alors S®So est un modele de celle de Mp(Wm®OW'). On note par

i: MP(Wm®OW')-7 Sp(Wm®oW') - , io: MP(Wm®oW'o) -7 Sp(Wm®oW'o)-

les isomorphismes correspondants. On a

jm' io·1(g,A) = i·1(g, cr(g)®A) ,(g,A) E H-

2. Lemme. Tout 1tE Irr(Hm)- est quotient de wm,n.

Ceci permet d'introduire un entier m'(x) n

m'(n) = inf{ m' 0, tel que 1t soit quotient de com,m' } .

Preuve. L'idee de la demonstration est tiree de [R. appendice] . On prend le modele de

Schrodinger mixte S = S(Homo(X"W), C )®SO, Oll X'cW' est un un sous-espace totalement

isotrope maximal (de dimension m'). Soit aEHomo(X',W) d'image non degeneree de dimension

inf(n,m') et V l'orthogonal dans W de son image. Le stabilisateur de a dans U(W) est

l'ensemble des elements induisant I'identite sur l'image VJ. de a. Il s'identifie canoniquementa
U(V). L'orbite A de a est fermee. La restriction a A induit une U(W)-smjection de

S(Homo(X"W), C ) sur S(A, C ) , et done une (Hm)- -surjection de com,m' sur

't = ind(U(W),U(V),l)®wm,o = ind(U(W)- ,U(V)- ,com,o IU(V) )

Prenons m' = n . Alors U(V) est trivial, et tout 1t est de quotient de t .

Remarque. Le meme argument implique aussi les proprietes suivantes

a) Si W' est hyperbolique, et si 1t possede un vecteur invariant par U(V)' , V non degenere, alors

m'(z) n - dimV.

b) Si m';::: rn'(n), 1t est quotient de com m'



68

c) Si 1t est contenu dans rom,m" alors il existe t comme dans la demonstration tel que 1t soit

contenu dans r .

d) Si 1t est cuspidale, 1t quotient de rom,m' est equivalent it 1t quotient d'un e ,

a) n suffit d'appliquer Frobenius et la dualite : HomU(V) ( rom,o' 1t IU(V) ) c Homrt ,1t).

Si W' est hyperbolique, rom,o est la representation triviale.

b) Prenons un modele mixte associe it un sous-espace totalement isotrope X' de dimension

nr-m'(n) . La restriction en 0 realise une surjection de rom m,l H H' sur rom m'(e):
, -"'"In m'(-I() ,

c) resulte de ce que les a comme dans la demonstration du lemme, d'image non degeneree de

dimension maximum forment un oouvert dense de HomD(X',W)

d) 1t cuspidale signifie que ses coefficients sont it support compact modulo le centre, et 1t

sous-module est equivalent it 1t quotient.

3.Exemple: Les representations analogues de 810 .

La representation 810 est une certaine representation irreductible cuspidale de Sp(4,F) trouvee par

Srinivasan,lorsque F est un corps fini. Cette representation a joue un certain role, et il peut etre
interessant de rappeler que la representation metaplectique permet de la construire, ainsi qu'une serie

de representations analogues. L'analogue de 810 est une representation irreductible d'un groupe

symplectique d'indice de Witt n provenant par la correspondance de Howe d'une representation

cuspidale irreductible 1t d'un groupe orthogonal sur un espace de dimension n , telle que m'(n) =
n . Une telle representation est toujours cuspidale (voir Ie theoreme principal).

Le raisonnement fait dans Ie paragraphe ci-dessus peut etre fait en remplacant O(W) par SO(W).

Mais alors, pour m' = n-l , SO(V) ={I} , O(V) = (t.e) , tout pE IrrSO(W) est quotient de rom,n-l

Soit 1tEIrrO(W) , si 1t '" 1t@sign, alors 1t est quotient de rom n-l ' sinon l'une au moins de 1t ou

1t®sign est quotient de rom,n-l (II,§4).

4. Notations. Soit 1tE Irr(Hm)- .

On note si m' 2:m'(rt) par 1'}m.(1t) la representation lisse de (H'm')- definie it equivalence pres,

telle que la partie n-isotypique de rom,m' soit isomorphe it 1t®1'}m,(1t). Si m'em'(rt), on la note

simplement 8(1t) . Si W' est hyperbolique, [rn'(z) =O} ¢::> {1t =id.} .

On fixe des drapeaux complets totalement isotropes dans Wm ' W'm' , et l'on note par Pt , P\ les

paraboliques de Hm, H'm' fixant l'espace de dimension t2:1 de ces drapeaux. On pose Po =Hm .

Soit Qt-i 1e parabolique standard de Gt stabilisant un espace de dimension t-i , de Levi isomorphe
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a Gt_ixGi. Le Levi "standard" de Pt est Mt '" GtxHm_t .

On etend les notations de Zelevinski [Z] aHm, on note par rt la restriction rM H et t = t(1t)tel
t' m

que

Et = (qt =O't<8>1tm_t E IrrGtx(Hm_t)- quotient de rt(1t) , avec O't E JrrOGt } :;o!: 0,

Pour O't<8> 1tm_tE IrrMt relevee a Pt par la surjection canonique, on note par O"tX 1tm_t l'induite

unitaire ( O"t<8> 1tm-t)·

Le module de Qt-i est egalavt)<8>vi-(t-i). Celui de Pt est egala vt+l1,ou 11 = E, 0, -El2 selon

que [D:F] =1 , 2 , 4.

On adopte les memes notations pour (Hm)- ,(PJ- ,(Mt)- '" Gtx(Hm_t)-·

On demontrera au §lO, le theoreme suivant.

Theoreme principal. Soit 1tE Irr(Hm)- ,

1) Si 1t est cuspidale,

a) E Irr(H'm')- ,pour tout m' m'(n)

b) est cuspidale

c) = vt(n-n'+t+l1 ')f2 <8> si m-m'(n) = t

2) En general,

a) est de longueur finie.

b) si m' m'(n) et 1t<8>1t' E Irr(Hm)-x(H'mT quotient de rom,m' , et t = ten)

(i) si t =1 et pour tout ql on a 0'1 = v l(n-n'+l+l1')!2, alors nm_l<8>n;' est quotient de rom-I,m'

(ii) sinon , n;' est quotient de O't* X n;'m'_t' avec n'm'_tE (IrrH'm'_t)- ,1tm_t<8>n;'m'_t quotient de

rom_ trn' -t .

Le resultat pour les representations non cuspidales n'est pas tres satisfaisant; il exprime tout de

meme la compatibilite entre la correspondance de Howe et l'induction de Bemstein-Zelevinski.

5. rt(Olm,m')

Le theoreme 4 se deduit de calculs d'espaces de coinvariants de la representation metaplectique.

Soit 1 t m ,Nt le radical unipotent de Pt, releve comme en chapitre 2 en un sous-groupe de

(Hm)- . La representation 't = (rom,m' )N
t
de (MtH'm')- est aun caractere pres la representation

r (ro .)= 't<8>v (-n+t+1)/2t m,m t •

On montrera en V Ie resultat suivant.
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Theoreme, La representation 't admet une filtration decroissante

OcFk('t)='tkc cFo('t) ='t ,

de quotients 'ti = Fi+1('t)\Fi('t), 0 i k , oii k = inf(t,m') ,

'ti = ind«Gt Hm_t H'mT ,(Qt-i Hm-t P'i r, °Pi°W rn-t ,m'-i)'

ou Pi defini en (11,3) est la representation naturelle de GixGi dans S(Gi,C ), et

est Ie caractere de Gt_ixGixGi = vtf/2 0vi(n+n'-2t) !2®id.

6. Corollaire. a) La representation 't
00vt(-n+t+T)/2 v/n'-n+t+T)/20wm_t, m' est quotient de

rt(wm,m') . La representation 'tk0v/-
n+t+T)/2 est contenue dans rt(<Om,m')'

b) Si 1t est cuspidale, t}(1t) est cuspidal.

Preuve. a) est immediat par le theoreme 5;

b) Soit 1t01t' quotient de wm,m" ou 1test lisse, non cuspidale, 1t'est irreductible; il existe t I

tel que 1t'soit quotient de rt(wm,m') . Si 1t'est cuspidale, il est clair que 1t' est quotient de 'to' mais

alors 1t' est quotient de wm-t,m" si m est minimal, t=O, contradiction. Les roles de H, H sont

symetriques,

Remarque. Si F est un corps fini, les representations etant complexes, done semi-simples, si

1tm01t'moE IrrHm®Hm' est quotient de wm,m' , alors pour tout atE IrrG t , tout quotient irreductible

de (OtX1tm)®(Ot*X1t'm') est quotient de wm+t,m'+t. Si 0t est Ie caractere trivial note par It, alors

(ltx1tm)®7t'm' est quotient de wm+t,m" La "conjecture de Howe" n'est pas verifiee.

7.

L'espace des coinvariants de wm,m' par H est mum d'une action naturelle de H' , dont les

quotients irreductibles forment l'image par la correspondance de Howe de la representation triviale

de H. Nous supposons dans ce paragraphe que W' est hyperbolique.

Sur un modele de Schrodinger S forme des fonctions localement constantes asupport compact sur

HomD(X'm' , W) , l'action de H est l'action naturelle

gf(x) =f(g*x) , ge H , fe S , xe HomD(X'm" W) .

Soit M la representation metaplectique de H'- sur S (ch.2)

Theoreme, (wm,m')H est isomorphe al'espace des fonctions sur H'-: M(h')f(O) , fe S ,

muni de l'action naturelle de H'- par translation adroite.
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Les fonctions <p(h') = M(h')f(O) verifient l'equation :

<p(p'h') = vm,(d')n/2<p(h') , p'e P'm"

On en deduit :

Corollaire. (rom,m')H est isomorphe aun sous-module de l'induite aH'- du caractere vm,n(2

du parabolique P'm"

Si m est grand, on sait demontrer que (rom,m')H est toute l'induite.

8. Si deux espaces hermitiens Wz ' WZ' sont dans la meme serie de Witt, alors W' = Wz e (-Wz')

est hyperbolique, le groupe unitaire de -Wz' est egal acelui de Wz' , et U(Wz) U(Wz') est plonge

diagonalement dans U(W'). Soit P la restriction aU(Wz)- U(WzT de (rom,m')H' La partie

cuspidale Pc de pest assez simple.

Proposition. Si Wz'" W'z ' Pc cind( U(Wz)lJ(Wz)- ,U(Wz)-, 1), sinon Pc = O.

Preuve. On a vu que Ie nombre d'orbites de U(Wz)U(W'z) dans l'ensemble n' '"H'/P'(X') des

Lagrangiens de W' est fini (ch.Lll.Z) . Le theoreme 7 implique par [BZ1] que p admet une

filtration parametree par ces orbites, Le stabilisateur d'un Lagrangien X'dans U(Wz)U(W'z)

contient Ie radical unipotent d'un sous-groupe parabolique propre (done Pc = 0) sauf si Wz et

W'z sont isometriques. Si Wz '" W'z ' on peut supposer que

{OJ = WZIlX'=W'ZIlX' X' = [z--z', zeWz}

ou est une isometric de Wz sur W'z induisant un isomorphisme U(Wz) '" U(W'z) . Le

stabilisateur de X' est isomorphe it U(Wz) plonge "diagonalement" dans U(Wz)U(W'z) . Pour les

autres orbites, le stabilisateur d'un element contient Ie radical unipotent d'un sous-groupe

parabolique propre.

9 . Corollaire. Si 1tmest cuspidale, il existe au plus un entier m' et une representation 1t'm'

cuspidale , tels que 1tm0It'm' soit quotient de rom m' .

Preuve. Par l'absurde, supposons qu'il existe deux representations

1t'e Irr°(H'm')- , 1t"e IrrO(H'm" )-

telles que 1tm®1t' soit quotient de rom,m" 1tm®1t" soit quotient de rom,m" . La representation

irreductible cuspidale (1tm®1t")* etant sous-module de rom,m"* est aussi quotient de rom,m"* .
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Done Wm,m' @wm,m"* admet comme quotient irreductible (1tml8>7t:')(1tml8>7t:")*. L'espace

W' =W'm' (f)(-W'm")

est hyperbolique, on applique (8) ala representation P correspondante. Par Ie chapitre 2 , la

restriction a (Hm)-(H'm')- x (Hm)-(H'm")- de la representation metaplectique de

SpCWm@(W'm,(f)(-W'm")) est wm,m' @wm,m"* . On restreint a CHm)- plonge diagonalement, et

1'0nprend les coinvariants.

La representation triviale est quotient de 1tml8>7t:m*1 (H
n
)''' (noter que (Hm)-/Hm est scindee) et

done 1t'@1t"* est quotient de Pc ...., done m'=m" , et enfin 1t' "" x" par (ll,3). Noter que 1t'est

unique, non seulement aequivalence pres.

10. Demonstration du theoreme 4.

I) b) : Si 1t est cuspidale, "'(1t) est cuspidale (6,b) et irreductible (9).

1) a), c) : pour m' = m'(1t)+t , t > 1 , "'m,(1t)#:0 (par 2) n'est pas cuspidale. Pour

1t@(v/n-n'+j+E')!2@"'m,_jC1t) est la partie n-isotypique de f'jCWm,m')' pour j:2!: t, 1t n'est pas quotient

de r'/wm,m') (par (6)). Par induction sur t croissant, on en deduit aj,c).

2) a) : si 1tn'est pas cuspidale, il existe t> I , ft(1t) #: 0 ; on choisit t aussi grand que possible

(tsm). Le foncteur r t est exact, envoie une representation de longueur finie sur une representation

de longueur finie. On a

{ 1t@"'m'(1t) est quotient de wm,m'} => { r t(1t)@t'}m,(1t) quotient de rt(wm,m')}'

Or rt<1t) a une suite de Jordan-Holder finie de quotients 0t@ p ,ou p e Irr°CHm_t)- et par 1),

"'m.(P) est irreductible pour tout m' . On deduit de (6) que "'m,(1t) est finie pour tout m'.

2)b) se deduit facilement de (5), (ll,3).

v.Demonstrations: calculs de coinvariants de Cllm m',

1. Soient Q un espace localement compact totalement discontinu, V un espace vectoriel sur C ,

et F Ie faisceau constant sur Q d'espace V. Soit N un groupe localement compact, totalement

discontinu, tel que toute partie compacte de Nest contenue dans un sous-groupe compact de N.

On suppose que N opere sur F , et que

- l'action de N sur Q est triviale

- l'action de N sur la fibre en Ae Q est une homothethie e Hom(N,C X)

Soit F' Ie faisceau sur Hom(N,C X) assode it cette action. Sa fibre en Hom(N,C X) est Ie

quotient SN,; , ou est l'espace engendre par les fe S, ne N .

OnnoteQ@={AeQ, it Q@ induitune
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surjection de S = S( Q,V) sur S( Q@,V). Nous allons montrer que est egal al'ensemble

des fe S nuls sur Q@ .

Lemme. Si Q@ = 0, alors SN,; = {OJ.

Sinon.Ia restriction a induit un isomorphisme SN,; "" res;(S).

Preuve. Sur Q@, est nul. Soit {:;/:O nul sur montrons que fe Le lemme

sera demontre. Posons II existe Ae Q , f(A)*O et * id. , soit nAeN tel que

(nA)*l. Pour Be Q dans un voisinage de A, on a par continuite Le support de f

etant compact, on trouve un ensemble fini EeN tel que * id. pour tout A tel que II

existe un sous-groupe compact KeN contenant E. L'integrale sur K des fonctions k-t

kf(A) :; (k)f(A) pour une mesurede Haar sur K est nulle pour tout Ae Q.

Or kf - f e ,donc fe

2. Supposons qu'un groupe G, localement compact totalement discontinu opere sur F , et que G

contienne un sons-groupe distingue N, tel que la restriction de l'action de G a N soitcomme en I

.etque G normalise l'action de N . Plus precisement, on s'estdonne

- (g.A) -t Ag une action adroite continue lisse de G sur Q, triviale sur N

- pour tout Ae Q, roA une representation lisse de G d'espace V, egale al'homothetie sur N

- pour tout Hom(N,C X) tel que Q@*0, G normalise ,

pour tout ge G, ne N , :;

Automatiquement, G stabilise Q@ .

L' action de G sur F definit une representation de rode G sur S

(g,£) -t gf, ro(g)f(A):; roA(g)(f(Ag», geG, fe S, Ae Q

Supposons de plus que

- soit reunion finie d'orbites, que l'on peut ranger

= Ui}j , ,

de sorte que soit ouvert dans

On choisit un element dans chaque orbite Aje i}j , dont on note par Gj Ie stabilisateur dans G.

L'espace SN,;j:; S(i}j ,V) muni de l'action naturelle de G est G- isomorphe a

SN,;j "" ind(G, o.,

L'espace est muni canoniquement d'une action de G, et d'une filtration decroissante

G-invariante :
>.SN :; S(U">"\}· ,V)

,':> J_I J



74

dont les quotients sont les SN,1;j

3. Demonstration du theoreme 5.

Le theoreme 5 est une application des faits ci-dessus. On identifie W®W' it Hom(W,W'). Un

modele de la representation metaplectique est l'espace S des fonctions localement constantes, it

support compact

f: Hom(Xt'W') -7 So

So etant un modele de la representation metaplectique de H(Wrn-t®DW'rn,), (si W hyperbolique,

t=m, So= C).

Le groupe abelien (Nt)l isomorphe it opere sur S par

(sf)(x) = f(x)

fe S , SE , = '!'(tx(s)/2) ,ou txE est l'image inverse par XE Hom(Xt'W')

du produit hermitien sur W'.

Toute partie compacte de est contenue dans un sons-groupe compact.

Soit Z = (xe Hom(Xt'W') , est trivial} ; notons que Zest ferme dans Hom(Xt'W'),

trivial} (x(Xt) est totalement isotrope}.

Par le lemme 1, on a

Lemme. La restriction it Z definit un isomorphisme entre l'espace des coinvariants de S pour

et l'espace S(Z,So)'

La graduation par le rang:

Z=vO:5:j:5:k Zj

induit une filtration decroissante

(OJ c Sk c ..... C Sl C S(Z,So) , Si ( fe S(Z,So) nulles sur les x de rang < i }

de quotients S(Zi'So) '" Sj /Sj+1 .

La representation metaplectique induit sur S(Z,So) une action de G = Hom(Wrn_t,Xt)(MtH')-du

type precedent. L'action de G sur Z se factorise par Ie quotient GLD(Xt)H' qui opere par

(gg', x) -7 g'*xg , ge GLD(Xt) , g'e H' , xe

Les espaces Zi sont des orbites pour cette action. On fixe Xj E Z, ' de noyau Xt-i, d'image X'j;

Ie stabilisateur Tj de Xi dans GLD(Xt) H' est naturellement contenu dans le sous-groupe

parabolique Q(Xt_i)P'(X'i) de GLD(Xt) H'. A l'aide des formules (ch.2,II,7) on voit que

S(Zj'So) '" ind«MtHT, Hrn-t- Tj -, ,
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ou Hom(GLo(XJ) Idetgln'/2,So est par la representation metaplectique un (Hm_tHT­

module, he Hom(Wm­t,Xt) opere sur So par PIJfO(3(xN) , xihe Hom(Wm­t,X'i)

Dans le cas oir (Nt)1 = Nt, le calcul est termine, Sinon, on continue.

Le sous­espace Y = Hom(Wm.t'X'i) C Hom(Wm_t'W') est totalement isotrope, et So peut etre

choisi comme l'espace des fonctions localement constantes asupport compact

f: v­ Soo

ou Soo est un modele de la representation metaplectique de H(Wm­t®W'i) , y* c Hom(Wm_t,W')

en dualite avec Y. Pourye Y, fe So,y*eY*,ona

P% (3(y» f(y*) = 'l'«Y*,Y» f(y*).

Le calcul des coinvariants de So pour Y se deduit du lemme 1.

La restriction en 0 induit un isomorphisme (SO>y '" Soo et (rom,m')N
t
admet une filtration

decroissante de quotients ind(CMtHT, Hm_t­ T i -,

Sur les bases donnees,

Xj ] g' =ra' b'j g=[a bJ
Lc' d' c d

On ecrit g'* xi* g = xt, utilisant que g'*g' = Lpour que gg's Tj , il faut et il suffit que a' = d , et

c'= c = 0 .Le. gg' e Qt­iP'i .

Done Ti est l'ensemble des gg' e Qt­ri de la forme

g=[at_i X)
o

L'action de (TiHm_tr", Gt­Pi (Hm_tH'i)­ sur Soo est

v .n'!2 ® v·(­2t+n+n)!2 ® co .
t­i I m­t,1

Induire cette action au parabolique Qt­iCHm­tP'j)­ revient ainduire de Gi a GjxGi, contenant Gi

diagonalement,le caractere vi(n+n'­2t)/2. Par (1,1) c'est la representation naturelle Pi de GixGi

mutipliee par un caractere quelconque de GixGi prolongeant vi(n+n'.2t)/2.

4. Demonstration du theoreme 7 .

Posons E = ( f e S , tel que M(h')f (0) =0 , pour tout h' e U(W')}. Il est clair que S(m est

contenu dans E. Nous allons montrer l'implication inverse. Nous appliquons le theoreme de
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Gelfand-Kazhdan [GK] affirmant que si un groupe H opere sur un espace localement compact

totalement discontinu Z, sous certaines conditions de regularite, une fonction fE S(Z, C ), dont

les integrales sur les orbites de H dans Y sont toutes nulles (les conditions impliquent que ces

integrales convergent), appartient al'espace engendre par les fonctions

F(z) = f(hz)-f(z) , fE S(Z, C), he H .

Lemme. S(H) = E

Preuve. L'espace Z =HomD(X'rn" W) est filtre par le rang. Pour r s =inf(m', n) , l'ensemble

des ZE HomD(X'rn" W) de rang rest ferme dans et verifie Ies conditions de [GK].

Si fE E , f(O)=O , les integrales de f sur les H - orbites de rang 1convergent; admettons un

moment que ces integrales sont nulles, on deduit de [GK] qu'il existe des h E H , <p ESz en
1

nombre fini, tels que pour tout ZEZl ' on ait f(z) = I. <p(hz) - <p(z) .On prolonge de facon

quelconque les <p en des fonctions appartenant it S nulles en 0 . Done fest nulle sur ur.;;lZ, ,

modulo l'addition d'un element de S(H). On continue de la meme facon jusqu'a s.

Nous nous sommes done ramenes averifier que pour une fonction fEE, nulle sur les z de rang

r i-I, toutes les integrales de f sur les H orbites de rang i (convergentes) sont nulles. Pour

cela, nous utili sons que M(h') f(O) 0, pour certains elements bien choisis h' .

Pour tout g =[: :) E Sp(Z*+Z) , fE S , on a (ch.2,n,6) :

M(g)f (0) = fZ*/Kerc 'V«c*x,d*x>12) f(c*x) dx.

On note par abus par Ie meme < , > le produit hennitien surW , W' ou HomD(W',W). On fixe une

base {e'r} de X'rn' et une base hyperbolique {e're'/} de W' . Dans la decomposition

W'rn' =X'j +W'rn'_j + X'i* ' X', = , on prend h' E U(W') s'identifiant it une rnatrice

h' to
rn- 1,1

1·· 0 d1,1

au deEnd X'j* est e-hermitienne, On a si fE E , pour tout de EndDX'j , e-hermitienne

(6,1) 0 = fHornD(X'j'W) 'V«z,zd» fez) dz

On decompose HomD(X'j,W) en H-orbites. Si z est de rang i, il existe une base {ws} de W avec

z(e'r) 0, si i < r s m'

we' si 1 r i .

On appelle matrice de Gramde {wr} la matrice e-hermitienne
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Gr({wr}) =«wr,wr'» E ME(i,i; D)

Pour que ye Z soit dans Ia H-orbite de z, il faut et il suffit par Ie theoreme de Witt (ch. I ,1,9)qu'il

existe i vecteurs Ivr} lineairement independants de W, tels que Gr( (v r}) =Gr( (wr})' et

y(e'r) = 0 , si i < r m'

vr ' si 1 r i .

On a <z.zd> =tr (Gr( [w.] )d) . Soit te M(i,i;D) et I(t,f) l'integrale de f sur les elements z e

HomD(X'i' W) , tel que Gr({z(er)} =t . Par hypothese, les integrales de f sont nulles sur les z de

rang < i ,donc I(t,f) est l'integrale de f sur l'unique H-orbite de rang i , de matrice de Gram t . On

choisit des mesures de Haar compatibles de sorte que (6,1) s'ecrive

o = JME(i,i; D)'Jf(tr(dt» I(t,f) dt ,

pour tout d e ME(i,i; D).

On en deduit que toutes les integrales I(t,f) sont nulles.
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dans Wvia

decomposition

1.

que

Chapitre 4. Sur les classes de conjugaison dans certains groupes
unitaires

1.1. Soient F, F' deux corps de caracteristique differente de 2. On sup-

pose F'=F au F' est une extension quadratique de F. Dans Ie premier cas

on note l'identite de F', dans Ie second on note l'automorphisme non

trivial de F' de corps des points fixes F. Soient oS E Wun espace vecto-

riel sur F' de dimension finie, muni d'un produit < , > E-hermitien non

degenere. Soient U(W) Ie groupe unitaire de W, U(W) son algebre de Lie.

1.2.Proposition.Soient xeU(W), resp. V un sous-F'-espace de

W. On suppose Vc.Ker(X). Alors il existe geGLF(W) tel que:

(i) gV=V;

-1 -1 -1(ii) gxg =x ,resp. gXg =-X;

(iii) <gw,gw'>=<w' ,w> pour taus w,w'e,W.

Remarquons que cette derniere condition implique que g est

La demonstration est similaire dans Ie cas du groupe et celui de l'algebre

de Lie. On la presente dans Ie cas du groupe, en suivant etroitement [55)

IV.2.

1.3. Soit done xeU(W). L'algebre de polynomes F'(Z} agit
!

And.Z Soient P Le polynome minimal de x et P= P.1. une
ie.I 1.

en facteurs irreductibles (d.>O pour tout iEl). Soit A=F'CZ)/P. Alors l'al-1.

gebre A agit dans W. Posons pour tout iEI. Grace au theoreme
1. 1.

de Bezout, il existe des polynomes Qi tels

L Q. IT
iEl 1. j e I ]

jti

Posons W.=Q. L'' a l.geb r e Ai agit sur W. et on a les decompositions1. 1. j H J 1.

A= EB A., W= E& w. ,
iEl 1. iEl 1.

telles que l'action de A sur W soit obtenue en "recollant" les actions des

Ai sur Wi' Remarquons que d'apres l'hypothese sur V, ou bien V=tO\, au bien

il existe iOEoI tel que P. soit proportionnel a Z-1 et v«: W.1.
0

1.0
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-1 -1 -11L'algebre F'[Z,Z 1 agit dans Wvia et A=F'[Z,Z J!PF'lz,z J.

-1Munissons F'[Z,Z J de l'involution definie par:

(1) <:( '[ A Zn) z:. 1:(), )z-n.
n n

-1
Pour W,W'E We t Q'F'[Z,Z 1, on a la formule:

(2)

-1 -1
On en de dui.t que t:(PF'[Z,Z 1)=PF'[Z,Z 1, et"l: definit une involution de

A. Plus precisement il existe inversible donc de la forme

R=AZn), tel que C(P)=PR. Si i6I, ou bien il existe R. comme ci-dessus tel

que ou bien il existe jel, j1i, et Ri comme ci-dessus tels que

1:(P
i)=PjRi et di=dj• Dans Ie premier cas, la formule (1) definit une invo-

lution de A.• Dans Ie second elle definit un isomorphisme de A. sur A.•
J

L'involution "C de A est obtenue en "recollant" ces isomorphismes. II resulte

de la formule (2) que pour i,jEI, W. est orthogonal a W. sauf si
]

""C(P.)EP.F'[Z,Z-l). Remarquons que <::(Z-l)E (Z-l)F'[Z,Z-l]. On est alors
J

ramene aux deux cas elementaires suivants:

d -1(I) A=F'Lz1/p , ou Pest irreductible et <::(p) PF'lZ,z ), West un espace

muni d'une action fidele de A verifiant (2), VcKer(Z-l)

si P n'est pas proportionnel a Z-l);

(II) A=A'+A", avec A'=F'\'..Z]/p,d, A"=F'[Z1!p"d, ou P', p" sont irreduc-

tibles, West un espace e-hermitien decompose en sous-

espaces Iagrangiens w=w'ew", W', resp. W" est muni d'une action fidele de

A', resp. A", ces actions verifiant (2), et V={O}.

L'element g cherche doit preserver chacun des morceaux elementaires. Les

conditions (d i ) e t (iii) de I' enonce sont equivalent.es a (iii) e t

(iv) gaw=-r:(a)gw, pour tous aeA.

1.4. Traitons Ie cas (II) qui est Ie plus elementaire. Grace a la theorie

des diviseurs elementaires, on peut decomposer W' en sous-espaces stables

par A': W'= e W'. tels que pour tout j, W'. so it isomorphe a A'/p,dj A,
jeJ ] J

muni de I'action naturelle de A'. Notons W" l'annulateur de
J j
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E& W' Alors W'! est stable par A" et W"= W'!. Soit w" un element de W'!
kl" j k ' J j J J j J

d -1
n'annulant pas Ie sous-espace P' j Wj. II est facile de voir que

est un isomorphisme de A"/p"dj A" sur W'!. Autrement dd t , on est r amene au cas
J

(encore plus elementaire) ou W'=A', W"=A", munis des actions naturelIes de

A' et A". Mais alors l'appl1cation g de f LnLe par g(a'EDa")=1:(a")+'r(a') (pour

a' A'=W', a'\eA"=W") r epond a la question.

1.5 Traitons maintenant Le cas (I). Fixons une forme Lf.neaLre t:A -- F'

e a-itelle que soit non nulle sur P A. Alors l'application

Ai<A F'

est non degeneree. En particulier, considerons la forme lineaire

a (----O>"Cofo-c(a). 11 existe c( A tel que ..l;(a)= pour tout a£A. N,kes-

sairementO<t'(o<)=l et 0( est inversible. Pour w,w'eW, cons t de rons la forme

lineaire II existe un element de A, note «w,w'», tel que

<w,aw'>=f«<w,w'»a) pour tout aEA. On voit que l'application « , »:

W><.W_A verifie:

«aw,a'w'»=t:(a)«w,w'»a',
(3)

«w' ,w»= .(t:«<w,w'»),

pour tous w,w'eW, a,a'EA, et est non degeneree (si «w,w'»=O pour tout w',

alors w=O). II nous est utile de remarquer que si W' est un sous-F'-espace

de W stable par A, son orthogonal pour la forme « , » coincide avec celui

relatif a la forme < , >.

Les conditions (i), (ii), (iii) imposees a l'element g cherche sont equi-

valentes a (i), (iv) et

(v) «gw,gw'»=«w' ,w» pour tous w,w'EW.

1.6. Signalons a titre d'exemple Ie cas d=l, i.e. A est un corps, i.e.

x est semi-simple. Le corps A est muni de l'involution-c. Notons E Ie sous-

corps des points fixes de -c. Si Pest proportionnel a Z-l et

Donc Vest un sous-A-espace vectoriel de W. On est ramene a montrer que si
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West un espace veetoriel sur A muni d'une forme E'-hermitienne « , » non

degeneree si Vest un sous-A-espace vectoriel de W, il existe

g GLE(W) preservant V et verifiant (v). C'est un exercice eHmentaire qu'on

resout en choisissant une base convenable (comprenant des morceaux or tho-

gonaux et des mOrCE!aUX hyperboliques) de W.

1.7. Revenons a la situation de 1.5. Posons K=F'(z1/P. C'est un corps

et L definit une involution de ce corps. Soit REF'lZ,Z-11 tel que

-1 -1 -1
et r l'image de R dans K par l'application F'lz,z 1/PF ' [ z , Z J:::-

K. On a r'l:(r)=l. Soit WO={WEW; Pw=O}. L'action de A sur Wo se factorise et

definit sur Wo une structure de K-espace vectoriel. Soit n Ie plus grand

entier tel que WOC::: On de f i nLt une application

nde la fa<;on suivante: soient WO,WOEWO' choisissons 'NEW tel que P w=wO'
d-1Comme PWO=O, on a «w,wO»P=O, donc il existe aeA tel que «w.wO»=P a.

On note B(wO'wO) la reduction de a dans K. qui est bien determinee. Cet

element ne depend pas du choix de w. En effet soit w'G' W tel que pnw'=wO'

On a

d-1 n n n n nP a=«w,wO»=«w,P w'»=«t"(p )w.w'»=«P R )«wO,w'»,

qui est independant de w. Utilisant (3) on voit aussi que

n d-l d-l-n d-1«w' ,wO»=E'("t"(<<wO,w'»)=E<t:(R ) t"(P )t:(a)=!.o(R P t:(a),

d'ou

d-l-n
ou • De plus Best clairement K-sesquilineaire. Montrons que

LI' annulateur de B est I' espace Wo=P W()WOo Tout d' abord l' orthogonal Wo
de Wo pour la forme « , » est PW. En effet on voit facilement que pwcwt

Ensuite comme Wo est stable par A, est I'orthogonal de Wo pour < , >.

donc +dimF,WO=dimF,W. Or PW=lm(P), WO=Ker(P), d'ou

dimF,PW +dimF,WO=dimF,W, puis , et finalement • Soit

nalors WOEWO et w tel que P w=w
O•

Par construction Wo est dans l'annulateur
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de B si et seulement si donc si et seulement si WEPW. Si c'est Ie cas

n+l n+l
on a WOEP W. Reciproquement si WOEP W, on peut choisir W tel que w PW

et donc W
o
est dans l'annulateur de B.

Remarquons que VC.W
O et que V est un sous-K-espace de WOo Choisissons

un supplementaire W' de W" dans W
o tel que V=V 'ev" , ou V'=V (\WO' V"=V (\ WOo0 0

La forme B restreinte a w' est non degeneree. On peut choisir une base de
0

Wosur K:

fO[i,j), i=-l,l, j=l, .•• ,si'

eoLi,j], i=-l,O,l, j=±l, •••

et des elements non nuls de K:

)([i,j],

rri , j 1 ,
tels que

i=-l,l, j=l, ••. ,si'

i=-l,O,l, j=!l, ••• ,±t.,
1.

j=-l, ••• ,-to' forment une base de V';

(5) si wo' WOEWO' posons

wo=·L xi .fO(i,j] +L Yi,J·eOp,j),1.,J,J 1.,)

W'= L. .fOLi,j} +.L. Yi',J.eOti,j),o i,J 1.,J 1.,J

alors

B(wO'wO')= ') tti,j)'t:(xi .)xi' . +f;j ,),)
(6)(!l:)(li,j]="t(i,j], pour i=-l,l,

[ [i,j)-C(Yi .)Y i' .•
1.,j ,J ,-J

j=l, ••. ,si'

(3l:S'[i,j] pour i=-l,O,l, j=±l, ••• ,.:tt
i
•

Choisissons des elements f[i,j1, e(j,jJ de W tels que pnf[i,jl=foli,j],

pne[i,jJ=eO[i,j). Notons pour simplifiere l'ensemble de ces elements. Soit

n+lW' Ie sous-A-module de Wengendre par II est annule par P • Je dis

n+lque W' est un Alp A-module libre de et que la restriction de

« , » a w' est non degeneree. II suffit de montrer que si avec

" ,. • n+1Ades coefficients abeA tels que I un d entre eux n appart1.enne pas a P ,

il existe tel que Soit m Ie plus grand entier tel que
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abSpmA pour tout On a Alors pn-mw est de La forme

Pn-mw= Tab'pnb, d 'A d i ' . • PA Cavec es abe ant au mo ns un n appart1ent pas a • omme
bEf>

j n, 01 ' n-m , n-m\p D; est une base de Wo sur K, on a P WEWO' P wtO. Donc il existe

WoE:Wotel que B(pn-mw,wO)'io. On peut trouver w'ew' tel que pnw'=W
O'

Par

construction de B, on a alors «pn-mw,w'»tO, d'ou

Soit W" l'annulateur de W' pour la forme«, ». On a W"()W'==IOJ et en

comparant les dimensions comme on l'a fait precedemment, w=w"ew'. On a

Wi)cW" car si WEWi) et w'GW', on a «w,w'»=pd-1a, ou La reduction de a

vaut B(w,pnw'), qui est nulle car Wi) est l'annulateur de B. En particulier

V" c.W". En raisonnement par recurrence sur la dimension de W, on peut suppo-

ser qu'il existe g"EGL (W") verifiant les conditions requises relatives
F

aux espaces W" et V" et on est ramene a chercher verifiant ces

conditions relativement a W' et V'. On eput done desormais supposer W'==W

et d==n+L

Definissons g1EGLF(W) par:

glf(i,jJ==fli,j}, pour i=-1,1, j=1, .•• ,si'

g1e[i,jJ==e(i,j'j, pour i=-1,0,1, j=1, ... ,t i,

g1eli,-jl= .l[i,-j1b(i,jl-1e[i,-j), pour i=-1,0,1, j=1, .•• ,t i,

et si abb,

Cette definition est loisible puisque West libre sur A, de base 8. La

relation (iv) est satisfaite et (i) l'est grace a (4). On calcule:

g1fO[i,j] =r
d- 1f

o[i,j], pour i=-1,1, j=1, .•. ,si'

[ " jJ d-1 [" "Jg1eo 1, =r eO 1,J
1 pour i=-1,0,1, j=1, ••• ,t i•gleO[i, -j1 =r

d-
Hi,-j14"(i ,jJ-1"o[i ,-j}

Grace a la relation (5), on voit que

pour tous wo' WOEWO' Si maintenant et wOEWO' on a (avec un abus de

notation: si A K on note l'element pd-1a ou a A se projette sur '>I):

d-1 d-1 d-1 d-1 d-1 d-l
«glw,glwO»=P B(P g1w,g1wO)=P )w,glwO)=P )w)
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=pd- 1(J:.l:LB (t:(pd-1)w,w
O
)1=(3C[pd- 1Rd- 1B( l:(pd-1)w,w

O)]
=

(nd- 1 d-1 1=($1::l.' B(P w,wo) =(3r(«w,wo»)=E.('C(<<w,wo»)=<<wo'w»

(on a utilise: =fo( puisque n=d-l). On a done 1a relation «glw,g1w'»=

«w' ,w» pourvu que w'l:: pd-1W• Ce1a equfvaut a 1a congruence

«glw,g1w'»=«w' ,w» mod PA,

pour tous On va construire par recurrence des applications ge'

l=l, ••• ,d, verifiant (i) et (iv) et te11es que

(7) «gtW,gtW'»=«w' ,w» mod ptA.

Supposons defini ge' On cherche ge+1 de la forme suivante:

t
ge+1 (b)=ge(b)+P wb' pour bEe,

avec des wb a determiner, e t pour w= abb W,

gf+1 (w)= r.(ab)ge+1 (b).

11 est clair que gt+l verifie (i) et (iv). Pour satisfaire a la relation (7)

(relative a £+1), il faut et il suffit que pour tous b,b'e63" on ait

e e e+l
(8) «P wb,b'»+«b,P wb,»=«b' ,b»-«gfb,gtb'» mod P A.

Par hypothese i1 existe cb,b,EA tel que

«b' ,b»-«geb,gtb,»=peCb,b"

En 1a mu1tip1iant par pd- 1-
e
l'equation (8) devient

e d-1-e d-l d-1
«P wb,P b'»+«b,P wb,»=P cb,b"

d-1 d-l
Posons pour tout b(j=P b, wblt,O=P wblt. A10rs

d-l d-l
«b,P wb,»=P B(bO'wb"O)'

e d-1-l d-1-e d-l-e
«P wb,P b'»=«R wb,O»)

_ d-l d-l-e, _ t d-l ,
r P c\B(bO'wb,O»

e a-i ( ,
=r P B wb,O,bO)'

L'equation (8) equivaut a l'equation suivante entre elements de K:

(9) reB(wb,O,bo)+B(bo'Wb' ,O)=cb,b"

Introduisons une base {db; de Wo sur K te11e que

1 2
1 _ { 1, si b =b ,

B(bO,d 2)-
b 0, sinon.

Cherchons "s ,o sous 1a forme ablt,bdb'" avec des coefficients
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ab", K. L' equation (9) equivaut a

(10) ,b)+ab,b,=cb,b"

Remarquons que d'apres la definition de cb,b' et (3), on a

II suffit alors de poser ab,b,=cb,b,!2 pour satisfaire a (10).

Donc on peut construire l'application ge+l' Pour t=d, la relation (7)

n'est autre que (v), et g=gd verifie les conditions requises. Cela acheve

la demonstration.

1.8. Supposons que F est local non archimedien, et que West symplecti-

que (F'=F, Considerons Ie groupe symplectique SpeW), son revetement

a deux feuillets speW) (cf. chapitre 2, 11,1). et Ie groupe GSp(W) des

similitudes symplectiques. Le groupe GSp(W) agit sur SpeW) par conjugaison.

Pour gEGSp(W). l'action de g sur SpeW) se releve de unique en une

,(\ " A-Iaction sur SpeW) (cf , chapitre 2, ILL (3» qu'on note abusivement x j--e gxg

A '" """(pour x£Sp(W». On note p:Sp(W)---?6p(W) la projection nature lIe et, pour

g GSp(W), N(g)eFX l'element tel que

<gw,gw'>=N(g)<w,w'>

pour tous w,w'eW.

Proposition. Soit Supposons

tel que:

(i)

(Lf ) N(g)=-l.

selni--s:lmIlle. Alors il existe

Remarque: Ie resultat est probablement vrai pour x quelconque mais cette

generalisation ne nous aiderait pas pour la suite.

La demonstration occupe les paragraphes 9 a 12. On a besoin de deux

remarques preliminaires.

1.9. Supposons que West somme orthogonale d'espaces symplectiques Wi'

i=I, ••• ,n. On sait que Ie plongement
n

IT Sp (Wi) --;';oSp (W)
i=1
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se releve de unique en un homomorphisme
n

j: TI Sp (W . ) ----'» sp (W)
i=l 1.

(ch.2,II.l.(6». Soit NEFx et pour i=l, ••• ,n, soit gieGSp(Wi) tel

Alors g= TTg
i

est un element de GSp(W
i).

Soient, pour i=l, ••• ,n,

On a alors la formule:

n 1 n .....-1
gj(n = HTI gixigi ).

i=l i=l

que N(gi)=N.

•
1. 1.

A
En effet la conjugaison par g stabilise chacun des Sp(W

i)
et induit dans

A
Sp(Wi) un automorphisme qui releve la conjugaison par

Ie resultat d'apres l'unicite du relevement.

dans Sp(Wi). D'ou

1.10. Soient E une extension finie de F, P:E une application F-

lineaire non nulle, (WE, < , >E) un espace symplectique sur E et supposons

que (W,< , » soit egaI a l'espace associe sur F: (ResE/FwE,lo< , >E) (cf.

ch.1, 1.16). On sait que Ie plongement

se releve (de forcement unique) en un homomorphisme

A (\
r:

(c f , ch.3, 1. ). Soit geGSp(WE) tel que N(g)EF", Alors g,GSp(W). Si

on a alors:

'" -1 '" -1gr(x)g =r(gxg ).

L'argument est Ie meme qu'au paragraphe precedent.

1.11. Demontrons la proposition dans Ie cas ou dim W=2. Alors Sp(W)=

SL(2,F), GSp(W)=GL(2,F), speW) s'identifie a l'ensemble muni

du produit

ou est un cocycle defini de la suivante: pour posons

{

C ' si cf.O,
£(x)=

d , si c=O;

alors
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(il s'agit des symboles de Hilbert). Pour l'element

GL(2,F) agit par:

-1 -1
g(x,lJ)g =(gxg ,lJr-o(x,g»,

au pour x=(:

si CtO,
0>(x,g)=

(N,d), si c=O

(cf.[G) prop.2.6). Soit x=(x,IJ) p(W). Supposons x semi-simple. Quitte a

conjuguer x, ce qui est loisible, on peut supposer

x=(:u

avec UEF". Alors

x-1=(a -b),
-bu a
-1

(x ,lJv)

ou
V Jl,Sib+O,

l (a,-l), si b=O.

Pour on verifie grace aux formules ci-dessus que

1\ -1 '\-1gxg =x .

1.12. Passons au cas general. Soient supposons x semi-

simple. On reprend la demonstration de la proposition 1.2: on introduit

l'algebre A, Ie polynome P. L'hypothese que x est semi-simple signifie que

di=l pour tout iEI. Grace a 1.9, on se ramene comme en 1.3 a l'un des cas

I ou II.

Dans Ie cas II, comme d=1, A' est un corps, extension finie de F. Identi-

fions A" a A' par I' application tr , Comme au 1. 4, on se r amene au cas ou

W' et W" sont de dimension 1 sur A'. Fixons une forme lineaire non nul Ie

Gomme au 1.5, l'application

(a , a ") {(aa')

est non degeneree. Pour wew', w"EW", on de f Lnf.t «w",w'»GA' par

l«<w" ,w'»a)=<w" ,aw'>
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pour tout Pour wi, wiEW', w'{,w26W", on de f Lni t

11 est clair que Wmuni de « , » est un espace symplectique de dimension

2 sur A', et que Wmuni de < , > en est la restriction sur F.

,\-1
Soit A l'image de Z dans A'. Alors x agit par A sur W' et par sur W",

donc x appartient a Sp(W,« , »). Grace a 1.10, on est ramene a ce groupe,

isamorphe a SL(2,A'). Le resultat decoule alors de 1.11.

Dans le cas I, A est un corps. Deux cas se presentent: au bien rest

-1
l'identite de A, au est non trivial. Dans Ie premier cas camme ,

P doit diviser Z_Z-l, i.e. Pest praportiannel a Z±I. Donc x agit par ±1

dans W. Grace a 1.9, on se ramene au cas ou West de dimension 2 sur F, cas

traite en 1.11. Supposons maintenant non trivial, soit E Ie corps des

points fixes de L. A est une extension quadratique de E. Effectuons la cons-

truction de 1.5 en prenant pour e une forme (=eEotrA/E' au eE:E est

une forme lineaire non nulle. Alors La forme « , » est anti-hermitienne.

On peut la diagonaliser et se ramener au cas ou West de dimension 1 sur

A. Alors West de dimension 2 sur E et on peut definir une forme symplectique

< , >E sur W, a valeurs dans E, par:

<w,w'>E=trA/E«w,w'».

II est immediat que (W,< , » est la restriction sur F de (W,< , >E) et que

x appartient a Sp(W,< , >E)' On est donc ramene au cas de SL(2,E), cas

t r aLt e en 1. 11.

1.13. Supposons F local non archimedien de caracteristique residuelle

differente de 2 et W symplectique. Fixons une base symplectique

(e+.; i=I, ..• ,nl de W «e .,e.>=l, <e.
J

si jf-i). Soit L Ie reseau

de base II est autodual. Soit K Ie stabilisateur de L dans SpeW).

On a de f LnI (ch.2, 11.8,10) un scindage .r:K Notons K# son image.

Sait T Ie sous-groupe des elements diagonaux de SpeW) (pour la base choisie)

et Tson image reciproque dans sPeW). Soit enfin la similitude definie par



K'II"."-----

90

(e . )=e .}
pour i=l, .•. ,n.

Proposition. (1) La conjugaison par dans speW)

(2) SoH que

Demonstration. (1) La conjugaison par dans SpeW) preserve K. Si Ie corps

residue1 de F est different de flF
3 ,

Ie scindage de K est unique (cf. ch.2,

11.10), d'ou (1). Sinon, soient X, resp. X*, l'espace engendre par t e .;,
i=l, ... ,n}, resp. {e

i;
i=l, ... ,n}. Introduisons les groupes unipotents N(X)

et N(X*) (ch.2, 11.9). lIs admettent des scindages uniques dans speW), done

stabilises par Or ces scindages coincident avec lI'" sur K lIN(X), resp.

KnN(X*) (d. ch.2, 11.10). Donc;;- preserve <r(K(\N(X» et <>(KIIN(X*». Or

ces groupes engendrent K#.

(2) Pour i=l, ... ,n, soient Wi l'espace engendre par e_
i
et e

i,
ii et K

i

les analogues de r et K pour Wi' Avec les notations de 1.9, on a
n n

r = TT r., j r rt c JZ'#.
i=l i=l l

On est ramene au cas de SL(2,F). En utilisant les formules de 1.11, on voit

que pour on a

-1
-1. a

II. Contragredientes des representations des groupes unitaires.

11.1. Revenons a la situation de 1.1, en supposant de plus F local non

archimedien ou F fini. Fixons un element de GLF(W), tel que

<.lwJw'>=<w' ,w>

pour tous w,w'EW. L'existence d'un tel element r est immediate. Elle resulte

d'ailleurs de la proposition 1.2. La conjugaison par est un automorphisme

de D(W). Soit une representation lisse de D(W). On peut definir une

representation tTr de D(W) dans V- par T(b On de f LnLt aussi la

representation contragrediente de
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I'heoreme. Si Tr est une representation admissible irreductible de U(W), les

representations l]"r et "* sont isomorphes.

Demonstration. On utilise le

Theoreme. Soient G un groupe algebrique lineaire defini sur F, X une variete

algebrique definie sur F, une action rationnelle sur F, ¥ l'appli-

cation qui s'en deduit de G(F) dans le groupe des automorphismes de X(F).

Soit enfin un homeomorphisme de X(F). Supposons:

(1) pour tout g G(F), il existe gr"G(F) tel que '(g)o.r=

(2) il existe un entier n et gocG(F), tels que

(3) r conserve chaque G(F)-orbite de X(F).

Alors toute distribution G(F)-invariante sur X(F) est invariante par o.

(cf. [BZj th.6.13 et 6.15 quand F est local. 5i Fest fini, ce theoreme est

trivial) •D

Soient ®l]" , ®1'lli ' (ij)If les carac t er es de 1T, TId;, IT. Ce sont des distribu-

tions. 11 suffit de prouver que Gil [; =9" (c f , 1.2.20). En adoptant pour
"If IT

les distributions une notation fonctionnelle, on a, pour xeU(W):

On doit done montrer que

(1) -lr -1
@ (x)= 0 (.Ix tl i.

11" It

-1
Soient G=X le groupe aLgeb r i.que U(W), '(:G"X l' action o«g,x)=gxg ,

definie par Les hypotheses du theoreme sont

satisfaites: (1) en posant (2) pour n=2 et (3) d'apres

la proposition 1.2 (V n'intervient pas ici). En effet pour xEU(W), l'elernent

g de cette proposition est ne ce s s aLrement de la forme avec g' U(W).

Appliquons le theoreme: cornrne est invariante par G(F), elle est invariante

par .r, ce qu'on voulait dernontrer. Q

11.2. Revenons maintenant a la situation de 1.8. On fixe encore une simi-

litude symplectique telle que N(b)=-l.
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Theo r eme . Soit 11" une representation admissible irreductible de sp (W). Sup-

posons que Ie caractere est une fonction localement integrable. Alors

les representations.f n- sont Lsomorphe s .

Demonstration. On doit encore demontrer l'egalite (1) du paragraphe precedent.

D'apres l'hypothese sur ' on peut ne la demontrer que pour x dans un

ouvert dense de speW), par exemple l'ouvert des elements de projection dans

Spew) semi-simple reguliere. L'egalite resulte alors de la proposition 1.8

et de I' invariance de G
IT

par conjugaison. D

A,

III. Commutativite de l'algebre de Hecke de SpeW).

Pla<;ons-nous dans La situation de 1. 13. Soit i: it I} speW) I' injection

d'image Ie noyau de la projection de speW) sur SpeW). Soit l'espace des

fonctions f:SP(W) -----?>iL , a support compact, telles que

f (i(z)x)=zf(x),

f(k 1xk2)=f(x),

pour taus x SP (W), z k1, k2 :KfI:. Le produit de convolution de f LnLt sur

j( une structure d'algebre.

Proposition. L'algebre }C est commutative.

Demonstration. Soit la similitude introduite au 1.13. L'application

est un antiautomorphisme de sp (W), qui conserve globalement K#' (prop. 1.13,1)

e t fixe i(-I). Elle induit un antiautomorphisme de i( f', au
r -1r-l0 ).

II suffit de montrer que cet antiautomorphisme est l'identite. D'apres la

decomposition de Cartan, est engendree par les fonctions caracteristiques

des doubles classes pour t,r. Or pour une telle fonction f, il resulte

de la proposition 1.13.2, que f'=f. Cela acheve la demonstration. G

IV. A propos d'un commutant.



93

IV.l. Soient F un corps local non archimedien, ou fini, de caracteris-

tique differente de 2, F' comme en 1.1, WI' resp. W2, un espace muni d'un

produit < , >1' resp. < , >2' hermitien, resp. antihermitien. Soient W

l'espace W1f,W2 muni de sa forme symplectique < , >, H Ie groupe d'Heisenberg

associe. Fixons un caractere continu non trivial de F. Soient un

modele de la representation metaplectique de H relative a Ww la repre-

sentation metaplectique de sPeW) dans S. Soient D(W1), lJ(W2) les images

reciproques dans sPeW) de (f(W1) et UI(W2). On s'interesse ici au commutant

de UCW1)xU(W2) dans S, i.e. a l'espace C des tels que

To4J\Jf(x) =W4l(x)cT

pour tout Evidemment c'est une algebre.

Proposition. L'algebre C est commutative.

La demonstration occupe les paragraphes 2 a 4.

IV.2. Fixons, pour i=1,2, un element de GLF(Wi) tel que

.w'>.=<w' ,w>.•
111 1

On note l'element de GLF(W). C'est une similitude de rapport -1.

Lemme. Soit w<sW. II existe U 1 U(W1) , u{=- U(W2) tels que

Demonstration. Identifions Wa Hom
F,(W1,W2) par l'isomorphisme A defini plus

loin au chapitre 5, 1.1. On verifie que On est ramene

a montrer que si fGHomF,(W1,W2), il existe U1 U(W1) , U2 U(W2) tels que

(-1 -1s2f 01 =u2fu1 •

Soit f*eHomF,(W2,W1) l'application adjointe de f (cf. ch.l, 111.5). Posons

X=f*f. On verifie que pour tous w,w'eW1, on a

i.e. XEtL(W1). Posons V=Ker(f). On peut appliquer la proposition 1.2 et

choisir tel que

(i) <gw,gw'>I=<w',w>1

pour tous w,w'eW1;



(ii) gV=V;

-1
(iii) gXg =-X.

(" -1
Posons
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Comme f
2
et g sont T-lineaires, f' est Lt.nea Lr e , D'apres

(ii), f et f' ont meme noyau. On peut definir par l'egalite

Je dis que est une isometrie de Im(f) sur Im(f'). En effet pour

-1 -1 -1 -1
(w'),fog (w»2=<g (w'),f*.fog (w»1

-1
=<gof*ofog (w),w'>I=-<f*of(w),w'>I'

d'apres (iii),

=-l:[<w' ,f*. f (w) 11 =- t[<f (w') ,f (w)>21=<Hw) ,f (w ") 2'

ce qui demontre l'assertion. D'apres Ie theoreme de Witt, on peut prolonger

en un element u2 de U(W2). On a alors

(" -1 r ,-I r 1
u2of=02ofog =02. f ool ou 1og •

r -1
Posons u1=010 g . On a

ce qui acheve la demonstration. [l

s r -f r -1, hfIV.3. Pour h=(W,t)EH, posons n =(ow,t), h =(h) • L application , -

-r
est un antiautomorphisme de H. Done est un automorphisme de H.

-r
La representation p' de H dans S definie par ) est lisse, irreduc-

tible et ve r LfLe pour tout t F. Done et d l apres Le

chapitre 2, 1.6.4, il existe un isomorphisme tel que

pour tout hE'H.

Soit j(H) l'espace des foncti.ons sur H ii valeurs complexes, localement

constantes ii support compact. L'application hr-?h$ induit un antiautomor-

phisme de 1(H), defini par D'autre part, toute repre-

sentation lisse de H definit une representation encore notee de j(H).

Soit L un sous-groupe ouvert compact de H. Comme est admissible, on

peut decomposer S en somme directe de sous-espaces de dimension finie inva-
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riants par L. Fixons une base (e.). I de S qui soit reunion de bases de
1 H;

ees sous-espaees. Les elements "duaux" du dual de S forment une
• 1

oJ
base de S. Pour i,j I, notons E .. , resp. l'element de resp.

1J 1J .....

resp.

{
* . k-'e
i
, Sl -J,

1J k 0 . k'", Sl TJ.

Lemme. i ,jeI.

(1) 11 existe f(;. (H) telle que (Jf)=E
i j•

(2) Si f ::HH) est telle que p..,(f)=E .. , on a .•
1-,. 1J -- \'T J 1

Demonstration. Le (1) r e suLte de I' admts s t b i.Ld t e de f'l" Soit f telle

que et soit kEl. On a:

-1 -1
AofJf )oA JH f (h) Aot4J(h)oA (eQ dh

lH f(hS- 1) AO(ljJ(h)oA-
1(eQ

dh

f -1
.lH f(h) AO\\f(h )oA dh

( oJ-1
JH f(h) f'l,.,(h ) dh ,

C'est un element de Evaluons-le sur un element ee' On a:

-1 (' './-1
<et,Ao(ljJ(f )oA 1H f Ih) \ljJ(h ) dh>

=<\H f(h) (It.,(h) (ee)

=< e\jl(f) ) ,eF
(e
t
)

'j/? ik

d'ou l'egalite eherehee. 0

IV.4. Soit TEC. Pour Toelj/(f) est de rang fini. On peut poser

Cela definit une distribution sur H. Notons G l'image

de U(W
1)",U(W2

) _ spew), et G son image r ec i p roque dans SP(W). Le groupe

G agit sur H, done sur Je dis que Test invariante par G. En effet
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soit gEG, g un element de speW) au-dessus de g et f E. .::!(H). Par hypothese

droll

Mais

W't' (g) "\4J(f).w'!-'(g) -1= f (h) 1Vi¥(g) 0 -1 dh

f(h) dh

{lj/(f
g
) ,

d'oll <T,f>=<T,fg>. On peut appliquer Ie theoreme cite en 11.1, pour G, X=H,

U l'application Les hypotheses (1) et (2) sont facilement verifiees.

L'hypothese (3) est verifiee d'apres Ie lemme IV.2. Alors la distribution

sdefinie par Test invariante par •

Pour tout XEEndC(S), resp. notons Xi j ses coefficients dans

la base (ei)i£I' r esp , (et)iE.I' Soient i,j I. Soit telle que

(lemme IV.3.1). On a

<T, f>=Trace (ToE .. )=T .. ,
1J J1

-1<T,f>=<T,f >=Trace(T"\41(f »=Trace(A"T"A oA"\Jf ) e A )

-1 -1=Trace(ATA ) .. ,
J1 1J

drOll

T1 , 2Maintenant si T 6C, on a

mais aussi

IV.5. Supposons F fini. Alors definit une representation de SpeW)

et par restriction une representation de Les groupes en ques-

tion etant finis, cette representation est semi-simple. La proposition

implique Le
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Corollaire. Toute representation irreductible de qui intervient

dans w\(I intervient avec multiplicite 1.
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Chapitre 5. Paires reductives duales non ramifiees

On expose ici une demonstration de la conjecture de Howe pour les paires

reductives duales de type I, non ramifiees, sur un corps local non archime-

dien. Cette demonstration est entierement due a Howe lui-meme, qui l'a exposee

a l'ENSJF en 1984.

I. Sous-groupes compacts des groupes de Howe, et representation metaplec-

tique.

1.1. Soient F un corps local non archimedien de caracteristique residuelle

F' egal soit a F, so it a l'extension quadratique non ramifiee de F, 6-,

resp. l'anneau des entiers de F, resp. F', une uniformisante de F (et

de F'), IV un caractere continu de F de conduc t eur w, Si F=F', on pose-c=idF•

Si F'fF, soit l'element non trivial du groupe de Galois de F'/F. Soient

E1, tels que e1E2=-I, et pour i=I,2, Wi un espace vectoriel (a droite)

de dimension finie sur F', muni d'une forme sesquilineaire £i-hermitienne

non degeneree < , >i (cf. chap.l,I.l). Soit W=W1f,W2, qui est un espace sur

F, muni de la forme symplectique

(cf. chap.l,I.16).

Remarque: notre definition du produit tensoriel est telle que wIdew2=wfllw2"t:(d),

pour tous dEF', w1cW1, w;fW2'

Soit L un reseau de Wi (pour i=1 ou 2), i.e. un BJ-sous-module libre de

rang maximal. On pose

.1.
On suppose qu'il existe des reseaux LiCCWi autoduaux, i.e. tels que Li=L i•

Fixons deux tels reseaux. Posons

A=L1,L2CW.

C'est un reseau autodual de W.

Remarques. (1) On renvoie au II pour les proprietes des reseaux autoduaux.
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(2) On peut decrire, en termes de la classification du chap.l,r.ll,

quels sont les espaces £-hermitiens admettant des reseaux autoduaux. Ce sont

les espaces des cas suivants:

(a) symplectique: F'=F, E=-l;

(b) quadratique (F'=F, £=1) dont Ie noyau anisotrope est du type suivant:

- reduit a 0;

- F(a) pour a £ 8* (groupe des unites de &);

- l'extension quadratique non ramifiee de F, munie de la norme;

(c) hermitien (F' de dimension 2 sur F, E = 1:1) dont Le noyau anisotrope

est du type suivant:

- r e du I t a 0;

F ' muni de la norme si £=1, de V) fois la norme si E.=-l, ou V) est

On utilisera la realisation de la representation met.ap Lec t Lque <J=wIV de

SP(W) dans l'espace S=SA decrite au chap.2,rr.8. Cette realisation definit un

scindage du stabilisateur K de A dans Sp(W). On identifie K a l'image dans

SP(W) de cette section. Pour tout on note

nant a s, a support dans A+W, telle que s (w)=l.
w

l'unique fonction apparte-

Pour i=1,2, on note Ui=U(W
i)

Ie groupe d'isometries de (W
i
, < , >i)' et Ki

Ie stabilisateur de Li dans Ui. Le groupe Ki est un sous-groupe compact

maximal de Ui. Le couple (Ul,U2) forme une paire reductive duale irreductible

dans Sp(W) (c f , chap c LjLc l Z}, On a K
l",K2

C K , et on peut identifier K
i
a un

sous-groupe de U., grace a la section de K (rappelons que pour tout sous-
l.

groupe f e rme GCo Sp(W), on note G son image r ec Ip roque dans sp (W». Fixons

une mesure de Haar sur Ui telle que la mesure de K
i
soit egale a 1. Soit

I' espace des fonctions 'f:U
i
--.,. <I:. telles que

(a) '('(i(z)u)=z-lce('u), pour tous Uf.l\, ZEC,

ou i: ex -----l> U. est Le plongement evident;
l.

(b) la restriction de a est localement constante a support
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compact.

Munie du produit de convolution, X. est une algebre. 11 y a une equivalen­
1.

ce de categories entre:

­ les representations (rr , V) de Vi telles que Tloi(z)=z idv pour tout

IV /\

et que la restriction de w a Ui(\Sp(W) soit Esse;

­ les representations (,.,V) de l'algebre telles que V soit reunion des

images des 'It (If), quand « de cr Lt 4ei .

On passe de l'une a l'autre par la formule:

1f(i.()= JU '-{(G)lf(U) du ,
i

ou u est un relevement quelconque dans U. de l'element u de U..
1. 1.

Def LnLssons ),:W ­­Homp' (WI,WZ) par

On verifie que A est un isomorphisme. On ales egalites:

<w,w'>=sz trF'/p"trw /F,(?I(w)*/,(w'»,
I

pour tous w,w'EW (c f , chap.l, 111.5 pour la definition de ?I(w)*),

-1
),(ulw10UZ wZ)=uZo ;,(wtpwZ)ou l '

pour tous w1bWI, WZ WZ, UIEU1, UZEUZ' On pourra si besoin est identifier W

a Homp' (W1,WZ) par 'It. Par exemple pour weW, on pourra consLder e r w(L1).:::: WZ'

l'image de L1 par w. Le reseau A s'identifie a plonge naturel­

lement dans HomF,(W1,WZ)' En echangeant les indices 1 et Z, on peut aussi

LZ. Soit L un r e seau de WI tel que LC.L 1. Def LnLssons

J 1(L)=tuEUl; (u­l)L.1. c L},

H1(L) {UEU 1; (u­l)L­L c L!l1.
Les proprietes suivantes sont immediates:

(1) J 1(L) C HI (L) C K{IK I (L),

ou K1(L) est le stabilisateur de L dans U1;

(Z) HI (L)={UEUI; (u­l)L1c L'\;

(3) J 1(L) et HI(L) sont des sous­groupes de U1;

si L' est un autre reseau de WI tel que L'c:L I, alors:
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Lemme. Le groupe JI(L) est un sous-groupe distingue de HI(L). Le quotient

Demonstration. II suffit de prouver que si hI' hzEHI(L), alors

-1 -1 fl.1-
h Ih Zh1 hZ £J1(L). ,L I)(lHomO\,(L1,L), et pour i=l,Z, ecr Lvons

h.=I+a., avec a. Q. On a
1 1 1 'j-

-1avec a.h. Q • Alors
1 1 'j-

forme bI •.• bt, avec bI, ... ,btet}, et Mais un tel terme appartient a
-1 -1

Home--,(L ,L), donc hIhZh i hZ <:;JI(L).O

1.3. Soit L comme ci-dessus. Posons

W.

En identifiant Wa Hom
F,(W1,Wz), resp. Hom

F,(WZ'W1), on a

resp.

B(L)=tw W; w(L)c

B(L) fwcw; w(LZ)c L.11-

={WGW; L1+w(LZ)c LJ.1.

J (L)
Soient SL Ie sous-espace des fonctions de S a support dans B(1), et S 1

Ie sous-espace des elements de S invariants par J 1(1).
J 1 (L)

Lemme. (1) On a l'inclusion 51 C S

(Z) Soient w6B(L), On a l'egalite

En particulier, l'application

est un caractere de HI(1), egal a 1 sur J 1(L). On pourrait d'ailleurs Ie

deduire du lemme I.Z.

-1
Demonstration. SoLen t m;:B(1) , Pour w'EOW, on a w(h)s (w')=s (h w'),w w

-1
qui est nul sauf si h w'E;: A+w , i.e. w'6A+hw. D'apres les hypotheses, on a

hWEA+w. Donc Ie support de w(h)sw est inclus dans celui de sw' et w(h)sw

est proportionnel a sw' Pour w'=w, on a

w(h)s (w)=s (h-Iw)=s (h- Iw-w+w)=o/«w,h-1w-w>/2)s
w w w w
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puisque h w-w A.

hwe + w. Or

demorrt r e (1).
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D'oll la formule (2). Si de plus w J 1(L), on a

..1.
, d l ou <hw,w> eT-F, et l'egalite 0(h)sw=sw' Cela

1.4. Notons w( l'espace engendre par les w(f)s, pour SESe

, , , ' '() J 1(L)Theoreme. On a 1 egalite w SL=S •

Comme les actions de U
1
et U2 commutent, Ie lemme 1.3.(1) demontre l'inclu-

J (L)
sion S 1 • La partie difficile est l'inclusion opposee qui sera

demontree aux paragraphes 111.4 a 7.

1.5. Dans l'enonce suivant, on identifie Wa Hom
F
, (W2,W1).

Proposition. Soient w,w'£B(L), supposons:

(1)

1
,w w'

(2) es caracteres 'II 1 et I.V 1 de HI (L) sont egaux.

Alors il existe keK2 tel que A+w=(A+w')k.

Cela sera demontre au 111.8.

Remarque. D'apres les definitions, l'hypothese W(L2)+L 1=L
JL

equivaut a ce qu'il

n'existe pas de r e s eau L' tel que LcL'CLl, 1''/'L', et w B(L').

"""'1.6. Soit une representation admissible irreductible de Ul, sup-

posons (c f , chap.2, II1.2). Soient S(1I11 Le quotient de S assoc i.e

a rr1 (cf. chap.2, 111.5), et (TI;,V;) la representation lisse de US telle que

Theoreme. II existe un unique sous-espace V2de V;, invariant par UZ' tel que

v;/V2 soit irreductible.

C'est la conjecture de Howe. Sa demonstration occupe les paragraphes 7

a 9. Ulterieurement, on notera vZ=v;/v2et\T2 la representation de U2 dans V2•

" J 1(L) ! 1- '1. 7. Considerons les reseaux Lc L1 tels que VI * De tels reseaux

existent car les groupes J 1(L) forment un systeme fondamental de voisinages de

1. Parmi ces reseaux, on en choisit un, L, tel que [L 1:L] soit minimal. Si
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tels que pour tout h Hl(L). Posons

i=\1\I7; wtB(L) et W(LZ)+L1=L.l.!.

Lemme. II existe un sous-ensemble non vide i 'c if tel que

V J 1 (L) = ED
1 4'l

t'l'V1LH I(L)''+'11.

Demonstration. Notons la projection. Soit weB(L) tel que q(sw)jO.

Alors q (sw)e VIt HI d' ap r es Le lemme 1. 3. (Z). On a En effet

weB(L); si d'apres la remarque 1.5, il existe un reseau L' tel

J (L')
que L<:L'c:.L l, [Ll:L']-<[Ll:L] et weB(L'). Mais alors swcS 1 ,

J (L') , J (L')
q(Sw)E VI 1 et VI 1 1l0J, contrairement a l'hypothese de maxima-

lite de L. l'ensemble des 'l'IEi:E tels que et

par les q(sw) pour

on obtient v1Jl(L)=Vi,

Vi= e;r;, V1LH1(L),'l'I)''+'1Eo:t:
J (L) J (L)

On a done q(sw) VillWz' D'autre part VI 1 <S>V2=q(S 1 ).

J (L)
1.4, VI 1 est done engendr e sous l'action de

()
,. J 1(L) , , , ,J1(L)

wEB L • D ou VI evZ<::.v1evZ' Comme vIcVI '

D'apres Ie theoreme

de :)(i de f Lnf par

et l'assertion. 0

Fixons weB(L) tel que W(LZ)+L1=L
k et V1LH1(L),1\I7JT{O}. Posons

J.M=(w(L1)+LZ) • C'est un reseau de Vz inc Ius dans LZ' On definit de

.1.
evidente JZ(M), HZ(M), B(M). On verifie que weB(M), et bien sur w(L1)+L Z=M •

On definit 4/wz. Dans la suite, pour toute representation lisse de U.,
- wi=I,Z, on note Xi Ie sous-espace des X6Xi tels que pour tout

hf::.Hl(L), si i=l, resp. h6HZ(M) si i=Z.

1.8. Pour i=I,Z, soit e i l'idempotent

. -1[ w -1 )<K.:H.]I\J.(h) , si ze(.,
1

e.(u)=O, si \lEU., et ul1i({:")H.,
1

ou H1=H1(L), HZ=HZ(M). Posons 1ti=ei1{iei'

Lemme. Soient (oZ,XZ) une representation lisse de UZ' non nulle, et

p:S un homomorphisme surjectif U1><U2: equi va r i ant . Alors l'espace Xz
est non nul et on a lea egalites
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Demonstration. On montre comme dans la demonstration precedente que

, , _ ..I. w'_ w
est engendre sous ':l{2 par les p (sw') pour wEB(L), w (L2)+L 1-L et 'PI -'PI'

Pour un tel w', il existe, d'apres la proposition 1.5, keK2 tel que sw' soit

proportionnel a Done est engendre sous par p(sw)' En parti-

culier Comme on en deduit que comme

V{il>X2= 1f"2( X 2) p ( sw) = <:r2( )( 2e2)P(sw)'

on obtient:

V11l/X2= 1f"2(e 2) ( v 1@X2)=

De meme, I' espaee (non nul) V1@/i.2 est eng end r e sous 1(1 par les p (sw I) ou

w' ..l"w'GB(M) et 'P2 ='¥2' Le meme raisonnement s'applique pourvu qu'on ait p(sw,)=O

si w' (L1)+L2TW". Supposons w' Posons L'=(w' (L2)+L 1f . On a

J (L')
w' B(L'), done p(sw,)E-V I 1 @XZ- On va montrer que fL1:L'J <[LI:L). Par

, J (L')
maximalite de L, on a alors VI 1 et p(sw,)=O,

L'inegalite ci-deseus resulte du:

Sous-el.emme . Soit (WI,W2), Alors "o definit une bijection de

.LL/(wO(L2)+L 1) sur (w
O(L1)+L2)/L2, 0

Applique a w', ee sous-Iemme donne

Applique a w, il donne

1.9, L'ensemble des sous-espaees invariants Vz de V' tels que q tsVz,2

ordonne par l'inelusion, est induetif . Fixons un tel V" maximal. On a Vz'fVi'2

Soit vO invariant tel V"e vOe»: 0", ' Soit2 un sous-espace que 222 et V2 V2' P

l'applieation eomposee

D'apres Ie lemme et vO=V" d'apres la maxima-
2 2

lite de VZ' Done Vi/Vz est irreduetible, ee qui demontre l'existenee d'un

quotient irreductible. Supposons que ce quotient n'est pas unique, Alors
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""il existe deux representations XZ' YZ de UZ' non nuIIes, et, en posant

En particulier, on a des projections

et XZ' YZ sont non nuis d'apres Ie Iemme 1.8. On a

Soit P Ia projection sur Ie premier facteur. Alors P commute a I'action de

Lemme. Soient E un espace vectoriel complexe, Jt, 8 deux sous-algebres de

End(E) , e E. Supposons que.lt: commutent et que E=Jl.e= @e. Alors J\. est

Ie commutant de End(E), et vice-versa. D

D' apre s ce Lemme et Le Lemme 1. 8, il existe tel que P="l (Cf). Alors

P(Vl$ZZ) ="1 (re) (Vl)@ZZ ne peut pas etre e gaL a V{i!;XZ' Contradiction, qui

acheve Ia demonstration du theoreme. D

1. 10. Soient ("l,Vl),(nZ'VZ) comme

K
cLH] th.7.l.b). VI

en 1. 6.

Dans Ie raisonnement precedent, on a L=L
l,

M=L
Z'

L'assertion resulte

du lemme 1.8. 0

1.11. Pour i=1,2, soit X(v.IIK.) la sous-algebre des fonctions de
]. ].

biinvariantes par K
i•

Cette algebre est commutative. En effet, si Vi est

scinde dans Sp(W) , l' est isomorphe a I'algebre correspondante

1«V/IKi ) pour Le groupe U
i

Iui-meme. L' assertion est alors bien connue n.C),

coroliaire 4.1). Si Vi n'est pas scinde, d'apres Ie chapitre 3, I,

"-symplectique et I'algebre est alors isomorphe a X(Sp(W.)IIK.), qui
]. ].

W. est
].

est com-

mutative d'apres Ia proposition III du chap.4.

Pour i= 1,2, l' a Lgebr e "I:.(V. 11K.) agit sur i: espace des invariants SKJ'" K2
]. ].

K "KNotons H. son image dans End(S 1 Z).
].

Proposition ([Hl th.7.1.c). On a I'egalite Hl=HZ'
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Demonstration. Soit So la fonction caracteristique de A. Par Ie theoreme 1.4,

" Kl_ /OJ Ion a 1 egalite S d ou

Kl"KZ_ ""' II -S KZ»sO-HZsO'
K

et de meme S 1 Z=HlsO' Grace au lemme 1.9, HI est Ie commutant de HZ' Or

HI et HZ sont commutatives. DI ou I' assertion. Q

Cette proposition recouvre des relations classiques (matrices de Eichler-

Brandt) interpretant geometriquement (i.e. du cote du groupe orthogonal)

les operateurs de Hecke "modulaires".

II. Reseaux autoduaux.

11.1. Soient F, F' comme en 1.1, et maintenant EEO W un espace £-

hermitien sur F'. Si (e i), i=l, ... ,n, est une base de Wsur F', on notera

(et), i=l, ... ,n, la base duale definie par

Notons f, f'Ies corps residuels de F, resp. F'. Soit L un reseau de W.

On appellera base de L une famille (e
i),

i=l, ••• ,n, qui est une base de W

sur F', et qui engendre L comme Si (e
i),

i=l, ••• ,n, est une base

de L, (et), i=l, ••. ,n, est une base de Si e1"" ,en Eo L, ils forment une

base de L, si et seulement si leurs images dans une base de

L/Ldrcomme espace sur f'.

Soit L un reseau autodual de W. Le quotient , muni de la reduction

de < , >, est un espace E-hermitien (non degenere) sur f'. Si weL, on note

Wson image dans L.

Proposition. Soient L un reseau autodual de W, wl"",wr des elements de L,

tl, .. "tr des entiers, et M=(mi j) une matrice r><r a coefficients dans

Supposons:

(l)wl, ••• ,lJr sont lineairement sur f';

(3) pour tous i,jE(l, .•• ,rJ, mij=H:(mj i);

(4) pour tous i,jG:{l, .•• ,r', avec i ,j, ffiij:<Wi,wj > mod 6jti tr' •--
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Alors il existe des elements wi, ... ,w; _de L tels que

:t' r ,(5) pour tout iE11, .•. Wi-Wi l;

(6) pour tous ••• m..
lJ l J

Remarque. On peut supposer certains des t
i
infinis, en les congru-

ences de (4) et (5) par des egalites.

Demonstration. D'apres (1), on peut completer l'ensemble tW1, ••• ,wr1 en une

base ... ,wn\ (n a r ) de L. Soit {wt, ... base duaLe , qui est une

base de L puisque Lest autodual. Pour tout i=l, .•• ,r, on va construire une

suite (wi(t», telle que

t.
(a) wi (t)-wi Lar l;

t-1
(b) wi(t)-wi(t-l)E L0 ,pour t>2;

(c) <w. (t),w. (t»Eim .. mod <&-\:r', pour tous i,j=l, ... ,r.
l J lJ

On raisonne par recurrence. Pour t=l, on pose wi(t)=w
i

pour tout i. Supposons

construits les wi(t-1). On cherche wi(t) sous la forme
r

{

Wi ( t - 1)+ . L; wjc&-t-1 a j i, si t>t i,
w. (t)= J=l+l

l

wi(t-1), si

avec des indeterminees a
j i E

&' . Les conditions (a) et (b) sont verifiees. La

condition (c) resulte de (4) si .. Supposons et t.<t. La condition
l J l

(c) s' e c r i t r

t-1 t
<w. (t-l) ,W. (t-l»H.1b' l;;;(a .. ):m .. mod liT &, si i<j,

l J J l lJ
t-l t

<wi(t-1),wi(t-1»+0 mod si i=j.

Posons

1-t
a j i=<l7 (mji-<Wj (t-l) ,wi (t-l»), si i<j,

1-t
a .. =(1/2)<& (m.. -<w. (t-l) ,W. (t-l»).
II II l l

Grace a l'hypothese de recurrence, ces elements sont dans Grace a (3),

ils resolvent les congruences ci-dessus. Cela acheve la construction des

suites (wi(t», Grace a (b), la suite (wi(t» converge vers un element

de L. Grace a (a) et (b) ces elements verifient (5) et (6).0
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II. 2. Corollaire. (1) Ll' L2 deux n?seaux autoduaux de W. Alors

il existe u U(W) tel que u(L 1)=L 2• En particulier la classe d'isomorphie

de la reduction L d'un reseau autodual de W est bien determinee.

(2) L'application qui i la classe de W associe la classe de la reduction

L d'un reseau autodual est une bijection entre les classes d'isomorphie d'es-

E: -hermitiens sur F' pos s edan t; un reseau autodual, et les classes d' iso-

morphie d'espaces &-hermitiens sur f'.

Demonstration. Fixons la dimension n des espaces en question. On peut identi-

fier une classe d I isomorphie d I espaces Eo -hermitiens sur FI, r esp , f', de

dimension n , i une matrice nx n M=(m .. ), i coe f f LcLen t s dans F', r esp . f ",
1J

telle que (entre autres) m.. =£c(m .. ). La classification du chap.1,I.11, met
1J J 1

en evidence une bijection entre les classes decrites i la remarque (2) du

I. 1 et les classes d I isomorphie d I espaces E..-:1ermitiens sur f'. Plus precise-

ment on peut trouver des matric.es M1, ... les classes d'espaces

de cr Lt e s i La remarque (2) du 1. 1 (e t de dLmens Lon n), i coefficients dans

et telles que leurs reductions M1" •• r ep r e sent en t les classes d' iso-

morphie d'espaces t-hermitiens sur f'. Soient alors W un espace a-hermitien

sur F' et L un reseau autodual de W. Soit ie{l, •.• ,k! tel que Mi represente

L. II existe w1' .•• ,wnGL tels que , ... ,w soit une base de L, et que -M.
n 1

soit la matrice de la forme reduite dans cette base. Appliquons la proposi-

possAde une base telle que Mi soit la matrice de la forme

dans cette base. Alors Mi represente 1a c1asse de W, et i est done bien

determine. Si L1 et L2 sont deux reseaux autoduaux, i1s possAdent ehacun

une base dans 1aque11e 1a forme a pour matrice la meme matrice M.• L 'app1ieation1

u envoyant une base sur l'autre est un element de U(W). D'otl (1). L'app1ication

du (2) s'identifie i M,l--l>M. qui est bijective.D
1 1

Remarque. La demonstration demontre 1a va1idite de la remarque (2) de 1.1.



(6)

110

11.3. Corollaire. Soient L un reseau autodual de W, w1"",wr des

elements de L, t un entier Supposons:

(1) w1"",wr sont lineairement independants sur f';

(2) pour tous i,jEp, ••. ,rl, <wi,w,>;O modtirtr>-'.
J-

Alors il existe des elements wI' , .•. ,w' de L, des sous-espaces X, Y, wO der_

W, tels que:

(3) wi, ••• est une base de X sur F';

(4) Y a' ° 0 YX, sont totalement isotropes, X+Y est orthogonal W et e ;

(5) L=LnxeLOWOeLOY;

, t
pour tout i=l, •.. ,r, Wi - wi Ll8' .

Demonstration. D'apres les theoremes de structure pour les espaces sur f',

on peut trouver des elements wr+1"",wn de L tels que w1"",wn soit une

-0 -base de Let, si on note X, resp. W , resp. Y, l'espace sur f' engendre par

W1, ••. ,Wr , resp. wr+1, ... ,wn_r' resp. wn_r+1"",wn' on ait: X et Y sont

- -0 - - -0 -totalement isotropes, X+Y est orthogonal a W , et L=X+W +Y. Definissons une

matrice M=(m .. ) par:
1.J

mi j =mj i =0 si Hn-r, ou si Hr+1,

mij=<wi,wj>, si ou si ou si

On prend t1= •.• =tr=t, tr+1= ••. =tn=1. II est clair que la proposition 11.1

a une analogue ou la condition (2) est remplacee par ••• et ifj

remplace dans (4). On peut appliquer cette analogue: on obtient des ele-

ments Soient X, resp. WO, resp. Y l'espace engendre sur F' par

resp. resp. Les conditions (3) a (6)

sont ve r Lf Lee s . a

11.4. Corollaire. Supposons W symplectique. Soit L un reseau de W. Alors

L est autodual si et seulement si L possede une base hyperbolique.

Demonstration. Si L possede une telle base, on verifie immediatement que

Lest autodual. Si Lest autodual, la proposition permet de relever une
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J J

=1, m.. pour tous i,jGtl, ••• ,n}.
J
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base hyperbolique de L. G

11.5. Corollaire. Soient L un reseau autodual de W, w1, ... ,wr
et wi, •.• ,w'r

des elements de L. Supposons:

(1) w
1,
.•. ,w

r
sont lineairement independants sur f';

(2) sont lineairement independants sur f';

(3) pour tous .•. ,rL
i, J J

Alors il existe ueU(W) tel que u(L)=L, et pour tout ... ,r}.
- L L

Demonstration. En appliquant Ie theoreme de Witt dans L, on peut completer

Appliquons la proposition 11.1, plus exactement son analogue obtenu en inver-

sant les relations d'ordre. Alors il existe des elements de L

tels que si ie\l, .•. ,rl, L0 si ... ,n},

<w'.' ,w'.'>=m ..
J J

pour tous i,jEll, •.• ,nl. Les deux premieres conditions mont rent que ces

elements forment une base de L. Alors l'element uEEndF,(W) defini par

pour tout iG[l, ••. ,nl verifie u(L)=L. Les conditions ci-dessus

impliquent ueU(W) et pour tout iG{l, ..• ,r}. Cl

11.6. Soit L un reseau pas necessairement autodual de W, mais tel que

<w l ' w2>El9-' pour taus WI' w2 L. Alors L=L/Lcl'T es t muni de la reduction de

la forme < , >, a valeurs dans f', qui est degeneree si L n'est pas autodual.

Lemme. Sous ces hypotheses, soient w1, ... ,W
r
EL des vecteurs lineairement

independants dont les reductions engendrent un sous-espace non degenere

de L, soient W'- l'espace sur F' engendre par w1, .•. ,w
r '

W" son orthogonal.

Les espaces W' et W" sont non degeneres et on a l'egalite L=LOW'@LI\W".

Demonstration. II est clair que W' et W" sont non degeneres et que LOW' est

un reseau de base w1, •.. ,w
r'

On a l'egalite W=W'ew", donc si weL, il existe
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w'eW', W'E,W" t e I s que w=w'+w". Soit i Le plus petit entier tel que

w'ale un,'. Supposons i>O. Alors la reduction W'liri est non nulle, appartient

a l'espace engendre par wl, •.• ,WCr , Comme cet espace est non degenere, il

existe je\1, ... ,r1 tel que <w'ttti,w.>f'O dans f', Le. Alors
J J

<w' Or <w",w.>=O, d'oll <w' ,w.>=<w,w.>, et <W,W.>E<:r' par hypothese
J J J J J

sur L. Contradiction. Done i=O et w'eL W'. Alors w"=w-w'E LfiW". 0

11.7. Dans l'enonce suivant, on pose 1l =L1! L1aT, et pour WELl' on note w
l' image de w dans '11'

Lemme. Soient L1 un reseau autodual de W, L un reseau tel que LeLl' II existe

une base e 1, •.• ,en des entiers s,r tels que et pour tout

•.• un entier t.;l, tels que:

( ) t +1 t1 el, .... ,er, er+ltb" r , .... 'enurn'

(2) l'espace engendre dans 11 par el , ... ,
a e. pour tout Ds;-

(3) l'espace engendre dans 11 par es+l"" ,

(4) l'espace engendre dans '11 par 1<
e s+ 1'" •

est non degenere, orthogonal

est isotrope;

est isotrope.

Demonstration. Soient M l'image de L dans °, et M un sous-espace non dege-

nere maximal de M. Soient e1, ... ,eseL1 dont les reductions forment une base

de MO, wO l'espace engendre par e 1, .•. , . Grace au lemme 11.6, on ales

egalites

L=LOWO&Ll\W°J.., Ll=Ll0WO&Ll('\W°J...

OJ.. OJ.. OJ..
En remplacant W par W , L par LnW, par L1('\W ,on est ramene au cas Oll

M est totalement isotrope, ce gu'on suppose desormais. D'apres Ie theoreme

des diviseurs elementaires, on peut choisir une base ei, .•• de Ll, un

entier ret, pour tout iEtr+1, .•• ,n}, un entier tels que ei, •••

t t
r+l, ••• soit une base de L. Modifions cette base de la facon

suivante. Pour jet1, ••. ,n1, posons

si
J J r

e .=e L si j >r ,
J J i=l
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avec des pour ••••• r}, ... ,n1, a determiner. Cette base

verifie encore (1). Elle verifie (3) car l'espace engendre par e
1,
•••• e

r

est egal a Mqui est isotrope par hypothese. Reste a verifier (4). On calcule

la base duale:
n

[ ek*-c(aj k). si j,:Sr.
J J k=r+1

si j >r .
J J

Soit i e {I.... , r 1. Comme , >=0 pour tout j c] 1••.•• r1. """i appartient a

l'espace engendre par ..... Pour •... ,r1. soit bi j",,"'. On peut

donc trouver des tels que
J n r
- L ek*<:.(a· k) = L mod Ll<&".k=r+1 J i=1

pour tout ••..• rJ. On est ramene a chercher des b .. tels que le reseau
r J.J

engendre par les vecteurs .. , pour •••• r1, soit de reduction
J i=l J. J.J

isotrope. 11 suffit de poser b .. pour assurer cette condition.£)
J.J J. J

11.8. On conserve la situation du lemme precedent. On fixe une base e l •

•.•• en verifiant les conditions de ce lemme. Notons R. resp. R*. Ie &'-module

engendre par el •...• er• resp. et ••.. Posons

(u-1)L.Lc::. L1

(cf , 1. 2) •

Lemme. Soient X un cr'-module libre de rang fini, f. Supposons

verifiees les hypotheses suivantes:

(1) f (X) c. R*+L

(2) g(X)c. R+L
l
<&;

(4) pour tout il existe ..• ,r1 tel que

«f+g) (x) ,ei>eOO', <f(x)

Alors il existe uEJ tels que

f+g+t9h=uof.

Demonstration. Dans cette demonstration, pour tout YeLl' on note
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Y l'image de Y dans L l. On note S, resp. T, resp. T* Ie engendre

par el, ,es' r e sp . es+ l'"'' , r esp , ... ,e:. Remarquons que

et -t- ,e; sont deux bases de S. D'apres (1), f(X)cR*. On peut modifier

la base el, ... ,en, sans en changer les proprietes, et trouver deux entiers

«, f' avec tels que el, ... soit une base de f(X)I\S, et

••• ,e; soit une base de l'image de f(X) par la projection de sur T* paral-

lelement a S. D'apres (4), f est injective, on a ou vest Ie rang

de X, et on peut trouver une base Xl"" ,Xy de X, et pour tout iets+l, ..• ,f! '

un element YitS, tels que

pour tout i=l, ..• ,<S",

f(/<.)=e* ......i+y ..L" pour tout i=<S"+l, •.. ,v.
1. s-o. S-o.1.

(a) Montrons que pour tout ie{1, ••. ,r5, on peut trouver z.eR tel que l'
1.

application lineaire

definie par pour tout i=l, ... ,r so it telle que:

idR*+v preserve les produits scalaires,

v(f('Xi»=g(?\'i) pour tous i=l, ... .c .

Ces conditions sont equivalentes a:

(L) pour tout i=1, ••• ,-r, z.=g C:x.) ;
1. 1.

(ii) pour tout i=s+l, ..• ,P, z.+v(Y.)=gCr\i+ );
\ 1. 1. r-s

(iii) pour tous i,j=l, ••• ,r,

>.
1. J 1. 1. J J

On a R=OO'lT, r esp , R=seT. Si wE:R, resp. wea, notons w', w", r esp . w', WiI,

ses composantes sur S,T, resp. S,T. Les proprietes de la base el, ••• ,en

rendent (iii) equivalente aux conditions suivantes:

(Lv ) pour tous i,j=l, ••• ,s,

;;7< - -;;; -, ;;7< -, •<e.,e.>-<ei+zi,e.+z.>,
1. J J J

(v) pour tous i=l, .•• ,s, j=s+l, ••• ,r,

<e* z'>+<z" i0>+<z' Z">=O'i'j i'j i'j ,
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(vi) pour tous i,j=s+l, •.• ,r,

:;­;li -II -II -, -, ­0<ei,zj>+<zi,ej>+<zi,Zj>­ .

Pour i=l, •.• ,o, on definit zi par la relation (i). D'apres (3), la relation

(iii) est ver Lf Lee pour •. D'apres (4), les vecteurs pour
). ).

sont lineairement independants. L'application lineaire qui a associe
).

pour est une injection isometrique d'un sous­espace de S dans
). ).

S. Comme S est non degenere, Ie theoreme de Witt nous permet de la prolonger

en un automorphisme isometrique de S que nous noterons idg+v'. Pour ••• ,s,

posons La relation (iv) est maintenant verifiee. Pour i=s+l""'f'
). ).

posons

Pour i=f+1, ••• ,r, choisissons tel que
).

(vii) ,zi'>=­<g{D",
J J J).

pour tout j=l, •.• C'est possible

ment independants et que l'espace S est non degenere. La relation (v) est

satisfaite pour i=l, ..• ,o: si j=s+l""'f, elle resulte de (3), si j=f+1, ... ,r,

elle resulte de (vii). Pour i=O+l, ..• ,s, on choisit tel que (v) soit

verifiee. Maintenant zi est defini pour i=l, ••• ,s, et vest defini sur S.

Pour i=s+l""'f' posons

"Z"=­V(y)"+g(X )".
i i iH'­s

Alors (i) est satisfaite. Grace a (3), (vi) est satisfaite pour i,j=s+l"",f'

On verifie aisement que (vi) est maintenant completement satisfaite.

Remarque. Les vecteurs et+Zf' pour i=l, ••• ,r, sont lineairement independants.

En effet considerons une combinaison lineaire
r
[' (eHz.)a. =0,
i=l ).). ).

avec des ai"'f'. Prenons Le produit scalaire avec ej pour je s+l, .•• , r 1.

Comme Z.ER, on a <e"zi>=O pour tout i, et on obtient a.=O. Prenons Ie pro­
). J J

duit scalaire avec pour j {l, ... ,st. D'apres la propriete (iii), on
J J
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obtient
s
[.
i=1 J

Comme S est non degenere, cette relation pour tout ••• ,sl implique

ai=O pour tout i.

o R* 0(b) Montrons que pour tout i=I, .•. ,r on peut trouver eiE , Zi R, tels que

( ... ) -0_;;'1,
ei-e i, zi-zi'

o(ix) l'application lineaire u definie par

o 0 0 0
u (ei)=ei+zi, pour tout i,

preserve les produits scalaires.

o 0
Remarque. (viii) implique que el, •.. ,e r est une base de R*.

000
Pour i=I, ••• ,r, on definit des suites ei(m), zi(m), avec

z?(m) R, verifiant:

( ... ) -O( __ •m ei m -ei, zi m -zi'

o 0 0 0 0 0 m
(ix) <e.(m)+zi(m),ej(m)+z.(m»s<e.(m),e.(m» mod &', pour tous i,j=I, ..• ,r;

m J J
. 0 0 m-s l 0 0 f?-I(x) e.(m)se.(m-I) mod , mod L •m

o 0
Pour m=l, il suffit de poser ei(I)=et, zi(I)=zi' Pour m>l, supposons definis

o 0 0 0
ei(m-I) et zi(m-l), cherchons ei(m) et zi(m) sous la forme

e?(m)=e?(m-I)+E.t.l1m-l,

o 0 m-I
Zi (m) =z i (m·-l)+ Zi45' ,

avec Ei T*, Zi R. La relation imposee (ix)m s'ecrit:

J

<e? (m-l)+z? (m-I) , e? (m-l)+z? (m-I) >J mod lflcr' •
J J

Les vecteurs i=I, •.. ,r sont lineairement independants et l'espace

T*+R (=R+R*) est non degenere. II est alors facile de resoudre Ie systeme

ci-dessus.

L . 0() 0() >. 1 0 e?= lim 0 ( )es ei m , zi m , , convergent. n pose e i m ,

(m) ,

(c) Soit uEEndF,(W) l'element defini par

00000
u(ei)=u (ei)=ei+zi, pour i=l, ••• ,r,

u(ef)=ef, pour i=r+l, ••• ,n.
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C'est une isometrie: cela resulte de (ix) et du fait que pour

. 1 1 0 ( ) , L.l.. abO1= , ••• ,r, j=r+ , .•• ,n, car Donc u6U W • Le reseau pour ase e 1,
o -t -t 0

'" r+1, ••• n , Comme pour tout i=l, ••• ,r, on a

(u-1) (L.l..)C L, i.e. D'apres (viii) la reduction de la restriction de

u-1 a R* est egale a l'application v du (a). On a donc

pour tout i=l, .•• ,v. Alors ut>f-(f+g) est de la forme pour un

III. Les demonstrations.

111.1. Reprenons la situation du 1.1 a 4. On identifie W a Hom
F,(W 1,w2).

Quitte a la multiplier par S2' on suppose la forme symplectique donnee par

<w,w'>=trF'/F<>trw IF'(w*ow').
1

Le reseau L etant donne, on pose pour simplifier

Pour WEW, posons

stw1 SJ w(u)sw duo

Si c'est a une constante pres l'unique fonction de sJ a support dans

l'ensemble

C(w)= U (A+w). U.
UE.J

Reciproquement si une telle fonction existe, stw1 est non nulle. Les fonctions

s[wl, pour wEW, engendrent l'espace sJ. On va traduire concretement la condi-

tion s(w]tO. Pour cela, on a besoin d'introduire des elements particuliers

du groupe U1•

111.2. Pour tout espace vectoriel W' sur F', tout reseau M de W', et tout

w'e:W', notons ordM(w') Le plus grand entier me71. tel que w'eM6-m•

Soient x , YEOW l '

supposons:

e eEndF,(W1) l'element defini parx,y

ex,y (w1)=x<y ,w?1- l:lY<x,w? i:

(i) ordL (x)+ordL
1 1
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Alors e (L1) cL1l5', et l+e est inversible. Posonsx,y x,y

u =(l-e )(
x,y x,y

-1
) .,y

On verifie que u ED1• Gonsiderons les conditions supplementaires:x,y

(ii) ordL(x)+ordL(Y)fO;

(iii) ordL(x)+ordL et ordL (x)+ordL(y»)O;
1 1

et pour w"W:

(iv) ordL (x)+ordL et ordL (wx)+ordL1 2 2 1
On verifie que (ii) implique u eJ, (iii) implique u eH, (iv) impliquex,y x,y

Wou eA+w.x,y

111.3. Soit weW. On a stw)tO si et seulement si on a l'egalite

-1
pour tout ueJ tel que wou A+w. Gomme au lemme 1.3, l'egalite w(u)sw=sw

equivaut a Supposons s£w110, et soient x, yeW1 verifiant les

conditions (i), (ii) et (iv) de 111.2. Alors >/2)=1. On calcule:x,y

<w,wOUx,y>=-4trF'!F«W'y,w'x>2),
-1Oll w'=wo(l+e ) , puisx,y

<w,WOUx,y>s-4 trF'!F«wy,wx>2) mod &.

Si ae&', on peut remplacer (x,y) par (xa,y). On a done

pour tout ae&', d'Oll

(A)

111.4. On peut maintenant commencer la demonstration du theoreme 1.4.

Pour t IN, soit St Le sous-espace des SEtS de support dans I' ensemble des

-t
w W tels que • L'espace St est stable par la restriction de

a J.

1
er e

etape. On a l'inclusion SJ

Demonstration. Gomme S= US, on a U SJ et il suffit de montrer que
t)O t t

J J
pour tout t 1, Soient t)l, w"W tel que s(w)1'O, et w(L1<ltI\L)c::.

-t
L2l1} • On va montrer qu ' il existe UGUZ tel que Soient

Le couple verifie les conditions (i), (ii), (iv) de
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t-III!.2. D'apres II!. 3, (A), on a done 'WY>l- t:!7', d l ou

(B)
t t t+1 2
,wyc& >2E: r{f cr'.

telements de LIeOL tels que les reductions de forment une base de X.

Appliquons Ie corollaire 11.3. II existe des elements el, .•• ,er de L2, des

osous-espaces X, Y, W2 de W2 ' tels que el, ••• ,er soit une base de X, X, Y

soient totalement isotropes, X+Y soit orthogonal a
000 t 2

L2=L.;&LlJLy' ou LX=L/1X, Ly=L2C\Y, L2=L2(\W2, et enfLn eil:wxtfr mod L2£& •

Soit X Lf\nL, posons

t 0
wx<&' =YX+y +Yy'

o 0 t
avec YXELX' Y L 2, YyELy' Comme la reduction de appartient a X, qui est

ola reduction de LX' les reductions de Y et Yy sont nulles, et en particulier

o 0
Y Pour ••• ,r\, on a

t t 2
=.<wxic.3" ,wxt1f >2 mod £&

2.=0 mod tIT ,

d'apres la definition des e. et (B). Comme les
1

que LyzHoma-' (LX,a-'), on obtient ytELy:l. D'oll

(C) c

forment une base de Lx' et

Cette relation reste vraie pour tout W' C(w) (cela serait faux si on travail-

lait avec L au lieu de Posons

u= fb id
X61id

rfltfi' I idyW
2

•

C'est un element de U2• Posons s=w(u)s(w], et soit w'ew tel que s(w')'I'O.

-1
Alors il existe aEA, w"EC(w) tels que u o(a+w')=w". Alors

w' uOW"(Lf1()L)cJ"t+LfTt+l,

C L;t'>

d l apre s (C). Done w' (Lt&0L)C et SESt_l.

Remarque: cette inclusion est triviale si LeLlc&-.
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Fixons une base e 1•••• ,en
de L1 verifiant les conditions du lemme 11.7

relativement au reseau L. Soit tel que s[w110 et Si xeL

et Ie couple (x.y) verifie les conditions (i), (ii). (iv) de III.Z,

done

(D) <WX'WY>ZE& pour tous xs l., Y'Lfl'lL.

En particulier si x,yeL, on peut appliquer la relation (D) au couple (x,ydT).

D'ou Comme au 111.4 on peut alors trouver une decomposition

o
telle que

-1 0
w(L)CL? GLZ$Ly,

-1
w(L)+LZ=L? +LZ'

Grace a (D), on voit que

Quitte a ajouter a w un element de A, on peut ajouter a w(e i) n'importe quel

element de LZ' ceci pour i=1 •... ,n. On peut done supposer:

-1
w(ei)ELt'" • pour tout i=1, ... ,r

et alors, d'apres (E):

-1 0
w(L) C LfT $LZ63Lp.

(Mais maintenant la meme relation n'est pas vraie pour tout w'EC(w».

L'idee de la demonstration est la suivante. On va introduire un certain

element sES. Par construction on aura On montrera que s s'ecrit

s= l a.s[w.] pour un certain ensemble fini 1 d'indices et des coefficients
iEI 1. 1.

complexes a i non nuls, de telle sorte que: il existe i OE1 tel que w. =W;
1.0

si iEI, i;iO' Wi verifie les memes conditions que w, mais Ie sous-espace Xi

qui lui correspond par la construction ci-dessus est de dimension stricte-

ment inferieure a la dimension de X. En raisonnant par recurrence sur cette

dimension, on pourra supposer pour tout iriO' Par difference

on obtiendra

III. 6. Posons

pour tous x,y LX' <nx'Y>Z+<x,ny>Z=O}.

On identifie Homa(Lx,Ly) a un sous-ensemble de EndF,(W Z) forme d'elements
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de restriction nulle a Si 1+nEU2• Soient Li' resp.

L'l' Le &-'-module engend r e par les e i, pour iE{1, .•. ,r1, resp. i£(r+1, ... ,nl.

Posons

On munit11..d'une mesure de Haar. Enfin si zeW, on note z ", r e sp . z", l'ele-

ment de Wdefini par

resp.

Z"\Li=O, z"IL'1=Z\L'1'

Soit l'element defini au 111.4, posons z=uow. On a

(F)

Pour (n,N)e 1i., posons

-1 -1 -1z[.n,N1=(l-dT n)z+ur nz'+<& N.

Grace a (F), z(n,N]£B.

Soit une fonction localement constante. Posons

s=) f(n,N) [. N' dn dN.
z n, J

Lemme. (1) On a

(2) On peut choisir Ia fonction f telle que et s soit combinaison

lineaire de fonctions s[w+vJ, ou VEW verifie:

(L) si iE.{r+l, ,n},

E i {1, ,r!;

(ii) pour taus Y1' Y2 Ly' on a la congruence:

«w'*+v*)(y 1),(w'*+v*)(Y2»1;<w'*y 1,w'*YZ>1

Demonstration. Comme z(n,N]£B, on a Sztn,N1ESL pour tout (n,N) tL, et (1).

JII en resulte que seS , et est combinaison lineaire de fonctions s(x), pour

On doit etudier Ie support de s. Pour xeW, on a

(G) s(x)} f(n,N) r.. 1jI«O<,x>/2)s r N] (u(l-6rn) (-<.+x» dn dN,
tt z \..n,

ou v'l=Hom(L 1,Ly)/c.&-Hom(L 1,Ly ) ' Pour que I.e terme sous Le signe somme soit non

nul, il faut et il suffit qu'il existe aeA tel que
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Le.

On ver i.fLe que
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-1 -1 -1
x=-o(+(l-tl»n)u a+u (l+4T n)z[n,Nl.

-1 -1
-o(+(l+bn)u a e Hom(Ll ,LX"" )+A,

-1 -1
u (l+tlT n)z[n,N1:!! w mod A.

-1 -1
Done si s(x)f'O, on a xaW+v mod A, ou vEHom(Ll,Lft ). Soit done VElHom(Ll,Lx&- ),

et x=w+v. On constate que la classe de dans A est bien determinee par (H),

et qu'on peut resoudre (H) par

0( =dlnv+N+dffiw I, a=tfrv.

La somme figurant dans l'expression (G) se reduit a

oU a et sont comme ci-dessus. C'est egal a

ou est une certaine fonction independante de v. Posons

f(n,N)= ,w'>/2).

Alors

,w '>/2) dn dN.
n

C'est l'integrale d'un caractere du Elle vaut ° si ce caractere

est non trivial, une constante non nulle si Ie caractere est trivial. Le

caractere est trivial si et seulement si les conditions suivantes sont

<N,v>e&, pour tout NEHom(L1,Ly ) '

-1<n(v+w'),v+w '> :;;<nw' ,w'> mod rJ1 cr', pour tout

On verifie qu'elles sont equivalentes aux conditions (i) et (ii) de l'enonce.

Elles sont verifiees pour v=O, done

On suppose desormais f telle que les conclusions du lemme soient verifiees.

111.7. D'apres Ie lemme, on peut ecrire s=L a.s[w.1, ou I est un en-
iEI 1. 1.

semble fini d'indices, les conditions suivantes etant verifiees:

- si i,jeeI, ii"j, on a C(w.)nC(w.) !2l;
1. J
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pour tout ieI, aifO;

il existe iOEI tel que wi=w;

- pour tout ieI, il existe viEW, verifiant les conditions du lemme 111.6,

tel que wi=w+vi.

En particulier les elements wi verifient

-1
wi(LlcllOL)C ,wi(L)CL? +L2·

D'apres la premiere relation, on peut construire un sous-espace Xi de W2

associe a wi' de meme que X avait ete associe a w. La seconde relation montre

que

Soit iE1. Si i1iO' < dimF,X.

Demonstration. Supposons dimF,Xi=dimF,X. Alors Wi(L)=Ltb-1+L2' Considerons

les hypotheses du lemme 11.8, ou on pose "X=Ly", f"lil'w'*, L'hypothese

(1) est satisfaite car w'(e.)=O pour jElr+1, .•. ,n\, (2) l'est car
J

si j {r+1, .•• ,nJ, (3) l'est d'apres Ie (ii) du lemme 111.6.
J

-1
Enfin, comme W(L)+L2=Ltr +L2, que w(Lf\\L)CLZ' et L=R+LfI\L, on a

-1
w(R)+L2=LXl&" +L2. Si XELy-L.,p-, il existe donc j il, ... ,r1 tel que

<x,we.>4&, Le. <x,w'e.>t$&, Le. <f Cx) ,e.>4 (/7&. De meme pour f+g. C'est
J J J

la condition (4). Appliquons Le lemme: il existe bEHom(Ly,L1), et u 1EJ,

tels que

En prolongeant b par 0

u 1w'*=w'*+v1+b•

osur L2@LX' et en transposant, on obtient

W' u- 1=w' +v +a
1 i'

et finalementavec aeA. D'autre part
-1

w"eB, d'ou w"u 1 Ew"+A,

-1
wU l e w+vi+A=wi+A.

Mais alors C(w)=C(w.) contrairement a nos hypotheses. 0

Grace a ce lemme et au (1) du lemme 111.6, on peut raisonner comme on

l'a indique a la fin du paragraphe 111.5. On obtient alors

Cela acheve la demonstration de I' inclusion c S1' et en meme temps

celIe du theoreme 1.4.

111.8. Demontrons main tenant la proposition 1.5. Traduisons les hypotheses
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de cette proposition a l'aide des notations 111.1. On a w,w'E:W. On suppose:

(z) pour tout uEH.

On veut en deduire qu'il existe kEK
Z
tel que A+w=k(A+w ').

Soit e l' ... ,en une base de L1 ve r i f Lan t les conditions du lemme 11. 7.

Pour iEo' t1 , ... ,r1, on a

a w et w' des elements de A, on peut supposer w(ei)=w'(ei)=O. Pour

•.• ,n1, posons

On a zl LZ et les images de

dependantes: si
n

"",Zn dans sont lineairement in-

avec des coefficients on a
n

done pour tout i d ' les proprietes de la base ...

Le meme resultat vaut pour les zi.

Soient i,j {r+l, ..• ,n\, supposons posons x=e., y=e.&t j. Le couple
1 J 1 J

(x,y) verifie les (i), (iii) de III.Z. Done u H, etx,y

41«w,wu >/Z)=f.II«WI,W'U >/Z).x,y x,y

On calcule comme en 111.3:

<w,wu >3-4x,y

on obtient alors

<wy,wx>Z;: <w'y,w'x>Z mod cr' ,

puis

t . t . I t , ,t. t
<we.t.& 1,we.1tl J>Z""<w e.t:r 1,w e.c3 J>'2.mod <fT ic:r',

J 1 J

i.e.

,t t. t<z.,z.>Z mod ¢ 1&.
1 J

D'apres la proposition 11.1, on peut trouver des elements •..

tels que
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n.; , ji'rt . \ <-zi=zi mod LZ- pour tout ie,r+1, .•. ,ns'

pour tous .•• ,n1.
a J J

Dfapres Ie corollaire 11.5, il existe kEK2 tel que

••. ,nl. Definissons aEW par

pour tout

a(e.)=O, si ... ,r1,
a

-t
a(ei)=(z':-z i, si iE\r+1, •.. ,nS'

On a aeA, et lfegalite

(w'+a) (ei)=kwei, pour tout iE •.. ,n \'

i.e. w'+a=kw.
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Chapitre 6. Representations de petit rang dugroupe symplectique

I-Notations generales :

Le corps de base est note F ; ce sera soit soit un corps local non

archimedien de caracteristique O. Soit X un F-espace vectoriel de dimen-

sion finie, no t ee n ; on note X* Le dual de X et on munit W: =X+- x* de la

forme bilineaire alternee usuelle. On note G:=Sp(X+X*) Ie groupe symplec-

tique associe ; il contient naturellement l'ensemble des elements (l+

ou Gl(X) (et * est la transposition) et on note encore Gl(X) Ie sous-

groupe de G forme de ces elements. On note P(X) Ie sous-groupe de G norma-

lisant X ; il admet Gl(X) comme sous-groupe de Levi et son radical unipot-

ent, note N(X), est abelien ; il est decrit au chap.I,III.5. On utilisera

Ie fait que l'application u est un isomorphisme de N(X) sur S2(X)

Lie N(X), l'ensemble des 2-tenseurs symetriques.

On note A l'anneau des adeles de et pour toute place, notee v,

Ie complete de a la place v. Quand on met en indices, pour eviter

les doubles parentheses, des notations de groupes Ie corps contenant

dans lequel on prend les points de ces groupes, sauf pour G et 0T defini

plus loin, ou on garde la convention usuelle.

Les (quasi)-caracteres de N(X) s'identifient, d'apres ce qui precede,

aux formes lineaires continues de S2(X) a valeursdans t*. Quand on

s'interesse aux caracteres de triviaux sur ; apres choix d'un

caractere non trivial de ils s'identifient aux points rationnels de

S2(X*), i.e. Quand F est local non archimedien apres choix d'un

caractere non trivial de F dans notet, les caracteres de N(X) s'iden-

tifient a S2(X*). Dans tous les cas S2(X*) est l'ensemble des formes qua-
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dratiques symetriques sur X ; GI(X) opere dans S2(X*), avec un nombre fi-

ni d 'orbites si F est local. Soit une telle orbite et T C ; on note 1fT
Ie caractere de Nm(X)\NA(X) (si F= m) ou de N(X) (si F est local) qui s'en

deduit. Le stabilisateur de T dans GI(X) est note 0T(X), c'est aussi dans

Ie cas local Ie stabilisateur de tT dans GI(X). On peut Ie decrire de la

suivante : on note Rad T Ie radical de T dans X et uOT(X) Ie radical

unipotent de 0T(X). Alors uOT(X) est l'ensemble des elements de GI(X)

dont la restriction a Rad Test l'identite et qui agissent trivialement

dans Ie quotient X/Rad T. Le quotient 0T(X)/uOT(X) est isomorphe au produit

de GI(Rad T) avec Ie groupe orthogonal, note 0T' de la forme quadratique

non degeneree sur X/Rad T qui se deduit de T. Par choix d'un supplementai-

re de Rad T dans X, on identifie Or a un sous-groupe de GI(X) On

pose :

J(A) = G(m)\G(A),

XfA) = 0'j"(mY\Of(A)·

Pour toute orbite de S2(X*), si F est local on note f la fermeture

dans S2(X*) et si F = m pour toute place de m, notee v, on note A la m -I'v v

orbite dans engendree par les extensions des ele-

ments de Par abus de langage, on parlera du rang de au lieu du rang

des elements appartenant a

2- Enonce du theoreme :

lci F = m. Soient 'f .L 2(f(A)) et TeS2(X*)m. On note 'fT Le coefficient

de Fourier de r relativement a tT , i.e. :

rgEG(A), fT(g):= IN (X)\N (X) r(ng) rrCn-1) dn .
m A

On a un developpement en serie de Fourier :

On dit que rest singuliere de rang inferieur ou egal a k (ou k est un

entier strictement inferieur a n) si l'on a 1T ° pour tout T de rang
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strictement superieur a k ; on note alors rf. LZ(IVA), k). Plus precise­

ment soit ft une orbite de SZ(X*), on dit que l' est concentre sur si

les conditions suivantes sont verifiees

Clairement LZ(I< A), ft )

rT = 0, VT de rang rang ft e t T ¢ f!> '

(/Jest orthogonale a 2k < ,.. LZ(!r;A),<k).
I rang,....­

est un sous­G(/A)­ module de LZ(/UA». Dans [HZ1,

Howe demontre alors Ie theoreme suivant :

Theoreme : ([Hz], 2.3 et 2.10) (t.) On note LZ(/UA), < n) I 'ensemble des

elements de LZ(JUA», notes r, qui verifient 1T = 0 pour tout Sz(X*)

d§ rang"" n , Alors on a

LZ(/UA), <n) =(0;3 orbite de SZ(X*) de rang <nLZ(./UA),jJ).

En outre LZ(JUA), = 0 si Ie rang de) est impair.

(ii) On suppose que est une orbite de rang pair strictement inferieur

a n et que est forme d'elements semi­definis positifs. Alors

L2
( !UA), est somme directe de sous­representations Lr r educ t LbLes

n'intervenant chacune qu'avec une multiplicite finie et la projection or­

thogonale sur LZ(/(lA) ,P) des series theta formees a I' aide de la paire

duale (Sp (XG> X*), Of) OU T est un element quelconque de §, est dense dans

(Ces series e sont en fait dans L Z (.IUA), < ».
(iii) Plus precisement on a une bijection entre sous­representation ir­

r educ t LbLes de LZ(/ (/A), f) comptees avec multiplicites et sous­represen­

tations irreductibles de LZ( )[r(/A» comptees avec multiplicites.

: si est de rang impair < n, on a des resultats analogues en

travaillant avec Ie revetement d'ordre 2 de Sp.

3­ Definition locale du petit rang et lien avec la definition globale :

Pour pouvoir utiliser des arguments locaux, Howe commence (c.f.[H i
] )

par definir la notion de petit rang pour une representation (unitaire)

de G quand F est un corps local. On suppose done ici F local. Soit k un
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entier (re sp . I une orbite de S2 (X*» on note Yk (resp. y/.> ) I' ensem-

ble des fonctions lisses a support compact sur N(X) dont la transformee

de Fourier s'annule sur l'ensemble des elements de rang inferieur ou egal

a k (resp. appartenant a Soit (nr,V) une representation unitaire de

G, on dit que (1i,V) est de rang inferieur ou egal a k (resp. est concen-

tree sur si rr( Yk)V = 0 (re sp . TT ( f' )V = 0). Le lien entre

nitions globales et locales est donne dans Ie lemme suivant :

les dHi-

Lemme: ([H2),2.4) Soit r L2(/(LA». On note V Ie sous-Sp-module engen-

dre par 1 et soit k un entier <no Alors les conditions suivantes sont e-

quivalentes :

(i) tout element de Vest de rang inferieur ou egal a k,

(ii) il existe v une place de telle que V vue comme representation de

soit de rang inferieur ou egal a k,

(iii) pour toute place v de (ii) est vrai.

4- On se place dans Ie cadre lisse :

Les arguments locaux utilises dans la demonstration du theoreme se

trouvant ne distinguent pas Ie cas archimedien du cas non archi-

medien. Dans cet expose, je vais traduire UtJ dans Ie cadre lisse en exclu-

ant Ie cas archimedien. Et je donnerai l'equivalent de 2(iii) par une me-

thode legerement differente de celIe mais qui fait Ie lien avec

la representation metaplectique (cf.12 et 13). En outre pour ne pas exclu-

re Ie cas du rang impair, on travaille avec Ie revetement metaplectique

d ' ordre 2 de Sp , note Sp. On note sys t emat Lquemen t avec des les images

reciproques dans Spdes sous-groupes de Sp ; l'absence de -signifie un

relevement comme groupe. Done a partir d'ici F est un corps local non ar-

chimedien de caracteristique O. On munit S2(X*) de sa topologie usuelle

et on note avec - la fermeture d'un sous-ensemble de S2(X*). On note Ind
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l'induite lisse et ind l'induite compacte.

La notion de petit rang, ou plus precisement d'etre concentre sur la

fermeture d'une orbite est, dans ce cadre, equivalente a une condition

sur les modules de Jacquet relativement a des caracteres de N(X). Soient

(1T, V) une representation lisse de fl une orbite de S2(X*) ; on note

NTV Le sous-espace vectoriel de V forme des elements (II (n) 't'T(n»v ou
/'-

n parcourt N et v parcourt V. Remarquons que 0T(X) laisse stable NTV et

opere donc dans V/NTV. Alors on a :

Lemme: f v c V I 1T (Y,., )v = oj NT,V.

On notera V ce sous-espace vectoriel de V. En particulier Vest con-

centre sur f.> si V V[,AJ

Par un calcul elementaire on obtient :

'tlf 6 e:(N(X», Vv V, VT 6 S2(X*), 1T(f)v-vf'<T) NTV. (1)

Supposons que li( Y/> )v = e ; alors pour tout T' 4 il existe f C Yt5
A A

tel que f(T') '" 0. D' ou avec (1), vf(T') t NT'V et v t NTil. Rec i.proquemen t

soit veil NT,V et f E Y;3 . On a donc pour tout T S2(X*),

"f(T)v c NTV d'ou avec (1) 17(f)v e (IT S2(X*)NTV. Le lemme r esu Lt e alors

de l'assertion suivante, reutilisee dans la suite:

l'application nature lIe V e S2(X*) V/NTV est injective (2)

Quand on a defini en 2, on a evite les sous-representa-

tions liees a des orbites differentes . Dans Ie cadre lisse, on uti-

lisera la definition suivante du meme type (cf.6(i»

Definition : Soient

est concentrEl! sur

f> une orbite de S2(X*) T e (!J On dit que (1T, V)

Gl(X) N(X)
si l'application naturelIe V -? IndO (X) N(X) V/NTV/

T

Remarque : la definition est equivalente aux conditions suivantes :

note V Ie noyau de l'application

On a : Ii =nT'efT' V. Supposons d ' a-

V = V[jbJ et V = 0, pour toute orbite f:.' telle

/\
Pour toute representation V de Sp, on

I dGl(X) N(X)
naturelle V -7 n 0T(X) N(X)

que
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bord que v=o. Soit T'E S2(X*) tel que NT,VrV. Si T' e; il existe

tel que f(T') r O. En particulier avec 0), on a pour tout v $NT,V.

;r (f)v r 0 et tr(f)vE; V ; d'ou une contradiction qui prouve que V=V[fl. Soit

maintenant une orbite de S2 (X*) telLe que tI;.. ;;;'. On a par definition

V NT' V = V = O. D'ou La nece s s Lt e des conditions. RecLpr oquemen t ,

supposons que V = VOl et V = 0 si et montrons que Vest nul.

S'il n'en est pas ainsi. il existe S2(X*) et vEV tels que v NT,V.

Choisisons T' et v avec ces proprietes tels que Ie rang de T' soit Ie plus

grand possible. Soit f t ef (N) tel que fsoit nul sur les elements de S2(X*)
c

de rang Lnfe r i.eur ou e gal a celui de T' non equivalents aT' e t f (T') r O.

Alors avec 0). on a 1f(f)v ft NT,V et IT(f)vcNT"V si Til n'est pas equiva-

lent a T', par max LmaI Lte de T' si rang Til> rang T' et par hypothese sur

f si rang Til rang T'. A fortiori 1T(f)VEV[fJ -{of ou est 1 'orbite de T'.

Or puisque TT(f)vE.V et IT(f)v([;NT,V on a surement et puisque V=V[f1

on a aussi D'ou et la contradiction -rrCf)v£V[f]-!OJ=f/J.

5- Enonce du theoreme local :

Theoreme : Soient (IT, V). Crr ", V') des representations lisses de Sp, une

orbite de S2 (X*) et T 6 P.
(i) Si rang n alors un de V. Si V = Vet] (rang

alors nTi,; NTV est un sous-Sp-module et tout sous-quotient irreductible

de Vest concentre Slir une orbite incllise dans

(Lf.) On suppose que (IT, V) est irreductible et concentree sur et que Ie

rang de est <n , Alors rr se factorise par Sp si et seulement si Ie rang

est pair.

(iii) On suppose que (1f .V) et sont concentrees Soit f

un homomorphisme de de V/NTV dans V'/NTV'. alors il existe une

sOlis-representation. notee V.

tels que l'on ait :

V et e' Sp-homorphisme de V dans V'

.V/NiYV/NTV.
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Ie diagramme suivant est commutatif

/\
Si Vest irreductible, V/NTV est irreductible comme Or-module. Reciproque-

/\
si V/NTV est irreductible comme aT-module, alors V contient une uni-

que sous-representation irreductible, notee V et l'on a :

k/2 k
(Lv) On note v Ie caractere de Gl (X) deEni par (0' £: ) I-? Idetl' £:

W(T; (, £.) ou k est Ie rang de 6 ,() est Ie scalaire interve-

nant dans la representation metaplectique pour la paire (Sp,Of) (cf.[p12.2.1

et 1.3.4.). On suppose que rang on note P l'application de l'ensem-

A
ble des classes de representations irreductibles de Sp concentrees sur ft
dans l'ensemble des classes de representations irreductibles de Of definie

par (iii) et Rq , (Li ) plus bas). Alors I> est bijective.

Le meme resultat est vrai si n a condition de se limiter aux repre-

/\
sentations de Sp qui ne se factorisent pas (resp. qui se factorisent) a

Sp si n est impair (resp. pair).

Remarque : (i) s'interprete a l'aide de la representation metaplectique

pour la paire (Sp,Of) mais n'est pas en general la bijection conjecturee

par Howe. La demonstration de (i)(ii)(iii) est une trancription de

(LL) On a

suivant

utilise Of au lieu de 0T(X) ; cela est justifie par Ie resultat

u
si n , 0T(X) agft trivialement sur V/NTV et Gl(Rad T) L

agit par Ie caractere V .

Ce t he or eme est demorit r e dans les 2 qui suivent.

6- Quelques lemmes

6.1 Lemme: Soient H un groupe totalement discontinu et U un sous-goupe

abelien distingue de H, isomorphe a un produit de F • Soient (1T, V) une

representation lisse de H et J un caractere de U. On note :

UfiV Ie sous-espace vectoriel de V engendre ou UGU,V£Vf
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H
(L) L' image de I' appl:i.cation naturelle IJ:V Ind StabHX VIU,x V contient

l'induite compacte.

(Li ) Soit W une representation Iisse de StabHA sur laquelle U agit par

Le caractere J . On pose ici V Ind
H
s b W et V=ind

H
s b W. Soit )' un

ta Hft ta Hf --- --

autre caractere de U, alors on a

VIU;l a si ,,' ¢ H·X .
l' application de V dans VI)? x' G H.)(,

I' evaluation en un point (quelconque), note 6" de H qui verifie J'It' = .x .
• V/U;.'V ).' E H.,X etV/'),v= a si

On ne fera pas la demonstration de ce lemme ; (ii) est completement elemen-

taire et (i) se demontre sous la forme plus precise suivante :

on pose =LfE t:CU) \ 1(}.,)=0/ 'rIA'E H.fi - H'..xJ . Alors on a:

• I' application naturelle de n( V dans VIu.x,V

est surjective,

r-(TT( = V/U/. (1)

6.2. Lemme (notations de 6.1) Soient ("IT', W') une autre representation

lisse de Stab
Hf

sur laquelle

StabHA-eguivariant de W dans

U opere par X et f
W'. On note f et e

un homomorphisme

les homomorphismes H-

eguivariants entre les induites lisses et compactes de W et WI. Alors les

conditions suivantes sont equivalentes

(i) f est injectif,

(ii) eest injectif,

(iii)eest injectif.

On a evLdemmen t (L) 9 (Li ) 9 (iii). Supposons done que ees t injectif.

L'exactitude du foncteur de Jacquet et 6.1(ii) assurent que fest injec-
....,

tif d'ou aussi e . D'ou Ie lemme.

(En fait ce lemme a une version plus generale, cf.[B-Z]).

6.3. Lemme: Soient Pune orbite non nulle de S2(X*) T f! . On choi-

sit X
o
E X-jpf, x' un supplementaire de Fx dans X et un systeme de repre-

0---
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sentanG, note t . de l' ensemble des elements non nuls de 1<1 forme T'(x ,x ) ,T' IJ.,
o 0 F

modulo F*2, Pour tout e c t , on pose :

5 =IT ' I T'(x ,X')=O et T'(x ,x )=eI,
e 000

et on note R Ie sous-groupe de Gl(X) stabilisant Fxo' Alors on a

(L) U
eEl;

R est dense dans ,

(f.L) pour tout e t , J est une orbite non vide sous Gl(X ') (y Gl (X» .
e

fie est une

la definition

4 f, F*2, l' application 'lui it fl associe

;; it X' est une orbite, notee
e

Il de S2 (X' *). Generalisant de :f it F* tout entier enP e - --------------- e

posant '1 =0 si ee -

L'ensemble des restrictions des elements de

application entre ensembles ordonnes. Plus precisement soient ;!' des

orbites de S2(X*) alors on a :

C =9 (!>e = 0 ou ft e C

oF /> C

(iii) pour tout e E t , on choisit 0'e E Gl (X) tel que -IT 6 'f
e e

Alors Ue & t
(L) est clair.

0T(X) '0e R est un ouvert dense de Gl (X) •

(ii) la premiere partie resulte du theoreme de Witt. Supposons que

et que fe F 0 ; soit T E f e il existe une suite de l.emerrt s de qui

converge vers T, notee T
1
' , .•• ,T

p'
, •.• Pour p suffisament grand T'(x ,x )

p 0 0

E e F*2 et utilisant des elements de Ron peut donc remplacer Ti, •. ••

en enlevant eventuellement un nombre fini de termes par des elements de

J (ou est de f LnI de f acon analogue ii. 1e ii. partir de f ') ; et cela

prouve que C La r ec Lpr oque est claire.

(iii) est une consequence immediate de (i).

7- Quelques notations supplementaires et Ie cas de;1 °
On adopte les notations f' T, t , x , X' de 6.3. lei on choisit un

o

systeme de representants de F* modulo F*2, note simplement F*/F*2, conte-

nant t . On note PI Ie sous-groupe parabolique de Sp stabilisateur du dra-
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peau OC Fx
o
eX. On note H son radical unipotent ; c' est un groupe de Hei­

senberg dont on note Z Ie centre. On note T
1
Ie sous­tore de PI' ensemble

des elements de GI(X) agissant par I'identite sur X' et Sp' Ie sous­groupe

de PI agissant par I'identite sur x et normalisant X' $X'''= X' • On
o 0

note ! 1 Ie sous­groupe de T
1
stabilisateur dans T

1
d'un caractere non

trivial de Z. Soit e(F* ; on note fe Ie caractere de Z defini par

et pour toute representation Iisse, notee (rr,V) de Z, ZeV l'en­

semble des elements (1T (z ) ­ W (z)v) au zEZ et v V. On note 1 r ep re sen­
le e

tat ion lisse irreductible de H de caractere central ; sur J.: opere S;'
et !1 par la representation metaplectique. On a alors Ie lemme suivant :

7.1. Lemme ""Soit (iT,V) une representation lisse de Sp.

(L) Soient ve V U un sous­groupe unipotent de Sp (du type considere en 6.1) tel

rr(U)v=v. Alors on a aussi En particulier V[O]est l'ensemble

""des points fixes par Sp. Et Ie theoreme 5 est vrai pour f=O.

(ii) L'application nature lIe

a pour noyau Son image contient la somme des induites compactes.

Alors I'application

(ou

est engendre comme groupe par K et

/\
compact ouvert de Sp et d'autre partU ou K est n'importe quel sous­groupe

ce groupe agit diagonalement sur

(iii)Pour tout eEF*/F*2, on note V:=HomH( .I,V/Z V).
e e e

naturelle de dans viz V est un isomorphisme deel()le­­ e ­

vr, en particulier H y agit trivialement).
e
/\

(i) resulte d'une part du fait que Sp

de ce que i.e. N(X) y agit trivialement (cf.4(2)).

(Lt ) Le noyau de jJ coincide avec () V, ce qui entraine que Z y agit

trivialement. D'apres (i), il est inc Ius dans V[01et l'inclusion recipro­

que est claire (cf.(i)). La fin de (ii) resulte de 6.1(1).

(iii) est classique et resuite de ce que j( en tant que representation
e

irreductible de H n'a pas d'extensiompar eIIe­meme non triviales (cf.
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chap. II. 1. 8). 0

Le theoreme 5 se prouve par recurrence sur dimX. En particulier on va

/\
faire intervenir Sp' et on note donc N(X'), S2(X'*) les analogues de

A
N(X), S2(X*) pour Sp'. De meme soit T' E S2(X'*) et soit V' une represen-

tat ion lisse de Sp', on utilisera les notations N'T'V', 0T'(X'), 0T"

GI(X'), .. en analogie avec celles concernant X et Sp. On aura encore be-

so in du lemme suivant (remarquons que HX N(X') contient N(X»

A
7.2. Lemme: Soient e 6 F* et V une representation lisse de Sp. Avec les

sur

I.V surTe--

notations de 7.1, on a :
»<.

(i) viz V est comme (! l,xGl(X'»J\N(X')><H-moaule isomorphe a.

19' '
Ind:dXGr(X'hN(X) (Ve ) ou C.. est la representation de dimen-

......---.
sion un de :!: hGI(X')).N(X) correspondant au caractere

Z(e...,N(X», Idet 1
1/ 2

& u:J(ej ) (Ie caractere intervenant dans

.: l}cGl(X') et qui est trivial sur (e...,N(X».;....c.--'o.;....c._"----=--=-=--=--=-=-___ 0

(ii) l'application de restriction de :

C Gl(X' hN(X'). H
Ind!:r;sp, v/zeV dans N(X' )I'H viz V

e

est injective et bijective sur les induites compactes. On la notera

on notera Te l'element (cf.6.3) et B Ie compose de
e

est concentre sur
e

lJ:6PC,l ).

e
est injective si et seulement si

'8' avec l'application naturelle, notee Bit de :
e e -

I viz V'" I d0TIX');<N(X'»H
n ?r,.Gl(X'hN(X')1H e n )

---------I
n (X').N(X)

En particulier

..------,...
, comme j: 1 Ie 0T (X' h N(X) -modules.

e
viz V= :;I. Le cas general

e e

/J' IN
T
' 1J' & c

e e,.l
e
lJ'e= q;, c'est-a.-dire

, on a :(iii) Soit e G t
V/NT V

e
(i) est vrai si l'on a

s'en deduit immediatement avec 7.1(iii).

A ----(Li ) Pour simplifier les notations, on pose ici P=Pl' L={:t 1). Sp')" H,

- --- -..-----:--. - - -L= :tlxGl(X')"N(X');.H et l'on a : L=L(I P et P a une
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unique orbite pour son action par translation a droite dans L\P ; d'ou

un isomorphisme topologique de]:\P sur L\P dont on deduit immediatement

la partie de (ii) concernant La fin de (ii) resulte de 6.2, ou l'on---fait H=T1XGl(X'))(N(X'),H, V=(l+F(xo@X'))Z et J. = '+'T [u et de ce qui a
e

deja ete demontre sur

(iii) est un calcul

8. Diagramme permettant une recurrence

On adopte toutes les notations de 6 et 7. Soit (;r, V) une representa-

tion lisse de sp. On consLder e Le diagramme suivant, en supposant f'i 0 :

ou A et C sont les fleches naturelles (cf. 7.1(i) pour la division par

V[OJ)

"B est la somme des B pour e e- t:
e

nulles pour e 6. F*/F*2 - t
definis en et des fleches

.
• D est la somme des restrictions de l'induite a chacun des ouverts

(cf.7.3) en remarquant que RN(X) = T1Gl(X') N(X') H•

• E est l'application naturelle.

II est clair que ce diagramme est commutatif et l'on a Ie Iemme suivant:

Lemme : Les deux conditions suivantes sont equivalentes

(a) pour tout e E &, est concentre sur et pour tout e E F* tel

que T ne represente pas e, on a

(b) v/v[o] est concentre sur f .
'It= O.
e
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Montrons que (a) et (b) sont toutes deux equivalentes a ce que E soit in-

jectif. Pour (b) c'est clair en tenant compte de l'injectivite de D qui

resulte de 6.3. II resulte de 7.2(ii) que (a) entraine l'injectivite de

B et avec 7.2(i) celIe de E. L'injectivite de E avec 7.2(i) entraine l'in-

jectivite de B restreinte qux induites compactes et (a) en resulte comme

dans la preuve de 7.2(ii).

9. Debut de la recurrence ; Ie cas de 512 :

En toute exactitude la recurrence debu t e so it a 512 soit a = 0 • Mais

ce dernier cas a deja ete vu.

Proposition: Soient (1T. V) une representation lisse de -sl2 et I> une

orbite non nulle de S2(X*)= F. ici.i.e. une classe de carres. notee eF*2

ou e E F*. On suppose que (rr. V) est concentree sur f .
(i) On suppose (rr.V) irreductible. alors si ne se factorise pas en

une representation de 512, (n-. V) est l'une des composantes irreductibles

de la representation metaplectique associe a e (ou 2e avec les notations

d h II) ' d ., . !pair ./impair 51'u cap. • notees. avec es notat10ns evi.dente s , •

1t se factorise en une representation S12 alors la caracteristique re-

siduelle est differente de 2 et (1T. V) est une representation cuspidale

bien determinee. notee ici , ).

(i (= ici <r;CX)
B

Ind", W
.1!xN(X)

(ou Best le

(ii) En toute generalite (rr. V) se decompose en somme directe de repre-

sentat ions irreductibles isomorphes a l'une des representations decrites

en (i).

(iii) 50it Wun sous-espace vectoriel de V/NTV sur lequel

Df ) agit par un caractere" alors 1.' image reciproque de

B
dans V par l'application naturelle V

sous groupe de Borel de 512 normalisant N(X), il coincide dans les nota-

tions generales avec Gl(X) N(X» est stable par

(iv) Le theoreme 5 est vrai pour



140

(La demonstration qui suit m'a ete communiquee par J.L.Waldspurger.)

(L) 8upposons d ' abord que err,V) ne se factorise pas par 812, Dans ce cas

(L) r e suLt e essentiellement de (LG-P8]), comrne eela est sugge r e dans ((H2] ) .

r-r:Remarquons que est une representation cuspidale ; il est tres fa-

cile de ealculer les modules de Jacquet relativement aux caraeteres de

N(X), c'est iei Ie radical unipotent d'un sous-groupe de Borel de 812,

cf.ll plus loin notons ici simplement representation metaplectique

assoeieea e, on a par exemple que l'application nature lIe de jI sur .tINTI

est la somrne directe de l'evaluation au point 1 et au point -1 de F. Cela

prouve entre autre la remarque suivante dont on aura besoin dans la suite:

. rr». roairso i.t wE ErJJ' =:V, on suppose quew engendre cette representation,

cessairement quadratiques, X de F* tels que

no t ee tt', alors les images des Ir( ¥ )w dans VIN
T
V, ou i appartient au norma-

lisateur de N(X) dans 812, engendrent un espace vectoriel de dimension 2.

8upposons maintenant que (1f,V) se faetorise par 812 , On choisit une re-

presentation lisse irreductible, notee IT, de G12 telle que intervienne

dans la restriction de a 812, On note l'ensemble des caracteres, ne-

. D' apr e s

2.7 et 2.8), Ie nombre d'orbites non nulles telles que V/NT,Vf 0 pour

est jF*/F*2/IJljl etl SiI=I,2 ou 4. On veut done rr telle que jIL/=/F*/F*2/;

eela necessite que la caracteristique residuelle soit +2 et que J2 soit

1 'ensemble des carac t eres quadratiques. Fixons A' X'E'.Q-LidJ; on note E

i ' extension quadratique de F correspondant aX. D' ap r e s ([L1, 7.17) et ([J-L]
'V

4.7) dont on adopte les notations, on a rr= ou est un earaetere

de E*. De fff!9{:>!7f et ([L-i;],p.738), on tire:

'/xcE: ou O-e'Gal(E/F)-lid} (*)

Ainsi est determine sur les elements de norme 1 de E et verifie

u f , y IT" J ft. ;:,'.

D'ou l'existenee de it avec les proprietes souhaitees et grace a (*) l'uni-
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cite de rr • En outre 1f est cuspidale grace a I-FfJJ
G 7)

(ii) On ecrit V=V'$V ou V' est la composante isotypique pour Ie ca-cusp.

rac t ere par lequel (l agit sur Jpair et Vest la somme des espaces
cusp.

propres pour les autres caracteres de II resulte facilement de (i)

que V est somme directe de representations cuspidales du type decritcusp.

en (i) et que tous les sous-quotients irreductibles de V' sont isomorphes

a' fpair (la representation triviale ne peut pas intervenir). Ainsi il faut

prouver (ii) uniquement pour V' ; on va d'abord Ie faire en supposant que

'E'.__ .,ppairVest de longueur 2. On pose ici J' et on note avec un indice N

les modules de Jacquet usuels, On note A Ie sous-groupe de 51 2 image re-

ciproque des matrices diagonales. On a done la suite exacte :0 -7E -,V'..." E

Cons Lde r oris Ie module de Jacquet EN ; opere par laf/2 w(a, Eo )iJ

ou est a va leurs dans les racines 4-iemes de 1. II n'y a que deux ac-

tions possibles de A dans

EN EN avec action semi-simple,

iCe
l

($) (::e 2 avec l'action suivante

\a\ )
,,(a, £ )v(a))

ou X (a, s: )=1£1/ 2 os (a,E.
x(a, £) v(a)=valuation de a.

• cas 1) V' <--? (1)

Or on a I I , ;;j>n avec E E.

D'ou l'image de V' par (1) est incluse dans E$E et on a alors l'egalite .

•cas 2) : cons Lderons On fait agir A par/al vO(a,£)Tv(a). Alors

(a,£ )T-v(a). On note

51 -11et Incli 2 (;LT,T J I,

1,

espace mais muni de l'action de A :
A
51d'entrelacement entre 2

meme

c [T, T- 11I (T-q1/2) 2ch,
-1/2(T 112)e1. --:l> q -q •

D'ou V' s'injecte dans IniV-2 e[T,T- 1] I(T_q
I / 2) 2 . On note Q;[T,T- 1J I Le

\a.j co

q;[T, T- 1J

on a

I l'operateur

donne par

1)(1 n1lg) dn ,
a a
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Et on note I' I.' ope r a t eur du meme type entre Ind (£[T, T- 1J' et Ind G:[T, T-1 .

On a : I' 01 = c (l-qTz ) (l-q-lTZ) id avec c 6 <t* (d. K-P). En spectalLsan t I en

l/Z
T=q , on a l'existence d'une representation, notee E', de 5l z avec les

proprietes suivantes :

o .-., E'.-., 0

o E'-\Ind E -., 0

I(E)=O, I(E')fO, I'(E')=O, I'(E)fo.

Posons .A,= Ind (/;(T,T-) , A'=Ind Vl'image r ecLp r oque de V'dans

..l P . d d f d'· duc t i '. Re-ar exactltu e u oncteur ln uctlon, on a

gardons l(Vy (T-q l/lA'n Iii!> . C' est un quotient de V et n' a donc que E comme

quotient. Or il est inc Ius dans E'. Ainsi l'on a :

c: (T_qllZ)...t'.

On en tire que I(V)/(T_q1/2)Zvt' est un sous-module de (T_q1/2)J!.' /(T-c1/'lYt'

l/Z .Jt'/(T-q or ce dernler module a un unique sous-module irreduc-

tible, E'. D'oll : I(V)/(T-q1/Z}Jt'=O. On en tire que l'on a :

I'oI(V) C (T_ql/Z)2.A.

D'oll avec l'expression de 1'01 deja donnee, on a :

c(l-qTZ)(l_q-1TZ) V C:;; (T_qllZ)2rA et VC(T_q1/Z)..-t.

Ainsi V'est un sous-module de (T_q1/Z\A,/(T_qll
Z)Z..A qui

n'a qu'un sous-quotient irreductible isomorphe a E, d'Oll une contradiction.

Pour terminer la preuve de (ii), on va prouver (iii), ce qui est plus

fort.

(iii) Pour la "partie cuspidale" de V, (iii) est f acLlz ; on peut supposer

/'0
que 11 agit par un unique caractere et on note E la representation fournie

par (i) correspondant a ce caractere. On a un isomorphisme canonique :

IJ : V';:'HomSl
z
(E, V)@ E.

Grace a IJ on identifie V/NTV et HomS1z(E,V). Et on a clairement, avec la

-1 "B I)notation du lemme ,IJ (W) inc Ius dans Ind!LN(X) W V:=V'. De plus Ie

quotient V'/IJ-
1(W)

n'a comme modules de Jacquet non nul que celui corres-

pondant au caractere trivial de N(X). Grace a et 7.1(i) V'/IJ- 1(W) est
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une representation nulle ou une representation triviale de 812 , L'action

du centre de 812 montre la nullite, d'ou Ie resultat cherche.

Prouvons (iii) dans Ie cas qui reste, c'est-a-dire quand tous les sous-

, 'd LbL d ' h' ppair E 8' W dquot1ents irre uct1 es e V sont 1somorp es aJ- :=. 01t comme ans

l'enonce. On note vrle sous-812-module de V engendre par IndW (cf.6.1).

8i I' on montre que tJc: ind Walors comme plus haut on obtient que Vnind W

= IY, d ' ou (iii). 8upposons que /ffind Wet choisissons v E: Ind W tel que V'

Ie sous-812-module de V engendre par v ne so it pas dans ind W grace a

,2.24) on peut supposer que West de dimmension 1. Comme V' est de

type fini on choisit une sous-representation de V' propre et maximale,

no t ee V". Si V"=O on a V':: E et une contradiction immediate. 8upposons done

v"fo, d l apres «(B-D],3.12) V" est encore de type f LnL ; on choisit encore

V'" une sous-representation de V" propre et maximale. D'apres ce que l'on

a deja vu V' !V'" est isomorphe a WE e t , par definition de V', est engen-

dre par L" image de v , Or par choix de v , les images des 11" (If )v, ou re B,

dans (V'!V"')!NT(V'!V"') engendrent un espace vectoriel de dimension un,

ce qui est la contradiction cherchee grace a la remarque faite dans la

demonstration de (i).

(iv) il ne reste plus qu'a prouver la premiere partie d t he oreme 5 (iii).

Mais ici la demonstration est immediate, on prend V=V et 5(iii) resulte

de 1a decomposition suivante de V :

V (V!NTV).J.fl{) J pair+ aojimpair+ vI!> ou /.' A', X"

sont les caracteres pour l'action de sur V (ou V!NTV) et (V!NTV) , ..
X

sout les espaces propres relatifs.

la-Preuve du theoreme 5 (sauf (iv» :

On suppose dans tout ce qui suit fa.
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avec rang <n alors

4 pour les notations) agit par Ie caractere

dans V!NTV (cf.5(iii»

(C'est la remarque 5(ii».

En conjuguant eventuellement par (e' on peut evidemment supposer que l'on

a T = T avec e E: t . Grace a 8, on sait que If' est concen t re sur t<.e e re

et on remarque que rad Test inclus dans X' et que c'est Ie radical de

(:=T/X'). Grace a 7.2(iii) on calcule l'action de T) par recurrence.

On en deduit Ie fait que uOT(X) agit trivialement par une astuce due a

Howe (cf.[H2] (2.44» plus generalement soit Wune representation de

uOT(X) T) sur la que lIe cr(R;dT) agit par un caractere, alors uOT(X)

agit trivialement sur W :

en effet on a, Vu uOT(X) ,

-1
1T( r u ¥) w = lI(u) w.

Or pour u fixe, on {o-lUd' I (E contient l'elemenddans sa

fermeture ; d l ou n(u)w=w.

Preuve de 5(ii) : On peut evLd.emment supposer que v[al = a . Pour tout

e e[ ,on de f LnI t [0e1 comme V[M . Par hypothese de recurrence,

on sait que 1 /\,vest un Sp -module donc, clairement un ' ,.
e e

module de If. On pose ici: (on adopte toutes les notations de 7 et 8)
e

A

v ' = A-
l
( E& ed Ind;Op'x H( Gi e ,F*!F*2_t{aj).

Ver Lf Lons que I' on a : V'= V .
SoH T' S2 (X*) - Ii . Supposons d I abord que i: on aT' (x ,x ) j 0. SoH

p 0 0

e cE ; si T'(xo'x
o)

eF*2, il resulte facilement (par un calcul de mo-

dule de Jacquet par etage) de 6.1(ii) (applique a H=P1 et U=Z) que
1 /'

X T':= , H( It @J ) ! NT' , H( 1J' @/) = 0.e, ! l):>p ) e e 1 ;. e e

Si T'(x ,x )6 eF*2, il resulte de 6.1(ii), comme plus haut, que l'appli-
o 0

A

cation naturelle de ' H( @])surXT,sefactorisepar
! L) Sp x e e e ,

l'evaluation en un point f6 P1 bien choisi et que est isomorphe
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a l!. / N' (j) J / N
1
T' i ou N

1
est Ie sous-groupe de N(X) e gaI a

e 0 e e <I' e

En outre avec 6.3, on a L'inclusion de

V dans v: est alors claire. Rec Lproquemen.t so it v E V' et supposons que

v 4f: NT' V ou T' 6 S2 (X*)- • Si T' (x
o
,x
o)
=t 0, Le s calculs precedents don-

nent une contradiction. Si T' (xo'xo)=O, il existe ,r E Gl(X) tel que

-1 -1
T' (xo,xo) # ° et 1T< 0 )v=v; done en particulier 1T\ r )v tE NT' V

i.e. v t/: N ¥T'V et on obtient une contradiction comme precedemmen t ,
A ____

Ainsi V' est stable en particulier par PI et par Gl(X) (presque par de-

/\
finition), il est done stable par Sp qui est engendre par ces deux groupes.

D'ou 5. (0.

Preuve de (ii) : Pour avoir l'action de1 sur V, il suffit grace a l'in-

jectivite de A (Lc L V[01 = 0, cf.4 Remarque) de connaitre l'action de1
A

sur Le s S ' H( v.sr», i.e. sur
!"IPI e e

qu'ici, grace a 8, lJ"=0 si e (/; [F*2.
e

tion de '1 sur / e t an t bien connue.
e

o f quand e t ; rappelonse e

Cela se fait par recurrence, l'ac-

.A
que si W est un sous-Ot-module

.A..
W (notations de 8) est un sous-Sp-mo-

Preuve de 5(iii) : On va d'abord demontrer
...-..

/
- -1 Gl(X).N(X)

de V NTV alors V:=C
T

dule de V.

Comme dans la preuve de (i), il suffit de demontrer que Vest stable

.A

) = F*/F*2 H e'

particulier W 1 (notations de 7.2) est
e ,A-

It / NT' l7 (cf. la remarque 5 (Lt ) deja demon-
e e

e
image reciproque par l'application naturelle de

par 11 , Pour tout e 6 t ,on note We l'image de W par 0e ; c' est un sous-

/'
Of -module de V/NTV • Done en

e /\ e
un sous-Of (X')-module de

e
tree). On note It son____ e

Ill., Gl(X') N(X') ,/)' ,0/ »<
V e -? Indo:;rX' )N(X') V / Ni v , elle est stable par Sp ' (hypothese de
Tee e

recurrence) et par 1. D' ou :

B·-1 ( G;)e
L

p N(X').
c>" Of (X' ).N(X) e

e
Et par commutativite du diagramme 8, on a :

..-/' /\
-1 Gl(X»N(X) _ -1 Pi· - ..p

V C IndoftX),N(X) W - A (}:Ie 6 F*/F*2 H( lJ"e(J;J J e)'

Cela prouve bien que Vest stable d'ou Ie resultat.
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Pour prouver (iii) il est maintenant clair que l'on peut supposer que f

est un isomorphisme. On construit a partir de V' un diagramme analogue a

8, en mettant des'. On a toujours vLol = V' Lo] =lof. Pour tout e : t ' on

de' en un isomorphisme de V/NTV sur V'/NT V', i-
e e

d'apres 5remarque(ii). II est clair que les

transporte f, grace a

/\
somorphismes de 0T (X)-modules

e
diagrammes pour V et V' sont relies par des fl.e che s '( et

f acon naturelle a partir de e et des eC de la f acon suivante : (pour

simplifier l'ecriture j 'omets dans les induites les groupes par rapport

ou h N(X' h H.

On pose: V (C-Ie-1C') (V')

V (B-Ie'l>'-IB ' ) @
e6 t

Quand on revient a la definition de B donnee en 7.2(ii), on voit que par

recurrence, Vest construit de fat;:on analogue a V aux inductions par eta-

- --'\
ges pres. En particulier par recurrence on admet que Vest stable par Pl'

Par commutativite du diagramme, on a :

- A"""-- ,.V-D'otl Vest stable par PI et par Gl(X),par construction. D ou est une

sous-representation de V. II ne reste plus qu'a verifier que

./'- t
qui est une application lineaire, Gl(X)-equivariante de V dans V, est en

f ' /'S " i .a1t p-equ1var ante. Par la commutativite du diagramme on a :

,-Iv _ I-I ,-1 ...
C e Ctv- A (B e B)A/V'

En particulier, ce qui est ecrit a droite est une application lineaire
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et comme A(V)c V(cf. plus haut), par recurrence, on sait qu'elle est 11­
equivariante. Ainsi fest aussi 'P\­eqUiVariante, d'ou

par l'argument deja utilise. On a donc prouve la premiere partie de 5.

(iii). Mais on deduit immediatement que si Vest irreductible alors

.A

V/NTV l'est aussi comme 0t­module. Reciproquement supposons que V/NTV soit

Lrr educ t LbLe et so it V un sous­module non nul de V. On note y I' ensemble

des elements de t"(N(X» dont la transformee de Fourier est nulle surc

on a (c f . 4(1»):1­ ; »<

IT (U ) V = ° V c Ker (v IndGl(X) ... N(X) V/N V)a a;rX),N(X) T

D'ou puisque Vest concen t r ee sur fJ ' lr f 0. Et avec 6.1(1),

L'"';: . GI (X). N(X)
est un sous­GI(X)­module, non nul, de V/NTV stable par N(X).

Par Lr r educ t LbLl.Lt.e , on a l'egalite qui force n( y)v=rr( Ainsi V con­

tient tr ( )V et I' intersection des sous­modules non nuls de Vest non nul­

Ie, ce qui termine la demonstration de (iii).

II­Lien avec la representation metaplectique premieres notations et re­

marques.

Soient (J une orbite de S2 (X*) et T 6 ft ' on garde les notations genera­

les et on forme la representation metaplectique associee a la paire duale

(Sp, Of)' Pour eviter des confusions, on notera 0f(Y)' Ie groupe orthogo­

nal de la paire ou Y:=X/Rad T. On realise cette representation, notee

J') dans l'espace de Schwartz sur Hom(X,Y). Rappelons que l'on a fixe un

caractere non trivial de F a valeur dans C*, continu, noter.

Soit T' E: S2(X*) ; on pose:

(* est la transposi­

tion).

On remarque que 1T, est stable par multiplication a gauche par 0f(Y) et a

droite par 0T'(X).

De plus soit ff6 N(X) et

XT,=Of(Y) Xr, 0T' (X).

r6f , alors on a pour tout
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«(.,)T(j)r) (z ) = 'fT,O) fO(r).

Ainsi l'application qui a f?tJ' associe sa restriction a se facto­

rise par Le module de Jacquet fiNT,! . On a en fait :

11.1 IsmJe: soit T' c S2(X*).

I.' application de restriction a X , deT_

naturelle de J sur liNT!'

(L) Si T' l!t Ii, IINTJ =0 et XT'

(LL) Si T' f XT, I- r/J e_t:­­;;._­'­­'­ ..:.­ _

:! (c XT, ) est I' application

(iii) est concentre sur •

11 est clair que si T' (resp , c ) alors l.r,=r/J (resp . 1-). Le Lemme

(i) et (ii) se demontre alors de elementaire en utilisant Ie critere

de Jacquet. Quant a (iii), il est consequence immediate de (ii) en remar­

quant que N f =
T

r(;J \ 'f ( z )=0 t: surjectif j:pJ.

On fixe r
o

un homomorphisme surjectif de X sur Y dont Ie noyau est Ie

radical de T. Alors on a : (on note = irf! 'r(&)=o si rangt::<k:=dimY.s)

11.2 Remarque : (i) ):T= 0t(Y) Zo et StabO_(Y) t: o=ll}.
T

(Lf.) liNT! t
c
(X

T
) ­:= r; c (Ot(Y», comme 0f(Y)­module ou 0f(Y) agit

---- usur &c(Of(X» par la representation reguliere gauche et GI(Rad T) 0T(X)

k/2 k
agit par Ie carac t e r e (0' £. ) l---.-, det 'W(T; I,£.) (ou k=dim Y)

A /'­
(caractere habituel de la representation metaplectique) et

agit par la representation reguliere droite Ie caractere

precedemment defini (cf. aussi 5(iii».

(iii) J:IN
T
! j INr! comme o.;<X»)< 0t(Y)­modules.

(i) est clair et (ii) est une consequence immediate de 11.1(ii). Quant a

(iii), il resulte de ce que XT est inclus dans l'ouvert de Hom(X,Y) for­

me des elements surjectifs, de la definition de ;P: et de 11.1(ii).

11.3 Corollaire : Soit (1r
2
, V2) une representation irreductible de Gr(Y);

alors il existe des representation irreductibles (TTl' VI)..:! (IT i' Vi)

/\Sp (eventuellement distinctes) telles que soit isomorphe a un

quotient de J E Vi\&V2 a un quotient de Jk comme ici

J k est Ie de I engendre par /k (il est stable par 0r(Y»'
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II resulte de 11.2(ii) et de la remarque qui suit, que Ie plus

grand quotient isotypique de type (1T
Z'

V2) de J (d. Chap.II,III,5), est

non nul. De meme, avec 11.2(ii), pour J
k
[ 1T2] ou on remplace J par f k '

Le corollaire resulte alors de 4 . 3

11.4 Remargue : (notations de 11.3) Le plus grand quotient isotypique de

(:(01'(Y» comme 0i(Y)-module, pour la representation reguliere gauche,

de type ( 1T2,V Z) est isomorphe a V2®Vz* (ou VZ* est la contragrediente

lisse de V2). Cet isomorphisme entrelace la representation reguliere dro-

He de 0r(Y) sur et la representation contragrediente sur Vz*.

Cette remarque est classique, la fleche de sur est la

fleche naturelle quand on voit VtIDVZ* comme un sous-espace vectoriel de

End V2' (c f , chapC3, lemme II. 3).

11.5 Remarque : toute representation irreductible de Of(Y) lisse est iso-

morphe a sa contragrediente lisse. (cf. Chap.IV,theoreme 11.1).

En fait on gardera, dans ce qui suit, la notation V2* parceque c'est la

contragrediente qui intervient naturellement.

12. Preuve de 5(iv). (on garde la notation J'k definie en It.3)

Remarquons d'abord que l'injectivite de resulte de 5(iii), deja prouve.

On va prouver la surjectivite de a l'aide de la proposition suivante

Proposition : Les quotients irreductibles de comme

forment Ie graphe de 4? En particulier P est surjective et les quo-

tients irreductibles interviennent avec multiplicite 1 comme quotients.

Soit (V1Q9VZ) un quotient irreductible de vfk ou VI (resp.VZ) est une re-

.-A
presentation irreductible de Sp (resp. 0r(Y»' Montrons que VI est concent-

r ee sur . pour cela, on note /k I' ensemble des elements de J dont Ie

support est inclus dans l'onvert de Hom(X,Y) forme des homomorphismes sur-

jectifs et I' ensemble des elements de C: (N(X» dont La t.r.ans f ormee de

Fourier est nulle sur . A l'aide de 6.1(1) et de 11.1(ii)et 11.Z(iii)

on voit que Ir( y) Jk et 1k ont meme modules de Jacquet relativement a
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N(X) et a ses carac t e r e s , Le. I k= IT( 'J)/ (cf.4(2». Ainsi I k est en­

gendre comme Sp­module par (T'( y)1k' On sait que V1 est un quotient irre­

ductible de J'k' comme Sp­module ; on choisit J'k telque V1•

II est clair, grace a 11.1(i) et 5(i) que V1 est concentre sur une orbi­

te de S2 (X*) incluse dans et il faut demon t r er que cette orbite est

Pour cela il suffit de demontrer que V1/NTV1#O. Supposons Ie contrai­

re et soit f6 rr<J)/k' On a deja NT,Jk et comme

pour tout T' , l'image de dans appar­

tient a tlT' . S2 (X*) NT,.{./V', d'Ol! rr Ainsi V' contient

et par stabilite par sp, il contient d'ol! une contradiction.

On realise alors V1INTV 10V2 comme quotient Lrr educ t fb Le de Jk/NT f k
.,ptJ' -S A

&c(Of(Y»' II resulte de 11.4 que v1/NTVr;est comme at­module isomorphe

a Ainsi On obtient l'unicite de V1 quand V2 est fixe grace

a l'injectivite de se et a 1 .4. La surjectivite de resulte done de

11. 3.

13. Lien de avec la conjecture de Howe.

Comme 12 Ie laisse penser, en general l'existence de ne prouve pas la

conjecture de Howe pour J et meme dans ce cas particulier ou dim Y ::: dim X,

les methodes elementaires qui suivent ne permettent pas de prouver la con­

jecture de Howe. Toutefois a l'aide de on va pouvoir decrire la bijec­

tion de Howe quand celIe ci est demontree. Pour enoncer ce que l'on peut

prouver, j'ai d'abord besoin de quelques notations.

Pour tout entier r tel qu'il existe un sous­espace isotrope de Y de dimen­

sion k­r, note y', on fixe un element, note rr de Hom(X,Y) qui verifie

J.
l:r(X)=Y' • On note T =1*T z. et I<.r l'orbite de T dans S2(X*). 11 estr r r tV r

immediat de verifier que A ne depend pas du choix de Y' ni de celui deIr

­,; r et que Le rang de est 2r­k. On note Q(Y') Le sous­groupe paraboli­

que de O:j;(Y) stabilisant Le drapeau oc Y' et uQ(Y') son radical unipotent.
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Le quotient Q(Y')/uQ(y,) s'identifie au produit de G1(Y') par un groupe

orthogonal, ce1ui de 1a forme orthogona1e non degeneree associee a Tr ,

notee T
r•

On notera ce groupe orthogonal Of (La notation est
r

compliquee mais elle evite 1es confusions avec 0T deja defini comme sous-

groupe de aT Gl(X». On notera ff,> La .f pour l'orbite
r r

On admet evLdemment Y'=O alors r=k, /Jr et Q(Y') (Y).

On generalise la notation 1{ definie avant 11.2, en posant pour tout

entier r verifiant : O<r<k=dimY :

• Hom(X,Y) est l'ouvert de Hom(X,Y) forme des

homorphismes de rang r ,

J; = f< Hom(X,Y»r)

Jfr Ie de I engendre par r:
r

il est stable par 0f(Y)'

II est clair que J'; , Horn(X'Y»r sont stables par G1(X)xN(X) et par 0f(Y)'

On dernontrera en 15 et 16 la proposition suivante

Proposition: (notations ci-dessus)

de / ou V1 (resp , V2) est une

0f(Y»' A10rs on a

irreductible

irreductible de sp (resp.

(i) i1 existe un sous-espace isotrope, note y' (eventuel1ernent nul), de

dimension, notee k-r, tel que V1 soit concentree sur a et il existe un/v r

quotient irreductible de ,..::::.:::=,----,,(Y'

(\12) •

sur leque1 Gl(Y')

(ii) soit (1T 2, V2) 0f(Y) et Y' un sous-

espace isotrope de Y de dimension notee k-r tel que (fO) ad-

mette un quotient irreductible, note V2'

I j- n+2r - kdet •

et v2 comme precedemment, a10rs un quotient irreducti-

ble de J.
En particulier, si la conjecture de Howe est vraie, V

2
est unique avec
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les proprietes precedentes et SP- l (V2)QD V2 est l'unique quotient irreduc-
fJ r

tible de J isotypique de type (-rr2' V2) en tant que representation de

14. Etude de !rl Jr+l (cf.13 pour les notations).

14.1 1emme : soit l;E. Hom(X,Y) ; on note r Ie rang de 'C et m Ie rang de

• Alors, on a 2r-mSk. Supposons 2r-m=k, alors Y possede un sous-es-

pace isotrope de dimension k-r et ,*T G . Supposons 2r-m<k, alors
r

il existe une base de voisinages (ouverts compacts) de C dont les fonc-

tions caracteristiques sont dans

Notons Y' Ie radical de la restriction de T a ; c'est un sous-espace

isotrope de Y de dimension r-m, d'oll 2 (r-m)+mSk, i.e. 2r-m6k,en particu-

lier dim Y'=k-r, si 2r-m=k. On suppose maintenant que 2r-m<k, c'est-a-di-

re qu'il existe un sous-espace non nul, note Yl' de Y telque la restric-

...l..
tion de T a Yl soit non degeneree et Yl contienne c(X). D'oll :

J..
Y = Y1 $ Yl ' On choisit un sous-espace vectoriel, note Xl de X, inclus

dans Ker r;, de meme dimension que Y1 et un homorphisme, note de X dans

Y, d'image Yl et de noyau un supplementaire de Xl' On note X =Ker L
O
' Q'OU

les decompositions :

(1)

Hom(X,Y)=Hom(X,Y)+Hom(Xl,Y) (2)

1-
Hom(Xl,Y)=Hom(Xl'Y l )+ Hom(Xl,Y l) (3)

-./.
Grace a (1), on identif ie xy a X (C-,\ X*) et on note 0' un element de Sp

qui echange Xl et xy et vaut l'identite sur X et xt (4 X*). On note fA.

Ie carac t er e de Hom(X,Y) (ou de Hom(Xl,Y)) qui vaut /'-( Z;')='f( (-CCi,"l,') ).

On choisit un reseau, note 1 de Hom(Xl,Y) de 1a forme 1 1+12 ou 1 1 est un

reseau de Hom(Xl,yt) et un reseau de Hom(Xl,Y l) (cf.(3)). On pose

1'= [r;'t. ,v))=1,Vv61j.

Soient if un petit voisinage de L./ x dans Hom(X,Y) et Vi un voisinage
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de a dans Hom (Xl Y)nKer t<' alors 1 'hypothese sur Yl' assure que i ' on peut

choisir L
1
suffisamment petit et L2 suffisamment grand de telle sorte que

l'on ait :

vc' EO r: + r:0+( Lt+L') on a rang 7:' rang C + dim Yi:

on a

lr:'6 z::+(V+L) rang?:'=rjcz;+(ih!.9l)

On note r le produit de jJ par la fonction ca r ac t e r i.s t Lque de

on calcule

(4)

(5) •

1:+ lJ+L et

a si <-' ti. 1:"+ C

<R C 1.+d' Y . Et grace a
I r a.m 1

fonction caracteristique de

voisinage

mesure de L sinon.

On remarque que grfice a (4), cela prouve que W «(/) c J d . D'oll
T ( r+ im Y1

(5), on voit que la difference de r et de la

est incluse dans D'oll le re-

sultat. Mais on a en fait montre plus:

14.2 Corollaire (i) Soit T'c SZ(X*) de rang >2r-k, alors l'application

naturelle de dans J;NT,I est surjective.

(ii) On suppose que # 0, alors il existe un sous-espace isotrope de

dimension k-r dans Y.

(i) Grace a 11.1, dont on adopte les notations, il suffit de montrer que

pour tout z: <:; J
T
, et pour tout voisinage de (; , note V, il ex i s t e o-,

un voisin age de r inclus dans li dont la fonction caracteristique rest-

reinte a X-T, coincide avec let restriction d'un element de a LT, .

Soit c GX
T
" on pose ici r'=rang"C, m=rang T'. Si r'>r, c'est clair et

cela se produit, en particulier, si 2r'-m=k. Supposons done qui 2r'-m<k

et r'<r. On continue avec les notations de la demonstration de 14.1 ; le

V che r che est de la forme t::+!Y+ dont on note y' la fonc-

tion caracteristique. On prend pour Y
1

un sous-espace de dimension k-2r'+m,

comme cela est possible et on a vu qu'il existe
I r '+dim Y1

telle que r 'f' G!'r'+l' Or k--r'+m>k-r'+2r-k=2r-r'>r. On est denc r amene
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a demontrer la meme assertion en supposons maintenant que =r'+1.

Au bout d'un nombre fini de pas on aboutit a rang Z >r, ee qui termine

la demonstration.

(ii)Puisque #0 par hypothese, il existe r' tel que

En partieulier il existe -r 6 Hom (X, Y)>r' tel que les fonetions carac te r Ls-

tiques de voisin ages suffisarnment petits de ne sont pas dans

Utilisant 14.1, on doit done avoir rang =2r'-k et done l'existenee

d'un sous-espaee isotrope de Y de dimension k-r'. Cornme (ii)

est clair. 0

Dans la suite de ee paragraphe, on suppose que /I! r+1# a et on fixe un

sous-espace isotrope Y' de dimension k-r. On a defini en 13 Q(Y') •.

On definit aussi Py' de la suivante

Py' : j(Hom(X,Y))---1fiHom(X, y,J./y '»
Vc' Hom(X,Y'J./ y') (pY'r)(r;-')= JHom(X,y.) CfCt'+v) d v , ou -i' est

un relevement de 'C' en un element de

On a alors

14.3 Lemme

de Q(Y') sur

Py' est un homomorphisme de S'p-module qui entrelace l'action

.I avec l'action de Q(Y') sur flHom(X,Y'..l./y'», no t ee co-
T
r

et definie par :

tique evidente.

""'T Ia (Y' .J. IY')
r T

r

est Ie caractere jdet In,

est la representation metaplec-

Cela se voit en factorisant Py' par les applications suivantes (on fixe

Y' un sous-espace isotrope de Y en "dualite" avec Y')

et l'evaluation de

au point O.

14.4. Corollaire : Le noyau de Py' contient et Jr+1 #0.

II est clair que py,(r)=O si le support de rest inclus dans l'ouvert

Hom(X'Y»r+1' Le noyau de Py' contient done par
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On ver Lf Le alors que .t:.+1 '1'0 en montrant que PY' (C( )'1'0 pour rune

fonction caracteristique d'un voisinnage convenable de incIus dans

Hom(X'Y»r' ou c E. Hom(X,Y) ve r Lf Le l;(X)=Y·J.. 0

Grace a PY" on def LnI t naturellement un homomorphisme, note de I
°T(Y)

Clans indQ(y.) (Hom(X,Y' /Y'» en posant :

'{rtf, °T(Y)' ('1»( 0 )=Py. ) r)·
A

On obtient alors un homomorphisme (Sp k Of (Y» -equivariant

1$'y. : It.lr+1 /(Hom(X,y·L/y'».

Je ne sais pas demontrer que est bijectif, mais en notant

l'analogue de dans J'(remarquons que

2r-k), on a Le lemme suivant: (meme definition pour f Zr - k ( ..• »

14.5.Lemme : induit un homomorphisme surjectif de /r/ Jr+1 sur

o (Y) j
2r_k(Hom(X,y,4/y'» Idet In.

On factorise de la suivante

.I °T(Y) ;.J ...' °T(Y) .I.
Py . : Q(. » indQ(y.) Hom(X,Y'/Y'),

ou l'on pose, pour tout 'levI', r' c .I(Hom(X,Y'.l. ):

'frf. 01'(Y)' 0( r r )=(<.J T( 0') l" )/Hom(X,Y'.L )

V,, ; Hom(X,Y·..L/y·), 0('( Y")(c')= JHom(X,y·) Y"(c'+v) d v ,

et indo{' est Le morphisme obtenu naturellement a partir de 0('.

On a
o (Y)

C », ou j·(Hom(X,Y·...L» est l'en-

semble des fonctions a support dans les homorphismes surjectifs

",'(!'(Hom(X,Y' » =

Montrons qu'en (1) on a une egalite ; pour cela on pose

f = i ze Hom(X, Y) I range t: *T z:;) J'
/.1 <
J' = Lz:; e J' I rang c -d.

remarquons que pour tout z:; c:f , on a rang r (c f , la premiere partie

de 14.1) et done que l' est un ouvert (non vide a cause de I.' existence

(1)

(2)
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de Y') de 1 stable par 0r(Y)' De plus pour tout z: E.-1 ' la dimension du

radical de T restreinte a C(X) est k-r et done il existe un unique, a

multiplication a gauche pres par un element de Q(Y'), element, note ( ,

de 0f(Y) tel que «( r:: ) (X)=y,.L.. Cela entraine LmmedLat emen t que J(r')
° (Y)

est isomorphe a ind
Q1y,)

f'(Hom(X,Y'.l.» ; on note cet isomorphisme.

prolongeant

clair que

'I de .J(Hom(X'Y»r) et

de J(Hom(X,Y». r i estrpar a on voit ;; comme un element

<f 6 J; et que l'on a D'ou l'egalite en (1). On vient done

On prolonge r en une fonction no t ee

de prouver en tenant compte de (2) et de l'exactitude de l'induction que

'" I °T(Y) I, (Hom(X Y,J.7Y')·PY' induit un homornorphisrne surjectif de ; sur indQ(y') 2r-k '
/'-

Le lemme resulte alors de la Sp-equivariance de

14.6. Lemme: On pose ici

f '= { 6 Horn(X,Y) I c*TI:' =T
r,

r ang z' =rJ .

Et on choisit r; 0 Hom(X,Y) tel que & (X)=Y,.L.. Alors on a
o

1'= 0r(Y) Co aT (X).
r

StabOT(Y) r
o
est Ie centre du radical unipotent de Q(Y'), note N(Y')

(cf. Chap.I,III.5).

On note Q Ie stabilisateur dans aT (X) de Ker co' C'est un sous-groupe
r

parabolique de aT (X) et il existe un homomorphisme surjectif, note j de
r

Q sur Q(Y')/N(Y') tel que l'on ait

"ocQ, r::oQ =j( 0)

En particulier l'espace de Schwartz est naturellement isomorphe
0T (X) .jJt/

a ind r b (O-(Y)/N(Y'» comme 0T (X)xOT-(Y)-rnodule ou 0f(Y) agit par
- Q cT --- r

la representation reguliere gauche, aT 00 par sa representation dans I' in-
r

duite et Q agit par Ie compose de j et de la representation reguliere dro-

ite. (demonstration apres 14.7)

14.7. Corollaire : On a un isomorphisme de aT (X)xOf(Y)-modules de
(X) r

J '/NT r: sur ind"'Q r t (OT-(Y» ® C, ou C.? est l'espace de la r epr e-rr r--- c v __ v

r I k/2 k
sentation de dimension un associee au caractere (r, l ) det £.
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(J (T; det a- ' t) (c f , Sremarque pour

Demonstration de 14.6 : On remarque

Soit [; E:f '. On a Ker r et Ker [
o

la notation) de Of (X).
r

d'abord que l'on a 0t(Y)j"OT (X)=:F"'.
r

(notation de l'enonce) sont incIus dans

Rad Tr et en multipliant eventue I Lement t: a droite par un element de

GI(RadTr)(yoT (X» on peut supposer que l'on KerC=Ker co' En outre Le
r

radical de T restreint a (X) est de dimension r-(2r-k)=k-r. En multipli-

ant ev ent ue Ll.ement 7: a gauche par un element de 0f(Y) on peut supposer

que ce radical est Y' et done que , avec egalite pour des rai-

sons de dimension. On a done que l'on a :

jk'= 0f(Y) GI(RadTr) ou

--;; = i CIS Hom(X,Y) I Ker z > Ker t: , r(x)=y'.l. et c*Tz:=T f.
o 0 r

Montrons que l'on a

Q(YI),.. = c: C Q ( . Q St b K v- )
/"0 = 0 ou = a ° (X) er v

o'
T

La premiere egalite resulte du theoreme de Witt comparant Z(XI) et

ou Xl est un supplementaire de Ker Co dans X. Pour la deuxieme

egalite, on fixe un sous-espace non degenere de supplementaire de Y',

note Y1. On identifie Y1 et y,.l./y' ; alors '0 et C induisent des isomor-

phismes de X/Rad Tr sur Y1': y, .... /Y' et multipliant eventuellement 7: a droite

par un element de aT ' on peut supposer que ces isomorphismes sont les
r

memes. Alors r et Co different par la multiplication a droite par un

element de Stab (Rad T ) qui agit trivialement sur X/Rad T .
r r

On a done prouve a la fois que J' =OT (Y) t: oaT (X) et que j de f LnL comme
r

dans l'enonce, est surjectif. La description de StabOT(Y) '0 est evidente

et pour terminer la demonstration de 14.6, il ne reste plus qu'a s'assurer

! E:F", il exis-

sur I' /NT J' estr r
r

que Q est un sous-groupe parabolique de 0T (X) et que si
r

la multiplication a gauche par un element de Qte (6 0T (X) unique a
r

pres tel que Ker 'Ct= Ker roo Or on a Q\OT (X)l'StabGl(RadT )(Kerz.o)\GI(RadTr)
r r

et Ker c: (Rad T ), d'ou les assertions cherchees.
r

Demonstration de 14.7: L'application naturelle de /'. r
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la restriction a J
T

(cf.l1.1(ii). Avec la notation J' de 14.6, on a
r

if r eJ-
T
-1", rang C <r. Ainsi par cette application de restriction a

r
t T ' les e Lemen t s de .I; sont nuls sur ):T - r I et s' identifient done

r r
a des elements de J( f '). 11 est clair que tout element de!( 1 ') si pro-

longe en un element de j(Hom(X'Y»r) puis par ° en un element de t:
Ainsi J;/NTJ; -:::I(fil) et Le lemme r e sul.t e de 14.6.

r

15. Preuve de la proposition 13(i) :

Soit (V1@V2) un quotient Lr r educ t Lbl,e de I comme dans 13(i). 11 existe

/I
r tel que V1&V2

soit un SpxOf(Y)-quotient irreductible de

xons un tel r et un sous-Sp-module, note W de -I tel que
r

Montrons que VI est concentree sur fr'

Fi-

VI'

( 1)

On sait que VI est concent r e sur une orbite, no t e e ft I, incluse dans 7J.
Pour demontrer que ?'= fr' il suffit de prouver que l'on a V1/NT,V1=O,

tf T 1 avec rang T' > 2r-k et VI/NT V1#0. La premiere assertion de nuLl.Lte
r

r e sul.t e Lmmedf.a t emen t de ce que (// J
r
+ 1) / NT , ( I r+1

) = ° si rang T'

est nul. Cela entraine que (!'+w/w'/NT (J'+W)/W) =
r r

r
(!;+W/W)/NT , (j;+W/W)=O si XT' (cf.l1.1) ne coupe pas Hom(X'Y»r' C'est

est strictement superieur a 2r-k, grace a 14.2(i). Supposons que VI/NT VI
r

0. Avec 11.1(i) on a

Le cas si rang T' S 2r-k grace a la premiere partie de 14.1. D'ou tous

les modules de Jacquet de yP;+w/w relativement aux caracteres de N(X),

sont nuls d'ou, cf.4(2), on a Par on a aussi
r

J'rC W et V1=0, ce qui est une contradiction. Remarquons, pour la suite

que l'on a Ie resultat suivant :

Soit VI un quotient irreductible de Jf
r
+
1
alors I Iapplication nature l-

Ie de J;/NT J; dans VI/NT VI est non nulle. (2)
r r

Montrons qu'il existe un quotient irreductible, noteV, de

sur lequel GI(Y ') opere par Ie caractere )det /-n+2r-k et tel que V
1=

i i>v)' (3)

Grace a (1), (2) et 14.7 on obtient un diagramme commutatif ou aucune fleche
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n'est nulle, de 0T (X)xOT(Y)-modules

Jr+l)/NT J
r
+I ) _

r 1
V/NT vI®vZ

r
Par irreductibilite de VI/NT VIQPVZ' A est

r
sertion intermediaire suivante :

surjectif. On a besoin de I' as-

) se factorise pour donner un element non nul de
/'

0T (X)
(X) (indQr VI/NT VI)

r
(4)

Admettons (4) pour Ie moment et terminons la preuve de (3). Utilisant

([B-Z] ,Z.Z9) et l'irreductibilite de 5(iE), on transforme en un ele-

ment de ou .5 2 est la fonction module
r

de Q.

En calculant b2, on trouve que ce dernier groupe coincide avec

HomQ(y ') Idet Ir - n (V/NT VI )@C,,_l.) •
r

Pour calculer l'action de Gl(yI)uQ(y,) sur /detf-n(Vl/NT VIXilCp" on uti-
r

lise 5 remarque (ii) et Ie fait que Tr differe de T en ajoutant des plans

k Zr-khyperboliques. D'ou t WeT; ('£)= s w(Tr; D' t:), et l'action

j- n+Zr - kde Gl(Y') se fait par Ie caractere /det • D'ou (3) qui prouve

13(i).

Prouvons (4) :

Clairement il suffit (cf.ll.4) de prouver que si West une representation

A
lisse de QxOf(Y) dont on

0t(Y)-module de type

note W Ie plus grand
15'T (X)

alors r West

quotient isotypique comme

Ie plus grand quotient iso-

typique, comme 0f(Y)-module, de type VZ' On note p la representation de

0i(Y) dans ind W et dans W , et J 1 I ideal de ensemble des

fonctions ve r i f Lan t pour tout v <;; VZ : ) 0- (Y) f Z( 0 )v=O • Et il faut
T

montrer que l'on a : ind( f (J )W)= f (J )indW. On utilise la description

donnee dans ([B-Z], Z.Z4) de l'induite compacte pour demontrer l'inclusion

de ind(e(J )W) dans e(h )indW : pour cela on fixe un compact de (X),
r
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/'
faut demontrer quenote K et g un point de °T (X) et il si r est une fonc-

r
tion de 0T (X) dans f(6)W nulle en dehors de 'QgK ve r LfLan t r(qgk)=

r
q. y(g) alors rest dans f )indW. Ecrivons

c/
r(qgk)=q. L . f(f.)w. au la somme est finie et ou f. <(Of(Y»

1- 1- 1- 1-

et w.6W.
1-

-1 ....
Remarquons que cette somme est invariante pour l'action de gKg AQ. In-

tegrant sur ce compact, on peut supposer que chaque wi est lui-meme inva-

-1 .... [
riant par gKg 1\ Q. Mais a ce moment La r appartient a if (fi)indW,

c'est toujours ,2.24). D'ou la premiere inclusion cherchee, l'autre

inclusion etant claire on a prouve (4), ce qui termine la demonstration.

15. Preuve de 13(ii).

On fixe V2 une representation irreductible de 0f(Y)' D'apres 11.3, il ex-

A
iste une representation irreductible, notee V1, de Sp telle que V1@V2

so it un quotient de On fixe un entier r maximum avec la propriete qu'

il existe un sous-espace isotrope, note Y', de dimension k-r, tel que

les notations de 13) admet un quotient irreductible, note

-v I 1 Gl (Y')' I . Id /-n+2r-k II ' I2' sur eque opere par e caractere et . resu te

de 15(1) et (3) que, quelque soit Vi une representation irreductible de

Vi®V2 n'est pas un quotient de Ainsi est un quotient

irreductible de ;P . Grace a 14.5, il suffit done de demontrer que
1 r (Y) ../ .1. I

est un quotient de indQ(y') J 2r _k (Hom(X, Y' !Y'»ldet ".

,race a 12 (applique a Sp 0T (Y' /Y') au lieu de Sp 0T(Y) on s it, en
r

utilisant l'exactitude de l'induction ([B-Z] ,2.25(a» que l'on a une fle-

che surjective :

°f(Y) f
indQ(y')

-1 - °T(Y) - 2r-k
Le·f I .

fb r 01'(Y) _ 2r-k
Or on a aussi : I

T
par definition de V

2"
D'ou 13(ii).
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