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INTRODUCTION.

Le séminaire de 1'Université Paris VII sur les représentations des
groupes réductifs (séminaire Rodier) était consacré en 85-86 aux représen-—
tations métaplectiques sur un corps p-adique. Les travaux sur ce sujet de
divers auteurs (Howe, Kudla, Rallis...) ont été exposés. Au cours de ce
séminaire un certain travail de mise en forme, de "polissage", a été effec-
tué, tant en ce qui concerne les généralités sur les représentations méta-
plectiques qu'en ce qui concerne les travaux récents évoqués ci-dessus.
Certains points se sont éclaircis, au moins aux yeux des auteurs, et il a
semblé qu'il n'était pas inutile de mettre au net une partie du travail
effectué et de la publier. Ce livre contient donc peu de travaux véritable-
ment originaux des auteurs, et doit €tre cong¢u comme un compte-rendu de
1'activité du séminaire.

Le premier chapitre contient des généralités "géométriques" sur les espaces
hermitiens: classification, théoréme de Witt, lagrangiens, groupes unitaires
et leurs sous~-groupes paraboliques. En particulier, on y introduit et clas-
sifie les paires réductives duales. Le deuxiéme chapitre contient des géné-
ralités sur les représentations métaplectiques (ou "de Weil") sur un corps
p-adique: groupe d‘'Heisenberg, théoréme de Stone~Von Neumann, groupes méta-~
plectiques. On y énonce la conjecture de Howe. Le troisiéme chapitre se
décompose en deux. Dans un.premier paragraphe, on montre qu'un groupe inter-
venant dans une paire réductive duale irréductible est "scindé" dans le
groupe métaplectique, 3 1'exception du cas bien connu du groupe symplec-
tique. Le second paragraphe est un exposé de l'article de Kudla "On the
local théta correspondence', généralisé au cas d'une paire réductive duale
quelconque: compatibilité de la conjecture de Howe avec 1'induction parabo-
lique, démonstration de la conjecture pour les représentations cuspidales
(ce dernier point s'appuyant essentiellement sur un travail de Rallis).

Le quatriéme chapitre contient quelques résultats se déduisant de 1'étude
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des classes de conjugaison dans les groupes unitaires: détermination des
contragrédientes des représentations de certains de ces groupes, commutati-
vité de 1'algébre de Hecke d'un groupe métaplectique, commutant d'une paire
réductive duale dans la représentation métaplectique. Le cinquiéme chapitre
expose la démonstration de la conjecture de Howe pour les paires non rami-
fiées. Qu'il soit bien clair que cette démonstration est due & Howe, et
que c'est seulement parce que nous concevons ce livre comme un compte-rendu
de séminaire que nous nous permettons de la publier. Le sixiéme chapitre
expose les travaux de Howe sur les représentations de petit rang. On étend
cette notion dans le cadre des représentations lisses, on classifie les
représentations de petit rang, on établit le lien entre cette classifica-
tion et la correspondance (conjecturale) de Howe.

Les chapitres 1 et 3 ont été écrits par Vignéras, les chapitres 2, 4,
5 par Waldspurger, le chapitre 6 par Mceglin. Bien que chaque auteur assume
plus particuliérement la responsabilité des chapitres qu'il (elle) a écrits,
il y a eu naturellement des échanges et influences réciproques entre eux
trois. I1 y a eu également influence des autres participants au séminaire

de Paris VII, que les auteurs remercient.
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Chapitre 1. Espaces hermitiens.

I - Généralités sur la classification des espaces hermitiens.

1. Définitions. Soit D un corps (pas nécessairement commutatif, mais de dimension finie sur
son centre), muni d'une involution 1, i.e.d'un anti-automorphisme de carré I'application identique.
On adonc

Yd+d)=1(d)+1(d") , 1(ddH=t(d)t(d) , 1(t(d))=d , pourd,d' e D.
On note F le corps commutatif formé par les points fixes de T. Soit W un espace vectoriel & droite
sur D , de dimension n, muni d'un produit e-hermitien, i.e. d'une application sesquilinéaire <, >
de WxW dans D, linéaire en la seconde variable, i.e. <wd,w'd'>=t(d)<w,w">d', non dégénérée,
telle que

<w' w> = € T(<w,w">).

Pour que cette définition ait un sens, € doit appartenir au centre F' de D, et vérifier et(e)=1.
Deux éléments de W sont orthogonaux si leur produit hermitien est nul.

Deux D-espaces €-hermitiens sont isométriques (resp. semblables) s'il existe une application
D-linéaire bijective de I'an sur l'autre conservant le produit hermitien (resp. A multiplication pres par
un élément du centre de D). Une telle application s'appelle une isométrie (resp. similitude).
L'ensemble des isométries de (W,< , >) dans lui-mé&me forment un groupe U appel€ le groupe
unitaire de (W,<, >).

Ces définitions se généralisent au cas ot D est un anneau 4 involution [Sc 7.1].

Remarques : Un D-module 4 gauche V est canoniquement un D°-module 4 droite, ot D° est le
corps opposé 4 D (la multiplication est définie par dxd' = d'd). L'involution permet de convertir un
D-module 2 droite en un D-module & gauche, en posant dxv=v1(d) si ve V,de D. Une application
sesquilinéaire sur un D-module & gauche V & valeurs dans D est linéaire en la premicre variable :
siv,v'e Vetd,d'eD, on a <dv,d'v>=d<v,v'>1(d"). Inversement, tout D-module & gauche peut tre
converti en un D-module 2 droite.
L'ensemble V*=Hom(V,D) est muni naturellement d'une structure de D-espace & gauche donnée
pas (df)(v)=d(f(v)) si fe V*. Nous considérons toujours V* avec sa structure d'espace a droite
définie comme ci-dessus, méme si D est commutatif... et nous l'appelons le dual de V. Avec cette
définition, le produit hermitien définit un D-isomorphisme entre W et son dual : w—sw* ,
w¥(v)=<w,v> siw,ve W.

1l définit sur I'algébre A=Endp,W une involution : f—f* , olt

<f(w),w'>=<w,f*(w")> siw,w'eW ;
f* est l'adjoint de f. Le groupe unitaire U(W) est égal & {ue A, uu*=id. } 1l est bien connu que
l'application 'W—A=End,W induit une bijection entre

a) les espaces hermitiens de dimension finie, & similitude pres,

b) les algébres centrales simples & involution de dimension finie, 3 isomorphisme prés.



2. Exemples. Les espaces e-hermitiens sont des généralisations des espaces

1) quadratiques (D=F, £=1)

2) symplectiques (D=F, g=-1, caractéristique différente de 2)

3) hermitiens {D=F" est une extension quadratique de F , e=1)

Dans le cas 1) le groupe U est le groupe orthogonal de W , noté aussi O(W), dans le cas 2) le
groupe U est le groupe symplectique de W, noté encore Sp(W).

Les exemples fondamentaux :

4) les espaces €-hermitiens D(a) de dimension 1. Soit ae D tel que a=€t(a). On note D(a)
le D-espace vectoriel & droite D muni du produit e-hermitien <d.d'> = t(d)ad’.

5) le plan hyperbolique e-hermitien H égal au D-espace vectoriel & droite DxD muni du
produit g-hermitien <(d;,d,),(d';,d'p)> = t(d})d'y+et(dy)d' .

6) Si V est un D-espace 2 droite, W=V+V* muni du produit hermitien
<v.D,(v\,D)>=f(v)+eT(f(v)
est un espace €-hermitien canonique associ€ 4 V généralisant 5).

3. Involutions. La classification des involutions sur une algébre simple est bien connue. Une
involution T sur D envoie le centre F'de D sur lui-méme, ce qui ouvre la voie & deux
possibilités :

1) c'est l'identité sur F', on dit alors qu'elle est de premitre espéce, alors € = +1 (I'espace sera
dit hermitien) ou -1 (espace antihermitien). On doit avoir D=D°. C'est un théoréme {Sc. 8.4] que D
admet une involution de premitre espéce si et seulement si D=D°.

2) F est une extension quadratique séparable de F, Trestreint 2 F' est le F-automorphisme non
trivial o de F'. On dit alors que T est de seconde espece. Mais par le théoréme 90 de Hilbert, si
ec F' vérifie ee%=1, il existe ue F tel que e=u%/. On a

LW, W' S=UET(<W ,W>)=T(L<W',W>).
La multiplication par p fournit une bijection entre les espaces €-hermitiens et les espaces
1-hermitiens (dits hermitiens). On se limitera donc aux espaces hermitiens, quand l'involution est de
seconde espece.
Si DY est le corps conjugué de D, on doit avoir D=D®°. Inversement, si D=D%°, il existe un
anti-automorphisme 1 de D prolongeant ¢ . Comme 12 est un automorphisme , il existe a D, tel
que 12 (d)=ada’!, deD. Clest un théoréme [8.8.2] que a=ai(a) € F ne dépend que de D, et que D
admet une involution prolongeant G si et seulement si ¢ est norme d'un élément de F'. Si D estun
corps de quaternions, on peut montrer qu'une involution de seconde espece existe sur D, si et

seulement si D = D1®FF' o D! estun corps de quaternions sur F,



4. Involutions sur un corps fini, local, ou global.
1) Si F est fini, tout corps fini étant commutatif, on a seulement deux cas : D=F, ou D=F est
I'unique extension quadratique de F.

2)8iF =C, D=C, l'involution est triviale, ou I'unique antomorphisme non trivial d'ordre 2de C ,
la conjugaison complexe.

3) SiF=R, D=R, ou le corps des quaternions H de Hamilton. Comme R n'admet pas
d'automorphisme d'ordre 2, linvolution dans ce cas est triviale. De plus, H n'admet pas
d'involution de seconde espece. Le théoréme de Skolem-Noether montre que la conjugaison

canonique de H sur R est & multiplication par un automorphisme intérieur prés, I'unique
involution de premigre espéce sur H.

4) Si F est un corps local non archimédien, par le méme raisonnement, on trouve :

a) D=F

b) D=F', une extension quadratique séparable de F

¢) D=le corps de quaternions H sur ' (unique 2 isomorphisme prs), involution canonique &
automorphisme intérieur pres, et F'=F.

I n'y en a pas d'antre, la condition D=DI®F' de (3.2) étant impossible.

5)Si F est un corps global, on a encore les trois cas a),b), et ¢) pour un corps de quaternions
quelconque, mais ce n'est pas tout : il y a des cas d'involution de seconde espece.

d) Si F est une extension quadratique séparable de F, D, un corps de quaternions de centre F,

D=D_ ®gF' est muni de linvolution de seconde espece, produit tensorielde I'involution canonique

deD,surFetdeo.

Soit p une place quelconque de F' et dp € Q/Z linvariant Jocal en p du corps gauche D. Ona
dp =0(.e. Dp=D®FF'p est une algébre de matrices),pour presque toutp, €t de =0.

A isomorphisme prés, D est caractérisé par ses invariants locaux.

d général) F' est une extension quadratique séparable de F, d'automorphisme non trivial ¢, D un
corps gauche de centre F', tel que

=0, sip=p® et +d =0, sinon
4 4y g
Alors D admet une involution prolongeant .

Ces conditions sont évidemment nécessaires car dp(Dm): -d 4, par (3.2) et (4). Inversement, elles
P

impliquent D=D%°, et a:e F de (3.2) est une norme locale partout, donc la norme d'un élément de
F.
La liste est compléte.



5. Somme orthogonale.

Si W et W' sont deux espaces e-hermitiens 2 droite sur D, alors la somme directe W"=W+W'est
un espace a droite sur D, muni de I'unique produit e-hermitien tel que W et W’ soient orthogonaux,
prolongeant les produits €-hermitiens de W et W'. Clest par définition, la somme orthogonale de W
et W', notée WOW'.

Un espace e-hermitien dégénéré est somme orthogonale W+V d'un espace e-hermitien (non
dégénéré) W et d'un espace V sur lequel le produit est nul. On adopte la convention : un espace W
muni d'un produit hermitien nul est dit de type 2. C'est simplerent un espace vectoriel de
dimension finie sur D (plus d'involution), son groupe unitaire est le groupe des isomorphismes
GLp(W). Cest commode, pour avoir des résultats uniformes sur les groupes linéaires et unitaires.
Par ricochet, un espace e-hermitien (non dégénéré) est dit parfois de type 1.

La somme orthogonale est compatible avec l'isométrie : elle munit l'ensemble des classes
d'isométrie des espaces €-hermitiens sur D d'une structure de semi-groupe abélien. Cest le
semi-groupe de Witt-Grothendieck des espaces e-hermitiens sur (D,T). Le groupe construit
avec ce semi-groupe est le groupe de Witt-Grothendieck des espaces e-hermitiens sur (D,1).
Soit H le plan hyperbolique e-hermitien sur D. Le quotient du groupe de Witt-Grothendieck des
espaces e-hermitiens sur D par le sous-groupe, isomorphe & Z , engendré par la classe d'isométrie
de H s'appelle le groupe de Witt des espaces €-hermitiens sur (D,7).

6.Nous dirons que W est alterné si <w,w> =0 pour tout we W. Cette relation appliquée & w+w'
donne et(<w,w'>)+<w,w>=0, ce qui implique que T est triviale. Si la caractéristique de F n'est pas
2, e=-1, W est symplectigue.

Théoréme d'orthogonalisation. W est isométrique 2 une somme orthogonale
W = & D(a,) @ W°,

ol W°est un espace alterné.

Corollaire. Sila caractéristique n'est pas 2, tout espace non symplectique W est isométrique 2
une somme orthogonale W = @ D(a;).

La décomposition n'est pas unique, comme le montre 'exemple des espaces quadratiques. Elle
permet de définir les invariants.

Invariants . Si W est quadratique, ce sont le déterminant d(W)e F*/F*2 représenté par le
produit des a; , 'invariant de Hasse h(W) =TI, <j(ai,aj) ol (, ) est le symbole de Hilbert si F est

local ou global, la signature si F=IR égale 2 s(W) = p-q olt p est le nombre de a; positifs et q le



nombre de a; négatifs (la dimension et la signature déterminent (p,q) et inversement).

Dans le cas général, le déterminant se généralise et donne un invariant. Soit N : D — F' est la norme
réduite, Np/p:F'—F la norme. Le déterminant d(W) est l'image de N(ITa,) dans F*/F*2 ou

d(W)e F*/Ng(F*) selon que T est de premiére ou de seconde espéce.

La signature s(W) se généralise aux espaces hermitiens sur € (méme définition).

Nous verrons que ces invariants, et la dimension, suffisent  classer les espaces hermitiens si F est
fini ou local, 2 une exception prés (les espaces anti-hermitiens sur un corps de quaternions muni de
linvolution canonique).

Preuve du théoréme par le classique procédé d'orthogonalisation de Schmidt : si W non alterné,soit
weW, tel que a =<w,w>#0. On a: a=et(a). On compléte w en une base {w,vg,.....,v }de W sur

D. On choisit deD tel que wd+v,, soit orthogonal a w, ... etc. On peut donc supposer les v;

orthogonaux 2 w. L'espace qu'ils engendrent est un espace e-hermitien de dimension n-1, sl n'est
pas alterné, on peut continuer,etc.

7. Théoreme. 5i W est alterné, il est isométrique A mH , et n=2m.

Preuve. Si w0, il existe ve W, d = <w,v>20 , puisque la forme n'est pas dégénérée. Soit w'=vdl,
Le sous-espace W, de W engendré par {w,w'} est isométrique & H. Soit W, son orthogonal dans
W. Comme W; n'est pas dégénéré, W est la somme orthogonale de W et W, . Comme W, est

alterné, de dimension n-2, on recommence, €tc.
On a ainsi une décomposition (non unique) de W en somme d'espaces élémentaires D(a) et H.

Les espaces alternés sont classés par leur dimension ne 2N , n22.

D(a)+D(-a) est isométrique 2 H , car isotrope de dimension 2.

On note -W l'espace £-hermitien d'espace W, de produit -<, >, alors W + (-W) est isométrique a
nH. Un espace isométrique 2 nH est dit hyperbolique.

L.a méme démonstration fournit aussi :

8. Proposition (Base hyperbolique). Si VW est un sous-espace vectoriel & droite sur D,
tel que le produit hermitien soit nul sur VXV, pour toute base {¢;} de V sur D, il existe des

éléments {f;} de W, tels que <:ei,fj>=8 et le produit hermitien est nul sur 'espace V* engendré

iy
par les {f;}.

Si r=dimV, 'espace V+V* est e-hermitien, isométrique 2 rH. La base {e,f} de V+V* est appelée

une base hyperbolique de V+V*. On dit que V est totalement isotrope, s'il vérifie les



conditions ci-dessus. S'il existe we W, non nul, et <w,w>=0, on dit que w est isotrope. Alors W
contient un sous-espace isométrique & H. Un espace sans éléments isotropes est appelé un espace
anisotrope.

Corollaire (décomposition de Witt). W est isométrique & une somme orthogonale
W= mH & W¢,
olt W° est anisotrope.

Le théoréme de Witt ci-dessous montrera que l'entier m>0 et la classe d'isométrie de W° sont

uniques. On appelle m I'indice de Witt de W. La classification des espaces e-hermitiens est
ramenée 2 celle des espaces g-hermitiens anisotropes, ou encore 2 la détermination du groupe de

Witt.

9. Le théoréme de Witt est valable si 'on n'est pas dans le cas exceptionnel suivant :
(*) F est de caractéristique 2, W est quadratique et non alterné.
Notre référence est [Dieu. 1.11].

Théoréme de Witt. Si VW est un sous-espace vectoriel 4 droite sur D, une application linéaire
injective f de V dans W telle que <f(v),f(v")> = <v,v"> pour tout v,v'e V peut étre prolongée en
une isométrie de W .

On en déduit que I'entier m de (8) est unique, c'est la dimension d'un sous-espace totalement
isotrope maximal de W. Si W est hyperbolique, un tel espace est appelé un Lagrangien de W,
Tout sous-espace totalement isotrope se plonge dans un sous-espace totalement isotrope maximal.

Le but des paragraphes suivants 10 & 15 est de donner les résultats de la classification des espaces
&-hermitiens sur les corps finis, locaux et globaux. Ce sont essentiellement un résumé de {Sc.10}.
Ces paragraphes ne sont pas utiles pour I'étude de la représentation de Weil et de la correspondance
de Howe.

10. Invariants : données associées & un espace €-hermitien, telles que deux espaces £-hermitiens
sont isormétriques si et seulement s'ils ont les mémes invariants. Les invariants donnés en (6)
fournissent un systéme complet d'invariants (parfois redondant) sur un corps fini ou local .

La classification des espaces hermitiens W sur un corps commutatif ou égal & un corps de
quaternions muni de l'involution canonique se raméne 2 celle des espaces quadratiques. L'espace W
considéré comme un espace vectoriel sur F, muni de la restriction du produit hermitien : WxXW—F,

est un espace quadratique Wr. Deux tels espaces W et W' sont isométriques si et seulement si Wg



et W', le sont. L'espace W est isotrope si et seulement si W T'est.

11. Classification des espaces hermitiens sur un corps fini ou local, de
caractéristique différente de 2.

1) Si F est fini,

a) les espaces quadratiques anisotropes sont : F(a), oll ae F* modulo F*2 et V=E l'unique
extension quadratique de F, munie de la norme sur F.

b) il y a un seul espace hermitien anisotrope, E

Invariants des espaces quadratiques : la dimension ne N , n>1 et le déterminant de F¥/F*2
Invariants des espaces hermitiens sur E : la dimension ne N , n>1.

2) Si F=C , € (1) est l'unigue espace (quadratique) anisotrope. I! y 2 un seul invariant, la dimension
n2l.

3) Si F=R, les anisotropes sont : nR (1), -nR (1) 1< n €4, pour les quadratiques, nC , - nC ,
1<n<2 pour les hermitiens sur € , H hermitien de dimension 1 sur H.

Invariants des espaces quadratiques : la dimension n21,la signawre seZ .

Invariants des espaces hermitiens sur € : la dimension n21, la signature se Z .

Invariant pour les espaces hermitiens sur H : la dimension n21.

4) SiF est local non archimédien, les quadratiques anisotropes sont

a) F(a), pour ac F* modulo F*2, de dimension 1,

b) E,E(f), pour chaque extension quadratique E/F,munie de la norme sur F, fe F* n'est pas norme
d'un €lément de E, de dimension 2 .

¢) H*(@)ou H ,si H est!'unique corps de quaternions sur F , muni de la norme réduite, H *°
étant le sous-espace des é€léments de trace nulle, ac F¥/F*2 , de dimension 3 et 4 respectivement.
Invariants des espaces quadratiques : Ia dimension n>1, le déterminant de F#*/F*2 | et en dimension
n>1 le symbole de Hasse h =1 ou -1.

Espaces hermitiens sur E . Les anisotropes: b) et H . Invariants : 1a dimension, le déterminant.
Espaces hermitiens sur H . Invariant : la dimension. Un seul espace anisotrope, celui de dimension
1

12. Dans le cas ot F est fini ou égal & € , la classification est faite. Dans le cas F= R ou est local
non archimédien, il reste & classer les espaces anti-hermitiens sur le corps des quaternions H . Si
ae H °, -aZ est sa norme réduite, c'est un élément quelconque de F-{- F-2}. La proposition
ci-dessous est une version cotrigée par cette remarque de [Sc.3.6].

Classification des espaces anti-hermitiens sur un corps de quaternions local
Classes d'isométries des espaces anisotropes : a) si F#R ,



- 3 espaces de dimension 1, leur déterminant peut prendre toutes les valeurs possibles sauf -F*2
- 3 espaces de dimension 2 , de déterminant différent de F*2 |

- un espace de dimension 3, de déterminant -F*2,

Invariants : la dimension n>1, le déterminant de F¥/F*2 | d#-F*2 si n=1.

b) Si F=IR , un unique espace de dimension 1. Invariant : la dimension n1.

Exercice (utile) : soit A=M(2,F) muni de I'involution canonique, conjuguée de la transposition par
u=(0,1;-1,0), les matrices étant écrites en ligne. $i V est un A-module antihermitien libre de rang n,
alors Ve , ol e=(1,0;0,0) est un F-espace vectoriel quadratique de dimension 2n ( pour la restriction
4 Ve du produit hermitien sur V). Par passage au quotient, on obtient une injection du groupe de

Witt-Grothendieck des espaces anti-hermitiens sur M(2,F) dans celui des espaces quadratiques sur
F.

13. La classification des espaces e-hermitiens si F est un corps global, de caractéristique différente
de 2, se déduit de la classification locale (11,12), de la description des corps & involution globaux
(4), au moyen des principes de Hasse A et B de passage du local au global

A - Deux espaces &-hermitiens sur D sont isométriques, si et seulement s'ils sont isométriques en
toute place p' de F'.

B - Un espace e-hermitien sur D est isotrope, si et seulement s'il est isotrope  toute place p' de F.

et au moyen de la caractérisation des systeémes locaux {va} d'espaces g-hermitiens sur Dy (qui

n'est pas un corps gauche en général) provenant par localisation d'un espace e-hermitien sur D.

Théor¢me. Les deux principes de Hasse A et B sont vrais sauf dans le cas exceptionnel ot D est
un corps de quaternions muni de l'involution canonique, et g=-1,

Voir [Sc. 10].

14. Dans le cas exceptionnel (12), la déviation au principe de Hasse se voit en dimension 1, et
1a généralisation n'est pas difficile; soit D un corps de quaternions sur F, muni de I'involution
canonique, et ie D°. Soit s le nombre de places p de F ramifiées dans D. Procédant comme en (13),
si W=D(i), et W' sont localement isométriques, ils ont méme déterminant, et l'on se raméne 2
W'=D(fi) , fe F-.Soit a=i, et BeF tels que D soit engendré par i,j tels que i2=qr, j2=B, ij=-ji. Pour
que D(fi) soit isométrique 2 D(i), il faut et il suffit qu'il existe de D tel que dit(d)=fi. On €crit
d=x+yj , ol x,ye F(i). La condition implique x ou y = 0. On obtient les équivalences {en utilisant
(6),(11),(13)):
D()=D(fi) <« ilexistex,yeFtelsque )(2-0cy2 =fou Bf <& l'espace quadratique F(f}+F(-af;
est isométrique & F+F(-0) ou a F(B)+F(-af) < (f,(x)pzl en toute placepde F, ou {f,o:)pz(ﬁ,a)p
en toute place pde F.
En une place p ramifiée dans D, les espaces Dp(i) et Dp(ﬁ) sont isométriques. Ailleurs DpzM(2,Fp)
et un cas particulier de la théorie de Morita, facile a vérifier (12), montre que

Dp(i)z Dp(ﬁ) = (f,a)p=1 =(B,a)p.



11y a 251 ¢choix possibles pour ¥(f) = {(f,oz)p,p ramifié€ dans D}, si D(fi) est localement

isométrique & D(i). Pour que D(fi) soit globalement isométrique & D(fi), il faut et il suffit que
¥ = ().

On en déduit la premiére partie du résultat suivant pour n=1. La généralisation n'est pas

difficile(Sc.8.4). La déviation au principe de Hasse d'isotropie est plus difficile.

Proposition. A- Il y a exactement 2572 classes d'isométries d'espaces anti-hermitiens localement
isométriques A un espace anti-hermitien donné.

B - Si dimpW23, et si W est localement isotrope, alors W est isotrope.

Notons que la démonstration fournit la structure du groupe unitzire de D(i), qui ressemble a celle

e

d'on groupe orthogonal. Soit F(i)! I'ensemble des éléments de ¥ = F(i), de norme 1 sur F.
Lemme. Le groups unitaire de D() est isomorphe & celuide F(1) ie. 2 Fa)l.

Remarque. Si F est un corps local, il est facile de vérifier (voir aussi le lemme 5 de II) que
l'algebre engendrée par U(W) dans A =Endp,W estégalea A sauf dans les deux cas suivants :

- W est hyperbolique orthogonal de dimension 2 sur F; (le groupe orthogonal est d'ordre 4, non
cyclique)
- W est anti-hermitien de dimension 1 sur le corps des quaternions.

15. Invariants des espaces g-hermitiens sur un corps global.

Espaces quadratiques : la dimension n21, le déterminant de F*fF*z, les invariants de Hasse

he {£1} aux places non complexes de F, soumis 2 la condition thz-l

Espaces hermitiens sur D commutatif ou corps de quaternions muni de I'involution canonique : se
raméne au cas précédent par (10).

Espaces hermitiens sur D de centre F', muni d'une involution de seconde espéce, F/F quadratique.
Pour D=F', voir le résultat précédent.
Deux cas différents :

a) p est une place de F décomposée en deux places p',q' de F' permutées par l'involution. Les
algébres Dp. , Dq. sont anti-isomorphes. Les DD, espaces hermitiens de dimension n sont
isométriques.

b) sinon, il existe une seule place p' de F relevant p, l'extension F/F est quadratique, D = M(1,K)
ot K=F'. La théorie de Morita montre quil existe un isomorphisme de catégories entre les espace
hermitiens sur M(r,K) de dimension n et les espaces hermitiens sur K de dimension nr. Ces espaces
sont classés par leur déterminant (12) si p est non archimédienne, et par la signature sinon.

Invariants : la dimension ne N 21, le déterminant de F*/N(F'*), les signatures Sp de W aux places



10

réelles p de F non décomposées dans F', soumis aux conditions : pour p réelle non décomposée,
a) s,<8n , b [D:F]=5?
b) sp-Sn divisible par 4 si d >0

sp-Sn pair, non divisible par 4, si d,,<0.
2) Espaces anti-hermitiens sur un corps de quaternions. Le principe de Hasse pour l'isométrie ne
s'applique pas. A presque toutes les places, le corps de quaternions est déployé : isomorphe a
M(2,F) muni de l'involution canonique symplectique {ex.(12)). Les espaces anti-hermitiens sur

M(2,F) muni de cette involution sont identifiés 3 des espaces quadratiques sur F. Nous laisserons la
classification inachevée 2 ce point.

16. Produit tensoriel hermitien.

Soit W un D-esp2¢z 2 droite de dimension finie e-hermitien. Supposons que W = W1®D1W2

est le produit tensori=i d'un espace W, & droite sur D; et d'un espace W, & gauche sur D}, 2
droite sur D, oli D, est un corps de centre contenant le centre F'de D. Si les algebres
B= EndD1W1 , B'= End(D1’D)W2

sont stables sous l'involution adjointe de A = End,W , nous dirons que le produit tensoriel est un
produit tensoriel hermitien. Alors W, est un espace €;-hermitien sur Dy et W, est un espace
€,-hermitien A droite sur D, , o D, estun corps dans Ia classe de Brauer de D,°®gD , de centre
égal a celui de Dy . Les structures hermitiennes (, ), et (,),de W, et W, sont définies par la
structure hermitienne (, ) de W , 2 similitude prés.
Dimensions : ona D;°®zD ~M(,D,), A=M®D°, B=M(n;,D,%, C=M(ny,D,°)

n=n;nyd; !, n?d=n2d;xny2d,,dd, = r2d,
ok n=dimpW, n;= dimD‘W1 s Ny = dimD2W2 d=dimgD, d; =dimgD,, d, =dimpD, .
Nous étudierons en détail au §20 les décompositions d'un espace symplectique en produit
hermitien, en détail.

17. Paires duales.

Définitions. Soit G un groupe. Un sous-groupe HcG, tel que le double commutant de H
dans G soitégal & H sera appelé un sous-groupe de Howe de G. Si H'=Z5(H) estle
commutant de H dans G, on dira que (H,H') est une paire duale dans G.

On note que :

0)si Z estlecenrede G,onadans G la paire duale triviale (Z,G).

1) Pour tout sous-groupe HCG, le double commutant ZgZ(H) de H dzns G est un sous-groupe

de Howe de G contenant H . Tout sous-groupe de Howe de G contenant H consient

ZZ (.
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2)Si HLH' = ZsH) < GxG,c G, ol Gy, G, sont deux groupes, alors H est un sous-groupe
de Howe de G si et seulement si H=H;xH, , o1 les H; sont des sous-groupes de Howe des G;.
Par définition, on dit alors que la paire duale (H,H) = (H; ,H';)x (H,,H';) est produit de paires
duales.
3) Une paire duale balangoire de G est un couple de paires duales (H.H), (K,XK) de G
telles que Hc K', K c H'. On les représente par le dessin

K‘ H!

1 X
e
H K
les traits verticaux indiquant l'inclusion, les obliques la dualité.

Soit A un anneau, BCA un sous-anneau. On ditque B est un sous-anneau de Howe si B est
égal & son double commutant dans A. Les propriétés 1),2) ci-dzssus s'étendent aux anneaux. En
particulier, si BCA , le double commutant de B dans A est l'intersection des sous-anneaux de

Howe de A contenant B, et Z A(B) est un scus-anneaun de Howe. Ces notions s'étendent aussi

aux algébres.

Nous allons maintenant classer les sous-algebres de Howe des algbres centrales simples , puis les
sous-groupes de Howe des groupes classiques, (unitaires de type 1 ou 2).

Soit W un D-espace & droite €-hermitien de type 1 ou 2. Une paire duale (H,H') de U(W) estdite
réductive si

(i) W est HD, et H'D -semi-simple,

(ii) H et H' sont réductifs

(ces deux conditrons sont probablement équivalentes). On dit alors que H est un sous-grcupe de
Howe réduciif de (W),

On définit de méme les paires duales réductives de Endp(W).

Une paire duale (HH') de U(W) est dite irréductible s'il n'existe pas de décomposition
orthogonale de W stable par HH'D.

Rappelons que I'on traite simultanément tous les groupes classiques, en admettant que le produit sur
W peut étre nul (i.e. W de type 2), auquel cas U(W) = GLpy(W), et une décomposition orthogonale

de W est une décomposition en somme directe.

W est par définition un espace & droite sur D, on le considére aussi comme un espace & gauche
sur EndW ; noter que le corps opposé D° est contenu dans EndW .

Notation : étant donnée une action d'un ensemble X sur le Z -module W, A gauche ou 2 droite, on
note EndyW I'ensemble des Z -endomorphismes de W qui commutent avec l'action des éléments
de X.

18. Proposition. Classification des sous-algebres de Howe des algdbres centrales
simples. 1) Toute sous-algébre de Howe réductive B d'une alggbre centrale simple est produit de
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sous-algebres de Howe irréductibles B; d'algebres centrales simples .

2) Pour toute décomposition W = W1®D1W2 en produit tensoriel , 1a paire
(EndD‘W1 R End(D"D)WZ)

est une paire irréductible duale.
3) Toute paire irréductible duale est de la forme 2)

Cette proposition est une variante du théoréme classique de H. Weyl : une sous-algébre simple
d'une algdbre centrale simple est égale & son double commutant . Elle se déduit facilement de
[B, ch.8,84].

11 est remarquable qu'une paire réductive duale de EndpW soit zussi duale dans EndgW.

Preuve. Soit A = EndpW , ol W est comme en (17).

Soit B — A une sous-algébre opérant semisimplement sur W, alors W =@ m,V; oliles V; sont
des (B,D) -sous modules simples de W , deux & deux inéquivalents sous l'action de B . Utilisant le
lemme de Schur, on voit que le commutant de B dans A est isomorphe 3 @ M(m;, D;) ou D est

un corps. Le commutant de B dans A est donc réductif, et opere semi-simplement sur W . En
particulier, on voit qu'en (17), les hypothéses (i) , (ii) pour une paire duale de A sont redondantes. .

1) (Soit (B,B") une paire duale de A, opérant semi-simplement sur W . On décompose W comme
ci-dessus. Soit A, =Endp mV, . Alors par (17), B, B' s'identifie & la somme directe de leurs

images canoniques B; , B dansles A,, et la paire ( B;, B',) dans A; est irréductible duaie.

2) Soit B=EndD1W1 et B’=End(D1,D)W2 .Dlestclairque B et B' commutent. Si ¥ estune
base de B sur D, et Y' une base de B'sur D,°®gD , alors les y®D1y' ,YEY ,y' €Y' forment

une base de A. Pourque ue A commute avec B, il faut et il suffit que u =y fl(y’)®D1y' , 0l

f, estune application de Y' dans le centre de B . Ce centre est contenu dans D °®pD, donc le

commutantde B dans A estcontenudans B'. Il estdonc égala B'. On fait Je méme
raisonnement en inversant les réles de B etde B'.

3) W est (BB',D)-irréductible, ce qui implique quil est (B',D)-isotypique : W =mW’ ol W' est
(B',D)-irréductible. Alors End(B"D)W' estun corps D; dontle centre contient celui de D.

Inversement B'= E“d(D1,D) W'. On veut écrire W = W1®D1W2 ,olh W, estun Dj-espace i
droite de dimension m , et W, =W'. Le commutant de B dans A est B=EndD1W1 .Le

commutant de B' dans A est B’ :End(D1,D)W2 =EndD2W2 .0l Dy est défini comme en (16).
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Lemme. Soit G = U(W) de type 1 ou 2. Si (H,H) est une paire duale irréductible dans G, leg
algebres B = EndpyW , B' = Endpy W forment une paire duale irréductible de A =EndpW , et
BNG=H,B"G=H.

La réciproque du lemme n'est pas vraie : si k /F est une extension séparable finie de F, et G le
groupe orthogonal de la forme quadratique trK/F(xz) , B=B'=k forment une paire duale dans Endgk

kNG={+id} n'est pas son propre centralisateur dans G = {*id}.

Preuve du lemme. B’ = Endj,;W est une sous-algebre de Howe de EndpW , et BNG=H'.
Soit B =EndpgW ,la paire (B,B) est une paire duale réductive, irréductible dans A = Endp,B
(note : H, B opérent 2 gauche, D 2 droite). Si elle était réductible, une décomposition orthogonale de
W serait fixée par (H,H"), ce qui n'est pas. Elle est réductive, d'aprés la remarque débutant la
preuve de la proposition 18. Par cette proposition, il est clair que

EndpgW = EndppW et BNG=H.

La recherche des sous-groupes de Howe des groupes classiques se raméne 2 une réciproque du
lemme ci-dessus. Elle utilise un résultat géométrique démontré en (IL,5).

19. Classification des sous-groupes de Howe réductifs des groupes classiques. 1)

Toute paire réductive duale de “U(W) est produit de paires réductives duales irréductibles.

2) toute paire réductive duale irréductible non triviale dans U(W) est isomorphe &

a) (U(W,),U(W,)) pour toute décomposition de W en produit tensoriel hermitien W=W,®,W,,
telle que chaque facteur ne soit pas du type suivant :

- orthogonal hyperbolique de dimension 2 sur D' =F; ,
- anti-hermitien de dimension 1 sur un corps de quaternions D', et D=F

b) ou (GLp (X4),GLy (X)) si W est totalement isotrope, et non dégénéré (de type 1), pour toute
D1 1 D2 2.

décomposition d'un Lagrangien X de W en produit tensoriel X=X, ®nX,.

Preuve.

1) se déduit de 17. 2).

2)Si W estde type 2, la proposition se déduit de (18).

Supposons donc que W est un espace £-hermitien non dégénéré.

Aucun sous-espace non dégénéré de W n'est fixe par HH'D , mais il est possible qu'un D-espace
XcW, tel que X°=XnX1 # {0} le soit. Alors I'espace totalement isotrope X° est fixe par HH', Soit
P(X°®) le stabilisateur de X° dans U(W) (II1,1).
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Comme HH' est réductif, son intersection avec le radical unipotent de P(X°) est nul. On peut
identifier (H,H') & une paire duale réductive (K,K") d'un sous-groupe de Lévi M de P(X°®). Mais
M =GLL(X°)xU(W") oll W' est non dégénéré ou nul. Si W'={0}, alors (K,K') n'est pas irréductible
dans U(W). Si W'={0}, W est hyperbolique, X°=X est un Lagrangien et (K,K') est une paire duale
irréductible de GLp(X).

Inversement, une paire duale réductive irréductible (FL,H) de GLp(X) est une paire duale dans

U(W) si X estun Lagrangien de W, et GL(X) plongé naturellement dans U(W) . En effet, soit
une décomposition X =X;®pX, , telle que (HH) = (GLD1 (Xl),GLD2 Xo);si

g=abe UW), aeGL(X) ,de GLp(X*), be Homp(X*,X) , ce Homp(X,X*)

cd
commute aux éléments de H , alors pour tout heH , bh*} = hb ; ceci implique que le noyau et
limage de b sont H-invariants; la décomposition canonique de h fournit une bijection
N:X®pY, =~ X ®pY)* , Y,cX, , vérifiant bn*1=nb.
1l existe b de norme réduite sur F, détgb # £1 . Comme la norme réduite est multiplicative, on en
conclue que Y, = {0} ; donc b=0.On démontre de la méme fagon que ¢=0.
On s'est ramené a supposer que W ne contient aucun sous-espace stable par HH'D. Par le lemme

(18), il existe une décomposition W = W1®D1W2 telle que

H=UW)nB, B= EndD‘Wl et H=UW)n B' , B'= End(D1,D)W2 .

Un sous-groupe de U(W) est évidemment stable sous l'involution adjointe (1.1). Donc B et B’
sont stables sous I'involution adjointe. La bijection entre espaces g-hermitiens et algébres a
involutions implique que pour i=1,2, W, est un D;-espace 2 droite g-hermitien , de produit noté
<, >;, défini & similitude prés (I,1) ,et H=U(W)),H =UW,).

Inversement toute décomposition de W en produit tensoriel hermitien sauf dans le cas exclus dans
le théoréme fournit une paire duale (voir la remarque de 1,15).

20. Décompositions d'un espace symplectique en produit tensoriel.

Soit (W, <,>) un espace symplectique sur F de dimension 2n . Par (19) chercher les paires
duales irréductibles de Sp(W) est équivalent A chercher les décompositions de W en produit
tensoriel hermitien.

Soit tpr € Homg(D,F) tel que la forme bilinéaire (d.d)—-tpp(dd) .d,d'eD, soit non dégénérée
(la trace réduite en général),

Lemme. Si (W 1 <s>1) , (W, <, >5) sontdeux espaces sur D respectivement & droite et a

gauche, €;-hermitiens tels que -1 =g;g, , alors le produit tensoriel W =W, ®pW, muni de la



15

forme

<KW @Wo, W' WS> =ty p(<wy, W' > T(<Wo,W'p>p)), wiwi € W;
est symplectique. Inversement, toute décomposition de (W, <, >) en produit tensoriel hermitien
est de ce type.

Preuve. Montrons la seconde partie (la premigre partie se vérifie directement).
Soit W= W1®DW2 une décomposition de (W, <, >} en produit tensoriel hermitien . La forme

<<, >>induit sur EndgW une involution coincidant avec l'involution adjointe associée @ <, >;,
sur Endp W, , i=1,2. Deux involutions de EndgW different par un automorphisme intérieur. Un
automorphisme intérieur de EndgW trivial sur Endpy W, , i=1,2 est donné par conjugaison par un

€lément non nul du centre de D . On peut modifier les produits <, > telsque <<, >>=<, >

Restriction des scalaires. 1) Pour tout espace (W, <, >) anti-hermitien sur (D,7) et tout
homomorphisme tpr € Homp(D,F) tel que (x,y) — tpp(xy) soit une forme bilinéaire non
dégénérée DXD — F (la trace en général), l'espace (W, toE<> >) symplectique sur F, sera dit
déduitde (W, <, >) et tp/E par " restriction des scalaires ".

2) Une paire duale dans Sp(W) reste une paire duale dans Sp(W"), si W' est déduit de W par
restriction des scalaires, sauf si la paire est la paire triviale ({£1}, Sp(W)).

Liste des paires duales irréductibles de Sp(2n,F), ne provenant pas par restriction

des scalaires de Sp(2n"F"), n'[F:F']=n.

a) paires de type 2 : (GL(m,D), GL(m',D)}, D corps de centre F, [D:F} =d, n = mm'd

b) paires de type 1:

- (O(m,F), Sp(2m'"F)), O(m,F)#0(2,F3) , n=mm’

- (U*(m,D), U~(m',D)) , D'/F extension quadratique ou corps de quaternions muni de l'involution
canonique, Ut(m,D) groupe unitaire d'une forme +-hermitienne & m variables sur D, m'# 1 si D
est un corps de quaternions, mm'd = 2n.

Si W n'est pas symplectique, on peut décrire sans difficulté les décompositions de W en produit
tensoriel, et terminer 1a classification des paires réductives duales dans U(W) sur un corps fini, local
Nous ne le faisons pas, car cela n'est pas utile pour la correspondance de Howe. C'est un peu plus
compliqué que dans le cas symplectique, dii au fait que le groupe de Witt n'est pas trivial.

On peut aussi définir une "restriction des scalaires”.
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II - Lagrangiens (caractéristique # 2).

Soit W un espace e-hermitien & droite sur (D,t) ou un espace & droite sur D de dimension n (type
1 ou type 2). Soit F' le centre de D et FcF celui de 'involution. Nous convenons d'appelér
Lagrangien de W soit un sous-espace totalement isotrope maximal si W est hyperbolique (type 1)
soit un sous-espace quelconque non nul de W (type 2).

Soit = Q(W) I'ensemble des Lagrangiens de W. On a donc Q=0 si et seulement si W et de type
1, et non hyperboligue. Soit Q(r) 'ensemble des Lagrangiens de dimension r. On a donc Q = Q(m),
si W est de type 1, hyperbolique, d'indice de Witt m, et £2(r) est la grassmanienne des sous-espaces
de W de dimension r sinon.

L'action de U sur £ a pour orbites les Q(r). Elle est transitive si W est de type 1.

1. Paramétrisation de £ associée & une polarisation.

Si W=mH , la donnée d'une polarisation compléte de W, i.e. une décomposition W=X+Y ot X,Y
sont deux Lagrangiens (9) , induit une paramétrisation naturelle de Q. Soit S2(V,e)* I'ensemble des
formes sesquilinéaires sur un espace vectoriel V i droite sur D, vérifiant la propriété de symétrie
£-hermitienne (mais pouvant &tre dégénérées).

Lemme. On a une bijection canonique ; 2 = Uy, Qx) SZ(V,-e)* .

Preuve. Notons 7t 1a projection sur X parallelement & Y. Soit ZcW un Lagrangien. Posons pour
2,2€Z , B(z,2) = <n(z),z">. Comme Z est un Lagrangien, si z=x+y est la décomposition associée a
la polarisation compléte, on a

O=<z,2>=<X,y > +<y, X >=<X,y >+ET(<y ', X>)
donc B induit sur V=n(Z) une forme -e-hermitienne. Inversement, Z={x-+y, tels que pour tout
x'eV, 'on ait <xy>=B(x',x)}.

2 . Paramétrisation de Q associée 2 une décomposition orthogonale.
Si W=mH, la donnée d'une décomposition orthogonale W=W ;+(-W, ) en espaces £-hermitiens

induit une autre paramétrisation de Q. On note Z;1 'orthogonal de Z; dans W;.

Lemme. Il existe une bijection Q = {(Z,,Z,,®) , Z, sous-espace isotrope de W; , @ isométrie de
ZHZy sur Zy/Z,}

Preuve. Soit Z un Lagrangien, =;(Z) sa projection sur W parallélement & W, Z; son intersection
avecW; .Ona

a) Zl=n,(2)
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par un calcul élémentaire sur les dimensions. Soient r;,n; I'indice de Witt, 1a dimension de W;. Ona
n;=2r;+n,° , avec n, °=n,° puisque les classes de Witt des W, sont les mémes. Soient d = dimZ, d;
=dimZ, A; = dimZL - dimm,(Z). 1 est clair que 7,(Z)cZ,L, donc A;20. On montre A,=0 en écrivant

d =1,41540°

=dim (1 (Z)+Z, )= d;+2(r;-d; )40, %A +d,y

d'oll (ry-dq)-(rp-d,y) = -A; et aussi = A, par symétrie. D'olt A,=0.
b) Pour z=z;+z, , z7=7y+zseZ,ona<zz>=0,ie. <zl,z'1>-<zQ,z‘2>=O.
La correspondance entre Z; - et Z, de graphe Z induit une isométrie.

c) Inversement la donnée d'nn triplet permet de construire un espace totalement isotrope de W :
Z={zy+2,€ Z, 147, , tels que D(z)+Z,)=2,+Z,} , de dimension n , i.e. un Lagrangien. Cette

construction est l'inverse de la construction précédente.

Sir<r,, les dimensions des Z; prennent les valeurs entiéres vérifiant

OSdISrl s d2 = dl + (r2-r1)

Soit U le groupe unitaire de W. Avec les hypothéses de (2), le groupe unitaire U; de W, est
canoniquement plongé dans U , 'action de U; sur Wj, j#i , étant l'identité. On a uju;=uau; , pour
y;eU; . L'action de U, U, sur Q est donnée par (u;,u,)(Z;,Z,,P)=(u 1ZI,uZZz,uZ(DuI'l). On en déduit

Lemme,. Si 1y <1, , deux Lagrangiens Z, Z' sont dans la méme orbite sous U U, si et seulement si
dimZ;=dimZ,". Il y ar;+1 orbites. Le stabilisateur de (Z,,Z,,®) dans U, U, est
{ujuye Py (Z)Py(Z,), uy=du I(D'l sur Z,°/Z5} .

Si W est de type 2, la décomposition de W en somme directe induit une paramétrisation des
grassmaniennes Q(r) dont les lemmes 2,3 sont la version e-hermitienne.

Lemme. 11 existe une bijection :
Q@) = ((Z},T1,Z,,Ty,¥), Z,cT, sous-espaces de W, ¥ isomorphisme de Ty/Z; sur To/Z,}.
Les dimensions d;.e; des Z;, T; prennent les valeurs entiéres vérifiant
IT=ey+d; =€ +dy, €,d; Sy
Ce sont les invariants des orbites de £(r) pour I'action de U, U, .
Le stabilisateur de (Z,,T},Z,,T,,¥) dans U, U, est
{ 81806 Py(Z|CT)PYZycTy), =¥ P! )
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Indications sur la preuve. Si Ze X(r) , 1<ny+n, , poser Z; = V,NZ, T=ny(Z) .

3. Quelques lemmes géométriques.

Soit W de type 1. Deux éléments (w;) et (v;) de mW (typel) , m21, sont dans la méme orbite
pour l'action naturelle de U, si et seulement si leurs coordonnées ont la méme matrice de Gram
(ou matrice moment) (<wi,wj>)=(<vi,vj>) et engendrent des sous-espaces vectoriels de méme
dimension. Ceci résulte du théoréme de Witt. De fagon équivalente, soit V un D-espace vectoriel &
droite de dimension m, Homp(V,W) est muni d'une action de U : (f,u)—uf, si fe Hom(V,W),

ue U ; Pour que ge Hom(V, W) vérifie g=uf, il faut et il suffit que Z=Kerg=Kerf, et que les espaces
V/Kerf et V/Kerg soient isométriques pour les formes induites par <, >, via f et g. Ces formes
induites peuvent étre dégénérées. On en déduit

Lemme. Il y a une bijection entre les orbites de Hom(V,W) pour l'action de U et I'ensemble des
couples (Z,B), Z sous-espace de V, B forme &-hermitienne dégénérée ou non sur Z, (V/Z,B)
isométrique & un sous-espace de W}. La dernitre condition est automatique si r=m.

La description des U-orbites de Homp(V,W)xHomp,(W,V") oll V,V' sont deux D-espaces 2 droite

de dimension finiemet m',
u(f,g):(uf,gu’l) , siueU, fe Hom(V,W), ge Hom(W,V’).
se raméne i ce lemme grice A l'isomorphisme entre W et W* donné par le produit hermitien.

Soit W detype 2,et V, V' comme ci-dessus. Les invariants d'une U-orbite de
Homp(V,W)xHomp,(W,V") sont Z=Kerf, Z'=Img, @=gf.

Lemme. Les U-orbites de Homp(V,W)xHomp,(W, V") sont en bijection avec l'ensemble des

wiplets (Z,Z',9), Z , Z' sous-espaces de V, V', pe Hom(V/Z,Z)) tels que dimV/Z, dimZ),
dimKerg+dimZ' <dimW }. Cette condition est automatique sim+m'<n .

4 . Lagrangiens fixés par un sous-groupe de Howe réductif.
Soit (U;,U,) une paire réductive duale irréductible dans UW) (I,17).

Soit Q I'ensemble des Lagrangiens de W, le sous-ensemble Q! des Lagrangiens de W fixes par Uy,
est stable pour l'action de U,. Notons par l'ensemble des Lagrangiens de W . Ces ensembles

peuvent €tre vides.

Lemme. On a une bijection canonique : Q! = €, , compatible avec l'action de U,, si W, n'est pas

le plan hyperbolique orthogonal sur F;.
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Preuve: a) type 1. Si W n'est pas le plan hyperbolique orthogonal sur F5, tout sous-espace
invariant par U, est de la forme W, ®Z' ot Z' est un sous-espace de W, (IL,5). Il est isotrope siet
seulement si Z' 'est. C'est un Lagrangien si et seulement si dimZ'=n,/2.

b) type 2. Tout sous-espace invariant par U est de la forme

(W{®Z)+ (W *®Z"), ot Z\,Z" sont des sous-espaces de W,. C'est un Lagrangien si et seulement si
Z” est l'orthogonal de Z' dans W,*.

5. Lemme . Commutant de U(W) dans EndW.
Tlest

a) isomorphe & F3xF3, si W est le plan hyperbolique orthogonal sur Fj,

b) égal 2 EndW , si W est orthogonal de dimension 1,
c¢) isomorphe 2 D sinon.

Preuve. On suit la méthode de Dieudonné [Dieu, p.41-42]. Soit A=EndW l'ensemble des
endomorphismes du Z -module W ; si k est le sous-corps premier de D, ona EndW =End, W

Si ze A commute avec he A, alors z stabilise le sous-espace des points fixes de h. Si z commute
avec U(W) il commute en particulier avec les symétries et les transvections de U(W), et laisse stable
les hyperplans nor. isotropes de W (i.e. sur lesquels la restriction du produit de W reste non
dégénérée) et si W n'est pas orthogonal les droites isotropes. On en déduit que si W est anisotrope,
ou non orthogonal, z laisse stable toutes les droites de W (sur D). Si W est orthogonal, de
dimension =3, on montre que toute droite isotrope est l'intersection de deux plans non isotropes, et
T'on a le méme résultat.
Sidimp W > 1etsiz stabilise les droites de W sur D, alors il existe deD tel que z(w)=wd
pour tout we W . Inversement, il est clair que tout z de cette forme commute avec U(W). Donc
EndW=D.
Soit W un plan orthogonal hyperbolique. Sur une base hyperbolique {e,f} , U(W) est représenté
par les matrices diagonales ou antidiagonales (a,0;0,1/a), (0,a;1/2,0), ae F non nul. Soit ze A
commutant avec U(W). Alors on vérifie facilement que z(xe+yf) = A(X,y)e+B(x,y)f , ou x,yeF
pour toutes fonctions A,B: FXF = F tellesque A(xy) = B(y,x), A(xa, y/a) =a A(x,)y), a€F,
et A(x,y) = Ax,0)+A(0,y). On a donc en posant a=A(1,0) et B= A(0,1)

z{xe+yf) = alxe+yf) + Ble/y+/x) , a,BeF
S'il existe aek tel que a%#1 , alors zestun k-endomorphisme de W si et seulementsi B=0, et

Zgagw UW) = F.
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Sinon, k=F3 , et ZEndW U(m == F3XF3 .

Il reste le cas ot dimpW = 1. Soit W=D(a) , avec t(a)=¢€a, alors

U(W) = D?= (deD, dat(d)=a }.
Soit E(a) le sous-corps de D engendré par D? et le sous-corps premier de D. Le commutant de
U(W) dans EndW estégala EndE(a)W. Pour tout corps k<D, D est le commutant de UW)

dans End, W, sietseulementsi kE(a)=D.

1) Silinvolution T sur D est triviale, on a W orthogonal, UW)={%id} , tout élément de EndW
commute & U(W).

2) Si 7 n'est pas triviale , et a dans le cenwre de D, alors

U(W) = {deD, dt(d)=1} ne dépend pasde a,et E=E(a) non plus.

Lemme. Soit F/F une extension quadratique , ot F est un corps fini ou local non archimédien
de caractéristique différente de 2. Soit F une cloture algébrique de F'. Il n'existe pas
d’homomorphisme non trivial de F' dans F-, trivial sur toutes les unités de F' de norme 1 dans F.

Supposons que F est fini ou local non-archimédien, alors par (1,4) :

- si D estfini, D=F' est commutatif, et de degré 2 sur le corps F des points fixesde t.0Ona
E =F' par lelemme. Le commutantde U(W) dans EndW estégala F.

- si D estlocal non-archimédien, soit D =F commutatif, soit D est le corps des quaternions et
W est hermitien. Par le lemme, D=E,si D est commutatif. 81 D est un corps de quaternions, E
contenant tout sous-corps commutatif maximal de D est aussi égala D.

3) Si D est un corps de quaternions et a un quaternion pur, alors E(a) contient F(a) parle
lemme. On vérifie que E(a) n'est pas commutatif, ce qui implique E(@=D.

Corollaire. Si W n'est pas le plan hyperbolique orthogonal sur F3, il n'existe pas de
D-sous-espace non trivial V de W qui soit stable par U(W).

Preuve : si V est stable, alors V n'est pas totalement isotrope (par I (8),(9)), et VL est aussi stable.

Comme V°=VNV- est totalement isotrope, et stable, il est nul. Donc V est non isotrope,
W=vVe Vi, UW)=U(V)xU( V1)

ce qui est absurde par le lemme ci-dessus si V est non trivial.
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III . Paraboliques.

1. Extension des scalaires.
Soit F~ une cloture algébrique de F et L un corps contenant F, et contenu dans F- . Soit W un
espace £-hermitien de dimension n sur (D,1). Le groupe U(W) est le groupe des points rationnels
sur F d'un groupe algébrique U. On a UL)=U(W ) ot Wy = W®¢L est le D = D&gL -module 2
droite muni du produit prolongeant celui de W. Si 1 est I'involution de A=Endp (W),

UL) = {ae A, 1(a)a=id}.
On définit le groupe SU égal au noyau dans U du déterminant. Notons O(n), Sp(2m), GL(n) les
trois groupes unitaires sur F~. On suppose que F est fini, local ou global.

Lemme. Le groupe U(F)estégal 2

GL(rn) dans les deux cas:
- testde seconde espece, avec r=1 si D=F et r=2si D estun corps de quaternions,
- Westde type 2 avec r?=[D:F]

O(rn) si test de premiére espece, avec e=1,r=1 siD=F et e=-1,r=25si D est uncorpsde
quaternions.

Sp(rn) si T est de premiére espéce, €=-1r=1 si D=F et e=l,r=2si D est uncorpsde

quaternions.

Corollaire. U est un groupe réductif Zariski-connexe, sauf si W est orthogonal ou anti-hermitien
sur un corps de quaternions muni de l'involution canonique. Dans ce cas, SU est un groupe réductif
connexe.

Corollaire. Si W est orthogonal, SUW)cU(W) est d'indice 2, et U n'est pas le groupe des
points rationnels sur F d'un groupe réductif connexe. Si W est €-hermitien sur un corps de
quaternions muni de l'involution canonique, alors SU(W)=U(W) (mais SU=U) est le groupe des
points rationnels sur F d'un groupe semi-simple connexe.

Indications sur les preuves : Si l'involution est de seconde espéce,

Ap = M(n,F)xM(m, F") munie d'une involution 1 permutant les deux facteurs
U(F)=GL{n, F).

SiW =@ F(a;) ou ®mH est orthogonal ou symplectique,

A=~M(n,F) muni de l'involution a—h'ah-! ol h =diag(a;) ou diag(u) , et u=(0,1;-1,0),
Ap_ = M(n,F") muni de la méme involution.

Si D est le corps de quaternions muni de I'involution canonique, Ap. =M(@2n,F) muni de
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I'involution a-}hdiag(u)‘a(hdiag(u))‘1 et hu est -£-symétrique si h est e-symétrique (1,12). SiD est
un corps de quaternions, le déterminant de Dieudonné : A* — D’/ D*, D*) est trivial sur U(W),
donc SU=U. La connexité de GL(n), Sp{(n), SO(n) est bien connue [H 7.5,p.55].

2. Groupes paraboliques.
L'ensemble des drapeaux totalement isotropes @ ={0X;...aX;} , X, cW totalement isotrope,

est muni d'une action naturelle de U.
a) Orbites : par le théoréme de Witt, le seul invariant est {n,<.....<n.} oli n;=dimpX,.

b) Orbites sous SO : si W est orthogonal, une O-orbite est une SO-orbite sauf dans le cas
exceptionnel : W=mH hyperbolique et n =m, oli une O-orbite est I'union de deux SO-orbites.
Alors @ n'est pas SO-conjugué au drapeau @'={0zX";@...@X'|} ot X=X, si i<r et X', est

f

engendré par {e;, 1<ism-1, f } oli {e,f;, 1<i<m) est une base hyperbolique de W telle que

{e, 1<i<m]} est une base de X..

c) Paraboliques. Nous appellerons sous-groupe parabolique de U (resp. SU) le stabilisateur
dans U (resp. SU) d'un drapeau totalement isotrope @ de W, et nous le noterons P(®) (resp.
PHD)).

Par b), PH®)CP(®D) est d'indice 2 sauf dans le cas exceptionnel ol PH{D)=P(D).

Dans le cas trés exceptionnel : W =~ mH est orthogonal hyperbolique, n=m, n=m-1.

Soit @' le drapeau construit en b) et ®" celui obtenu en supprimant X, de ®.Ona
PH(®) = P*@) = P*(@"),
mais seulement P(®) = P(®")

Proposition. Si PH®)= P*(d)l) alors @=0, sauf dans le cas trés exceptionnel, o
D, (D, P, 0"} .

La preuve est donnée au paragraphe 4. La proposition est vraie avec P(®), en supprimant @”.
3. Cette proposition a pour corollaires :

Normalisateurs. P(d) est égal & son normalisateur dans U , sauf dans le cas trés exceptionnel,
oh il est d'indice 2 dans son normalisateur. P*(®) est égal  son normalisateur dans SU.

Classes de conjugaison. P(®) est conjugué dans U a P(®,) si et seulement si ® et @, sont

dans la méme U-orbite. Le seul invariant est donc {n;<.....<n_}. En effet, dans le cas exceptionnel
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@'=ud ol ue O (non 4 SO).

Classes de conjugaison dans SO. P*(®) est conjugué dans SU & P*(®) si et seulement si
@ et @, sont dans la méme U-orbite, dans le cas non exceptionnel. Le seul invariant est alors
{n<...<n .

Dans le cas trés exceptionnel, @ et ®" ne sont pas dans la méme U-orbite. Dans le cas
exceptionnel, non trés exceptionnel, P*(d) n'est pas SU conjugué a PH@").

Paraboliques maximaux. P(X)=P(0zX), 4 conjugaison prés il y en a m si m est l'indice de
Witt de W, classés par dimpX.

Paraboliques maximaux de SO. P*(X), avec dans le cas exceptionnel dimX=m-1
(PONPX)=P(XX") si X est un Lagrangien.) A conjugaison pres, il y en a m classés par
dimp X sauf dans le cas exceptionnel, ol on a une classe pour chaque dimension <m-1, aucune

pour m-1, deux pour m.

4. Preuve de la proposition 2.
Soient @,={ 02Y...2Y} tel que PH(®)=P*(D)).
On montre d'abord quiil existe k tel que pour 1<isk, X;=Y; et pouri>k , X=X, +Z; , ;=X\ +Z;*,
ol l'accouplement sur Z, X Z;* donné par <, > est non dégénéré. En effet, soit i(1) le sup des i tels
que Y{NX;=X,. Pour i=i(1)+1, on a er\Xi=Xi(1), sinon on aurait un drapeau strictement plus fin
que @

(02X, €. &Xi yTY 1K1y, 19 K(1)01 D - EX)
stabilisé par P*(®). C'est impossible (se voit sur un Levi (5)).
Pour i=i(1)+2, on a encore er‘\Xin(l) sinon, Y MX;= i(1}+T ol TmXi_lz{O} et
X; 1 &X, 1 +T&X, est stabilis¢ par PH(®). Cest impossible de la méme fagon. On démontre ainsi
I'existence de k, avec 1<i<k, X=Y; etpourij>k, XimYJ:Xk.
On choisit alors une base B=(ei,fj .} de X, et une base C= {ci,fj*,vt} de Y telles que {e;} soit une
base de X,

<fj, f:jv*:}:aj‘j! N <uk’YS>=<Vl’Xr>={O}‘

Alors l'espace X, ; =(X+Y )N (Xr-%—Yt)l est totalement isotrope, stabilisé par P*(d) et contient X_.
Par le méme argument que précedemment, sauf si W est orthogonal hyperbolique et dim X, =m-1,
on en déduit X =X ilnyanivoiu et X=X\+Z, Y =X +Z*.

On procéde de méme avec X,.1 €t Y. On obtient un espace totalement isotrope X" contenant

r-1,8

X,.; stabilisé par P*(®) admettant une base {ei,fj,ft*} ol {ei,fj} estune base de X4, {ei,fj,ft} une
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base de X. On a
PH®) = PHDINP(Y) = PH({0X @... 2X 1@X"; D

On procéde de méme avec Y, ¢t Y, ;. Onobtient X" yengendré par X qetlesf*de Y

r-1,s-
orthogonaux a X, ;, contenu dans X"} ¢ stable par P*(®). Pour la méme raison que
précédemment, il ne peut y avoir de f,. Donc

1= Xty Yo = Xt 2
Au bout d'un nombre fini d'étapes, on démontre ce que 1'on voulait, sauf si W ~mH est
orthogonal hyperbolique, et I'un des X; a pour dimension m-1.

On décompose W= (X, +X, *)B(Z +Z *)®W°, ol 'accouplement sur Xy XXy * est non dégénéré. 11
faut que W°={0} et SX(Z,-e)*={0} cf. la description de P(®) en (5). On a SX(Z,-€)*={0} si et
seulement si Z={0} ou dimZ=1, =1, D=F.

Clest le cas trés exceptionnel, pour lequel on vérifie directement I'assertion.

5. Description de P(X). Il y a une suite exacte scindée
15oNX)—-»PX)->MX)—>1
N(X) est le radical unipotent de P(X), il est nilpotent & deux pas.
Si W=(X+X+*)@We°, M(X) = GL(X)xU(W®) et on a une suite exacte :
1 -82(X,-€) — N(X) — Homp(W°,X) — 1

L'extension est centrale.

S'il existe un accouplement dégénéré sur XxX* et sur YXY*, noté <, >y et <, >y,
si fe HomD(X,Y) , l'application adjointe f*e Homp(Y*,X*) est définie par

<),y *>y=<x, P4 (y*)>y .

Le sous-groupe de Levi M(X) de P(X) associé 4 la décomposition W=X+W°+X* est formé des
m(g,u) de matrice
diag(gu.g*!)  geGLp(X), ue UW®)

Le radical unipotent N(X) de P(X) contient le sous-groupe distingué Ny(X) formé des n(s),
se Homp(X*,X) s*=-s, de matrice

1 0 s

010

00 1
N, (X) s'identifie 4 au groupe S2(X,-€) des formes sesquilinéaires sur X* | -g symétrique.
Soit Ny(X) € N(X) formé des ny(h), he Homp(W°X) , de matrice
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1 h -hh*/2
0 1 -h*
00 1

Tout ne N(X) s'écrit de fagon unique n = ny(s) ny(h).

On a les formules

(@ m(gwn(sm(gu)'=n;(gsg*)

()  m(gwny(hm(gu)'=ny(ghul)

I'action de M(X) sur N(X) est donc l'action naturelle,
©  ny(hny(k) = ny(h+k) ny (-hick+khi*)/2)

le commutateur de deux €léments de N,(X) est donné par

@ (), ny(k)) =n;(-hk*+kh*)

Lemme. 1) Le groupe des commutateurs de N(X) est Ny(X) si WOz {0}.
2) N(X) est abélien si et seulement si

a) WP= {0}, etalors N(X) =N(X)

b) WO est orthogonal et dimpX =1, et alors N(X) =N,(X) .

Preuve. {N,(X)=0} & {a)} et {N;(X)=0} ¢ {b)}. Il est donc clair qu'il suffit de montrer 1)
en supposant que l'on a ni a) ni b).
Par le théoréme d'orthogonalisation (1,6), il suffit de montrer que le groupe des commutateurs de
N(X) contient les n;(s), se Homp(X*,X) s*=-s,

rangs=1 ,si W non orthogonal

rangs =2 ,si W orthogonal.
Par (d), il contient les n,(s-s*), se Homp(X*X) se factorisant par WO, ie. rang s <dimpW°.
On en déduit (1), sauf si W est orthogonal et
dimDW° = 1, Dans ce cas, le plus facile est de le vérifier directement par un calcul simple.
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Chapitre 2. Représentations métaplectiques et conjecture de Howe

Remarques préliminaires. On renvoie & [H2] ou [LV] pour la théorie sur

un corps de base égal 4 [R ou € . On renvoie & [BZ] pour la théorie des
représentations des groupes localement compacts totalement discontinus.
Précisons simplement que si G est un tel groupe, les représentations de G
qu'on considére ici agissent dans des espaces vectoriels complexes. On note

((,S) la donnée d'un tel espace S et d'un homomorphisme (:G-——>GL(S).

I. Le groupe d'Heisenberg.

I.1. Soit F un corps de caractéristique différente de 2, qui est soit
local non archimédien, soit fini. Dans le premier cas, on note & , ou &,
son anneau des entiers. Soit W un espace vectoriel de dimension finie sur
F, muni d'une forme symplectique < , >. Le groupe d'Heisenberg associé H,
ou H(W,< , >), est 1l'ensemble WxF, muni de la topologie produit, et de la
loi de groupe
(wot) (w',t")=(wtw', t+t "+<w,w'>/2).
Notons 3:F—>H le monomorphisme 3(t)=(0,t). Son image est le centre
de H. Notons $:W ——>H 1'injection ${w)=(w,0). Ce n’est pas un morphisme
de groupes.
Remarques (1) Soit aeF”. L'application
H(W,< 4 >) ———H{W,a< , >)
(wst) ——m—> {(w,at)
est un isomorphisme.
(2) Soient Wl, w2 deux espaces symplectiques, et w=Wf$W2 leur somme ortho-
gonale (cf. chap.l,1.5). L'application
H(Wl,< s >)xH(W2,< s ) e H(W, <, D)
((wl,tl),(wz,tz))r———-;(wlwz,clﬂz)
est un homomorphisme surjectif, de noyau l'ensemble des éléments (3(t),3(-t))

pour teF.
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1.2. Soit y:F —» € un homomorphisme continu non trivial. Un tel caractére
est localement constant: soit U un voisinage de 1 dans €™ ne contenant pas
de sous-groupe autre que {l}, v-l(U) est un voisinage de O, donc contient
un sous-groupe ouvert L de F; y(L) est un sous—groupe de U, donc égal a {1}-
D'autre part, comme F est réunion de sous-groupes compacts, les valeurs de
¢ sont de module 1.

Théoréme (Stone, Von Neumann). A isomorphisme prés, il existe une et une

seule représentation (f,S) de H, lisse et irréductible, telle que

QaS(t)=q1(t)ids pour tout teF.

I1.3. Commencons par construire de telles représentations. Nous aurons
besoin des rappels suivants (cf. [B]).

L'application qui & weW associe le caractére w'r—y(<w,w'>) de W est
un isomorphisme de W sur son dual topologique (le groupe des homomorphismes
continus de W dans le groupe des nombres complexes de module 1). Soit A un
sous—groupe fermé de W, posons

AL={weW; pour tout a€A, W(<w,a>)=l}.
Alors Al est un sous-groupe fermé de W, et s'identifie au dual de W/A. On
a 1'égalité (A*)t=A, si A ,A, sont deux sous-groupes fermés de W, on a 1'éga-
1

.. LA RSN P . Y
lité (A1+A2) —AlnAz, et, si A1+A2 est fermé (ce qui est le cas si A1 ou A2

est compact), on a 1'égalité Aﬁ

+a,= (Alr\AZ)‘L .

Soit A un sous-groupe fermé de W, supposons A=At Soit AH=Ach:H. C'est
un sous-groupe de H, dont 1'image dans H/5(Ker ¥) est un sous-groupe commutatif
maximal de ce groupe. Soient Y, un caractére de AH tel que WKS =Y, SA 1'espace
des fonctions f:H-—>€ telles que

(1) £(ah)=y,(a)f(h)
pour tous aeAH, heH,

(ii) il existe un sous-groupe ouvert compact LeW tel que

£(h6())=£(h)

pour tous feL, heH.

Je dis que si feSA, f est a support compact modulo AH' En effet soient
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L tel que (ii) soit vérifiée, et weW tel que fo.$5(w)#0. Pour chﬂA, on a
fo § (W)= (5 () §(£))=£ ((£,<w, £>)§ (W) =w(<w,£>) ¥, o§ (D) £e S W),
d'od
Y, €)=y, 5 (-0).
Alors 1l'image de w dans W/(LhAf‘ est bien déterminée. Or (LﬂAf'=LL+A, et
Lt est compact. Donc 1l'image de w dans W/A est dans un compact bien déterminé.
Soient weW, L un sous—groupe ouvert compact de W, supposons que WA est
égal a 1 sur AHnS(w)S(L)S(w)_l. I1 en est ainsi si L est assez petit. On

définit une fonction fw sur H par

,L
£, 1 @SEE)=y,(a), si achy, L,
£,,0(M=0, si hetA, 5(w) S(L) .
Cette fonction appartient & 8,+ Donc SA#{O}. La propriété ci-dessus montre
que si pour tout weW, on se donne un sous-groupe ouvert compact Lw assez
petit", les fonctions fw,L’ pour weW et IcL_, engendrent linéairement 1'es-
pace SA'
Soit f la représentation de H dans SA par translations a droite. Il est
clair que f est lisse et vérifie foj(t)=w(t)idSA paur tout t€F. Montrons que
6 est irréductible. Soient S' un sous-espace non nul de SA invariant par H,
et feS', f#0. Soit weW. En translatant f, on peut supposer fa.$(w)#0. Soit
Lw un sous-groupe ouvert compact de W tel que f soit invariante par S(Lw), et
soit L un sous-groupe ouvert de Lw. Fixons une mesure de Haar sur A, Comme A
s'identifie au dual de W/A, la théorie de 1a transformation de Fourier montre
qu'il existe une fonction ¢' localement constante & support compact sur A
telle que pour W& W
1, si w'eAtwtl,
SA W(<w',a>)¢' (a) da z{
0, si w'¢AtwtL.
Posons q(a)=qge3(—a)ﬁ'(a). On peut définir 1'opérateur f(%& de SA‘ Pour
w'eW, on a

Q) (Debun)= §, £(SGr)8(a))%(a) da,
= gA f((a,(W‘,a>)<S(W’))({(a) da’
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f.5(w'), si w'eAtwtl,
= f, w22y, S(a)g(a) da £aS(w")=
0, si w’;A-*‘w+L.
Comme f est invariante par $(L), f(f)(f) est donc non nulle et proportion-

nelle a fw . Comme e@{)(f)es', on obtient fw €S'. Ces fonctions engendrant

sL sL

L. . 2 s
SA, on a 8 SA’ et f est irréductible.
I.4. Exemples. (1) Soit W=X+Y une polarisation compléte. Posons A=X. On

peut choisir tel que y,+5=1. Alors S, s'identifie & 1'espace §(Y) des
Ya YA

A

fonctions localement constantes 4 support compact sur Y. On a la formule
f((x+y,t))f(y')=qK<y',X>+<y,x>/2+t)f(y+y'),

pour tous fe¥(Y), xeX, y,v'eY, teF.

(2) Supposons F local non archimédien. Notons gw le plus grand sous-9-
module de F inclus dans Kery . Soit A un réseau de W, i.e. un sous-@-module
de type fini, de rang maximal. Alors

A'=[weW; pour tout aed, <w,a>es;} .
C'est encore un réseau de W. A 1'aide d'une base hyperbolique, on vérifie

qu'il existe toujours des réseaux A de W tels que A=A".

I.5. Démontrons maintenant 1'unicité de la représentation ¢+ Soit (¢,S)
une représentation vérifiant les conditions du théoréme. Soit (%,é) sa contra=-
grédiente, é est donc l'ensemble des points lisses du dual de S. Notons 3(H,¥)
1l'espace des fonctions f:H-—>»C, localement constantes, & support compact
modulo ¥(F), telles que f(h3(t))=y(t)f(h) pour tous heH, teF. L'application
fr—>f.§ didentifie 3(H,¢) & 3(W). Notons Fd’ resp. es, la représentation de H
dans 3(H,yp) par translations & droite, resp. & gauche. Pour seS$, Eeé, on
définit le coefficient fé’s(h)=§(((h)s) pour tout heH. Je dis que fé,s est
a support compact modulo 3(F). Soient en effet weW tel que fé’sag(w)#O, et L
un sous-groupe ouvert compact de W tel que s et ¥ soient invariants par §).
Pour feL, on a

£ o8 )=8(go 5 (8= (¢ (8 W) §())8)=Y(<w, )3 (4 (E(HSw))s)

=y(<w, 8>} °§<~£)é](€,S(w)s>=q:(<w,e>)fé’so SGa).

Donc w(<w,e>)=1 et welr qui est compact. Il est alors clair que f§ £ 3(H,y)
’
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et que l'application (é,s)k—rfé’s se prolonge en une application linéaire
S5 —> $(H,4) qui entrelace les représentations éaf et p x¢, de HxH. En par-
ticulier pour $#0, 1'application s \-——»f§’s identifie (Q,S) 4 une sous-repré-
sentation irréductible de ((d,S(H,q})). Pour démontrer 1l'unicité de g> il reste
&4 montrer que ¢q est isotypique.

Considérons la représentation (Q,:S(Y)) de 1'exemple (l), et la représentation
(f’,ﬁ(X)) obtenue en échangeant les rdles de X et Y et en remplacant ¥ par
le caractére tr—WYW(-t). On définit une dualité entre 3(X) et 3(Y) par

<S"S>=SXxY s' (X)) s(yIW(<x,y>) dx dy,

pour s’ 3(X), sef(Y), ot on a fixé des mesures de Haar sur X et Y. On vérifie
que (Q',j(X)) s'identifie ainsi & la contragrédiente de ((,3(Y)). D'aprés
les considérations ci-dessus, on a une application (s',s)\—m‘?s,’S qui
entrelace f'of et fsxfd' Mais un calcul explicite donne
fs.’S::S(x+y)-?-l}"(<}~{,y>/2)gx)"Y s'(x)s(y"WKy ", x>=<x",y>)W(x',y'>) dx' dy’,
pour tous xeX, yeY. En identifiant $(X)e$(Y) et H(H,w) & 3(W), l'application
R(X)eI(Y) —> $(H,y) devient essentiellement une transformée de Fourier, et
est donc bijective. Donc (chd est isomorphe a ('&f et, comme (: est irréduc-
tible, fa est isomorphe & ﬁne somme directe de représentations isomorphes

a (f,ﬁ(Y)). Cela achéve la démonstration. Q

I.6. On appellera représentation métaplectique, et on notera (:'W la (classe
de la) représentation de H dont 1l'unicité est affirmée par le théoréme.

L'assertion suivante résulte de la démonstration du théoréme.

Lemme., La représentation €% €4 de HxH dans 8(H,4) est isomorphe & (.q.)&(“,

(Pest le conjugué complexe de ¢). O

Les propriétés suivantes sont immédiates:

(1) soit aeF”, notons Wa le caractére \ya(t)=q)(at), et ja 1'isomorphisme
défini & la remarque (1) du I.l. Alors (’Wojam(»wa (avec un abus de notation:
fy et eWa sont ici des représentations de deux groupes différents);

(2) si w=W1a42, somme orthogonale, notons t le, {‘\2’ les représentations
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des groupes H(W,< ,>), H(wl’< s 2), H(W2,< s2)s et i 1'homomorphisme de la
remarque (2) du I.l. Alors €w,jz <\t@(>f,
(3) ty est admissible;

(4) (w est la représentation contragrédiénte de 8y

I1.7. Changement de modéles. Pour tout sous-groupe fermé A de W tel que
A=A*, on a construit un modéle SA de la représentation fq)(cf.I.B}. Soient
Al’ A2 deux sous—groupes fermés de W tels que A1=A§, A2= ;. Supposons A1+A2
Remarque. Cette condition est évidemment automatique si F est fini. Elle
1'est aussi si F est local de caractéristique nulle. En effet si p est la
caractéristique résiduelle de F (i.e. F est une extension finie deﬂ}p), un
sous—-groupe A de W est fermé si et seulement si A est stable par multiplica-

. . ' .
tion par Zp. Si A1 et A2 sont stables par ZP, A1+A2 1'est aussi.

On choisit WAI, wkz (cf.1.3). Alors qkfvgilAlﬂAz est un caractére de AlnAZ’

) ) -1,
donc il existe weW tel que wAfyAz(a)—W(<a,w>) pour tout aeAf\Az. Pour feSAl,
considérons la fonction

a s £(S(ay. (a)
A9
Elle est invariante a gauche par A1 HnAZ H Elle est & support
¥ E]

pour aeAZ’H.

compact modulo A, _N En effet on a vu que f est & support compact modulo

1,182, 8°

A et, d'aprés notre hypothése, 1'image de A dans A, \H est fermée.
1,H 2,H 1,H
On peut définir une fonction If sur H par

1f (h) =] £(S(an)y, (a) da.
2

A My Ny g

Lemme. L'application I est un isomorphisme de SA sur SA qui entrelace les
1 2

représentations de H sur ces espaces.

Démonstration. Il est clair que I est & valeurs dans SA et commute aux trans—
2

lations & droite. les représentations étant irréductibles, il suffit, pour

prouver que I est un isomorphisme, de montrer que I est non nul. On prend

pour f une fonction fw L (cf.1.3). Pour L suffisamment petit, on vérifie que
>

Ifw’L(l)s*O. a
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I.8. On peut préciser la structure des représentations lisses de H.

Lemme. Soit (r,s) une représentation lisse de H. Supposons que feS(t)=th)ids

pour tout teF. Alors ¢ est isomorphe a4 une somme directe de copies de ﬁv.

Démonstration. Si F est fini, H est un groupe fini, et ses représentations

sont semi-simples. Supposons F local non archimédien, soient A un réseau

de W tel que A=A™, et Y, un caractére de AH prolongeant §. Pour toute repré-
sentation lisse (Q’,S’) de H vérifiant Q'QX(t)=W(t)idS,, notons S'(VA)

1'espace des vecteurs s'eS' tels que Q'(a)s'=qk(a)s' pour tout asAH. Le foncteur

S’*——aS'(Qk) est exact. Utilisons le modéle de construit au I.3. Il est

tw
immédiat que SAﬁyA) est de dimension 1. Notons A=¥(H,§), et Xk 1'espace des
: 1y fo g {nt T
fonctions fe¥ telles que fs(a)fd(a )f Wh(a)qk(a Jf pour tous a,a eAH. Le
lemme I.6 montre que yk est de dimension 1, il est engendré par la fonction fA
définie par .
¥, (h), si hedy,
f, (h)=
A .
0, sinon.

Fixons une mesure de Haar sur W telle que A soit de mesure 1. L'espace ™
muni du produit de convolution est une algébre, et pour (f',S') comme ci-
dessus, % agit naturellement dans $8'. L'opérateur f'(fA) est un projecteur
de S', d'image S'(WA). Soient alors S 1'espace de 1'énoncé, SeS(wk), s¥0,
et S' le sous-H-module de S engendré par s. On a S'=gGK)s=QGKﬁfA)s, donc

! = = = = . s ~ - «
S (\.\JA) f(fA)S Q(fAanfA)s f(XA)s Cs. Par exactitude, et grice au théoréme,
S' admet donc au plus un sous-quotient irréductible, i.e. S' est irréductible.
Soit alors 8" le sous-module de S engendré par S(@Z). D'aprés ce qui précéde,
S" est engendré par ses sous-modules irréductibles et est donc somme directe
de tels sous-modules. D'autre part S"(wA)=S(qk), donc par exactitude
(S/S")(WA)={O§, et SXS"={O} comme ci-dessus. D'od $=S", ce qui achéve la

démonstration. O
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II. Le groupe symplectique, la représentation métaplectique.

II.1. Soit Sp{(W) le groupe symplectique. Il agit sur H par g(w,t)=(gw,t)
pour geSp(W), weW, teF. Soit (GP’S) un modéle de la représentation métaplec=—
tique de H. Pour geSp(W), 1'application h k—~>ﬁégh) est une représentation
de H dans S vérifiant les conditions du théoréme I.2. Elle est donc équiva-
lente & fy i.e. il existe MeGL(S) tel que

(&) M(’v(h)M_l=fq,(gh), pour tout heH.
De plus M est unique & un scalaire prés. On note §Ew(w) le sous-groupe topo-
logique de Sp{(W)xGL(S) formé des couples (g,M) vérifiant 1'équation (4).
A isomorphisme prés, il est indépendant de la réalisation de &V' On a une
suite exacte

® 11— m"—i>s”pw(W)—P_» Sp(W) —» 1.

On peut parfois remplacer le groupe §§Q}W} par un revétement d'ordre au plus

2 de Sp(W) grace a la proposition suivante.

Proposition. (1) Si F est fini, il existe un homomorphisme Sp(w)_-a§§qﬂW)’

qui scinde la suite exacte (B). A 1'exception du cas F=F,, dim_W=2, cet
P 3 F ==

homomorphisme est unique.

(2) 8i F est local non archimédien, un tel homomorphisme n'existe pas.

Par contre il existe un unique sous-groupe §Bv(w) de §5“ﬁw) tel que la restric-

tion de p & ce sous—groupe soit surjective et ait un noyau d'ordre 2. Ce

sous~groupe est fermé, et la restriction de p & ce sous-groupe admet des

sections locales.

Cf. [S] th.33 pour (1),{W}§43 pour (2). 12

Si F est local non archimédien, on sait qu'a isomorphisme prés, il n'existe
qu'un revétement d'ordre 2 de Sp(W), non trivial. En effet un tel revétement
est déterminé par un cocycle dans Hz(Sp(W),{tlg). Or ce groupe est isomorphe
& #/272 {((M] th.10.4). Fixons un tel revé@tement §E(W). On renvoie & [P] pour
une expression du cocycle associé. Le groupe métaplectique est 1'extension

§§(W)=§E(W){x§f obtenue en identifiant {*1}c€” au noyau de la projection de
*]
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§B(W) sur Sp(W). Il existe un unique isomorphisme §§(W)-ﬁ>§6q§W) commutant
aux projections sur Sp(W) et équivariant pour 1'action de €°. L'image par
cet isomorphisme de §§(W) est §§WKW). Le composé de cet isomorphisme avec
la projection §5‘£W)-«>GL(S) est une représentation du groupe métaplectique,
qu’on note a@, et qu'on appelle la représentation métaplectique, ou la repré-
sentation de Weil.

Si F est fini on pose §§(w)=3p(w), §5(w)=5p(w)x¢'. On poursuit la construc-

tion comme ci~dessus., Dans le cas particulier F=,, dim _W=2, on doit choisir

F
1'homomorphisme Sp(W)—-)éEW(W). Nous le choisirons tel que la représentation
ub de Sp(W) qui s'en déduit soit donnée sur les éléments unipotents supérieurs
par les formules usuelles, quand on la réalise dans un modéle de Schrddinger
(cf. plus loin I1I1.6).

Remarque. Soient ¢ un groupe localement compact totalement discontinu, n

n ~
un entier 21, i:gnﬁﬁ)->6 un plongement central du groupe des racines n-ieémes

complexes de 1'unité dans 8, et G le produit &¢ x €°. On a un diagramme

FhQE)

commutatif
l——*9¢5~1;~>§\\\\\*
j'[ il
//’/”

_ ?;/,kn (€) —»1.
1""f*n €©)—C

~

Soit meZ. Une représentation (W,V) de G telle que ﬂei(z)zzmidv pour tout
z€C" s'identifie & une représentation # de & vérifiant ﬂoi(z)=zmidv pour tout
zan(c)' D'ot:

(1) si m, m'eZ, m-m'en?, on peut identifier les représentations (w,V)
de € vérifiant Roi(z)=zmidv a4 celles vérifiant noi(z)=zm'idv;

(2) On peut étendre 3 ces représentations les notions définies pour les
représentations des groupes localement compacts totalement discontinus (lis-
sité, etc...).

La représentation métaplectique vérifie les propriétés ci-~dessous:

1) w,, est lisse, et méme admissible;
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(2) soit aeF*. Les groupes symplectiques de W muni de < , > et de W muni
de a< , > sont égaux. Les représentations tw de H{W,a< , >) et an de
H(W,< , >) peuvent se réaliser dans un méme espace S (cf. I.6.1). Alors le
groupe §§wﬂw) construit & partir de la forme a< , > et du caractére ¢, et
le groupe §§ a(W) construit & partir de la forme < , > et du caractérexya,
qui sont tou: deux des sous-groupes de Sp(W)xGL(S) sont égaux. Autrement
dit, changer < , > en a< , > équivaut & remplacer ¥ parqya;

(3) le groupe GSp(W) des similitudes symplectiques agit sur H par
¥(w,t)=(fw,N(¥)t), pour ¥€GSp(W), weW, teF, ou N(Y¥) est le rapport de simili-
tude de ¥. Réalisons {v dans un espace S. Pour ¥eGSp(W), 1l'application

dans S. Si (g,M)egiwﬂW), on a d'aprés

ttr——>ewﬂrh) est une réalisation de qu({)

(A)
M fEmN = g (g ¥n)
pour tout heH, d'od

-1 -1
MQVN(K)(h)M —eWN(Y)(f g¥h).

Donc (x—lgx;M)e§3 )(W) et (g,M)h——é(Y—l

yN (¥

)(W). Par composition avec les isomorphismes de ces groupes sur

g¥,M) est un isomorphisme de §ﬁy(w)

jad
sur Sp

G (¥

"~
Sp(W), on obtient qu'il existe un automorphisme de §E(W), d'ailleurs unique

(sauf si F=E§, dim_W=2), relevant la conjugaison par ¥, qu'on note encore

F

~ ~ln .
gr—>¥ gY% et la représentation §')—>w
yN(¥)

(4) soit aeF”. Appliquons (3) pour ¥=a idw. Nécessairement X—l§5=§ pour

(X‘lgx) est équivalente 2 W

& P N . 2 .z
tout geSp(W). Donc uzb est équivalente a wq}sl b=a . Il est par contre aisé
k4
de vérifier que W n'est pas équivalente & “ﬁ/Si b n'est pas un carré de F*

(par exemple en calculant des modules de Jacquet "tordus” de w

et w cf.
WP ¥’

chap. § )3
(5) La contragrédiente de aJWest cuw(en utilisant 1'identification du
(1) de la remarque ci-dessus):
(6) Soient wl, W2 deux espaces symplectiques, et W=Wf$wz leur somme ortho-

gonale. Pour i=1,2, soit Si 1'espace d'un modéle de la représentation métaplec-

tique de H(Wi,< s »). Réalisons la représentation métaplectique de H(W,< , >)
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dans S=Sf982 (cf. 1.6.2). On a un plongement
Sp (W )»Sp(W,) ——>Sp (W),
et un homomorphisme
GL(SL)XGL(SZ)————>GL(S)
de noyau 1'ensemble des (z idsl,z_lidsz) pour ze€™, D'ol un homomorphisme
(Sp(wl)xGL(Sl))x(Sp(Wz)xGL(SZ))————>Sp(w)xGL(S).
L'image par cet homomorphisme de §5W(wl)x§5q;w2) est incluse dans §§q[W). En
d'autres termes, il existe un homomorphisme (unique si F#WB):
3:85.w)x8p (W,) —>5p (W)
de noyau €* plongé antidiagonalement dans le produit de gauche, commutant
avec les projections sur les groupes symplectiques, et équivariant pour

1'action de €*. La représentation uhfj est équivalente au produit tensoriel

externe w 1@(&3 , avec une notation évidente.
¥, 52

II.2. Soit (G#,S) un modéle de la représentation métaplectique de H. Soit
geSp(W). Fixons une mesure de Haar sur 1'espace vectoriel W/Ker(l-g). On
vérifie que la fonction sur W: wr—> ¢(<w,gw>/2) est constante sur les classes
modulo Ker(l-g). Si F est fini, on peut définir un endomorphisme M, ou M(g1,
de S par

Ms= W/Ker(l_g)i¥(<w,gw>/2)rw(so(l—g)w)s dw
pour tout se€$. Supposons maintenant F local. Soit L un réseau de W/Ker(l-g).
Pour s€S, on définit un élément MLscS par

MLS= SL q(<w,gw>/2)6¥(5a(l—g)w)s dw.

Lemme. Pour tout seS, il existe un réseau LSC,W/Ker(l-g), et un élément

MseS tels que si L est un réseau de W/Ker(l-g), si Lsc:L, on a l'égalité

MLs=Ms.
Démonstration. Soit Ll un réseau de W/Ker(l-g) tel que <f,gf>/2£éipour tout
eeLl {cf. I.4.2) et que s soit invariant par ﬂyi§°(l_g)e] pour tout P&Ll. Un

tel réseau existe. Pour L:DLl, on a l'égalité

© Ms= ¥ wertlgrrh>/2) g (fe(l-g) (r+O)s al.
wel/L, "1

Comme
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So(1-g) (w+l)= Se(1-g)w. § o(1-g)C . 5(<(1-g)w, (1-g)E>/2),
1'intégrale intérieure vaut
Y(<w,gw>/2) (W(go(l—g)W)s le y(x/2) df,
out
X=<w,gl>+< , gur+< £, gf>+<(1-g)w, (1-g){>=2<(1-g)w,E>+< £, g (>,
Remarquons que y(<{,gf>/2)=1. Le bicaractére (W] 2w,) > W(<(1-g)wy,w,>) de

W/Ker(l-g) est non dégénéré, Alors la fonction

o1

L W-g)w,0>) af
1

est & support compact, i.e. il existe un réseau Lsc:w/Ker(l—g) tel que 1'inté-
grale ci-dessus soit nulle si weLs. On peut supposer Llc LS. Supposons LSC L.
Les termes de la somme (C) sont nuls si W¢LS/L1. Alors MLs=ML s, d'ou le
lemme. OO °

Ce lemme définit un endomorphisme M, ou M{g]l, de S.

II.3. Dans les démonstrations des trois lemmes suivants, on traite le
cas d'un corps local, le cas d'un corps fini étant plus simple.

Lemme. Pour tous geSp{W), heH, on a 1'égalité

M{glg, (h) =g, (gh)M[g].
Démonstration. Posons M=M[gJ], supposons h=§(w0), et soit seS. Pour un réseau
L assez grand, on a
£ (8 (gwg) Ms= ¢ (8 (gw )M s
= §L W<w,gw>/2), (8 (gwp) Se(l-g)w)s du.
On a
$(gwy) Se(1-g)w=S(gw +(1-g)w) S(<guw (1-g)w>/2)
=8((1-g) (w-wp)+w ) S (<gwy, (1-g)w>/2)
= $(1-g) (wwy) S(w) S(<gwyy s (1-g)w>/ 2+<uy, (1-g) (w=wy)>) .
Enfin
<w,gw>+<gw0,(1-g)w>+<w0,(1-g)(w—w0)>=<w—w0,g(w—wo}>.
Alors

ﬁv(S(gwo))Ms= YL qK<w—w0,g(w—wO)>/2)ﬁy(go(l—g)(W—wo))fw(gwo)s dw.
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Pour 1. assez grand, on a wOeL. On effectue le changement de variable
e g 2 Le deuxiéme membre devient ML°6¢KgW0)S' Pour L assez grand, c'est

Ma(’w(S WO) s. O

IT.4. Lemme. Pour tout geSp(W), il existe c(g)eﬁi:tel que

M[gﬂlIoM[g%C(g)idS.
Démonstration. Posons M=M[g], M'=M[g_1]. Soit seS, posons s'=Ms., Soient
Lsc:W/Ker(l—g), resp. LS,C:W/Ker(l—g_l), deux réseaux vérifiant les conditions
du lemme II.2 relativement & s et g, resp. s' et g_l. Remarquons que wir—>»gw
définit un isomorphisme de W/Ker(l-g) sur W/Ker(l-g_l). Si L est un réseau
de W/Ker(l-g) tel que Lé}gnlLs,c:L, on a donc
Ms=MLs, M's'=M'gLs',
d'ol (& une constante positive prés provenant d'un changement de mesure de
Haar):
M'Ms= EL ¢K<gw',w'>/2)&ﬂ$(g—l)w')s' dw'
= SLxL q(<gw’,w'>/2+<w,gw>/2)&ﬁ§(g—l)wiS(l—g)w)s dw dw'
SLxL Y(<gu' W' >/ 24<u, gw>/ 24<(g-1)w" , (1-g)w>/2)p (S o (1=g) (w-w"))s dw dw'.

Prenons pour variables w', w'=w-w'. On obtient

M!'Mg= ngL W(<(l—g)w",w'>+<w",gw">/2)&ﬂ$o(l-g)w")s dw' dw'.
Comme le bicaractére (wl,wz)%~——9(<(1—g)wl,w2>) de W/Ker(l-g) est non dégé~
néré, 1'intégrale intérieure en w' vaut la fonction caractéristique d'un
certain réseau L*, multipliée par la mesure m(L) de L. Alors

M'Mg= m(L)SLnL, qK<w“,gw">/ZXLﬂSo(l—g)w")s dw".
Quand L devient grand, 1¥ devient petit. On peut choisir L assez grand pour
que e L et que le terme & intégrer soit constant, égal & s. Alors

M'Ms=m(L)m(I*)s. O

Corollaire. Pour tout geSp(W), on a (g,M[g])eéEqﬂW).

Démonstration. D'aprés le lemme ci-dessus, M[g] est inversible. L'assertion

résulte du lemme II.3. O3

II.5. Lemme. Scient g1» g2€Sp(W). Supposons que g,8,8,8;- Alors

M[gl]M[gz] =M [gle[gl1 .
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Autrement dit, si deux éléments de Sp(W) commutent, deux images récipro-
ques {quelconques) de ces éléments dans §E(w) commutent aussi.
Démonstration. Soient s€S, L un réseau de W/Ker(l—gz). 8i L est assez grand,

M[gi]M[géls=M[g£&ML[g2]s= SL ¢K<w,g2w>/2)M[gl](W(go(l—gz)w)s dw.

D'aprés le lemme I1.3, on obtient
Mg IMig,)s= § W(<w,g,w>/2)y(Sog, (1-g,)w)Mg |s du.
Effectuons le changement de variables w=g;1w’. Son jacobien wvaut:
-1 -1
ldet(gl IW/Ker(l—gz))l=ldet(g1lW)l !det(gllKer(l-gz)].
Le premier terme vaut 1 car gf&Sp(W). En utilisant la description explicite
du commutant de g, ([ss7 § 1v.2), on montre que le second terme vaut 1 lui
aussi. Comme gy et &9 commutent, on obtient
Mg IM(g,]s= SglL V(w82 Dty Eollmgy)wMilg Js du = M, Tg,IM0e Ts.

Pour L assez grand, c'est M[g,[M[g,]s. O

I1.6. Modéle de Schrddinger. Dans ce paragraphe et les suivants, on intro-

duit différents modéles de la représentation métaplectique. Certains termes
seront notés M{g] dans chacun des cas. Mais ils sont en général différents
selon les modéles et sont différents du M{g] défini au II.2.

Soient W=X+Y une polarisation compléte. Identifions Y a X*, Réalisons
gy dans B(X*) (cf. I.4.1). Un élément g de Sp(W) s'identifie & une matrice
(i 2} ., avec acEnd(X), deEnd(X*), beHom(X*,X), ceHom(X,X*). Pour umn tel g,
fixons une mesure de Haar sur X/Ker(c), et définissons M{gleEnd J(X*) par

M[g}f(x*)=YX;Ker(c)!y(<a*x*,b*x*>/2+<c*x,b*x*>+<c*x,d*x>!2)f(a*x*+c*x) dx
pour fe F(X*), x*eX*, Alors (g,M{g])égbw;W) (cf.{P1 th.2.2).

En particulier, en normalisant convenablement les mesures, on obtient

les formules plus usuelles:

0 a"‘_1 '

M[g‘Sf(x*)= ‘detxa ) 1/2f (a*x*),

- pour a€GL(X), et g=(a 0 )

- pour bGSZ(X)C:Hom(X*,X), et g=(é ?\,

M{gE (x%) =Y (<bx*,x*>/2) £ (x*),



b+l o

M{g)E(x¥)= §y W<, 07 %) dx.

- pour beIsom(X*,X), et g=( 0 b),

Les deux premiéres formules définissent une représentation du sous-groupe
parabolique P(X) de Sp(W) (cf. chap.l, III.3). On peut les obtenir de la
facon suivante: considérons le produit semi-direct HP et son sous-groupe
A=(XxF)P. L'application X:A~»€" définie par

A((x,0)[® b )=ldet allfgqﬁt)
0 a*—l X

est un caractére de A. On peut identifier 3(X*) & 1'espace des fonctions
lisses f sur HP telles que £E¥)=28)E0E) pour tous sel, XeHP. Le groupe
P opére par translations 3 droite dans cet espace de fonctions, donc dans
4(X*). C'est 1'opération donnée par les formules ci-dessus.

Notons g(X} 1'image réciproque de P(X) dans §E(W). On a donc P(X)P(X)xC.

II.7. Modéle de Schrddinger "mixte'". Soit X un sous-espace totalement

isotrope de W, non nul et non maximal. Identifions W & X+WG+X* (cf. chap.l,

111.5). Soit (QS,SO) un modéle de la représentation métaplectique de
H(WO,< s> ). Réalisons la représentation métaplectique de H(X+X*,< , >) dans
B(X*). Alors j(X*)eSO est un modéle de la représentation métaplectique de
H(W,< , >») (cf. I.6.2). Identifions 3(X*XDSO 4 l'espace 3(X*,SO) des fonctions
de Schwartz sur X* a valeurs dans SO. Utilisons les notations du chap.l,
I11.5. I1 y a un homomorphisme naturel j:P(X)w~ﬁ>Sp(WO) (G(n)=1 si neN(X),
j(m(a,u))=u pour ueSp(WO), acGL(X)). Notomns ici p:§§W(WO)——4>Sp(WO) la
projection. Soit P'(X) 1l'ensemble des (g,ﬁ)eP(X)a§5q[WO) tels que j(g)=p(X).
Pour certains éléments (g,¥) de P'(X), on définit M{g,¥}¢End K(X*,SO) par
les formules suivantes, ou feﬂ(x*,so) et x*eX*:

- pour aeGL(X), ueSp(WD), g=m(a,u), Ga(u,MOCu]),

MYg,ﬁ)f(x*)=ldetXa]1/2Mo

{ulf(a*x*),
- pour seSZX(:Hom(X*,X), g=n1(s), =1,
M[g,ﬁ\f(x*)=QK<sx*,x*>/2)f(x*),

(comme au I1.6, ces formules se retrouvent par un procédé d'induction);
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- pour heHom(WO,X), g=n2(h), g=1,
~ _ 0 $
MLg,u]f(x*)—Qw( oh* (x*)) £ (x¥).
Ces formules se prolongent en une représentation (g,ﬁ)h~—>M[g,ﬁ] du groupe
P'(X). On a (g,M[g,ﬁ])e§§qﬂw) pour tout (g,U)eP'(X). En particulier 1'image

réciproque P(X) de P(X) dans §5(W) est isomorphe a P'(X).

1I1.8. Modéle latticiel. Supposons F local de caractéristique résiduelle

différente de 2. Soit A un réseau tel que a=at (cf. 1.4.2). Gr3ce & notre
hypothése sur la caractéristique résiduelle, on peut choisir le caractére
g, du 1.3 tel que ¢A08(3)=1 pour tout a€A. L'espace Sy du I.3 s'identifie &
1'espace des fonctions f:W—>€, localement constantes, & support compact,
telles que

f (a+w)=W(<w,a>/2) f (w)

pour tous weW, aeA. Pour geSp(W), définissons M[g]eEnd(SA) par

Mig]E (W)= 2 W<a,w>/2) (g (atw)) .
aeA/gANA

Alors (g,M[g))e s?{;q,(m.

En particulier, soit K le stabilisateur de A dans Sp(W). C'est un sous-groupe
compact maximal de Sp(W). Si geK, on a simplement

©) M{gIEa)=E( W)
Cela définit une représentation de K, et 1'image réciproque de K dans §E(W)

est isomorphe i Kax€™,

I1.9. Soient G un sous-groupe fermé de Sp(W), ¢ son image réciproque dans
g%(W). On a une suite exacte
1= —F — ¢ —»l.
On dit que G est scindé dans §§(W) s'il existe un homomorphisme rﬂ;——>§
qui scinde la suite ci-dessus. Dans ce cas G ene”™
Remarque. On peut définir une notion analogue en remplacant §§(W) par §}(W).
Si G est scindé dans §§(w), il 1'est & fortiori dans §§(W). La réciproque

est fausse car l'application
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2 2
(G, §*1}) —»H (6,C)
n'est pas injective en général. C'est la justification de notre préférence
A
pour l'extension Sp(W).

Soient §={\O§X1§,...§Xx} un drapeau totalement isotrope, P($) son norma-
lisateur dans Sp(W). Si Xr n'est pas maximal, décomposons W en Xr+WO+X¥,
soient j:P(Q)——~7Sp(W0) la projection naturelle, et P10§) son noyau. Si Xr
est maximal, posons P1(§)=P(§). Les formules des paragraphes II1.6, II.7 mon-

2 ol . re
trent que P1(§) est scindé dans Sp(W). Et ce scindage est normalisé par P@),
i.e. si on note & le scindage, on a 1'égalité EG(g)§~1=6(ng-l) pour tous
8€P1(§): ﬁé§k§), ot q=p(§). La méme propriété s'ensuit pour le radical uni-
potent N{(2) de P(%). Plus précisément:

Lemme. Il existe un scindage r:N(§)-——>§§(W) normalisé par P(&). A 1l'exception

du cas F=E§, W de dimension 2, ce scindage est unique, et est & valeurs dans

N\
Sp(W).
Démonstration. Soit & un tel scindage. Pour ne N(& ) et E{e'i”(§), on a :
-1 -1, ~ 1 -1
slqrg” 0 )=Fem)T e() 7,
ol q=p(¢{). Le membre de droite est bien déterminé car «(n) 1'est 3 un élément
A
central prés. C'est un é1ément de Sp{(W), comme tout commutateur, car
il & sy . . . N o
Sp(W)/Sp(W) est abélien. Donc ¢ est bien déterminé, et i valeurs dans Sp(W),

1

sur les éléments de la forme qnq_ln- . A l'exception du cas indiqué dans

1'énoncé, ces éléments engendrent N(F).Q

I11.10. Supposons F local de caractéristique résiduelle différente de 2.
Soient A et K comme en II1.8. Alors K est scindé dans §E(w>.

Lemme, Le scindage de K défini par la formule (D) de I11.8 est 4 valeurs dans

SOP

Remarque. Si le corps résiduel de F a au moins 4 éléments, K est égal & son
sous~groupe des commutateurs, et le lemme est immédiat (cf.[M] lemme 11.1).
Démonstration. Notons ¢ ce scindage. Pour tout modéle (ew,S) de la représentation

métaplectique de H, il y a, & une constante prés, un unique vecteur sAgs fixé
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. L. Vi s1a.z _
par €W°S(A). Pour geK, 6(g) est déterminé par 1'égélité wwcc(g)sA Sy
On peut trouver une polarisation compléte W=X+Y telle que A=XNA+YNA. Identi-

fions Y et X*. Dans le modéle de Schrddinger I1I1.6, 1'élément s, est la fone-

tion caractéristique f de X*NA. Le groupe N(X)NK a deux scindages possibles:

X*nA

le scindage ¢ , et celui, qu'on note ici &', décrit en I1.6. On constate

RO

que pour ngN(XNK, qvoc‘(n)f Cela caractérise ¢(n), d'ol s(n)=¢'(n),

X A~ Fxana
A ~
et §(n)eSp(W), d'aprés le lemme I1.9., En inversant les rdles de X et X%,
on a la méme relation pour tout neN(X*A\K. Or N(X)AK et N(X*)NK engendrent
A

K. Donc ¢(g)eSp(W) pour tout geK.(Ql

Remarque: cette démonstration montre que le scindage choisi est indépendant
T . o Ak

de §, pourvu qu on ait A=AT,

Pour F local quelconque, une construction un peu plus fine que celle de

I1.8 montre qu'il existe un sous-groupe ouvert K «Sp(W) qui soit scindé

dans $p(W).

III. La conjecture de Howe.

III.1. Soit (HI’H2> une paire réductive duale de Sp(W) {cf. chap.l, I.17).

~ A AL
On s'intéresse & leurs images réciproques H ,H2 dans Sp(W), et aux restric-
- d ~ ~ n~
a .
tions de uﬁ) Hl et H2

Lemme. Pour 1i,j€{l,21, i#j, ﬁ; est le commutant de Hj dans §5(W).

Cela résulte du lemme II.5.0

S8i F est fini, H et H, sont évidemment scindés, puisque Sp(W) 1l'est.

Si F est local non archimédien, supposons w=wlebw2, avec wi gi_hermitien
(de type I), et Hi=U(wi} pour i=1,2. Alors Hl est scindé sauf si D est com—
mutatif muni de 1'involution triviale , £l=-1 (i.e. Wl est symplectique) et

. . g P
dlmez est impaire. Dans ce cas H :fSp(Wl) (cf. chap.3).
- * =

Pour F quelconque, supposons W Xl(% XZ +(X1 % XZ) , et Hi GLD(Xi) pour
. . g .
i=1,2. Alors H1 et H2 sont scindés dans Sp(W). En fixant un scindage convenable,
on voit grice 4 un modéle de SchrBdinger que la restriction de w, a H,xH, est la

1772

représentation de ce groupe dans 1'espace de Schwartz f(XfBXZ) définie par
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mmy/2 T S
wq)(hl,hz)f(xpxz)=ldet hll \det hzl f(hl xla;h2 XZ)
ol mi=dimDXi, et det hi est le déterminant de hi considéré comme endomorphisme

du F-espace vectoriel Xi'

I11.2. Soit G un sous—groupe fermé de Sp(W). Notons i:C"-—>G 1'injection
évidente. Dans la suite, les représentations (m,V) de E'qu'on considérera
seront supposées vérifier 1'hypothése:

Mei(z)=z 1dV
pour tout z¢C". On note &W(é) 1'ensemble des classes d'isomorphie de représen-—
tations admissibles irréductibles (w,V) de G telles que Homa(S,V)#€O§, ol
(a@,S) est la représentation métaplectique de §5(W).
2 [ —rd

Soit (Hl’HZ) une paire réductive duale de Sp(W). Soit THEquHl,HZ). I1
existe des représentations admissibles irréductibles L de ﬁ} et wz de ﬁé,
uniques & isomorphisme prés telles que T soit obtenue en factorisant la

. A A A A et
représentation w,eW, de H;xH, par la projection HixHy —>H xH, (cf£.{F] th.1).

¥
Ce qu'on notera abusivement1r=ﬂi®ﬂé. Comme 7 est un quotient de a,, Wi et Vz

- T ol . o — v PR
en sont également, d'ou Vieﬁaw(ﬂi) pour i=1,2. Donc @w(Hlez) s'identifie

4 un sous-ensemble de @qﬂﬁl)xéawﬂﬁ;)-

Conjecture (Howe). Si F est local non archimédien, Rg}ﬁ::ﬁz) est le graphe

d'une bijection entre @W(ﬁl) EE_'@%jﬁé).

(cf. [H1] paragraphe 6).
On donnera plus loin une forme plus précise de cette conjecture, incluant

le probléme des multiplicités. On a besoin des lemmes techniques ci-dessous.

II1.3. Lemme. Soient G,, GZ deux groupes localement compacts totalement

i

discontinus, (wl,Vl) une représentation admissible irréductible de Gl’

fwz,vz) une représentation lisse de G,, V un sous—espace GxG —invariant de

2’ 2

|

stvz. Alors il existe un sous-espace V2 de VZ’ invariant par GZ’ tel que

- [
v V1®V2.

Démonstration. Posons
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[ R
vy {vzevz, pour tout VfEVl, VFQVZEV}.

Cet espace est invariant par GZ’ et V svéc:V. Quotientons par VLGVé. On est

1

ramené au cas ou Vé=§0}, et on veut montrer qu'alors V=§0}. Si V#{0}, soit

veV, v#0. On peut écrire
2 i1
v= Z V1®V2,

i=1

i, . P i ]
avec des vecteurs vl linéairement indépendants, et VZ#O pour tout i=1l,...,n.

. . i .
Soit K un sous-groupe ouvert de G, tel que pour tout i=l,...,n, V] appartienne

1

K N
au sous—espace Vl des vecteurs de V, invariants par K. Soit Xk 1'algébre des

1

distributions sur Gy & support compact, biinvariantes par K. La représentation

est irréductible ([BZ] I1.2.10) et VK est de dimen-

P K
déduite de L2 de Xk dans V 1

1

sion finie. Donc 1l'application “l:XK-—éEndCVT est surjective, et il existe

fe}CK telle que

1 0, si i#l,
mEOv=y
VI, si i=1.

Alors vimwé=vl(f)ve\h Soit vfsvl quelconque. D'aprés 1'irréductibilité de‘wl,

R 1
il existe une distribution f' & support compact sur G1 telle que ﬂa(f')v1=vl.

1€V'

U TS| .
Alors vlavz—’n‘l(f )(Vlavz)-é V. D'ou VL€V,

, contradiction. Db

ITII.4. Lemme. Soient GI’GZ deux groupes localement compacts totalement dis-

continus, (vl,Vl) une représentation admissible irréductible de Gl’ (n,V)

une représentation lisse de Glez. Supposons que (\Ker(f)={0§, ol f parcourt

HomG (V,Vl). Alors il existe une représentation lisse (WZ,VZ) QE»GZ’ unique
1
a isomorphisme prés, telle que W soit isomorphe au produit tensoriel externe

ﬁlglb'
Démonstration. Pour tout lemodule Ul’ notons Ul[Gl] son plus grand quotient
sur lequel G1 agisse trivialement. Soit (*1,61) la représentation contragré-

v
diente de (’n’l,Vl). Comme W, est irréductible, on a (V1®V1)IG1]&€. Supposons

1
que T, existe. Alors
N v »
(Vlev)[GI] a~ (V1®V1®V2)W£§ = VeV ){GleV,~ V,.

~ ’ ’ . V *
D'ot 1l'unicité de V2. Réciproquement posons Vé=(meV)[Gl}, soit p:%fDV ~—>V2
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la projection naturelle. L'espace Vé est naturellement muni d'une action

lisse “é de GZ' On définit une application linéaire
v
. ¥
@iV — Homc(Vl,Vz)
Vi (V) —p(V@v)).

Cette. application entrelace Tr avec l'action de G,xG, sur Homc(ﬁl,vi) déduite

™72

de ﬁl et ﬁé. Soient veV, K un sous—groupe ouvert de Gl fixant v, ex 1'idem~

potent associé de 1'algébre des distributions & support compact sur Gy Pour

Gleﬁl, on a

$() (V))=p (¥ @v)=p (¥ @wle, )v)=p (i, (£ )V @v),

ol éK est 1'image de ey par l'antiautomorphisme g)——»g-l. Mais §K=eK, d'ot

_ o v
4 ) =4(v) () (e ) V).
Autrement dit Q(v) se factorise par ﬁi(eK)' On a un plongement naturel
¥
Vlové —-9Hom(Vl,Vé). L'admisssibilité de LN implique que son image est le
sous—espace des feHom{§l,Vé) tels qu'il existe un sous-groupe ouvert compact

K de Gy tel que f se factorise par ﬁl(eK). Alors ¢ se factorise par

T

?‘:V-——’V‘@Vz. Montrons que ?' est injective. Soit veV, v#0. Il existe par

1

hypothése feHomG (V’Vl) tel que f(v)#0. Fixons un tel f, et v, tel que
1

5laf(v)#0. Par fonctorialité, f définit une application

1

' ¥ - A -
£ .(Vf&V)[Gl} — (V;oV)[G]~C.
On a f'op(Gf&v)=%1of(v)#0. Donc p(%fbv)#o, et ¢(v)#0, Donc ¢ est injective et

¢' 1l'est & fortiori. Alors V s'identifie 4 un sous-G,xG

1 Z—module de Vf&V‘,

et 1'existence de an,Vz) résulte du lemme III,.3. O

(a4
I11.5. Socient (HI’HZ) une paire réductive duale, et (ﬂl,V1)€ &\éﬁl}'

Posons

S(Bl)=f\Ker(f), ol f parcourt Homﬁl(S,Vl),

sLe ;) =S/ ).
L'espace S(nl) est stable par ﬁl (chacun des Ker(f) l'est), et par Aé (qui
permute les f car ﬁE commute & ﬁl). Par passage au quotient on obtient une
représentation de ﬁlxﬁ; dans S[nl). Soit @Té,Vé) la représentation lisse de

~

H, telle que S{wi}t‘Vfgﬁé (cf. lemme III.4).
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Conjecture. §i F est local non archimédien, il existe un unique sous-espace

Vg de Vé, invariant par ﬁé, tel que vé/v; soit irréductible.

Panad
Si cette assertion est vraie, on note V =Vé/V",“W la représentation de H,

2 2

dans VZ‘ On dit que w, correspond é‘Wl.
Remarques. (1) Cette conjecture implique la conjecture III,2.

(2) Gréce & II1.1.6, et au chap.l,I.17, si la conjecture est vraie pour
toute paire réductive duale irréductible, elle est vraie pour toute paire
réductive duale. De méme pour la conjecture III.2.

(3) Plusieurs cas particuliers de cette conjecture sont aujourd‘hui démon~
trés (ou quasi-démontrés...).

(4) L'analogue pour F=R a été démontré par Howe ([H2]).

(5) L'analogue de la conjecture pour F fini est faux (voir [H3]).

(6) Supposons la paire duale irréductible de type I. Il résulte des travaux

¥

2 introduite

de Kudla (cf. chap.3) que si T, est cuspidale, la représentation W
ci~dessus est irréductible (ce qui est plus fort que la conjecture ci-dessus).
Et quelle que soit “1"“5 est de longueur finie.

(7) Supposons la paire duale irréductible de type I, "non ramifiée” (cf.
chap.5). Alors la conjecture est vraie (Howe). Si de plus ™, est "non rami-
fiée", “2 1'est aussi.

ITI.6. En admettant que la conjecture ci-dessus soit vraie, plusieurs
questions se posent sur la correspondance vl(wyw2. Par exemple:

(1) soit W, une représentation admissible irréductible de ﬁl. A quelles
conditions a-t-on W, € G&fﬁl)?

(2) soit Wleﬁavdﬂ), supposons W, et T, cuspidales. La représentation‘n2
se déduit-elle de T, par une fonctorialité a la Langlands? Plus concrétement
peut-on calculer le caractére {ou un caractére tordu) de T, en fonction de
celui de Wl?

(3) Kudla a montré que la correspondance“ﬂ1<—>n2 est plus ou moins compa-

tible 3 1'induction. On obtient alors une correspondance entre sous—quotients
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de certaines représentations induites. Il serait intéressant d'avoir des

précisions sur cette correspondance.

(4) comment la correspondance varie~t-elle en fonction de W? Une question

liée est de savoir si on peut adapter la théorie des paires réductives duales

au cadre des groupes de similitudes GSp(W). La premiére difficulté est que

pour 1l'extension métaplectique d’ordre 2 égp(W)~—>GSp(W), 1'analogue du

lemme II.5 est faux.
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Chapitre 3. Correspondance de Howe et induction

I - Restriction de I'extension métaplectique aux paires duales.

1. Soit (W,<,>) un espace symplectique sur un corps local non-archimédien F (toujours de
caractéristique différente de 2) et (H,H') une paire duale dans Sp(W). La restriction de I'extension
métaplectique de Sp(W) 2 HH' est scindée si la paire est de type 2 (ch.2,I1,7). Que se passe-t-il
pour une paire de type 1 ?

11 existe par (ch.1,1,20) un corps 4 involution (D,7) tel que F soit contenu dans I'ensemble des
€léments du centre de D, fixes par T, et une décomposition en produit tensoriel hermitien

W=W,®,W, telle que H=U(W,),H =UW,).

Par (ch.2,IIL,1) , Iimage inverse (H,H'™) de (H,H") dans le groupe métaplectique de Sp(W) est
une paire duale. Pour ne pas confondre H™ et I'extension métaplectique de Sp(W,), lorsque W,

est symplectique, nous noterons souvent dans ce chapitre par Mp(W) l'extension métaplectique de
W (au lieu de Sp(W)™).

Théoréme. L'exiension H™ est scindée sur H, sauf si H= Sp(W > ol W, estun espace

symplectique sur une extension F' de F, et dimgW, impaire, ol I'extension n'est pas scindée.

Preuve. . Le résultat semble nouveau dans le cas général, mais il est bien connu pour H
orthogonal ou symplectique; il est démontré dans [K] que le cocycle métaplectique est scindé sur le
groupe spécial unitaire, si W, est hermitien sur une extension quadratique de F.La démonstration

générale n'est pas trés différente de celle de [K]. Chaque type de groupe sera examiné séparément.

Si W, est hyperbolique, X un Lagrangien de W, , W;®X est un Lagrangiende W, et par
(ch.2,11,6) H™ est scindée sur H . Ceci traite le cas ot H est orthogonal .

Si W,° estla partie anisottope de W, , H" = U(W,%), W" =W ,® W,°,lapaire (HH") est
duale dans Sp(W"). Par (ch.2,11,1,6)) , H™ est scindée si et seulement si I'image inverse de H
dans Mp(W") est scindée. vOn peut donc supposer W, anisotrope. On diagonalise W, (ch.1,1,5).
Par (ch.2,II,1) si g,=1 et dim W, = 1, la classe de I'extension H™ ne dépend pas de W, . Elle est
d'ordre 1 ou 2 . Par (ch.2,11,1,6)) si dimp, W, est paire, H™ est scindée sur H. Sinon, la classe de
I'extension est celle que I'on a pour dimp W, =1. Ceci traite le cas ol W est symplectique sur

E=F.SiE#F, le théortme résulte de la compatibilité du cocycle métaplectique avec la restriction
des scalaires, donnée au lemme suivant.

Rappelons (ch.1,1,20) qu'une paire duale (H,H') non triviale de Sp(Wp) est aussi une paire duale
dans Sp(W) , pour toute extension finie E/F (munie de la trace g € Homg(E, F)) si W est

déduit de Wy, par restriction des scalaires. Posons yg = Yol
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11 est commode d'appeler représentation métaplectique de Sp(W) associéea v, la
représentation projective de Sp(W) dans S vérifiant (ch.2, I,1 (A)), pour tout modele (pw,S) dela

représentation irréductible de caractére central y du groupe d' Heisenberg H(W).

Lemme. La représentation métaplectique de Sp(Wp) associée & Y est égale 2 la restriction &

Sp(Wy) de la représentation métaplectique de Sp(W) associée & .

La correspondance de Howe pour une paire duale (H,H') non triviale est donc invariante par
restriction des scalaires.

Preuve. On a yg(<, >g) = W(<, >}, et 'on compare les formules de la représentation

métaplectique sur un modele de Schrodinger (ch.2,11,7). Voir aussi la formule explicite du cocycle
métaplectique au paragraphe 3.

2. Soit E le corps formé par les éléments du centre de D fixes sous l'involution. Par restriction
des scalaires, on peut supposer que
-F=E.
Rappelons que l'on s'est ramené &
- H ni orthogonal, ni symplectique, donc D est une extension quadratique de F ou un corps de
quaternions de centre F, T est I'involution canonique,

dimp W, =1,
et 'on veut montrer que H™ est scindée sur H . Si cette propriété est vraie pour Wy hyperbolique,
elle est vraie pour tout W, . En effet, U(W,) se plonge dans U(W,; ®(- W) en opérant par
I'identité sur le second facteur , et I'on utilise (ch.2,11,1,6)). Onestramené &
- W; hyperbolique .

Si W, estanti-hermitien sur (D,t), on peut supposer que Wy =D(1), W=(W;,tpxp<,>; ).
Supposons que W/ soit le plan hyperbolique anti-hermitien sur D , de base hyperbolique {e.f}.
Muni du produit de W, , le sous-F-espace vectoriel W' de W, de base {e,f} est un espace
symplectique. Soit P le stabilisateur dans U(W;) de la droite €D, alors (ch.1,IIL5), le radical

unipotent N etunLevi M de P sont
N={(1x0,1),xe F}, M = {(d,0,0,x(@)]) , de D¥}.
Ona

U(W,) =P Sp(W") = DXSL(2,F).

Lemme. Le groupe unitaire H d'un plan hyperbolique anti-hermitien sur une extension

quadratique, ou un corps de quaternions D/F , est isomorphe au sous-groupe de GL(2,D)

engendré par SL(2,F) et M = {(d,0;0,5(d)"}) , de D*}. On a une suite exacte :
13SLE2F)->H -DYF*—>1.
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Nous montrerons au paragraphe 4 que I'extension métaplectique est scindée sur H = U(W ), si W,
est un plan antihermitien (d'apres [K], ce résultat est montré dans [T]; nous donnerons une autre
preuve). Par un théoréme général de Prasad et Ragunathan [PR,th.9.5] ceci implique que SU(W,)™
est scindée sur SU(W ), pour tout espace anti-hermitien W, sur une extension quadratique D/F .
Le déterminant induit une suite exacte :
1 SUW) -»UW) Dl 1,
ott D! estle noyau de 1a norme Npyp : D*>F¢. Comme HI(SU(W,),C X) =0, on déduit de la
suite d'Hochschild-Serre, la suite exacte :
1 - HX(DL,EC %) - HAUW,),C ¥ > HZ (SUW,),E ) .
Si cest le 2-cocycle métaplectique restreint 2 U(W. 1) » sa restriction & SU(W ) étant triviale, il
existe un 2-cocycle y sur D! tel que
c(g.g") = y(détg,détg") modulo un cobord.
Si H« W est un pian hyperbolique, la restriction de ¢ a U(H) est triviale : ceci implique que %
(donc ¢) est trivial. Donc, U(W )" est scindée sur U(W,) si W, est anti-hermitien sur une
extension quadratique.

Le cas des espaces hermitiens sur une extension quadratique se raméne 2 celui des espaces
anti-hermitiens (ch.1,1,3,2)).

1l reste & considérer le cas o W est €-hermitien sur le corps des quaternions D . On va se
ramener au cas précédent. Si W est hermitien, W, =D(i) ol ieD est de trace nulle, soit F =F()
et ieDtelquej?eF, ji=-ij;alors D=F +jF. Onnote par r: D-—F' la projection sur le
premier facteur. L'espace (W, r(i<,>;) est un espace anti-hermitien sur F' que l'on notera W'.
Ona UW P € UMW) . L'espace W est I'espace symplectique sur F, d'espace vectoriel W, , de
produit trD/Fi< , > = trF./Fr(i< »>1) - On a montré que U(W')™ est scindé sur U(W') . Onen
déduit que U(W,)™ estscindé sur U(W,).

Si W, est anti-hermitien, on fait le méme raisonnement, en plus simple. On choisit n'importe quelle
extension quadratique F/F, F'CD, et I'on note W' = (W, 1(<, >,) I'espace hermitien sur F', etc...

Ceci termine la démonstration du théoréme, si 'on admet le résultat pour un plan hyperbolique
anti-hermitien sur une extension quadratique.

3. Formule explicite pour Ie cocycle métaplectique [Rao).

Pour pouvoir présenter la formule, quelques définitions sont nécessaires. Soit W un espace
symplectique de dimension 2n sur F, Q l'ensemble des Lagrangiens de W (ch.1,ID),
({e;},{e;*}); < <n une base hyperbolique de W, X, resp. X*, le Lagrangien engendré par iss &,
resp. €;*, P = P(X} , N = N(X) son radical unipotent. Pour ge $2¢X), soit nge N associéa q par
I'isomorphisme N(X) = Sz(X) défini par la polarisation W = X+X* (ch.1,III).
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On a une décomposition de Sp(W) en doubles classes mod P :

Sp(W)=uj=0 C; Ci={ab ,rangc=j}, ainsi C,=P.

NS (Bag | ’ g]
cd

Pour S ({1, .., n},s0it tge Cg, 1Tg(e)= -e*, siie S,

e, ,sinon.

L'invariant de Leray.

Soient X, X, € Q, on vérifie facilement que

(i) {ilexiste neN, Xy=nX, } & { XX = X2, }; sicette intersection est nulle (l.e. X
transversal 3 X; etd X, ),n estunique.

(i) (ilexiste peP,X, =pX; } ¢ {dimp XX, = dimg XX, }

Définition. Si (X, X, X,) est un triplet de Lagrangiens deux a deux transversaux, I'€lément
ne N de (i) s'identifie dans la polax\isation

W=X+X; & unélément qe S%4(X) non dégénéré. La classe d'isométrie de q est l'invariant de
Leray du triplet.

Soit (X, X1, X5) » (Y, Yy, Y,) deux triplets de Lagrangiens deux a deux transversaux. On vérifie
facilement que

(iii) {il existe peP, Y,=pX,,Y;=pX;, Y, =pX, } & { les deux triplets ont méme invariant
de Leray }

On étend la définition de l'invariant de Leray aux triplets (Xo» X1» X5) de Q non transversaux deux
4 deux. Soit M = (X NX D+ XX+ (Xonxz) , et
Wy = ML/M Tespace symplectique associé, Les images Z; = ((X;&M)ﬁMi}/M des X, sontdes

Lagrangiens de Wy, transversaux deux 2 deux. Par définition, leur invariant de Leray (noté p)

estcelui de (X, Xy, X,).

On démontre [R] que la propriété (iii) reste (presque) vraie. Soit (X, Xy, Xp) (Yy, Yy, Y5) deux

triplets de Lagrangiens,

(iv) {il existe peP, YO =pX,, Y= pXy, Yy =pX, ] <> { les deux triplets ont méme invariant
de Leray, et dim X;nX; = dim Y;NY; pour tout 0<i,j<2, dim X ,NX;NX, = dim X ,NX;MX, }

On dira que qe S%(X) est de classe p sila forme quadratique non dégénérée associée 2 q estde
dimension (dimW,,)/2 etde classe p.
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Théoréme. Si g, , g, € Sp(W) , il existe p,p;,ppe P, S,8'<{l,.,n},qe S2(X) de classe
l'invariant de Leray du triplet (X, g,X, g,X) tels que
B1=PTsNyP1> 852=Pg Py
Preuve ([Rao]). Soient les deux Lagrangiens X, = g;X , X, = g,X. Le théoréme consiste 2
démontrer que les triplets (X, X, X,) et (X, canxl, e X5) vérifient (iv). On décompose
{1, ...,n} en 5 parties éventuellement vides :
S, =lensemble des n, = dim XnX;NX, premiers éléments
S, =Tensemble des dim X;NX, - n,, €léments suivants S,
S, =l'ensemble des dim XX, - n, €éléments suivants S
S; =l'ensemble des dim XX, - n,; €léments suivants S,
$4 = les €léments restants.
Onprend S=8;U8;u8,, §'= $;US,US, , qnon dégénéré et de classe l'invariant de Leray
de (X, Xy, X,) surl'espace X, engendré par les ¢;& Sy,
q(x,z) =q(z,z) = 0 pour xeX, ,z dans l'espace Z, engendré parles ¢;& S,

Cocycle métaplectique (premiere formule).
Soit X un Lagrangien de W,y un caractére continu non trivial de F, et y linvariant de Weil
[R] . Pour (g.ghe Sp(W), soit gq(g,g") linvariant de Leray du triplet (X, glX), gX)).

Théoréme [P], [Rao] . La classe du 2-cocycle c(g,g") = ¥(w(q(g,g))/2) dans HZ(Sp(W), Cc*
est non triviale. Elle est d'ordre 2.

On note que

a) pour p,pp.py € P(X),ona q(piep, P gpy = a(eg)

b) c(g,g) est une racine huitidme de I'unité, dépend du choix de w, X, mais sa classe dans
Hz(Sp(W), C ) est I'unique classe "métaplectique” d'ordre 2.

=} cn déduit du théoréme le lemme du paragraphe 1. Un Lagrangien X de W est aussiun
Lagrangiende W, etsi ¢ estle cocycle de Sp(Wy) associé a (X ,yug /F ), ¢ celui de Sp(W)
associé 2 (X, y), le théoréme implique

c(g.g) = cg(g.g) , 8.8 € Sp(Wg) < Sp(W).

Deuxi¢me formule. Nous allons donner maintenant un cocycle équivalent au précédent, a
valeurs dans {+1}. Soit

X : Sp(W) = FYF<2, x(p Tg p') = dét(pp'ly) modulo P2
d =dé(-q(g.g)) € FYF2 , h =h(-q(g.g)) € {+1}, le déterminant et I'invariant de Hasse
(ch.1,L,6) de -q(g.g)
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(,): PYP2Zx PYFP<2 - (%1} le symbole de Hilbert
r=r(gg)= (1/2)(s + s' -s" -dimq(g,g)), od ge C;,g'e C5,88'e Cy,
olt s estlecardinalde S,et s, s" ceuxde S' , 9",

Théordme [Rao]. On peut choisir le cocycle ¢ : Sp(W)xSp(W) — {£1} fourni par ia formule
explicite
c(g.g) = (x(g), X(8)) (x(&)x(g) , x(g8)) (1), d) (-1,-1yf (#D/2 p

Exemple : pour SL(2,F),ona r=0 saufsi g,g'¢ Pmais ggePol r=1,

{ q= 0} © {s=s'=s"=1}}, et I'on obtient la formule de Kubota [Kub]:

c(g.g) = (x(g) , x(g)) (x(g)x(g" , x(gg")

ol x(g)=dezsic=O , g=fa b
cP2sicx0 (c d]

4. Nous allons montrer en la calculant que la restriction de ¢ & U(H) est cohomologiquement
triviale, si H est le plan hyperbolique anti-hermitien sur D, lorsque W est l'espace
symplectique canoniquement associé 8 H par restriction des scalaires.

Onpose n=1o0u2 selonque D/F est quadratique ou un corps de quaternions [En fait, il suffirait
de supposer D/F quadratique, mais cela ne simplifie pas].

On fixe une base hyperbolique {e,f } de H et une base de D/F

{Li} ,i%=-ae FX, si n=1

{(Lijjj} ,?=-0e F* 2=-Be FX,ij=-ji ,si n=2

La base hyperbolique associée de W est

{e,eifor;f,fi} ,si n=1

{e, ei/ox, €j/B, eijfof ; f, fi, fj, fij} .si n=2

Soit h:{a b'}e SL2F), k=x+iyeD ,sin=1

cd k=x+iy+jz+ijt e D ,si n=2
Soient H, K les plongements de h, kdans Sp(W), sur les bases données
H=[al bd 1=id ., 6 = diag(l,0) sin=1
81 d1 1=id 44 8= diag(l,0,B,0p) si n=2

K=fpk) 0 ¢(k), {(k) = matrices de la multiplication par k
0 4(tk'l))] dans D surles bases {1,i/0j/B,ii/aB}, {1,i].ij}

Calculde x.

x(K) = dét o(k) = k1(k) P2 ou P2 selonque n=1ou2

xH) =P ,sic =0

Supposons ¢ # 0, posons 1T = (0,1;-1,0), écrivons h = (u,v;0,w)t(r,s;0,1) ,
alors un calcul facile montre que H =(u6‘1,v1;01,w6)1(r1,55'1;01,t1) ,
T=1g,ISi=2n.Donc x(H) = o P2 ou P<? selon que n=1o0u2,
x(H)x(K) = x(HK) = x(KH)
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Calcul de linvariant de Leray q(g.g") .

q(KH,HK") = q(H,H) . Un calcul facile montre que -q =~cc'c” N,

ol N estla norme (réduite si n = 2) de D/F . Son invariant de Hasse est
h = (cc'c”, cc’'e"a) ,sin=1,eth= -1 ,s n=2.

Sidimg>0,alors r=0,

Sidimq=0,alors r=2n si cc'#0,c" =0 etr=0sinon

Calculdec.

Sin=1, cKHHK)= (-1,-00) (o, N(kk)) N&) ,NK"), cc'=0,c" =0
(Nk) , aN(k)) , c'c"#0, c=0,
Nk, N(k"Y), c=c'=c"=0
{cc'e”, o) (N(k) , N(kY)), cc'e"#0

Sin=2, cKHHK)= 1ou -1selonqueccc'=0 ou=0.

Montrons que la classe de ¢ est triviale, i.e. c(g,g) = b(gg)/b(g)b(g" , i.e. ¢ =8b.
Si n=2, on peut prendre b(KH) = b(HK) = 1 ou -1 selon que c=0 ou non
Si n=1, on vérifie que la restriction de ¢ 4 SL(2,F) eta DX est triviale.

Ona ClsLepxsuep =0, Cclp«xpx=3B
ol p(H) = (c,-a) sicz0, et p(H) = (d,-0r) sic=0.

B(K) = YW(NGOX2AW(xD) (N(K))
Yy étant le facteur de Weil déja rencontré, % € Hom(F%,C %), x2(d) = (d,-) , de FX, Ces
trivialisations sont compatibles. Soit €(HK) = e(KH) = (Nk,a) ou 1 selon que c#0 ou non. Alors
sil'on pose b(HK) = p(H) B(K) e(HK) ,ona ¢ =8b.
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IT - Remarques sur les représentations des groupes p-adiques.
Soit F un corps fini ou local non archimédien, de caractéristique = 2.

1. Definitions [BZ1], [BZ2] .
Soit G un groupe localement compact totalement discontinu, AlgG la catégorie des
représentations lisses complexes de G, n*e AlgG la contragrédiente lisse de ne AlgG . Soit
IrrG T'ensemble des représentations lisses complexes irrréductibles de G. Pour tout sous-groupe
fermé H < G, on a les foncteurs : AlgH — AlgG
- ind(G,H, ) : le foncteur d'induction & support compact
- Ind(G,H) : le foncteur d'induction 2 support non compact
- ig 1> Ig p * les foncteurs d'induction unitaire 2 support compact, 4 support non compact .
Ona:

igym* = Ig q(m™*) pour me AlgH
Si & est un homomorphisme continu N — € * défini sur un sous-groupe fermé Nde G, et
HcG un sous-groupe fermé normalisant N et &, on définit des foncteurs : Alg G — AlgH :
- = n(N,E): d'espace E(N,E) engendré par les vecteurs a(n)v-§(n)v, neN, ve E , o0 E est
Vespace de &, et muni de Yaction de H par restriction. On supprime & de la notation si & est
trivial.
- RO AN d'espace les coinvariants EN,& =E/ENE)

Alors, "—my est l'adjoint A gauche de Ind(G,H, ) ; on note par THG celui de IGH .

N est dit limite de ses sous-groupes compacts, si toute partie compacte de N est contenue dans un
sous-groupe compact de N . Cest une hypoth@se trés utile dés que l'on utilise des foncteurs de
coinvariants, car elle entraine qu'ils sont exacts, via l'astuce :

ve E(N.£) « il existe un sous-groupe fermé ouvert N,de N telque fN é'l(n) n(n)vdn=0.
A2

Les foncteurs d'induction sont toujours exacts.

2.Induction, restriction pour un produit semi-direct. Soit M un sous-groupe fermé de G
normalisant N, HcM , M~N = {1}, ne Alg(NH).

Lemme. 1)ind(NM, NH, My = ind(M, H, nlyy)
2) ind(NM, NH, m)(N) = ind(M, H, n(N)
Preuve. 1) est facile, l'isomorphisme est F — f(F) = Fly

2) On utilise le faisceau associ€ & une représentation induite ((BZ1]). Le membre de gauche définit
un faisceau sur H\M , muni d'une représentation de M . L'action de H sur la fibre au point
He H\WM est égale d a(N).
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3. L'algebre S(G,C ) des fonctions localement constantes 3 support compact sur G , & valeurs

complexes (le produit est la convolution) est munie d'une représentation naturelle p de GxG:
pg.Ef(®) =1f(g,"1ggy)

On plonge diagonalement G dans GxG; la représentation ind(GxG,G,1) est isomorphe a p .

Lemme. Pour tout n € IrrG, le plus grand quotient n-isotypique de plg,; estisomorphe &

a®n* comme GxG-module.

Preuve. On note par V l'espace de n, V* celui de n* . L'espace des endomorphismes de V
d'image de dimension finie est VOV* . Le GxG-homomorphisme non nul

fe$(G,C ) — n(f) = 5f(g) n(g) dg e VOV*
Montrons que son noyau S(x) est égal A l'intersection N(r) des homomorphismes non nuls
AeHomg, ;(8(G,C ), V).Ona
a) A(fv0) =n()A(9) , pour f, ¢ € S(G,C ). Si n(f) = 0, alors pour tout ¢, fupe KerA, en
particulier pour un ¢ tel que f.¢ =f . Donc¢ fe N(x)
b) Soit ve V non nul. Alors A, :f— n(f)v appartient 3 Homg,,(S(G,C ), V). Si feN(n), on
an(f)=0.

4. 8i G est un groupe réductif connexe, la théorie de I'induction permet de construire InG , &
partir du sous-ensemble Irr°G formé des représentations irréductibles cuspidales :

n e AlgG est dite cuspidale, si pour tout sous-groupe parabolique P ¢ G, distinct de G, de
radical unipotent N, ona my = (0}.

11 est équivalent de dire que = est finie (ses coefficients sont A support compact, i.e. & se plonge
dans plg,4), dans le cas local non-archimédien, sile centrede G est fini.

Les groupes figurant dans les paires duales du groupe métaplectique ne sont pas toujours
algébriques ou connexes : les exceptions sont Mp(W) qui n'est pas algébrique, O(W) qui n'est pas
connexe

Les résultats de [BZ2, §2] sont tous valables pour G = Mp(W), si l'on utilise la définition
suivante pour un groupe parabolique : un parabolique de Mp(W) est l'image inverse P~ d'un
sous-groupe parabolique P de Sp(W) ; une décomposition de Levi P = MN se remonte en une
décomposition dite encore de Levi: P~ = M™o(N), ol ¢ est une section comme en {ch.2,11,9). On
fixe un un drapeau complet totalement isotrope <I>o dans W . Pour tous les sous-groupes

paraboliques standards P, Q (stabilisant des drapeaux ®,d' extraits de @) ona
PG/Q™ = PASp(W)/Q.
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D'autre part I'automorphisme intérieur de G induit par un élément ge Mp(W) ne dépend que de sa
projection dans Sp(W) . Ceci permet de donner un sens dans Mp(W) aux résultats de [BZ2,§2]
qui restent tous valables, en définissant le groupe de Weyl de Mp(W) égal & celui de Sp(W).

5. Représentations de O(W) .
Leur théorie se ramene 4 celle de la composante connexe SO(W) d'indice 2. Soit sign le caractére
non trivial de O(W)/SO(W) , et € un élément de O(W) n'appartenant pas 3 SO(W). On note p®
I'image de p € ImSO(W) par conjugaison par € :

pEese ) = p(s), se SO(W)
Laclasse de p® ne dépend pas du choix de ¢.

Lemme. (i) Soit e IrO(W),ona
{rlgo estiméductible} <> {x non équivalent A n®sign} ;
alorssi p=mlg,, n+n®sign=ind(0,SO,p) et p=pf
(ii) Soit peIrSO(W),ona
{ind(O(W),SO(W),p) est irréductible} <> { p non équivalent 2 pt};
alors si  =ind(O(W),SO(W),p),  wigg = p+p® et n = n®sign .

6. Exemples: Groupes orthogonaux en petite dimension.
Pour les obtenir tous, il suffit de décrire les espaces orthogonaux & similitude pres. Soit n = dim W
et W=W°+mH, ot W° estanisotrope, H 1'espace hyperbolique orthogonal de dimension 2.

-n=1,SOW) = {1}, O(W) = {£1} , on a deux caracteres sur O(W) , le caractére trivial et le non
trivial: sign.

- n=2 , SO(W) est commutatif. $i W = H est isotrope, sur une base hyperbolique

SO(W)={F 0],ae 7y, e=}:0 1}
0 al 10

Les représentations irréductibles de SO(W) s'identifient aux caractéres  de FX sur lesquels €
opére par Y — ;{'1 . Par le lemme 5, les représentations irréductibles de O(W) sont & équivalence
pres,

- de dimension 1, prolongements des caracteres d'ordre < 2 de F¥:ilyena 2 [F<: FP<?]

- de dimension 2 , induites des caractéres non quadratiques de SO(W),

Si W est anisotrope, c'est une extension quadratique F/F munie de la norme Npgp:F—=F,

SO(W) =~ KerNp i, € est la conjugaison canonique, et 'on a la méme classification en remplagant

F* par KerNp ..
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- n=3 , W = D° muni de la norme réduite D° —+ F, ol D° est 'ensemble des quaternions de trace
nulle d'une algebre de quaternions D/ F ; W est isotrope (m=1) si et seulement si D = M(2,F). Les
automorphismes intérieurs de D stabilise D° et forment SO(W) = D*/F* (PGL(2,F) si m=1). On
peut prendre pour € la multiplication par -1, O(W) = SO(W)x({:t1} . Donc les représentations
iréductibles de D* triviales sur le centre, s'identifient aux représentations irréductibles p de
SO(W) .
-n=4 . Sim=l1, alors W = D muni de la norme réduite ND/F {{m=2} & {D=M{2F)}).
L'action naturelle d — adb’! de D*<D* sur D identifie
SO(W) = { (a,b) e D*XD%, Np/g(@) = Npp(b) 1

1a norme induit une suite exacte :

{1} > (KerNp/p)? - SO(W) — FX - {1}
La conjugaison canonique © appartient 3 O(W) mais n'appartient pas 4 SO(W). Par conjugaison
sur SO(W), elle envoie (a,b) sur (1(b)"},1(a)}). Son action sur (KerNp, /F)Z est (a,b) — (b,a).

Si m = 1, il existe une extension quadratique F/F telle que
W={(a 2z}, ade F,ze F }, munidudéterminant ad~NF/F(z)
L(z) d}
i.e. 'ensemble des éléments de M(2,F') fixes sous I'involution x —> “t(x).
Le groupe G = ( ge GL(2)F) , Npyp(détg) = 1 } opere sur W par l'isométrie
x = 't(g)xg. Le groupe SO(W) est engendré par l'image de G (= G/KerNp) et par la
multiplication par -1 si -1¢ Ng/gF.
L'application (a,d,z)— (d,a,1(z)) appartientd O(W) etnon a2 SO(W).

Pour n25 , les espaces orthogonaux sont isotropes, i.e. m=21 . Il existe encore des isomorphismes
classiques pour n =5 ou 6 (voir [Dieu],IV,§8,p.109)

Sin=35, m=2 lien avec Sp(4) ; m=1 ,lien avec U(D(1))

n=6, m=3 , lien avec SL(4), m=2 lien avec un groupe unitaire sur une extension quadratique
U(2ZH), m=1,lien avec SL(2,D).

7. Induction dans les groupes orthogonaux.

Nous dirons qu'un sous-groupe de O(W) est parabolique s'il est le stabilisateur d'un drapeau
totalement isotrope de W, La définition analogue pour SO(W) fournit les sous-groupes
paraboliques non triviaux de SO(W), sauf dans le cas exceptionnel W =H, ol SO(W)estle
stabilisateur d'une droite isotrope, et commutatif : tous ses caractéres sont "cuspidaux”, tandis que
O(W) ayant SO(W) comme sous-groupe parabolique (avec la définition donnée) de radical
unipotent nul, n'a aucune représentation "cuspidale”.
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On fixe une base {¢;} 1<i<m 9'un sous-espace totalement isotrope maximal, d'oi: un drapeau complet
totalement isotrope @, un tore déployé maximal A, dans SO(W). Le groupe de Weyl de O(W)
sera par définition le quotient du normalisateur de A par son centralisateur dans O(W). On
remarque qu'il est isomorphe a celui de SO(W) saufsi W ~mH est orthogonal hyperbolique .
Dans ce cas, il contient le groupe de Weyl de SO(W) comme sous-groupe d'indice 2. Les résultats
de [BZ2,§2] sont vrais d&s que l'on peut choisir un systéme de représentants admissible au sens de
[BZ2,2.11] pour PNO(W)/Q pour tous les sous-groupes paraboliques standard P, Q (stabilisant un
drapeau extrait de ®,). C'est clair si P ou Q est différent de son intersection avec SO(W), ou bien

si le normalisateur du Levi de P ou Q dans SO(W) est différent de celui dans O(W). Ceci
implique que les résultats de [BZ2,§2] sont vrais, sauf peut-&tre si W =mH est orthogonal, m pair.
Dans ce cas, par restriction 2 SO(mH), on vérifie encore que [BZ2,§2] reste vrai.

II1. Paires duales de type 2.

1. Soit (H,H') une paire duale irréductible de Sp(W) de type 2 (ch.1,20). Autrement dit, soit D
un corps de centre F, m, m' 21 deux entiers , H = GL(m,D), H' = GL(m',D) . On considére la
représentation naturelle ¢ de HH' dans I'espace S=S(M{m,m"; D), € ) des fonctions 2 valeurs
complexes, localement constantes & support compact sur I'ensemble M(m,m'; D) des matrices 3 m
lignes, m' colonnes, A coefficients dans D

o(ggHf(x) = f('gxg) , geH,geH', feS
A un caractére prés, ¢' est la représentation métaplectique M (ch.2,1l,¢) restreinte &8 HH':
M= o®v, m2®v M2,

oll v, estle caractére ldétFle du groupe H=H_ = GL(m,D), et el = [D:F].

Soit E(H) 'ensemble des classes d"équivalence de IrrH. La représentation ¢ définit une
correspondance entre E(H) et E(H"), de graphe

R(HH') = {classes des 2®n' ¢ Ir(HH") , quotient de < }.
La correspondance associée & ¢ sera parfois appelée "correspondance de Howe modifiée” . Les
conjectures sur la correspondance de Howe (ch.2,I11,2 et 5) sont équivalentes aux conjectures
analogues sur la correspondance de Howe modifiée,

Remarque : I'application B : SxS—C bilinéaire non dégénérée
B =/ mma; by 10 F00 dx,
est invariante par M(HH") .
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2. Filtration.

On filtre M(m,m’; D) par le rang i,0<i<k = inf(m,m"). Le rang classe les orbites d¢ HH', pour

l'action ((g,g).x ) = 'gxg'. On obtient une filtration décroissante HH'-équivariante de O :
0cSc... c8;cS

de quotients isomorphes aux représentations induites ind(HH', T;, 1), ot T; est le stabilisateur

dans HH' d'un élement x; derang i.

On choisit x; , et 'on calcule le T; correspondant

g=t b}, g =E’ b}, XI:[b 0] , aeH_ ;, d,deH;,a'eH ., L,eH,etc...
d d 0 1

On note P, le stabilisateur dans H de D"x{0} de méme P', pour H'.

mr’
Pour que ‘g x; g'=x;,ie. gg'e T,, il fautetil suffit que
- ¢c=¢'=0, ie T,cP, ;P
- Yd'=id.
Pouri=0,T;=HH'.Ona P, =P =H, de méme pour P'.
On induit la représentation triviale de T; au parabolique P ;P ... Par (IL3), on obtientla
représentation W; de P P'.; d'espace S(H;, C)

¥; (ep)f(h) = f(*dhd") , p =[a b] P =(a' b'], fe S(H, C), dhde H,

0d 0d

Lemme. La représentation ¢ admet une filtration décroissante de quotients, pour i=0, ...k
0’1 = md(HI‘I' s qu P'm‘-i R ul) .

3.Corollaires. a) O, est la représentation triviale de HH' et quotient de 0, G, estun
sous-module de ©.
b) Si = & IrrH, alors le plus grand quotient n-isotypique de S, noté S, est de longueur finie; s'il

n'est pas nul, i admet un quotient H-irréductible.

Preuve. a) est trivial

b) Soit o, le plus grand quotient m-isotypique de Gl - On a (iii)=>(i)=() , ol

(i) o, estune HxH'-représentation de longueur finie

(ii) ((ri),c est une HxH'-représentation de longueur finie, pour tout i

(iii) (pi)u est une H;xH;-représentation de longueur finie pour tout i (ind envoie représentations de

longueur finie sur représentations de longueur finie), pour tout pe IrrH; tel que 7 soit quotient de
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ind(H,P

m-i’

1®u) (le nombre de i possibles est fini, & équivalence pres par [BZ]).
Or par (1,3), (Pi)p. =~ U®u* est une représentation irréductible de H;xH;

Remarque. Si F est un corps fini, les représentations considérées étant complexes sont
semi-simples, et les quotients irréductibles de G sont les quotients irréductibles de

ind(HH', P, [P’ , (1®m)@(1®m)) , pour tout i=0, ..., k , tout e IrrH; .
Sur un corps fini, la "correspondance de Howe" n'est pas bijective, et il n'y a pas de “conjecture de
Howe".

4. Quelles sont les représentations me IrrH, | qui sont effectivement quotients de S ? Laissons

varier m', notons alors ¢=¢0 m=m(n).

m,m’ ’

Définition. posons m'(1,) =0,

m'(n) = inf{m' 21, n quotient de Cm,m'] , 81 Rl
Lemme. Pour tout ®e IrH, , on 2 m'(%) < m(x).
Nous démontrons ce lemme plus loin (§7).
Corollaire. Chaque représentation irréductible de H apparait dans la correspondance de Howe.

5. Lemme. Si m'2m'(%), alors T est quotientde Oy, -

Preuve. On plonge trivialement H'; dans H'p. par g — diag(1,,; &) » M(m,i;C ) dans
M(@m,m"C ) par x — (0 X), si i€ m" Larestriction de M(m,m';C )3 M(m,m'(%);C ) induit

un HxH'

m,m"i’
m'(xy-homomorphisme surjectif de G, 1y sur Sy iy

6. 1! est naturel d'introduire un autre entier p'(x) £m'(x),
=0,

Wwm =inf{iz1, tel qu'il existe pelrH;, Hom(ind(H,P, 1,,®p,m)#0}, si wel,

m-i’
Sur un corps fini on a I'égalité p'(w) = m'(w) . On suppose dans la fin de Il que F est un corps
local non-archimédien. Liée 2 la conjecture de Howe, nous formulons la

Conjecture. 1) Pour tout p € IrtH; , ind(H, P, ; ,1,, ;®p) admet un unique quotient irréductible.

m-i’

On le note par =, (p).
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2) Pour tout we IrrH,_ , il existe & équivalence prés un unique pe Irer(n) telque w=n_(p).On
note p = 9(w).
3) 8i m=m,(p), alors {p =¥m)} & (W) =m(p) = W m}.

Notons Irr = Up,o; IrH , et Ir* = { pelrr, m(p) = W'(p) } . On associe & pelrr* une série de
représentations irréductibles m (p) , m 2 m(p). Si cette conjecture ainsi de la conjecture de Howe

sont vraies, la correspondance de Howe modifiée (associée & ©) est la bijection

TnlP) = T (p) , pourtous m, m’' entiers 21, peIrr* , m(p) < inf(m,m’)}

7. Démonstration du lemme 4 . Commengons par le cas le plus simple m=1,D=F.
Quels sont les quotients irréductibles ©' de S =8 (F™, € ) pour l'action de H' par 6? La
filtration est fournie par la suite exacte déduite de 'application f—f(0)

{0} > S (F-{0},€) S (F™,C)—>C - (0}
On fixe le caractére central de 7' : c'est un caractére % du centre F* identifiéa H.
a) si y#id., montrons que m'(} ) =1. Ceci se voit sur la fonction

J e M@0 X(@) g , xF™

convergente pour Re s >>0, 0lt se € est défini par lx(x)l = ixI* . Onlanote par L{(f(x),). Ona

L{f(x),) = L{f(ax)y(a),y) pour tout ae F* si Re s >>0. Pour tout x #id. L(f(x),x) est défini,
quoique l'intégrale ne converge plus, et 'égalité précédente reste vraie. On en déduitque m'Q) =1,

et le plus grand quotient X-isotypique est 'unique quotient irréductible de ind(H', P__4,1,_ {®%)-
b) si ¢ =id. évidemment S,4# (0}

Noter que 1'on ne peut pas décider avec les méthodes données si la conjecture de Howe est vraie car
1.+ est sous-module et non quotient de ind(H, Pm.__ i .1 ' 1 ®1).

La méthode pour m=1 se généralise. Supposons m'=m , les fonctions L de Tate ont été
généralisées par Godement et Jacquet [GJ,th.3.3(2)]. Soit fe S, et neIrrH . Considérons un
coefficient de 7 (qui joue le rdle de ) , c'est une fonction sur H de la forme d(g) = <v¥*,n{giv>,

v*ern* ,ven. Lintégrale L(s,s'c)"1 IH <v* r(x)v> f(x)vs(x)de est définie pour Res >> 0, og

un polyndme en q5, et g%, si 'on note par d2le degré de D sur F, par q le nombre d'éléments du

corps résiduel de F, par L(s,m) la fonction L de met pardyx = v™(x)dx une mesure de Haar sur

H, pardx est une mesure de Haar sur M(m,m;D). On le note par P(v¥*,v.f, T ) ol

T, = m®vS, L'application (v¥,v,f) — P(v*,vf, n; ) & € n'est pas identiquement nulle, et vérifie
P(v*v.f, T, ) = P(n* (g v¥ my(g)v.o(ge)f, g)

Elle entrelace n ®n; et O m - Cette égalité reste vraie pour tout s qui n'est pas pole de L{s,n). Si

q® estun pole de L(s,n) d'ordre 1, ce pdle est isolé et limg_,(q5-g®)P (v¥,v.f, g ) = Q((v¥,v.f,

T ) est non identiquement nul, et vérifie la méme égalité. Le lemme est montré.
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IV. Paires duales de type 1.

Soit F un corps fini ou local non archimédien de caractéristique # 2.

1. Soit (H,H) une paire duale (irréductible, réductive) de type 1 . La représentation métaplectique
de HH' est plus compliquée et intéressante que pour les paires de type GL(n). Cependant, on
démontre (th.4) essenticllement les mémes choses, ¢'est-a-dire la conjecture de Howe pour les
cuspidales ainsi que la compatibilité de la correspondance de Howe avec Iinduction de
Bernstein-Zelevinski [Ku] . On considére ici toutes les paires de type 1 ( [Ku] ne concerne que les
paires orthogonales -symplectiques). C'est Waldspurger qui a remarqué que les méthodes de [Ku]
fournissent :

- la conjecture de Howe pour les cuspidales

- la propriété que S, est de longueur finie (ch.2,1IL5).

L'article trés clair de [Ku] s'appuie beaucoup sur des idées dues 2 Howe [H] et & Rallis [R].

Notations. On fixe les parties anisotropes W,, W', de W et W', et I'on considére les indices de
Witt m, m' comme variables. On fixe un caractere non trivial y de F . On note

W=W_ ,W=W_, UW)=H=H_,, UW)=H =H, n=dimpW, n'=dimpW',

G; = GLG,D), 0y la représentation métaplectique de Mp(W W'} .

Toutes les représentations & de H™ ont la propriété que m(zh) = zn(h),zeC * , heH™

Les images inverses H ™y de U(W) dans les différents Mp(W®W") sont toutes isomorphes
commes extensions centrales de U(W) au groupe
H™= UWxXC* ,si W ={0}
'image inverse de U(W) dans Mp(W®W',) sinon
Les isomorphismes (d'extensions centrales sur U(W), induisant l'identité sur U(W)) ne sont pas
uniques si H possede des caractéres non triviaux. On fixe des isomorphismes (voir plus loin)
jpH >Hyw i, H  >Hw
et I'on considere les représentations oy, ,, de H'H™ :
Oy g (B = Oy (e ™)j'y(h™)), he H™, h'e H™

Si W est hyperbolique, on convient que @, . est la représentation triviale sur H'x{1}.

m’
Elles définissent des correspondances entre E(H ™) et E(H™) comme en (III,1) , que nous
appellerons parfois "correspondances de Howe modifiées” .

Si H™ = HxC *, par restriction 3 Hx{1} = H, on obtient des correspondances entre E(H) et
E(H™), appelées encore "correspondances de Howe modifiées".

Les conjectures de Howe (ch.2,1I1,2 ou 5) sont équivalentes aux conjectures analogues pour les

correspondances de Howe modifiées.

Remarque. Les correspondances de Howe modifiées qui dépendent du choix de ji», jp, sont
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paramétrées par les caracteres de H, H'. Les caractéres de H opere par produit tensoriel sur IrrH
et sur E(H). Soit nelrH , et posons

6(r) = {classes des w'e IrH' tel que (TOEYR(W'RE') soit quotient de O o pourdes &, &'
caracttresde H, H' }

O(n) estl'ensemble des images de la classe de = par toutes les correspondances de Howe
modifiées.

Construction de j,: on procéde comme pour le type 2 (II) ; soit S, un modele de la
représentation métaplectique de Mp(W, ® W'} (S,=C si Wiy={0})et S =S(W™,C) un
modele de Schrisdinger de celle de Mp(W  ®,m'H’), I'action naturelle de U(W) sur § est notée
G . Alors S®S, est un modele de celle de Mp(W,,®p,W"). On note par
i:Mp(W,,®pW") — Sp(W ®pW) ™, i, 1 Mp(W, ®pW' ) = Sp(W,,@pW' ) ™~
les isomorphismes correspondants. On a
i e =i, 6(@)®A) , (gA) e HT

2. Lemme. Tout meIrr(H)™ est quotient de Opq-

Ceci permet d'introduire un entier m'(x) <n
m'(m) =inf{ m'20, tel que ® soit quotient de O }.

Preuve. L'idée de la démonstration est tirée de [R. appendice] . On prend le modeéle de
Schrédinger mixte S = S(Homp(X',W), € )®S°, ol X'W' est un un sous-espace totalement
isotrope maximal (de dimension m’). Soit ae Homp(X',W) d'image non dégénérée de dimension

inf(n,m’) et V l'orthogonal dans W de son image. Le stabilisateur de o dans U(W) est
I'ensemble des éléments induisant lidentité sur I'mage V4 de o . I s'identifie canoniquement &
U(V). L'orbite A de o est fermée. Larestriction 8 A induit une U(W)-surjection de
S(Homp(X', W), € ) sur S(A, C ), et donc une (H,,)™ -surjection de O SUr

© = ind(U(W),U(V), )@y, , = ind(UW) ™ UV) ™ .0 0 lyeyy )

Prenons m' =n. Alors U(V) est trivial, et tout % est de quotientde T.

Remarque. Le méme argument implique aussi les propriétés suivantes
a) S W' est hyperbolique, et si & possede un vecteur invariant par U(V)™ , V non dégénéré, alors
m'(r) £ n-dimV,

b) Si m' 2 m'(n), © est quotient de LT
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¢) Si ® estcontenudans ® alors il existe T comme dans la démonstration tel que © soit

'm,m"
contenu dans 7.
d) Si m estcuspidale, = quotientde @, .. estéquivalentd m quotientd'un T.

a) 1 suffit d'appliquer Frobenius et la dualité : HomU(v) (w T |U(V) ) € Hom(t, n).

'm0’
Si W' est hyperbolique, O, o est la représentation triviale.

b) Prenons un modéle mixte associé€  un sous-espace totalement isotrope X' de dimension
m'-m'(x) . La restriction en O réalise une surjection de (om,m.l Ho Ho) SUr W, ey

) résulte de ce que les & comme dans la démonstration du lemme, d'image non dégénérée de
dimension maximum forment un oouvert dense de Homp(X',W)

d) © cuspidale signifie que ses coefficients sont & support compact modulo le centre, et T
sous-module est équivalentd ® quotient.

3.Exemple : Les représentations analogues de 010-
La représentation 0, est une certaine représentation irréductible cuspidale de Sp(4,F) trouvée par

Srinivasan, lorsque F est un corps fini. Cette représentation a joué un certain rdle, et il peut étre
intéressant de rappeler que la représentation métaplectique permet de la construire, ainsi qu'une série
de représentations analogues. L'analogue de 8, est une représentation irréductible d'un groupe

symplectique d'indice de Witt n provenant par la correspondance de Howe d'une représentation
cuspidale irréductible 7t d'un groupe orthogonal sur un espace de dimension n, telle que m'(n) =
n. Une telle représentation est toujours cuspidale (voir le théoréme principal).

Le raisonnement fait dans le paragraphe ci-dessus peut étre fait en remplagant O(W) par SO(W),
Mais alors, pour m' =n-1, SO(V) = {1}, O(V) = {1,e]} , tout pe irSO(W) est quotient de ©

'm,n-1
Soit ne IrO(W) , si © = n®sign , alors &t est quotient de O ng» sinon I'une au moins de © ou

n@sign est quotientde o, nl (IL.§4).

4. Notations. Soit 1t & Irr(H,, )~ .

On note si m' 2 m'(w) par Be(®) lareprésentation lisse de (H', )™ définie a équivalence pres,
telle que la partie n-isotypique de O ' SOit isomorphe 8 1@V, (). Si m'=m'(n), on la note
simplement 8(n) . Si W' est hyperbolique, {m'(r) =0} & {(n=id.} .

On fixe des drapeaux complets totalement isotropes dans W, » W, etlonnote par P, P les
paraboliques de H, , H', fixant I'espace de dimension t>1 de ces drapeaux. On pose P,=H,.

Soit Q,;1 e parabolique standard de G, stabilisant un espace de dimension t-i , de Levi isomorphe
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& G ;xG;. Le Levi "standard” de P, est M, =GxH, , .
On étend les notations de Zelevinski [Z] 2 H, ,onnote par 1, la restriction th H et t=1t(m) tel
que

E, = {q,= 0,@®n, , eIrGx(H,, ,)” quotient de r(%),avec G € G, } # &,
Pour 6@ 7, & IrM, relevée 2 P, par la surjection canonique, on note par OpX Ty, ¢ linduite
unitaire iHrn’Mt( 0@ Ty p)-
Le module de Q,; est égal 2 v, /®v, ). Celui de P, estégala v,M, 0l n=¢,0,-&2 selon
que [D:F]=1,2,4
On adopte les mémes notations pour (H, )™, (PP~ , Mp~ = Gx(Hp, 9™ -

On démontrera au §10, le théoréme suivant.

Théoréme principal. Soit © e Irr(H )™,
1) Si & est cuspidale,

a) B, (m) € Ire(H' )™ , pour tout m' = m'(x)

b) ¥{m) est cuspidale

¢) (V) = v+ NY2 @ H(x) si m-m'(n) =1t
2) En général,

a) O,{n) estde longueur finie.

b) si m'2m'(n) et ©®n' e Irr(H)"x(H' ;)™ quotientde wp, ., et t = (1)
() sit=1et pourtout q; ona o; = v,;@0+1+n)2 alors @« est quotientde Wy 4 py
(ii) sinon, &' estquotientde o* x Wy, , avec W'\ € (rH )™, 70 @'y quotient de
o

m-tm'-t

Le résultat pour les représentations non cuspidales n'est pas trés satisfaisant; il exprime tout de
méme la compatibilité entre la correspondance de Howe et l'induction de Bernstein-Zelevinski.

5. (o, .m')
Le théoréme 4 se déduit de calculs d'espaces de coinvariants de la représentation métaplectique.

Soit 1 <t<m, N, le radical unipotent de P,, relevé comme en chapitre 2 en un sous-groupe de
(H,,)" . Lareprésentation t=(®, .. )N* de (M{H'; ;)™ esta un caractere pres la représentation

(O m) = TRV, (T2

On montrera en V le résultat suivant,
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Théoréme. Lareprésentation T admet une filtration décroissante
DcF@®=15c ... cF®=1,
de quotients 7, =F, ;(D\F|(1), 0<i<k,ol k=inf(t,m),
T =ind((Gy Hyy  Hyp) ™, Qi Hyyy P37 8 @0 @ 0 g ),
ol p; défini en (II,3) est la représentation naturelle de G;xG; dans 8(G;,C ), et

§;; estle caractére de Gy }XGpxG; & ; =V, ;"2 ®v,(m+120) 2id.

6 . Corollaire. a) La représentation T,®@v, (™02 = y (@-0+8M/2@c , . est quotient de
1(@y, ) . La représentation T ®v (/2 est contenue dans 1,(®, m)-

b) Si m est cuspidale, 9(n) est cuspidal.

Preuve. a) est immédiat par le théoréme 5;

b) Soit *®n' quotient de Oy ' » ol 7 est lisse, non cuspidale, n' est irréductible; il existe t21
tel que ' soit quotient de r,(@y, o)) . Si#' est cuspidale, il est clair que ' estquotientde T, , mais
alors &' estquotientde O ¢ > Si M estminimal, t=0, contradiction. Les rolesde H, H' sont

symétriques.

Remarque. Si F est un corps fini, les représentations étant complexes, donc semi-simples, si
@7 € IrH ®H, . est quotient de @, ., alors pour tout 6, IrrG, , tout quotient irréductible

de (oXm )®(C,*X1' ) est quotient de

m+tm+t - Si Op estle caractére trivial noté par 1, , alors

(1pm )®R' . est quotient de Oyt - La "conjecture de Howe" n'est pas vérifiée.

7. (o, .m')Hm
L'espace des coinvariants de ®, . par H est muni d'une action naturelle de H', dont les

quotients irréductibles forment l'image par la correspondance de Howe de 1a représentation triviale
de H. Nous supposons dans ce paragraphe que W' est hyperbolique.

Sur un modele de Schrédinger S formé des fonctions localement constantes 3 support compact sur
Homp (X', , W) , laction de H est l'action naturelle

gf(x) = f(g*x), geH, feS, xe Homp(X'y, W) .
Soit M la représentation métaplectique de H'™ sur $ (ch.2)
Théoreéme. (T ,m’)H est isomorphe 4 l'espace des fonctions sur H'™ : h'— M(h)f(0) , fe S ,
muni de l'action naturelle de H™ par translation 2 droite.
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Les fonctions ¢(h) = M(h)(0) vérifient I'équation :
o(p'h) =v,(d)2 o) , pe P .
On en déduit :

Corollaire. (w, ,m')H est isomorphe 2 un sous-module de l'induite & H'™ du caractére vm."/2

du parabolique P’
Sim est grand, on sait démontrer que (0, )y est toute Finduite.

8. Si deux espaces hermitiens W, , W,' sont dans la méme série de Witt, alors W' =W, ® (-W,)
est hyperbolique, le groupe unitaire de -W,' est égal & celui de W', et U(W,) UW,) est plongé
diagonalement dans U(W"). Soit p la restriction & U(W,)~ U(W,)™ de (mm,m.)H . La partie

cuspidale p, de p est assez simple.
Proposition. Si Wy=W', , p, cind(UW,) U(W,)™, UW,)™, 1), sinon p,=0.

Preuve. On a vu que le nombre d'orbites de U(W,)U(W'y) dans I'ensemble Q'=H/P'(X’) des
Lagrangiens de W' est fini (ch.1,I,2) . Le théoréme 7 implique par [BZ1] que p admet une
filtration paramétrée par ces orbites. Le stabilisateur d'un Lagrangien X'dans U(W)U(W')

contient le radical unipotent d'un sous-groupe parabolique propre (donc p, =0) sauf si W, et
W', sont isométriques. Si W, = W'y , on peut supposer que

{0}= W nX'=W,nX" , X'={ztz,2eW,}
oll z—»Z' est une isométrie de W, sur W' induisant un isomorphisme U(W,) =~ U(W 'y . Le
stabilisateur de X' est isomorphe 2 U(W,) plongé "diagonalement" dans U(W,)U(W’,) . Pour les

autres orbites, le stabilisateur d'un élément contient le radical unipotent d'un sous-groupe
parabolique propre.

9 . Corollaire. Si m est cuspidale, il existe au plus un entier m' et une représentation %'

cuspidale , tels que 7, ®m' . soit quotientde @, ' -

Preuve. Par I'absurde, supposons qu'il existe deux représentations
welm® )", ®'e Im°H )™

telles que 7, ®n’ soit quotient de o,

mm s Tp®@n" soit quotient de wp, .« . La représentation

irréductible cuspidale (m,®n")* étant sous-module de O ™* €St aussi quotient de O m”
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«* admet comme quotient irréductible (1'Cm®7t')(1tm®7t")* . L'espace
W =W, &(-W_.)

est hyperbolique, on applique (8) 4 la représentation p correspondante. Par le chapitre 2, la

restriction & (H,) " (H'p,)” x (H,) "(H';,»)™ de la représentation métaplectique de

Donc O ® Onm

Sp(W . OW  S(-W'») est o B, ,m"* . Onrestreinta (H )™ plongé diagonalement, et
I'on prend les coinvariants.

La représentation triviale est quotient de 1 ®m *I G (noter que (H)) /H,, est scindée) et

donc w'®n"* est quotient de p,. ..., donc m'=m", et enfin ' ~ 1" par (I1,3). Noter que &' est

unique, non seulement a équivalence prés.

10. Démonstration du théoréme 4 .
1) b): Si & est cuspidale, 9(n) est cuspidale (6,b) et irréductible (9).
Da),c):pourm'=m'(m)+t,t> 1,9, (m)# 0 (par 2) n'est pas cuspidale. Pour 1j<t,
n®(vj(ﬂ-n'+j+s‘)/2®1§}m._j(n) est la partie n-isotypique de r'j(mmym'), pour j=t, T n'est pas quotient
de r'}-(mm’m-) (par (6)). Par induction sur t croissant, on en déduit a),c).
2) a) : si T n'est pas cuspidale, il existe t>1,r(w) #0; on choisit t aussi grand que possible
(t<m). Le foncteur I, estexact, envoie une représentation de longueur finie sur une représentation
de longueur finie. On a

{ n®9 (m) est quotient de mm’m.} = { r(m)®V, () quotient de rt(wm,m')}.
Or r(m) a une suite de Jordan-Holder finie de quotients 6,® p, ol p € Irr®(H,, )~ etpar 1),
V() est irréductible pour tout m' . On déduit de (6) que B, (r) est finie pour tout m'.
2)b) se déduit facilement de (5), (1,3).

V. Démonstrations : calculs de coinvariants de ©, '

1. Soient © un espace localement compact totalement discontinu, V un espace vectoriel sur C,
et F le faisceau constant sur £ d'espace V. Soit N un groupe localement compact, totalement
discontinu, tel que toute partie cornpacte de N est contenue dans un sous-groupe compact de N.
On suppose que N opére sur F, et que

-Tl'actionde N sur £ esttriviale

- l'action de N surla fibre en AeQ est une homothéthie & A€ Hom(N,C X)

Soit F' le faisceau sur Hom(N,C *) associé A cette action. Sa fibre en E& Hom(N,C *) estle
quotient SN,{; = S/S(NE) , ol S(N,E) est 'espace engendré par les nf-§(n)f , fe S, neN .
On note Q&) = {AeQ, §, =&}. Il est fermé dans Q. La restriction resg a Q&) induit une
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surjectionde 8 = S(Q,V) sur S(QE), V). Nous allons montrer que S(N,&) est égal A l'ensemble
des feS nuls sur Q).

Lemme. Si Q&) =, alors SN,z; = {0}.

Sinon, la restriction & Q(&) induit un isomorphisme SN,& =~ resé(S).

Preuve. Sur Q&) , nf-E(n)f est nul. Soit 20 nul sur (), montrons que fe S(N,E). Le lemme
sera démontré. Posons {4=Ez& L. Il existe Ae 2, f(A)#0 et {4 #id. , soit nyeN tel que

4 Al{n )=l Pour Be ) dans un voisinage de A, on a par continuité CB(n A)#1. Le support de
étant compact, on trouve un ensemble fini ECN tel que {4l #id. pour tout A tel que f(A)=0.11
existe un sous-groupe compact KcN contenant E . L'intégrale sur K des fonctions k— (S
kf(A) = {,(kK)f(A) pour une mesure de Haar sur K est nulle pour tout Ae Q.

Or Elk) kf-fe S(N,E), donc fe S(N.E).

2. Supposons qu'un groupe G, localement compact totalement discontinu opére sur F, et que G
contienne un sous-groupe distingué N, tel que la restriction de 'action de G 2 N soit comme en 1
,tque G normalise I'action de N . Plus précisément, on s'est donné
- (g,A) > Ag une dction 2 droite continue lisse de G sur Q, triviale sur N
-pourtout AcQ,® 4 une représentation lisse de G d'espace V, égale 3 I'homothétie § A Sur N
- pour tout & Hom(N,C *) tel que Q(€)#D, G normalise & ,
pour tout ge G, ne N, Egngh) =E(n)

Automatiquement, G stabilise Q(&) .
L'actionde G sur F définit une représentation de wde G sur S

(gh) —gf, 0@f(A)=w,(g)f(Ag)), geG, feS, AcQ

Supposons de plus que
- (&) soit réunion finie d'orbites, que l'on peut ranger
Q&) =Uv;, k2i20,

de sorte que Uj,0; soit ouvert dans Q).

On choisit un €lément dans chaque orbite A;e 9, , dont on note par G; le stabilisateur dans G .
L'espace SN’,;i =S8(9;,V) muni de l'action naturelle de G est G- isomorphe &

Sng' = indG,G;, 0 A
L'espace SN,& est muni canoniquement d'une action de G, et d'une filtration décroissante

G-invariante :
{O} C SN,E:.Zk Cens Lo SN,§21 < SN,&, . SN,§Zi = S(U_]Zlﬁ] ,V)
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dont les quotients sont les Sy gi .

3. Démonstration du théoréme 5.
Le théoréme 5 est une application des faits ci-dessus. On identifie W®W' 3 Hom(W,W"). Un
modele de la représentation métaplectique est I'espace S des fonctions localement constantes, 2
support compact

f: Hom(X,W) — S,
S, étant un modele de la représentation métaplectique de H(W , ®@pW' ), (si W hyperbolique,
t=m, §°=C).
Le groupe abélien (N)); isomorphe & Sz(Xt,ez) opeére sur S par

(sHx) = &, (s) f(x)
fe S, se Sz(Xt,;sZ) , éx(s) =y(t,(s)/2) ,olt t, e S2(X[,e,2)* est limage inverse par xe Hom(X,W")
du produit hermitien sur W'
Toute partie compacte de SZ(Xt,E/Z) est contenue dans un sous-groupe compact.
Soit Z = {xe Hom(X,W'), §x est trivial } ; notons que Z est fermé dans Hom(X,W"),

{& trivial} & {x(X,) est totalement isotrope}.

Parlelemme 1,ona

Lemme. La restriction 3 Z définit un isomorphisme entre 'espace des coinvariants de S pour
SZ(Xl,E,Z) et l'espace S(ZS,).

La graduation par le rang :
Z=U0515kzl Zi={xez’dime(X[)=i}'
induit une filtration décroissante
{0}c§c ... <5, 8(ZS,) , S; ={fe S(Z,S,) nulles surles x derang<i}

de quotients 8(Z,,S,) = S,/8

i+l

La représentation métaplectique induit sur S(Z,$,, ) une action de G =Hom(W,_  X)(MH')™ du

m-t’

type précédent. L'actionde G sur Z se factorise par le quotient GL(XH' qui opére par
(g8, %) — g*xg, ge GLp(X) , g'e H', xe Z;

Les espaces Z; sont des orbites pour cette action. On fixe x; € Z;, de noyau X, dimage X;

le stabilisateur T; dex; dans GLp(Xp H' est naturellement contenu dans le sous-groupe

parabolique Q(X )P'(X';) de GLp(X,) H'. A I'aide des formules (ch.2,I1,7) on voit que

S(Z,S,) = ind(MH) ", Hy ~ T, ™, £®S,) ,



75

oll §e Hom(GL(X))) , E(g)=Idét gh/2 S,, est par la représentation métaplectique un (Hy, H)™-
module, he Hom(W X)) opere sur S, par pw°(8(xih)) , x;he Hom(W . X')

Dans le cas ot (ND; =N,, le calcul est terminé. Sinon, on continue.

Le sous-espace Y = Hom(W, ,,

X',) € Hom(W,

mpW) est totalement isotrope, et S, peut étre

choisi comme l'espace des fonctions localement constantes & support compact
f: Y*¥—> S,
ol S, est un modele de la représentation métaplectique de H(W, @W'),Y* Hom(W,, _,,W')
endualité avec Y. Pourye Y, fe S,,y*eY*,ona
Py’ B) fly*) = wi<y*y>) f(y*).
Le calcul des coinvariants de S, pour Y se déduit du lemme 1.

La restriction en 0 induit un isomorphisme (S )y =S, et (‘::om’m,)Nt admet une filtration

décroissante de quotients ind(MH)™, Hy, ,~T; 7, §®S ) .

Sur les bases données,

% =100 11,1} g=f b} g=fab
0 0 ¢ d c d

On écrit g™ x* g = x;*, utilisant que g*g' = 1,pour que gg'e T;, il faut et il suffitque a'= d,et
c=c=0,ie gg'e Q. P}.

Donc T; est 'ensemble des gg'e Q_;P; delaforme

g=fa; X g = di X X
[0 dx] 0 gy
0 0 dgr!
Lactionde (T{H, )" = GG, H, Hp~™ sur §,, est
Vt_in‘fz ® Vi(-21+n+n’)/2 ® Oti

Induire cette action au parabolique Q, ;(H,[P'))” revient 2 induire de G; a2 G;xG;, contenant G,
diagonalement, le caractere v;(™+n-20/2, Par (I,1) c'est la représentation naturelle p; de G;xG;

mutipliée par un caractire quelconque de G;xG; prolongeant v,@+n-20/2 |

4. Démonstration du théoréme 7 .
Posons E={ fe$, tel que M(h)f(0) =0, pour tout h'e UW")}. Il est clair que S(H) est
contenu dans E . Nous allons montrer l'implication inverse. Nous appliquons le théoréme de
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Gelfand-Kazhdan [GK] affirmant que si un groupe H opere sur un espace localement compact
totalement discontinu Z , sous certaines conditions de régularité, une fonctdon fe S(Z, C ), dont
les intégrales sur les orbites de H dans Y sont toutes nulles (les conditions impliquent que ces
intégrales convergent), appartient a l'espace engendré par les fonctions

F(z) = fthz)-f(z) , fe S(Z,C), heH.

Lemme. S(H)=E

Preuve. L'espace Z = Homp(X',» W) est filtré par le rang . Pour 1< s =inf(m’, n) , l'ensemble
Z, des ze Homp(X'\, W) derang r estfermé dans U, Z et vérifie les conditions de [GK].
Si feE, f(0)=0, les intégrales de f surles H - orbites de rang 1 convergent; admettons un

moment que ces intégrales sont nulles, on déduit de [GK] qu'il existedes he H ,¢p e SZ1 en

nombre fini, tels que pour tout ze Z; , on ait f(z) = X ¢(hz) - ¢(z) . On prolonge de fagon
quelconque les ¢ en des fonctions appartenant 2 S nulles en 0. Donc f est nulle sur U Z,,

modulo l'addition d'un élément de S(H) . On continue de la méme fagon jusqu'a s.
Nous nous sommes donc ramenés & vérifier que pour une fonction fe E, nulle sur les z de rang
r<i-1, toutes lesintégrales de f surles H - orbites de rangi (convergentes) sont nulles. Pour
cela, nous utilisons que M(h') f(0) =0, pour certains éléments bien choisis h'.
Pourtout g=fa b] € Sp(Z*+Z) , feS , ona (ch.2,]1,6):
o)
M@ (0) = J 7ujgore W(SC*x,d*x>/2) f(c*x) dx.

On note par abus par le méme <, > le produit hermitien sur W, W' ou Homp(W',W). On fixe une
base {¢'} de X', et une base hyperbolique {e'ne’*} de W', Dans la décomposition
Wha=Xi+ W+ X3, X =2 eD . onprend h' e UW') sidentifiant 2 une matrice
h' =10 0 €1
0 1 Opaiy
Lj; 0d

ot deEnd X'* este-hermitienne. On asi feE, pour tout de EndpX'; , €-hermitienne

61 0= fHomD(X'i,m y(<z,zd>) f(z) dz

On décompose Homp(X',,W) en H-orbites. Si z est de rang i, il existe une base {wg} de W avec
z(e') =0, si i<r<m'
w,si 1€r<i.

On appelle matrice de Gram de {w,} la matrice e-hermitienne
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Gr({w,}) = (<w,w>) € ME(i,i; D)
Pour que ye Z soit dans la H-orbite de z, il faut et il suffit par le théoréme de Witt (ch.1,1,9) qu'il

existe i vecteurs {v,_} linéairement indépendants de W, tels que Gr({v,}) =Gr({w,}), et
ye')=0 ,sii<r<m’

v, ,si 1<r<i.

T *

Ona <z,z2d> =t (Gr({w,})d) . Soit te M(i,;;D) et I(1.f) l'intégrale de f surles éléments z €
Homp(X';, W) , tel que Gr({z(e,)} =t. Par hypothese, les intégrales de f sont nulles surles z de

rang <i, donc I(t,f) est l'intégrale de f sur l'unique H-orbite de rang i, de matrice de Gram t. On
choisit des mesures de Haar compatibles de sorte que (6,1) s'écrive

0 = [ yeqi py WD) Ie,H dt,
pour tout d € M&(i,i; D).
On en déduit que toutes les intégrales I(t,f) sont nulles.

Bibliographie du chapitre 3.

[BZ1] Bernstein LN,, Zelevinski A.V. Representations of the group GL(n,F) where F is a non
archimedean local field, Russian Math. Surveys 31 (3) 1-68

[BZ2] Bernstein LN, Zelevinski A.V. Induced representations of reductive p-adic groups I, Ann.
sci. ENNLS. 10 (1977) 441-472.

[GK] Gelfand 1.M.,Kazhdan D.A. Representations of the group GL(n,K) where K is alocal
field, in Lie Groups and their representations, Adams Hilger Ltd 1971, 95-118.

{H] Howe R. Invariant theory and duality for classical groups over finite fields with applications to
their singular representation theory, preprint.

[K] Kazhdan D. Some applications of the Weil representation, Journal d'analyse mathématique,
vol. 32 (1977) 235-248.

[Kub] Kubota T. Topological covering of SL(2) over a local field,J. Mat. Soc. Japan 19 (1967),
114-121.

[Ku] Kudla S. On the local theta correspondence, Invent. math. 83 (1986) 229-255.

[P} Perrin D. Représentations de Schriddinger, indice de Maslov et groupe métaplectique, in Non
commutative Harmonic Analysis and Lie Groups, Proceedings Marseille-Luminy 1980, Springer
LN 880, Berlin-Heidelberg.

[PR] Prasad G., Ragunathan Central extensions of rational points of groups over local fields,
Ann. of Math. 119 (1984) 143-201

[R] Rallis S. On the Howe duality conjecture , Compositio Math. 51 (1984) 333-399

[Rao] Rao R. On some explicit formulas in the theory of Weil representations, preprint.

[T] Tanaka S. On irreducible unitary representations of some special linear groups of the second
order I, Osaka J. Math. 3 (1966),217-227.

[Z] Zelevinski A.V. Induced representations of reductive p-adic groups II, Ann. Sci. EN.S. 13
(1980) 165-210



Chapitre 4. Sur les classes de conjugaison dans certains groupes
unitaires

I.1. Soient F, F' deux corps de caractéristique différente de 2. On sup-
pose F'=F ou F' est une extension quadratique de F. Dans le premier cas
on note T 1'identité de F', dans le second on note T l'automorphisme non
trivial de F' de corps des points fixes F. Soient &e{z1}, W un espace vecto~
riel sur F' de dimension finie, muni d'un produit < , > £~hermitien non

dégénéré. Soient U(W) le groupe unitaire de W, W(W) son algébre de Lie.

I.2.Proposition.Soient x€U(W), resp. XelU W), et V un sous~F'-espace de

W. On suppose VeKer(l-x), resp. Ve Ker(X). Alors il existe gEGLF(W) tel que:

(1) gv=v;

(ii) gxg-l=x_l,4£E§R. ng-1=—X;

(i1i) <gw,gw'>=<w',w> pour tous w,w'eW.

Remarquons que cette derniére condition implique que g est T-linéaire.
La démonstration est similaire dans le cas du groupe et celui de l'algébre
de Lie. On la présente dans le cas du groupe, en suivant étroitement [ss]

v.2.

I1.3. Soit donc xeU(W). L'algébre de polyndmes F'L[Z]} agit dans W via
i
~ d. ,
Z—»x. Soient P le polynome minimal de x et P= 7T p.1i une décomposition
iel
en facteurs irréductibles (di>0 pour tout i€I). Soit A=F'{Z]/P. Alors 1l'al-

N d, ~ P
gébre A agit dans W. Posons Ai=F'[Z]/Pi1 pour tout i€I. Gr3ce au théoréme

de Bézout, il existe des polyndmes Qi tels que

d.
2 QIT P o g,
iel “jer J

j#i
d, o , , .
Posons Wi=Qi.TT'P.J(W). L'algébre A, agit sur W, et on a les décompositions
j#i
A= @A, W= B VW,,
iel 1 i€l 1

telles que 1'action de A sur W soit obtenue en "recollant" les actions des
Ai sur Wi. Remarquons que d'aprés 1'hypothése sur V, ou bien V={0}, ou bien

il existe ioel tel que P, soit proportionnel a Z-l et VaW, .
o ‘o
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L'algébre F'{z,z”l} agit dans W via Z+»x, et AzF'[Z,Z—l]/PF’T_Z,Z-l].
Munissons F'[Z,Z”l] de 1'involution T définie par:

(1) (T zH= Tz
Pour w,weW et QeF'LZ,Z_l], on a la formule:

(2) <w,Qu'>=<T(Qw,w'>.

On en déduit que t(PF'{Z,Z_I])=PF’[Z,Z_1], et T définit une involution de

A. Plus précisément il existe RGF'[Z,Z—I], inversible ( donc de la forme
R=)Zn), tel que T(P)=PR. Si iel, ou bien il existe Ri comme ci-dessus tel
que t(Pi)=PiRi, ou bien il existe je€I, j#i, et Ri comme ci-dessus tels que
‘L‘(Pi)=PjRi et di=dj. Dans le premier cas, la formule (1) définit une invo-
lution de Ai' Dans le second elle définit un isomorphisme de Ai sur Aj.
L'involution T de A est obtenue en "recollant" ces isomorphismes. Il résulte
de la formule (2) que pour i,jel, Wi est orthogonal & Wj sauf si
t(Pi)erF'[Z,Z-l]. Remarquons que T(Z-1) € (Z—i)F’iZ,Z~13. On est alors
ramené aux deux cas élémentaires suivants:

(1) A=F'[Z]/Pd, ol P est irréductible et t(P)ePF'LZ,Z_l], W est un espace
g-hermitien muni d'une action fidéle de A vérifiant (2), VeKer(z-1) (v=80%
si P n'est pas proporticmmel i Z-1);

(11) A=A"+A", avec A’=F'[z]/P‘d, A"=F'[Z'3/P"d, ol P', P" sont irréduc-
tibles, t(P')eP"F'EZ,Z_ll, W est un espace £-hermitien décomposé en sous-
espaces lagrangiens W=W'@W", W', resp. W' est muni d'une action fidéle de
A', resp. A", ces actions vérifiant (2), et V={0}.

L'élément g cherché doit préserver chacun des morceaux élémentaires. Les
conditions (ii) et (i1ii) de 1'énoncé sont équivalentes a (iii) et

(iv) gaw=t(a)gw, pour tous weW, agA.

I.4. Traitons le cas (II) qui est le plus élémentaire. Gri3ce 2 la théorie
des diviseurs élémentaires, on peut décomposer W' en sous-espaces stables
. d
par A': W'=_E3W'j tels que pour tout j, W'j soit isomorphe & A'/P' jA'
J

(1<dj<d) muni de 1l'action naturelle de A'. Notons Wg 1'annulateur de
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@ W' . Alors W' est stable par A" et W'=@ W'". Soit w" un élément de W"
k j JET I ]

k#j k|

n'annulant pas le sous-espace P'dj— W:'j. 11 est facile de voir que a"\--»a"w"_j'
est un isomorphisme de A"/P"de“ sur W}'. Autrement dit, on est ramené au cas
(encore plus élémentaire) oG W'=A', W"=A", munis des actions naturelles de
A" et A". Mais alors l'application g définie par g(a'@a")=t(a")+r(a') (pour
a'eA'=W', a"eA"=W") répond & la question.

1.5 Traitons maintenant le cas (I). Fixons une forme linéaire f:0—>F"

d-1, . Alors 1'application

telle que gsoit non nulle sur P
ArA —————> F'
(a,a")——> {(aa")
est non dégénérée. En particulier, considérons la forme linéaire
a{-——-»tofo‘c(a). I1 existeog A tel que toee'c(a)=((¢(a) pour tout a€A. Néces-—
sairement  T{®)=1 et £ est inversible. Pour w,w'eW, considérons la forme
linéaire a+—><w,aw’'>, Il existe un élément de A, noté <<w,w'>>, tel que
<w,aw'>= €(<<w,w'>>a) pour tout a€A. On voit que 1l'application << , >>:
WriW—> A vérifie:
<Kaw,a'w'>>=T(a)<<w,w'>>a’,
(3)
KLw',wdr=ET(<<w,w'>>),
pour tous w,Ww'€W, a,a'¢A, et est non dégénérée (si <<w,w'>>=0 pour tout w’',
alors w=0). Il nous est utile de remarquer que si W' est un sous-F'-espace
de W stable par A, son orthogonal pour la forme << , >> coincide avec celui
relatif & la forme < , >.
Les conditions (i), (ii), (iii) imposées & 1'élément g cherché sont équi-

valentes 4 (i), (iv) et

(v) <<gw,gw'>>=<<w',w>> pour tous w,w'eW.

I.6. Signalons a titre d'exemple le cas d=1, i.e. A est un corps, i.e.
X est semi-simple. Le corps A est muni de 1l'involution v. Notons E le sous-
corps des points fixes de t. Si V#{0}, P est proportiommel 3 Z~1 et AsF’,

Donc V est un sous—A-espace vectoriel de W. On est ramené 3 montrer que si
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W est un espace vectoriel sur A muni d'une forme §'-hermitienne << , >> non
dégénérée (g'efxll), si V est un sous-A-espace vectoriel de W, il existe
geGLE(W) préservant V et vérifiant (v). C'est un exercice élémentaire qu'on
résout en choisissant une base convenable (comprenant des morceaux ortho-

gonaux et des morceaux hyperboliques) de W.

I.7. Revenons & la situation de I.5. Posons K=F'[Z}/P. C'est un corps
et T définit une involution de ce corps. Soit ReF'[Z,Z-I] tel que T(P)=PR,
et r 1'image de R dans K par 1'application F'LZ,Z—l}-<9F’[Z,Z‘I]/PF'[Z,Z_%}z

K. On a r{r)=1. Soit W0=§wew; Pw=0}. L'action de A sur WO se factorise et

définit sur WO une structure de K-espace vectoriel. Soit n le plus grand

entier tel que W < P™. On définit une application

0
B:WO;«WO—%K
de la fagon suivante: soient wo,w'ewo, choisissons weW tel que in=w0.

0
Comme Pw6=0, on a <<w,w6>>P=0, done il existe aeA tel que <<w,w6>>=Pd—la.

On note B(wo,wb) la réduction de a dans K, qui est bien déterminée. Cet

élément ne dépend pas du choix de w. En effet soit w'€W tel que in'=w6.

On a
Pd—1a=<<w,w(')>>=<<w,in' >>= TP w0 >>=< P R W ST (RN <Cw W' >,
qui est indépendant de w. Utilisant (3) on voit aussi que
U Eu(‘l:‘(<<w0,w'>>)=£-<‘C(Rn) (e e (ay=erd 1 p9 1z (),
d'ot
B(wg,wo)=T(B(wy,wp)),
ot @=€&rd-l-n. De plus B est clairement K-sesquilinéaire. Montrons que

ntl KR

1'annulateur de B est l'espace WS=P 0

Wt}WO. Tout d'abord 1'orthogonal W
de WO pour la forme << , >> est PW. En effet on voit facilement que PW::WS‘.

Ensuite comme WO est stable par A, Wg est 1'orthogonal de WO pour < , >,

donc dimF,Wg +dimF,W =dimF,W. Or PW=Im(P), W.=Ker(P), d'ou

0 0

. . . as 4 . N .
dimF,PW +d1mF,W0—d1mF,W, puis dimF,PW-dlmF,WO , et finalement PW—WO . Soit

alors woewo et w tel que in=w0. Par construction LA est dans 1l'annulateur
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de B si et seulement si Wewg donc si et seulement si wePW. Si c'est le cas
n+l . , n+l R

on a woeP W. Réciproquement si woeP W, on peut choisir w tel que wePW

et donc W est dans 1'annulateur de B.

Remarquons que VC:WO et que V est un sous-K-espace de W,. Choisissons

0
un supplémentaire Wb de wg dans WO tel que V=V'@&V", ou V'—V{\Wb, v"=vrxw8.
La forme B restreinte & Wé est non dégénérée. On peut choisir une base de

t .
WO sur K:
£501,3)5 1=-1,1, 3=1,....s,,
eol1:33s 1=-1,0,1, j=tl,....;xc,
et des éléments non nuls de K:
Y11,33, i==1,1, §=l,...,s,,
r1,3), 1=-1,0,1, j=*l,....%¢ ,
tels que
(4) les éléments fo[—l,j], j=1,...,s_l, eOL-l,j], j=tl,...,tt_1, eO[O,j],
j=-1,...,-t0, forment une base de V';
(5) si Vs ¥

06W6, posons

z X OEi’j3 +Z:. yi Vi 0213339

w —% SIFLINERE) +Z HTAER B
alors

B(wg,wy)= Ej ‘K[i,ﬂt(xi’j)XLj + 1Z,j S[i,j]r(yi,j)}’L_J

(6) BTYL1,3]=¥[1,3), pour i=-1,1, j=l,....s,,
§I5H4ﬂ=5ﬂ,ﬁ3,pmu‘F—LOJ,j=tL..”1%f

Choisissons des éléments f{i,j1, e(i,j] de W tels que Pnf[i,j]=f0Li,j],
Pne[i,j}=eoﬁi,j}. Notons pour simplifier 8 1'ensemble de ces éléments. Soit
W' le sous-A-module de W engendré par 8 . Il est annulé par Pn+l. Je dis
que W' est un A/PB+IA—module libre de base ® , et que la restriction de
<<, > & W' est non dégénérée. Il suffit de montrer que si w—ggsa b, avec

n+l

des coefficients aBeA tels que 1'un d'entre eux n'appartienne pas a P A,

il existe w'e W tel que <<w,w'>>#0. Soit m le plus grand entier tel que
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€P™A pour tout be®. On a m¢n. Alors P "w est de la forme

2

nem_ 7 it ' ' . s

P w=be$abP b, avec des abeA dont au moins un n'appartient pas & PA. Comme
{Pnb; be@ﬁ est une base de Wé sur K, on a Pn-mw6W6, Pn—mw#O. Donc il existe

w(')ew(') tel que B(Pn_mw,w"))#o. On peut trouver w'eéW' tel que in'=w6. Par
construction de B, on a alors <<Pn-mw,w'>>¢0, d'ol <<w,t(Pn_m)w'>>#O.
Soit W" 1'annulateur de W' pour la forme << , >>. On a W'QAW'={0] et en

comparant les dimensions comme on 1'a fait précédemment, W=W"@W'. On a

d-1

WSc:W" car si wewo et w'eW', on a <<w,w'>>=P" "a, ol la réduction de a

0

V"< W". En raisonnement par récurrence sur la dimension de W, on peut suppo-

vaut B(w,P™w'), qui est nulle car W' est l'annulateur de B. En particulier
ser qu'il existe g"EGLF(W") vérifiant les conditions requises relatives
aux espaces W' et V" et on est ramené i chercher g'eGLF(W') vérifiant ces
conditions relativement & W' et V'. On eput donc désormais supposer W'=W
et d=n+l.

Définissons ngGLF(W} par:

glf[i,jlzf[i,j], pour i=-1,1, j=l,...,si,

gle[i,jjte[i,j], pour i=-1,0,1, j=l,...,ti,

gle[i,-j]=S[i,—j]S[i,j]_le[i,-—j], pour i=-1,0,1, j=l,...,t,
et si w=£§é abb, g1w=bg%;t(ab)gl(b).

Cette définition est loisible puisque W est libre sur A, de base 8 . La
relation (iv) est satisfaite et (i) 1'est gréce & (4). On calcule:

8 01,31 =r 7 e 4,57, pour i=-1,1, 3=L,...,s,,
gegli, 1=t e 11, 5]

d-1 -] pour i=~l’0’l’ j=1,-.-,t
81e0[i,~j]=r §14,-318 14,11 eo[i,_j]

i
Gr8ce & la relation (5), on voit que
1y 1
B(g wy,8 %) =B(w,wy)
pour tous WO’ wéewo. Si maintenant weW et woewo, on a (avec un abus de

notation: si A€K on note Pd_JR 1'élément Pd_la ol a€A se projette sur A):

d-1 d-1 d-1 d-1 d-1 d-1
Kgywsg We>>=P" "B(P" “giw,gw)=P 'B(g; TP Hw,g;w )= B(w,,T(P" )W)
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d'le—lB(t(Pd_l)w,wo)]=

=24l zB (2@ yw,w ) =pelp
=§t$9d'13(9d'1w,w0)}=@z1<<w,w0>>)=z«r(<<w,w0>>)=<<w0,w>>
(on a utilisé: B =£« puisque n=d-1). On a donc la relation <<glw,glw'>>=

QZPd—IW. Cela équivaut & la congruence

<<w',w>> pourvu que w
<<glw,glw'>>5<<w',w>> mod PA,

pour tous w,w'eW. On va construire par récurrence des applications 81

{=1,...,d, vérifiant (i) et (iv) et telles que
(7) <<g!w,g£w')>=<<w',w>> mod PCA.
Supposons défini ge. On cherche g£+l de la forme suivante:

(4
g€+1(b)=g€(b)+P Wy s pour beB,

avec des Wy a4 déterminer, et pour w=b§§>abb eV,

RPN ICRIPOR
I1 est clair que 841 vérifie (i) et (iv). Pour satisfaire a la relation (7)

(relative a {+1), il faut et il suffit que pour tous b,b'e® , on ait

41

(8 <<Pewb,b'>>+<<b,Pew >>E<<b',b>>—<<geb,g£b'>> mod P + A.

‘bl
Par hypothése il existe °y b,eA tel que
»
¢
' - oy
<<b',b>>=<<gyb,g b >>=Pre, .
-1-f
En la multipliant par Pd 1 1'équation (8) devient
¢ _a-1-t a-1 d-1
<<Lp wb,P b'>>4<<b, P wb,>>=P Cp.pt
d-1 d-1
Posons pour tout b"e® , bB=P b, wb",0=P Wiue Alors
d-1 d-1
<<, 2wy =P B (bW s ()
¢ a-1-f , . d-1-€ o , .d-1-f
<<? wb,P bI>>=I{KR Wb,O’b >>=Rt(<<bT,R wb,0>>)
_ d-1_d-1-€ calpd-l ’
=Br(P” r B(bg,wy o))=fr P c{B(bo,wb,O))
grePd-l

1
B(wb,O’bO)'
L'équation (8) équivaut & 1'équation suivante entre éléments de K:

9) réB(w b6)+B(b0,w

b,0’ b0 b, b

o Sur K telle que
1, si bl=b2,

Introduisons une base {d,; be®} de W
B(b,d )= {
b 0, sinon.

Cherchons wb,O sous la forme wb30=b;éks abu’bdbn’ avec des coefficients
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ayn beK. L'équation (9) équivaut &
’

(10) griz(a, )+a

b',b" %b,b" Cb,b'"

Remarquons que d'aprés la définition de c bt et (3), on a
3

b
c =§rezic ).
b',b b,b!

I1 suffit alors de poser a b b,/Z pour satisfaire a (10).

b,b' ©
Donc on peut construire 1'application 81 Pour f=d, la relation (7)
n'est autre que (v), et £-84 vérifie les conditions requises. Cela achéve

la démonstration.

I.8. Supposons que F est local non archimédien, et que W est symplecti-
que (F'=F, &=1). Considérons le groupe symplectique Sp(W), son revétement
4 deux feuillets §E(w) (cf. chapitre 2, II,1), et le groupe GSp(W) des
similitudes symplectiques. Le groupe GSp(W) agit sur Sp(W) par conjugaison.
Pour ge€GSp(W), l'action de g sur Sp(W) se reléve de facon unique en une
action sur §%(W) (cf. chapitre 2, II1.1.(3)) qu'on note abusivement Qr—agﬁg_l
(pour ﬁeé;(w)). On note p:§}(w)———95p(W) la projection naturelle et, pour
geGSp (W), N(g)eF™ 1'élément tel que

<gw,gw'>=N(g)<w,w'>

pour tous w,w'eW.

Proposition. Soit §€§§(W). Supposons p(R) semi-simple. Alors il existe

g€GSp{(W) tel que:

(1) gfg =27

(11) N(g)=-1.
Remarque: le résultat est probablement vrai pour x quelconque mais cette
généralisation ne nous aiderait pas pour la suite.

La démonstration occupe les paragraphes 9 & 12. On a besoin de deux

remarques préliminaires.

1.9. Supposons que W est somme orthogonale d'espaces symplectiques Wi,
i=l,...,n. On sait que le plongement

n
TT spW;) —>sp (W)

i=]
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se reléve de facon unique en un homomorphisme

RE ﬁl B () — Sp (W)
(ch.2,1I.1.(6)). Soit N€F™ et ;;ur i=l,...,n, soit gfeGSp(Wi) tel que N(gi)=N.
Alors g=‘TTgi est un élément de GSp(Wi). Soient, pour i=l,...,n, §{5§§(Wi).

On a alors la formule:
n

n
; -1_ . -1
gi(TT %)g = 3(T g,Re;)-
i=1 i=1

A
En effet la conjugaison par g stabilise chacun des Sp(wi) et induit dans

A ~
Sp(wi) un automorphisme qui reléve la conjugaison par g5 dans Sp(Wi). D'ol

le résultat d'aprés 1'unicité du relévement.

1.10. Soient E une extension finie de F, £:E —»F une application F-
linéaire non nulle, (wE,< , >E) un espace symplectique sur E et supposons

que (W,< , >) soit égal a 1'espace associé sur F: (Res lo< , >E) (cf.

E/FWE’
ch.l, 1.16). On sait que le plongement

SP(WE)————>SP(W)
se reléve (de facon forcément unique) en un homomorphisme

r: §p(H) —>8P(W)

(cf. ch.3, I. ). Soit geGSp(W) tel que N{g)e F*. Alors geGSp(W). Si
§e§b(WE), on a alors:

gr®)g  =r (gRg ™).

L'argument est le méme qu'au paragraphe précédent.

I.11, Démontrons la proposition dans le cas ol dim W =2, Alors Sp(W)=
SL(2,F), GSp(W)=GL(2,F), S$p(W) s'identifie & 1'ensemble SL(2,F)x{tl} muni
du produit

(L) (% ,u")=(xx ", up'd(x,x1)),
ab
c

ou &« est un cocycle défini de la facon suivante: pour x=( a

c, si c#0,
g(X)={

)ESL(2,F), posons

d, si c=0;
alors

L(x,x")=(c(x),c(x")) (~e(x)e(x"),clxx"))
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(il s'agit des symboles de Hilbert). Pour NeF*, 1'élément g=(é g)e

GL(2,F) agit par:
-1 -1
glx,m)g "=(gxg .pp(x.8)),
ot pour x=(2 b)
p (2 a)
1, si c#0,

@(x,g)=
(N,d), si ¢=0
(cf.[G] prop.2.6). Soit §=(x,u)€§¥(w). Supposons x semi-simple. Quitte a
conjuguer X, ce qui est loisible, on peut supposer
x=(a b\
bu a
avec ueF*. Alors
X~l=(a —b)
~bu af’
et
1, si b#0,
N =
(a,-1), si b=0.
1 0 P o .
Pour g=(0 —l)’ on vérifie grace aux formules ci-dessus que

g)?g”lzﬁ—l .

I.12. Passons au cas général. Soient §:§}(W}, x=p(§7, supposons x semi-
simple. On reprend la démonstration de la proposition I.2: on introduit
1'algébre A, le polynBme P. L'hypothése que X est semi-simple signifie que
di=1 pour tout i€Il. Grdce & 1.9, on se raméne comme en I.3 & 1l'un des cas
I ou II.

Dans le cas II, comme d=1, A' est un corps, extension finie de F. Identi~
fions A" 4 A' par 1'application r. Comme au I.4, on se raméne au cas ol
W' et W" sont de dimension 1 sur A’. Fixons une forme linéaire non nulle
£:A"—5F. Comme au I.5, 1*application

AxA'—>F
(a,a") —> Haa")
est non dégénérée. Pour wEW', w"eW", on définit <<Kw",w'>>€A' par

&<<w",w'>>a)=<w",aw'>
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pour tout agA'. Pour wi, wéew', w?,w%ﬁW“, on définit
<<wi+wT,wé+w;>>=<<wT,wé>>—<<wg,wi>>.

11 est clair que W muni de << , >> est un espace symplectique de dimension
2 sur A', et que W muni de < , > en est la restriction sur F.

Soit A 1l'image de Z dans A'. Alors x agit par A sur W' et par }_1 sur W",
donc X appartient & Sp(W,<< , >>). Gri3ce & I.10, on est ramené & ce groupe,
isomorphe & SL{2,A'). Le résultat découle alors de I.11.

Dans le cas I, A est un corps. Deux cas se présentent: ou bien T est
1'identité de A, ou bien T est non trivial. Dans le premier cas comme T(Z)=Z—l,
P doit diviser Z-Z_l, i.e. P est proportionnel a Ztl. Donc x agit par il
dans W. Grdce a4 1.9, on se raméne au cas ol W est de dimension 2 sur F, cas
traité en I.11. Supposons maintenant ¢ non trivial, soit E le corps des
points fixes de T. A est une extension quadratique de E. Effectuons la cons-

truction de 1.5 en prenant pour ¢ une forme (=€Eotr B’ ou fE:E —>»F est

A/

une forme linéaire nonm nulle. Alors £=1. La forme << , >> est anti-hermitienne.
On peut la diagonaliser et se ramener au cas ol W est de dimension 1 sur

A. Alors W est de dimension 2 sur E et on peut définir une forme symplectique
<, >E sur W, & valeurs dans E, par:

<w,w'> _=tr Lw,w'>,

E “A/E

I1 est immédiat que (W,< , >) est la restriction sur F de (W,<, >E) et que

X appartient & Sp{(W,< , >_). On est donc ramené au cas de SL(2,E), cas

E

traité en I1.11.

I.13. Supposons F local non archimédien de caractéristique résiduelle
différente de 2 et W symplectique. Fixons une base symplectique

{eri; i=1,...,n} de W (<e_i,ei>=1, <ej,ei>=0 si j#-i). Soit L le réseau

de base {e %. I1 est autodual. Soit K le stabilisateur de L dans Sp{(W).

*i
A
On a défini {(ch.2, I1.8,10) un scindage ¢:XK —> Sp(W). Notons k¥ son image.

Soit T le sous-groupe des éléments diagonaux de Sp(W) (pour la base choisie)

A
et T son image réciproque dans §}(W). Soit enfin § la similitude définie par
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i .
} pour i=l,...,n.
f(ei)=—ei

Proposition. (1) La conjugaison par § dans §E(W) préserve k™

oit QGA. existe ke te ue
(2) Soit teT. 1L kek¥ tel ¢

S

Démonstration. (1) La conjugaison par § dans Sp(W) préserve K. Si le corps
résiduel de F est différent de ?é, le scindage de K est unique (cf. ch.2,
11.10), d'ou (1). Sinon, soient X, resp. X*, 1'espace engendré par §e_i;
i=1,...,n}, resp. {ei; i=l,...,n}. Introduisons les groupes unipotents N(X)
et N(X*) (ch.2, II.9). Ils admettent des scindages uniques dans §E(w>, donc
stabilisés par §. Or ces scindages coincident avec ¢ sur KON(X), resp.
K AN(X*) (cf. ch.2, 1I1.10). Donc & préserve o(KNN(X)) et s{KNON(X*)). Or
ces groupes engendrent k™
L . ' 5
(2) Pour i=l,...,n, soient wi 1'espace engendré par e_j et e, Si et Ki
les analogues de § et K pour Wi. Avec les notations de 1.9, on a
n n
§=1 €., 3(TT Hex?
, i . i
i=1 i=1
On est ramené au cas de SL{2,F). En utilisant les formules de I.1ll, on voit
a 0

A
que pour t=(( ),p), on a
-1
0 a

amleml (g-l S,u)ﬂ'{(?l éhgd& 5)1”1. ul

II. Contragrédientes des représentations des groupes unitaires.

II.1. Revenons & la situation de I.l, en supposant de plus F local non
archimédien ou F fini. Fixons un élément § de GLF(W), T~linéaire, tel que
Sw,Sw'>=<w",w
pour tous w,w'eW. L'existence d'un tel élément § est immédiate. Elle résulte
d'ailleurs de la proposition I.2. La conjugaison par § est un automorphisme
de UW). Soit (w,1}) une représentation lisse de U(W). On peut définir une
représentation nS de U(W) dans V’par ﬂg(x)=n(SxS~1). On définit aussi la

p . P v
représentation contragrédiente © de W.
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Théoréme. Si 1 est une représentation admissible irréductible de U(W), les

représentations ™ et ¥ sont isomorphes.
Démonstration. On utilise le

Théoréme. Soient G un groupe algébrique linéaire défini sur F, X une variété

algébrique définie sur F, £:GxX —>X une action rationnelle sur F, ¥ 1'appli-

cation qui s'en déduit de G(F) dans le groupe des automorphismes de X(F).

Soit enfin &:X(F) —>X(F) un homéomorphisme de X(F). Supposons:

(1) pour tout g€G(F), 1l existe g eG(F) tel que ¥(gls= &¥(g%);

(2) il existe un entier n et goec(F), tels que cp=¥(go);

(3) & conserve chaque G(F)-orbite de X(F).

Alors toute distribution G(F)-invariante sur X(F) est invariante par ¢ .

(cf. [Bz] th.6.13 et 6.15 quand F est local. Si F est fini, ce théoréme est
trivial).

Soient ® ,GD“; ,GD* les caractéres de T, “§’ %. Ce sont des distribu-
tions. Il suffit de prouver que 6%5 =GD* (cf. [BZ] 1.2.20), En adoptant pour
les distributions une notation fonctionnmelle, on a, pour xeU(W):

® ;=@ ExsT),
®y (0= @ .
On doit donc montrer que

W ®, =0 6x's7h.

Soient G=X le groupe algébrique U(W), «:GxX -—>X 1l'action x(g,x)=gxg_l,
§:X(F)——>X(F) définie par r(x)=5x-1$~l. Les hypothéses du théoréme sont
satisfaites: (1) en posant §r=§_1g5, (2) pour n=2 et g0=§2, (3) d'aprés

la proposition I.2 (V n'intervient pas ici). En effet pour xeU(W), 1'élément

g de cette proposition est nécessairement de la forme g=Sg', avec g'eU(W).
Appliquons le théoréme: comme ® est invariante par G(F), elle est invariante

par €, ce qu'on voulait démontrer. 01

I1.2. Revenons maintenant & la situation de 1.8. On fixe encore une simi-

litude symplectique § telle que N(§)=-1.
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Théoréme. Soit T une représentation admissible irréductible de §§(W). Sup~-

posons que le caractére ®, est une fonction localement intégrable. Alors

les représentations “S et T sont isomorphes.

Démonstration. On doit encore démontrer 1'égalité (1) du paragraphe précédent.
D'aprés 1'hypothése sur ®_ , on peut ne la démontrer que pour x dams un
ouvert dense de §E(W), par exemple l'ouvert des éléments de projection dans
Sp(W) semi-simple réguliére. L'égalité résulte alors de la proposition I.8

et de 1'invariance de ®_ par conjugaison. O

A
I1I. Commutativité de l'algébre de Hecke de Sp(W).

Placons-nous dans la situation de I.13. Soit i:§fl}—u~9§§(w) 1'injection
d'image le noyau de la projection de §§(W) sur Sp(W). Soit ¥ 1'espace des
fonctions f:éB(W)-“—>¢., 4 support compact, telles que

fli(2)x)=z£(x),

f(klxk2)=f(x),
pour tous xeé%(W), ze{tl&, kl,kzeK#. Le produit de convolution définit sur
¥ une structure d'algébre.

Proposition. L'algébre ¥ est commutative.

Démonstration. Soit & la similitude introduite au I.13. L'application
X ,_»Sx"ls'l
est un antiautomorphisme de §}(W), qui conserve globalement K“h(prop. I.13,1)
et fixe i(~1). Elle induit un antiautomorphisme de ¥ :f+—— f', ol
£ o= 5h.
I1 suffit de montrer que cet antiautomorphisme est 1'identité. D’aprés la
décomposition de Cartan, ¥ est engendrée par les fonctions caractéristiques

-~ v
des doubles classes K#EK*, pour £eT. Or pour une telle fonction f, il résulte

de la proposition 1.13.2, que f£'=f., Cela achéve la démonstration. Q

IV. A propos d'un commutant.
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IV.1. Soient F un corps local non archimédien, ou fini, de caractéris-

tique différente de 2, F' comme en I.1, W , resp. Wz, un espace muni d'un

1
produit < , >1’ resp. < , >2, hermitien, resp. antihermitien. Soient W

1'espace W @,Wz muni de sa forme symplectique < , >, H le groupe d'Heisenberg

IF
associé. Fixons un caractére continu non trivial ¢ de F. Soient (ﬁu’s) un
modéle de la représentation métaplectique de H relative a W, w,, la repré-
. s A ~
sentation métaplectique de Sp(W) dans S. Soient U(Wl), U(Wz) les images
réciproques dans §5(W) de ﬁiwl) et 6tw2). On s'intéresse ici au commutant
~ ~ .
de U(Wl)xU(Wz) dans S, i.e. & 1'espace C des TeEnd&(S) tels que
To&h}x}=wqxx)eT
pour tout xeﬁzwl)Llﬁsz). Evidemment c'est une algébre.

Proposition. L'algébre C est commutative.

La démonstration occupe les paragraphes 2 a 4.

1v.2. Fixons, pour i=1,2, un élément Si de GLF(wi) tel que
<§ w,b Wi =<w W, .
17917 T4 i
On note § 1'élément Sf”§2 de GLF(W). C'est une similitude de rapport ~-1.

Lemme. Soit weW. Il existe uleU(Wl), uzeU(wz) tels que

S w=u1u2w.

Démonstration. Identifions W & HomF,(Wl,WZ) par l'isomorphisme » défini plus

loin au chapitre 5, I.1l. On vérifie que A(Sw)=5éa)(w)u511. On est ramené

4 montrer que si feHomF,(wl,wz), il existe uleU(Wl), uzeU(wz) tels que

-1 -1
nggl —uzful .

Soit f*sHomF,(Wz,Wl) 1'application adjointe de f {(cf. ch.l, III.5). Posons
X=f*f, On vérifie que pour tous w,w’ewl, on a

Kw,w'> +<w,Xw'>l=O;

1
i.e. XGIL(Wl). Posons V=Ker(f). On peut appliquer la proposition I.2 et
choisir geGLF(W), tel que

(i) <gw,gw'>1=<w',w>l

pour tous w,w'ewl;
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(ii) gv=V;

(iii) ng'l=—x.
Posons f'=52ofog—1. Comme SZ et g sont T-linéaires, f' est linéaire. D'aprés
(ii), £ et f' ont méme noyau. On peut définir Q:Im(f)———*lm(f') par 1'égalité
%o f=f'. Je dis que ¥ est unme isométrie de Im(f) sur Im(f'). En effet pour

w,weW., on a

1
Qo () Qo f (07)>y=<E" (W), £" (w5 y=cEag (w) , Fog ()2 )=<g ™ (w'), Fhafog” (W)
=<g°f*ofog"l(w),w'>1=—<f*°f(w),w'>l,
d'aprés (iii),
=—t[<w’,f*af(w)>i}=—CE<f(w‘),f(w)>2]=<f(w),f(w')>2,
ce qui démontre 1'assertion. D'aprés le théoréme de Witt, on peut prolonger

Q en un élément u, de U(Wz). On a alors

2
-1 -1 -1
u29f=820f0g =52nf.51 oslag N
-1
Posons ul=Sleg . On a “1€U(w1)’ et
- -1
uzofgull=§2ofog R

ce qui achéve la démonstration. O

-5 -
IV.3. Pour h=(w,t)eH, posons h;=(5w,t), h =(hs) 1. L'application hy—s hg

&
est un antiautomorphisme de H. Donc h;—>h est un automorphisme de H.
, . -3 .
La représentation f' de H dans S définie par ('(h)=“ﬁh ) est lisse, irréduc~-
. e ' = . ' ¥ 3
tible et vérifie ¢ eS(t)—th)1dS pour tout teF. Donc ¢ «,f$, et d'aprés le
chapitre 2, I.6.4, il existe un isomorphisme A:§ —>8", tel que
A,t'(h)=€vﬂﬂuA, i.e.
-8, _ ¥
A o(w(h )= f‘v(h)°A
pour tout heH.
Soit 3(H) 1'espace des fonctions sur H & valeurs complexes, localement

3§

constantes 4 support compact. L'application h w—ph

-1
§ de 3(H), défini par fS(h)=f(hS ). D'autre part, toute repré-

induit un antiautomor-
phisme fpwp £
sentation lisse ¢ de H définit une représentation encore notée g de Jm.

Soit L un sous-groupe ouvert compact de H. Comme Sy est admissible, on

peut décomposer S en somme directe de sous—espaces de dimension finie inva-
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riants par L. Fixons une base (ei)iEI de S qui soit réunion de bases de
ces sous-espaces. Les éléments 'duaux" ei, i€I, du dual de S forment une
L
base de S. Pour i,j€l, notons Eij’ resp. Eij’ 1'é1ément de Enqa(s), resp.
v, ,
En%c(s), défini par:
ei, si k=j,
E,.(e )=
i3k {o, si ktj,

resp.

. e?, si k=7,
Eij(ek)— {O, si k#j.
Lemme. Soient i,jel.
{1) 11 existe fe<$(H) telle que (“ﬁf)=Eij.
(2) 81 fe3(H) est telle que fwif)=Eij’ 93—3-A°Gy(fg)°A-l=E§i'
Démonstration. Le (1) résulte de 1'admissibilité de ﬁy‘ Soit feR(H) telle

que Quﬂf)=Eij et soit kel. On a:

-1 -1
Aomfs)aA er)= §, £5 (h) Aogy(n)oA™ (ef) dn

#

-1 -1
f £ Ao (o™ (ef) dn

f

§y £(0) Aoty(h daa™ () an

#

v -1
*
jH £(h) f,(h" ) (ef) dn.
C'est un élément de §. Evaluons-le sur un élément ee. On a:
e, Ao (£2)e Al (ek)>=<e {, £(0) ¥ ex) an>
phety k ¢’ lu {y k
=<{H £(h) &V(h)(ee) dh,ef>
= %
< gq,(f) (ee )sed>
=<Eij(et),e1’é>
- gje ik
Y £ *
(eg ’Ejl(ek)>’
d'ol 1'égalité cherchée. I
IV.4. Soit TeC. Pour fe<X(H), Toﬁy(f) est de rang fini. On peut poser
<T,f>=Trace(Totw(f)). Cela définit une distribution sur H. Notons G 1'image

de U(Wl)xU(Wz)-———>Sp(w), et § son image réciproque dans §§(W). Le groupe

G agit sur H, donc sur f(H). Je dis que T est invariante par G. En effet
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soit g€G, & un élément de SP(W) au-dessus de g et fe X(H). Par hypothése
QB oo BT,
d'ot
<T,f>=TraceQuw(gﬁ—loTauhfg)ocwﬂf))
- |
—Trace(Teaﬁ;§)ofwﬂf)oaQ}g) ).
Mais
~ ~ —]._ A -1
Wy ot (Do, B 7= (1 £ 0 (Do gynon, D7 dn
=y £ ¢ f8h) dh
T CDOF

d'ou <T,f>=<T,£5>. on peut appliquer le théoréme cité en II.1, pour G, X=H,
Y

¢ 1'application hi—»h’ . Les hypothéses (1) et (2) sont facilement vérifiées.

L'hypothése (3) est vérifiée d'aprés le lemme IV.2. Alors la distribution

Y

définie par T est invariante par f+—>3f .
Pour tout XeEnd¢§S), resp. Endc(§), notons Xij ses coefficients dans

la base (ei)iel’ resp. {e¥) Soient i,j€I. Soit fe X(H) telle que

i'iel”
ﬁv(f)=gij (lemme IV.3.1). On a

<T,f>=Trace(T.E,,)=T, .,
ij’ Tji

<T, £5=<T, £9>=Trace (To .&p(f 5) y=Trace(AoTe A LA, (‘,(fS)QA'l)

1

- -1
- % Y=
Trace (ATA Eji) (ATA )ij’

d'ot
_ -1
Tji—(ATA )ij'

Maintenant si Tl, TzsC, on a

(rrer?), = T i1l =3 @ar'ah arfah - (ATleA"l)ij,
It ker kel J
mais aussi

1 -1

2.1 21 -
(TeT) ;= ATT A7),

d'ou (TloTz)ji=(T%aTl)ji, et T1T2=T2Tl. Cela achéve la démonstration. 0

IV.5. Supposons F fini. Alors w), définit une représentation de Sp(W)

(]
et par restriction une représentation de U(Wl)xU(Wz). Les groupes en ques-—

tion étant finis, cette représentation est semi-simple. La proposition

implique 1le
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Corollaire. Toute représentation irréductible de U(Wl)xU(Wz) qui intervient

dans wu’intervient avec multiplicité 1.
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Chapitre 5. Paires réductives duales non ramifiées

On expose ici une démonstration de la conjecture de Howe pour les paires
réductives duales de type I, non ramifiées, sur un corps local non archimé~
dien. Cette démonstration est entiérement due a Howe lui-méme, qui 1'a exposée

4 1'ENSJF en 1984,

1. Sous-groupes compacts des groupes de Howe, et représentation métaplec—

tique.

I.1. Soient F un corps local non archimédien de caractéristique résiduelle
#2, F' égal soit 4 F, soit & l'extension quadratique non ramifiée de F, &,
resp. ¢', l'anneau des entiers de F, resp. F', & une uniformisante de F (et
de F'), y un caractére continu de F de conducteur &. §i F=F', on pose T=idp.

Si F'#F, soit T 1'élément non trivial du groupe de Galois de F'/F. Soient
€ £2€§1lz, tels que Elez=—1, et pour i=1,2, Wi un espace vectoriel (& droite)
de dimension finie sur F', muni d'une forme sesquilinéaire Ei—hermitienne
non dégénérée < , >i (cf. chap.l,I.1). Soit w=wlg,w2, qui est un espace sur
F, muni de la forme symplectique
<Wfbw2,w¥awé>=CrF,/F(<wl,wi><wé,w2>)
(cf. chap.1,1.16).
Remarque: notre définition du produit tensoriel est telle que Wld0W2=Wbe2t(d),
pour tous deF', wieW , WEW,.

Soit L un réseau de Wi (pour i=1 ou 2), i.e. un &' -sous-module libre de
rang maximal. On pose

L"={wew

43 pour tout Per, <w,?>ie o'%.

On suppose qu'il existe des réseaux Lic:W autoduaux, i.e. tels que Li=L;Z

i

Fixons deux tels réseaux. Posons
A=L1§,L2c:w.
C'est un réseau autodual de W.

Remarques. (1) On renvoie au 1I pour les propriétés des réseaux autoduaux.
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(2) On peut décrire, en termes de la classification du chap.l,I.11,
quels sont les espaces g-hermitiens admettant des réseaux autoduaux. Ce sont
les espaces des cas suivants:

(a) symplectique: F'=F, £=-1;

(b) quadratique (F'=F, £=1) dont le noyau anisotrope est du type suivant:

- réduit a 0;
- F{a) pour a€&* (groupe des unités de @&);
- 1'extension quadratique non ramifiée de F, munie de la norme;

(c) hermitien (F' de dimension 2 sur F, € = 1) dont le noyau anisotrope
est du type suivant:

- réduit a 0;
- F' muni de la norme si €=1, de 9 fois la norme si £=-1, ol v est
un élément de &'* tel que 167)=-ﬁ.

On utilisera la réalisation de la représentation métaplectique¢d=uﬁvde
§5(w) dans 1'espace S=SA décrite au chap.2,11.8, Cette réalisation définit un
scindage du stabilisateur K de A dans Sp(W). On identifie K & 1'image dans
§§(W) de cette section. Pour tout weW, on note S, 1'unique fonction apparte-
nant & S, a support dams Atw, telle que sw(w)=l.

Pour i=1,2, on note Ui=U(Wi) le groupe d'isométries de (Wi,< s >i), et Ki
le stabilisateur de Li dans Ui' Le groupe Ki est un sous-groupe compact
maximal de Ui' Le couple (Ul,Uz) forme une paire réductive duale irréductible
dans Sp(W) (cf. chap.1,1.17). On a lech:K, et on peut identifier Ki a4 un
sous—-groupe de ﬁ;, grdce a la section de K (rappelons que pour tout sous-
groupe fermé G Sp(W), on note G son image réciproque dans §E(w)). Fixons
une mesure de Haar sur Ui telle que la mesure de Ki goit égale 4 1. Soit M&
1'espace des fonctions Q:ﬁ;——>dl telles que

(a) Q(i(Z)G)=z_lQ(ﬁ), pour tous ﬁeﬁ;, zed’,

ol i: ¢ — ﬁi est le plongement évident;

N N N
(b) la restriction de ¢ a ﬁ;nSp(W) est localement constante d support
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compact.
Munie du produit de convolution, a% est une algébre. I1 y a une équivalen—
ce de catégories entre:
fand
- les représentations (w,V) de Ui telles que mei(z)=z idV pour tout ze €%,
N
et que la restriction de w & UinSp(w) soit lisse;
-~ les représentations (wW,V) de 1'algébre Xi telles que V soit réunion des
images des w(4y), quand ¢ décrit‘xi.
On passe de 1'une 4 1'autre par la formule:
)= jUi ¢ @@ du,
ol U est un reldvement quelconque dans 5; de 1'élément u de v -
Définissons A:W ~—bH0mF,(Wl,W2) par
Y T
%(fowz)(wl)—w2<wl,w1>l.
On vérifie que A est un isomorphisme. On a les égalités:

Ty
<w,w'> 52 trF'/F

* 1
otrwl/F. ) * Xw')),
pour tous w,we€W {(cf. chap.l, III.5 pour la définition de A(w)*),
_ -1

%(u1w1®u2 wz)—uza)((wfbwz)ou1 .
pour tous erwl, wzewz, uleUl, uzeUz. On pourra si besoin est identifier W
a HomF,(wl,wz) par A. Par exemple pour weW, on pourra considérer w(Ll)a:wz,
1'image de Ll par w. Le réseau A s'identifie & Homéﬂ(Ll,Lz) plongé naturel-

lement dans HomF,(Wl,Wz). En échangeant les indices 1l et 2, on peut aussi

identifier W a HomF,(Wz,Wl).

I.2. Soit L un réseau de W, tel que LcL,. Définissons

1 1°
Jl(L)={ueU1; (u-1)1re1t,

H, (L)={ueU

N
3 (e=DL CIW}.

Les propriétés suivantes sont immédiates:
(1) JI(L)c H1(L)CK1“K1(L) s
ou Kl(L) est le stabilisateur de L dans Ul;

2) Hl(L)={ueU (u-L)L,= Ly

1;
(3) Jl(L) et Hl(L) sont des sous—groupes de Ul;
si L' est un autre réseau de W, tel que L'cL., alors:

1 1
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(4) s1 L<L', on a Jl(L)CJl(L'), Hl(L)CHl(L').

Lemme. Le groupe Jl(L) est un sous—groupe distingué de Hl(L)' Le quotient

HI(L)!JI(L) est abélien.
Démonstration. Il suffit de prouver que si hl, hjsHl(L), alors

-1 -1 _ i o 2 +
h1h2h1 h2 e.JI(L). Posons 8~Hom§J(L ,Ll)h Homo,(Ll,L), et pour i=1,2, écrivons

h,=l+a_,, avec a.€ ﬁ. On a
i i i

o l=1-a +a.a b7},
i S R s
avec a,hT%:ﬁ . Alors h.,h h~1h-l—l est combimaison linéaire de termes de la
ii 17271 72
forme bl"'bt’ avec bl”"’bte%" et t>» 2. Mais un tel terme appartient a
i -1, -1
Homcg(L ,L), donc hthhl h2 & Jl(L). 0

1.3. Soit L comme ci-dessus. Posons

B(L)=L‘9,L2c W.
&

En identifiant W & HomF,(Wl,Wz), resp. HomF,(Wz,Wl), on a
B(L)={weW; w(L)e L.,
resp. B(L)=€wcw; w(Lz)c:L*}

={weW; L +w(L))eL*f. 7

(L)

J
Soient SL le sous-espace des fonctions de S & support dans B(L), et S 1

le sous-espace des éléments de S invariants par Jl(L).
JI(L)

Lemme. (1) On a 1l'inclusion SL < S .

{2) Soient weB(L), heHl(L). On a 1'égalité

«Kh)sw=q(<hw,w>/2)sw.
En particulier, 1l'application

WYt s w(<hw,w>/2)
est un caractére de HI(L)’ égal a 1 sur Jl(L). On pourrait d'ailleurs le
déduire du lemme I.2.
Démonstration. Soient weB(L), heHl(L). Pour w'eW, on a w(h)sw(w')=sw(h_1w'),
qui est nul sauf si hulw'eA+w, i.e. w'eAthw. D'aprés les hypothéses, on a
hweA+w. Donc le support de aKh)sw est inclus dans celui de Sy’ et w(h)sw
est proportiomnel a s+ Pour w'=w, on a

«:(h)sw(w)=sw(h'lw)=sw(h’lw-w+w)=w(<w,h'lw-w>fz)sw(w>=v(<hw,w>/z>
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puisque h_1w~weA. D'ou la formule (2). Si de plus weJl(L), on a

_ A - ' .y N
hwe Lg,L2 + w. Or Lg,Lz B(LY , d'ol <hw,w>€d'—F, et 1'égalité a}(h)sW S, Cela

démontre (1).

' ,
I.4. Notons w( X.Z)SL 1'espace engendré par les w(f)s, pour {e Y&, s€s, .

J, (L
Théoréme. On a 1'égalité w(.)S.=S l( ).
g 2L

Comme les actions de U, et ﬁé commutent, le lemme I.3.(l) démontre 1'inclu-

1
I,@

sion w(gCZ)SLc:S . La partie difficile est 1'inclusion opposée qui sera

démontrée aux paragraphes III.4 & 7.

1.5. Dans 1'énoncé suivant, on identifie W a HomF,(Wz,Wl).

Proposition. Soient w,w'€B(L), supposons:

. =1
(1) w(LyHL =w' (L)+L, =L

(2) 1les caractéres\?? gg\p? ég-Hl(L) sont égaux.

Alors il existe keK, tel que A+w=(A+w')k.

2
Cela sera démontré au III.S.
Remarque. D'aprés les définitions, 1'hypothése w(L2)+L1=LL'équivaut & ce qu'il

n'existe pas de réseau L' tel que LeL'eL , L#L', et weB(L').

1’

1.6. Soit (“1’V1) une représentation admissible irréductible de ﬁ}, sup-
posons T e @qjﬁ;) (cf. chap.2, II1.2). Soient Siui} le quotient de S associé
a ™ (cf. chap.2, I11.5), et Cné,Vé) la représentation lisse de ﬁ; telle que
SLW{SB V1®VZ'Z'

11

Théoréme. Il existe un unique sous-espace v

@E.Vé’ invariant par ﬁé, tel que

Vé/V; soit irréductible.

C'est la conjecture de Howe. Sa démonstration occupe les paragraphes 7

a4 9. Ultérieurement, on notera V2=Vé/Vg et7w, la représentation de ﬁ; dans V,.

I,

I.7. Considérons les réseaux Lc:Ll tels que V1

#{0%. De tels réseaux
existent car les groupes JI(L) forment un systéme fondamental de voisinages de

1. Parmi ces réseaux, on en choisit um, L, tel que iLI:L] soit minimal. Si

Y, est um caractére de HI(L)’ notons VI{HI(L)’WI] le sous-espace des VEV1
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tels que Wl(h)v=wl(h)v pour tout heHl(L). Posons
5. o ot
T={w); weB(L) et w(L,)+L =L"}.
Lemme. Il existe un sous-ensemble non vide $'«¢ § tel que
v J1<L)= [ ,
1 anq
Démonstration. Notons q:S———an&Vé la projection. Soit weB(L) tel que q(sw)#O.
Alors q(sw)evl[HI(L),WY}®Vé d'aprés le lemme I.3.(2). On a\UYé§¥. En effet

v,LH (L)W

weB(L); si w(L2)+L1$EL, d'aprés la remarque 1.5, il existe un réseau L' tel
que Lc:L’C-Ll, {LI:LQ < [LI:L] et weB(L'). Mais alors swesjl(L'),

q(s )€ VlJl(LiéPVé» et Vljl(L')#§0}, contrairement 3 1'hypothése de maxima-—
1lité de L. Soient ' 1'ensemble des Yy e ¥ tels que Vl[Hl(L),Wi]%EO}, et

vi= we v (H (L)L ]

¥’
J. (L J. (L P
On a donc q(sw)eviav'. D'autre part V 1( z&vé=q(s 1( )). D'aprés le théoréme

2 1
J (L) , —
1 ®V, est donc engendré sous l'action de Xé par les q(sw) pour
J, (L) J. (L) J, (L)
1 ' t t t 1 s 1 =yt
1 ®V2CV1@V2' Comme VICVI , on obtient V1 E

1.4, Vl
we€B{L). D'o0 V
et l'assertion. 1

Fixons weB(L) tel que w(L2)+Ll=EL et V1[H1(L),WY1?$0}. Posons

M=(w(Ll)+L2)l. C'est un réseau de V, inclus dans L2. On définit de fagon

2

i
évidente JZ(M), HZ(M)’ B(M). On vérifie que we€B(M), et bien sir w(L1)+L2=M .
On définit wg. Dans la sulte, pour toute représentation lisse (sk,Xi) de ﬁ;,

i=1,2, on note ii le sous-espace des x&Xi tels que 5&(h)x=w§(h)x pour tout

heHl(L), si i=1, resp. heHz(M) si i=2.

I1.8. Pour 1=1,2, soit e, l'idempotent de M& défini par

1

i

. -1 . W, - x
e, (i(z)h)=z [Ki.Hi]q;i(h) > si zeC”, heH,,
My . Ar e ~ . ¥
ei(u) 0, si ueUi, et ¢ i(¢C )Hi’

ol H1=HI(L), H2=H2(M). Posons §%=eiﬁtiei.

Lemme. Soient (6‘,X2) une représentation lisse de UZ’ non nulle, et

p:S —>V ®X2 un homomorphisme surjectif i

X xﬁzjéquivariant. Alors l'espace ié

1

est non nul et on a les égalités

V,8K,=1 (3 )p(s )=5, (3)p(s ) -



105

Démonstration. On montre comme dans la démonstration précédente que §EQX2
est engendré sous 3(2 par les P(Sw’) pour w'eB(L), w‘(L2)+L1=L$' et w§‘=w§.
Pour un tel w', il existe, d'aprés la proposition I.5, h&KZ tel que St soit
proportionnel & u(k}sw. Donc 5}9X2 est engendré sous %é par p(sw). En parti-
culier p(sw)fo. Comme swgsﬁHz(M),W;], on en déduit que i}#(o}. comme

V@K, 6, (X ,)p(s )= ¢, (M ye,)p(s),
on obtient:

V@X,)= 6,(e,) (Vi@X,)= 5, (¥,)p(s ).
De méme, l'espace (non nul) Vf§§2 est engendré sous‘}(1 par les p(sw.) ou

1
w'eB(M) et w; =W§- Le méme raisonnement s'applique pourvu qu'on ait p(sw,)=0

si w'(Ll}+L2$M¢. Supposons w'(L1)+L2§Bfi Posons L'=(w'(L2)+L17L. On a

J, (L
w'eB(L'), donc p(sw,)e\?l 1( )SXZ. On va montrer que le:L’}<{L1:L}. Par
J. (L'
maximalité de L, on a alors Vl 1( )={0§ et p(sw,)=0.

L'inégalité ci-dessus résulte du:

Sous—lemme. Soit woewczHomF,(wl,Wz). Alors w

Ll/(wo(L2)+Ll)'L sur (wO(L1)+L2)/L2. O

définit une bijection de

0

Appliqué & w', ce sous-lemme donne
[Ll:L']=[w'(L1)+LZ:L2].
Appliqué & w, il donne
[LI:L]=[MLEL2].
Comme w'(L1)+L2g ML, on obtient YLI:L']<{L1:L]. n

I.9. L'ensemble des sous—espaces invariants Vg de VE tels que q(sz§VfaV",

ordonné par 1l'inclusion, est inductif. Fixons un tel VE maximal. On a V;*V'.
Soit Vg un sous-espace invariant tel que VEC Vgc:vé et V24Vé. Soit p

1'application composée

q '
3 Vf&Vz

D'aprés le lemme I.8, p(sw)$0. Donc q(sw)QVIGNg et V

0
. 1
Vf&(Vz/Vz).
2=V3 d'aprés la maxima-
1ité de Vg. Donc vé/vg est irréductible, ce qui démontre 1'existence d'un

quotient irréductible. Supposons que ce gquotient n'est pas unique. Alors
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Y%

Y, de UZ’ non nulles, et, en posant

il existe deux représentations X2, »

22=X2+Y2, une projection

p:S ——-—-a\fPZz.
En particulier, on a des projections
pX:S—>Vl®XZ’ pY:S -—->V1®Y2,

et ié, Y2 sont non nuls d'aprés le lemme I.8. On a

V1®ZZ=V1®X2+V1®Y2 .

Soit P la projectiom sur le premier facteur. Alors P commute & l'action de

x,.

Lemme. Soient E un espace vectoriel complexe, A, ® deux sous-algébres de

End(E), et e€E. Supposons que & et & commutent et que E=de= Be. Alorsiﬁ est

le commutant de B dans End(E), et vice-versa. O

D'aprés ce lemme et le lemme 1.8, il existe<{e§artel que P*“}(%&. Alors

®X.,. Contradiction, qui

P(thfé)=1&(%)(§})@§é ne peut pas etre égal é‘vl )

achéve la démonstration du théoréme. 0

I.10. Soient (“i’vl)’(“Q’VZ) comme en I1.6.

K K
Théoréme ([H] th.7.1.b). Si Vl 1#{0}, alors V 2#%0}.

2

M=L,. L'assertion résulte

Dans le raisonnement précédent, on a L=L,, 9

du lemme I1.8.D0

I.11. Pour i=1,2, soit x(ﬁg//Ki) la sous-—algébre des fonctions de Xi
biinvariantes par Ki. Cette algébre est commutative. En effet, si Ui est
scindé dans §§(W), 1'algébre est isomorphe & 1'algébre correspondante
K(Ui//Ki) pour le groupe U, lui-méme. L'assertion est alors bien connue (IC],
corollaire 4.1). Si Ui n'est pas scindé, d'aprés le chapitre 3, I, Wi est

N s ) .
symplectique et 1'algébre est alors isomorphe a K(Sp(wi)//Ki), qui est com=—
mutative d'aprés la proposition III du chap.b4.

5 o~ K.xK

Pour i=1,2, l'algebre‘K(Ui//Ki) agit sur 1l'espace des invariants S 1 2,

X K. xK
Notons Hi son image dans End(S 1 2).

Proposition ([H} th.7.1.¢c). On a 1'égalité Hl=H2'
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Démonstration. Soit g la fonction caractéristique de A, Par le théoréme I.4,

K
on a 1'égalité § 1=aK®%)so, d'ou
K. »xK P
1" 2= =
S QKX(UZ//KZ))SO Hys0,
- K;*K -
et de méme S 1 2=HlsO' Grace au lemme 1.9, Hl est le commutant de HZ. Or
H1 et H2 sont commutatives. D'ou l'assertion. O
Cette proposition recouvre des relations classiques (matrices de Eichler-

Brandt) interprétant géométriquement (i.e. du cOté du groupe orthogonal)

les opérateurs de Hecke "modulaires”.

I1. Réseaux autoduaux.

II.1. Soient F, F' comme en I.l, et maintenant ee*l}, W un espace g-
hermitien sur F'. Si (ei), i=1l,...,n, est une base de W sur F', on notera
(e;), i=l,...,n, la base duale définie par <ei,e§>=5ij.

Notons f, f' les corps résiduels de F, resp. F'. Soit L un réseau de W.
On appellera base de L une famille (ei), i=l,...,n, qui est une base de W
sur F', et qui engendre L comme o'-module. Si (ei), i=1l,...,n, est une base
de L, (ez), i=l,...,n, est une base de 1 si el,...,eneI” ils forment une
base de L, si et seulement si leurs images dans L/L& forment une base de
L/L& comme espace sur f'.

Soit L un réseau autodual de W. Le quotient E=L/L®', muni de la réduction
de < , >, est un espace &£-hermitien (non dégénéré) sur f'. Si wel, on note

w son image dans L.

Proposition. Soient L un réseau autodual de W, LAEREREL M des éléments de L,

Bysennsty des entiers, et M=(mij) une matrice rxr & coefficients dans &7.

Supposons:

(1) Eﬁ,...,ﬁ; sont linéairement indépendants sur f';

(2) 1<t &... 3

1

(3) pour tous 1,Je§1,...,r}, mij=£t(mji);

t,
(4) pour tous i,j€§},...,rx, avec i €3, mij5<wi,wj> mod & i4*.
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Alors il existe des éléments wi,...,w;_de L tels que

t.
(5) pour tout iell,...,r}, wi—wie L& i;
(6) pour tous i,j€Us... T3, mij=<wi,w;>.
Remarque. On peut supposer certains des ti infinis, en remplacant les congru-
ences de (4) et (5) par des égalités.
Démonstration. D'aprés (1), on peut compléter 1'ensemble {wl,...,wfﬁ en une
base le,...,wni (nzr) de L. Soit {w*,...,wg} la base duale, qui est une
base de L puisque L est autodual. Pour tout i=l,...,r, on va construire une
suite (wi(t)), t2l, telle que
t,
- 1.
(a) w (t)-w e Lar i;
(b) wi(t)—wi(t—l)é L@t-l, pour t22;
(c) <Wi(t)’wj(t)>smij nod &', pour tous i,j=1l,...,r.
On raisonne par récurrence. Pour t=1, on pose wi(t)=wi pour tout i. Supposons
construits les wi(t—l). On cherche wi(t) sous la forme

T
-1
wi(t~1)+ Z: w”;‘tsft a,., si t>ti,

. J1
wi(t)= ‘]“‘1+l

wi(t~1), si egt,,
avec des indéterminées ajieaf. Les conditions (a) et (b) sont vérifiées. La
condition (c) résulte de (4) si tgtigtj. Supposons igj et ti<t' La condition
{c) s'écrit:

t-1 t
< -1}, - +E LL)=m, . !, i i<j
wi(t 1) wj(t 1> t(ajl) mlJ mod & &, si i<j,

t-1 _ t C s
<wi(t l),wi(t 1)>+® (aii+&r(aii))=mii mod & &', si i=j.
Posons
a. =6 S (m,  —<w, (t=1),w, (£-1)>), si i<
ji it 3 ! ’ !

1-t
= & - - - .
ags (1/2) (mii <wi(t 1),wi(t 1)>)
Grace a 1'hypothése de récurrence, ces éléments sont dans &'. Grace & (3),
ils résolvent les congruences ci-dessus. Cela achéve la construction des
suites (wi(t)), t2l. Grace 4 (b), la suite (wi(t)) converge vers un élément

w; de L. Grdce a (a) et (b) ces éléments vérifient (5) et (6).0
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11.2. Corollaire. (1) Soient Ll’ L2 deux réseaux autoduaux de W. Alors

il existe ueU(W) tel que u(L1)=L2. En particulier la classe d'isomorphie

de la réduction L d'un réseau autodual de W est bien déterminée.

(2) L'application qui & la classe de W associe la classe de la réduction

L d'un réseau autodual est une bijection entre les classes d'isomorphie d'es-

paces £ ~hermitiens sur F' possédant un réseau autodual, et les classes d'iso-

morphie d'espaces g£-hermitiens sur f'.

Démonstration. Fixons la dimension n des espaces en question. On peut identi-
fier une classe d'isomorphie d'espaces £-hermitiens sur F', resp. f', de
dimension n, 4 une matrice nxn M=(mij), 4 coefficients dans F', resp. f',
telle que {(entre autres) mij=£u(mji). La classification du chap.1,I.,11, met

en évidence une bijection entre les classes décrites & la remarque (2) du

I.1 et les classes d'isomorphie d'espaces e-hermitiens sur f'. Plus précisé-
ment on peut trouver des matrices Ml""’Mk représentant les classes d'espaces
décrites & la remarque (2) du 1.1 (et de dimension n), & coefficients dans

&', et telles que leurs réductions‘ﬁl,...;ﬁk représentent les classes d'iso-
morphie d'espaces €-hermitiens sur f'. Soient alors W un espace e~hermitien
sur F' et L un réseau autodual de W. Soit ie{l,...,k} tel que4§; représente

L. I1 existe wl,...,wneL tels que"ﬁl,...,wn s0it une base de L, et queuﬁ;

soit la matrice de la forme réduite dans cette base. Appliquons la proposi-

tion 4 ces éléments LAEREREL A 4 la matrice Mi’ et a t1=...=tn=l. Alors L
posséde une base telle que Mi soit la matrice de la forme &-hermitienne

dans cette base. Alors Mi représente la classe de W, et i est donc bien
déterminé. Si L1 et L, sont deux réseaux autoduaux, ils possédent chacun

une base dans laquelle la forme a pour matrice la méme matrice Mi' L'application
u envoyant une base sur 1'autre est un élément de U(W). D'ol (1). L'application
du (2) s'identifie a Mf——>ﬁi qui est bijective.D

Remarque. La démonstration démontre la validité de la remarque {(2) de I.1.
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I1.3. Corollaire. Soient L un réseau autodual de W, wl,...,wr des

éléments de L, t un entier 1. Supposons:

(1) ﬁl,...,ﬁ; sont linéairement indépendants sur f';

(2) pour tous i,jefl,...,r}, <wi,wj>50 mod GFOJ.

PR 0
Alors il existe des éléments wi,...,w; de L, des sous-espaces X, Y, W de

W, tels que:

(3) wi,...,w; est une base de X sur F';

(4) X, Y sont totalement isotropes, X+Y est orthogonal a WO‘EE W=K3WQSY;

(5) L=LaxeLaw’eLny;

(6) pour tout i=1,...,r, wi—wieLé;.

Démonstration. D'aprés les théorémes de structure pour les espaces sur f',

on peut trouver des éléments LATRERERL de L tels que WiseeesW, soit une

base de L et, si on note X, resp. WO, resp. Y, 1l'espace sur f' engendré par

WyseeesW_, TESP. W, eeesW resp. W ...,W_, on ait: X et Y sont
1’ b r’ p r+l’ 3 n_r’ sp n_r+1’ 3 n’

totalement isotropes, X+Y est orthogonal a WO, et i=§+ﬁ0¥?. Définissons une
matrice nxn M=(mij) par:

mij=mji=0 si igr, j<n-r, ou si iZn-r+l, jr+l,

mij=<wi,wj>, si igr, j2n-r+l, ou si iYn-r+l, j¢r, ou si r+lfign-r,
r+i¢j¢n-r.

On prend t =t =t, =...=tn=1. I1 est clair que la proposition II.l

150 trtl

a une analogue ol la condition (2) est remplacée par tlz...;trgl, et 12j
remplace 1§j dans (4). On peut appliquer cette analogue: on obtient des é1é-

ments w!,...,w'. Soient X, resp. WO, resp. Y 1l'espace engendré sur F' par
1 . P P P

n—r+l’°"’w;' Les conditions (3) a (6)

1 ¥ ¥ 1
WiseeesW s TESp. Wop1rere oW TESP. W

sont vérifiées.

II.4. Corollaire. Supposons W symplectique. Soit L un réseau de W. Alors

L est autodual si et seulement si L posséde une base hyperbolique.

Démonstration. Si L posséde une telle base, on vérifie immédiatement que

L est autodual. Si L est autodual, la proposition permet de relever une
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base hyperbolique de T.0

II.5. Corollaire, Scient L un réseau autodual de W, WiseeeaWy gE_wi,...,w'

T

des éléments de L. Supposons:

(@D) ﬁl,...,ﬁr sont linéairement indépendants sur f';

(2) ﬁi,...,ﬁ; sont linéairement indépendants sur f';

(3) pour tous i,jell,...,r}, <wi,wj>=<w;,w§>.

Alors il existe ueU(W) tel que u(L)=L, et u(wi)=wi pour tout i€§l,...,r}.

Démonstration. En appliquant le théoréme de Witt dans L, on peut compléter
1 1
les ensembles iwl,...,wr} et §w1,...,wr} en des bases \wl,...,wni et
§wi,...,wé% de L, telles que <wi,wj>z<wi,w5> mod 6! pour tous i,jell,...,nl.
w = = = e = = N M .3
On pose t] N tr o, tr+1 - tn 1, mij <wi,wj> pour tous 1,3621,...,n}.
Appliquons la proposition II.1, plus exactement son analogue obtenu en inver-—
sant les relations d'ordre. Alors il existe des éléments wq,...,w; de L
tels que w'i'=wi si ie%l,...,r}, wz—wie Le si ie$r+l,...,n},
<w'!,w'>=m, =<w!,uw!>

i’"; i i’7y
pour tous i,jefl,...,n]. Les deux premiéres conditions montrent que ces
éléments forment une base de L. Alors 1'élément ueEndF,(W) défini par
u(w;)=w; pour tout i¢{l,...,n} vérifie u(L)=L. Les conditions ci-dessus

impliquent ueU{(W) et u(wi)=w; pour tout ite,...,r}. fm

I1.6. Soit L un réseau pas nécessairement autodual de W, mais tel que
<w1,w2>eéﬂ pour tous w;, w,€ L. Alors L=L/L& est muni de la réduction de

la forme < , >, & valeurs dans f', qui est dégénérée si L n'est pas autodual.

Lemme. Sous ces hypothéses, soient wl,...,wreL des vecteurs linéairement

indépendants dont les réductions engendrent un sous-espace non dégénéré

de L, soient W' 1'espace sur F' engendré par WiseeesW et W" son orthogonal.

Les espaces W' et W' sont non dégénérés et on a 1'égalité L=LAW'SLAW",

Démonstration. Il est clair que W' et W" sont non dégénérés et que LOW' est

un réseau de base LAERRERL A On a 1'égalité W=W'&W'", donc si wel, il existe
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w'eW', weW" tels que w=w'+w". Soit i le plus petit entier 30 tel que

w'mie LOAW'. Supposons i>0. Alors la réduction ;i;i est non nulle, appartient
4 1'espace engendré par G},...,G;. Comme cet espace est non dégénéré, il
existe je{l,...,r} tel que <;;;i,§j>#0 dans f', i.e. <w'®;,wj>¢éﬂ¥. Alors
<w’,wj>¢63. Or <w",wj>=0, d'ot <w',wj>=<w,wj>, et <w,wj>écﬂ par hypothése
sur L. Contradiction. Donc i=0 et w'el W'. Alors w'=w-wie LOW". OO

II.7. Dans 1'énoncé suivant, on pose L.=L./L. &, et pour welL,, on note w
P i R P 1

1'image de w dans L.

Lemme. Soient L; un réseau autodual de W, L un réseau tel que Lel,. Il existe

une base el,...,en de Ll’ des entiers s,r tels que 0¢s{r¢n, et pour tout
ielr+l,...,n}, un entier ti}I, tels que:

t t
w'f+1,....,eﬁp—n, est une base de L;

(1) €rsec-an€ s €

(2) 1'espace engendré dans L, par 31,...,58 est non dégénéré, orthogonal

1

a Ei pour tout i>s;

(3) 1'espace engendré dans Ll par ,...,Er est isotrope;

es+l

(4) l'espace engendré dans El par E§+l,...,§§ est isotrope.

< . . . - 0 -
Démonstration. Soient M l'image de L dans Ll’ et M° un sous-espace non dégé-

néré maximal de M. Soient e

de MO, Wo 1'espace engendré par CIEERRRL D Gréce au lemme 1I.6, on a les

l,...,eSeLl dont les réductions forment une base

égalités

=L nWOQLlﬂWOJ:

L=anq$LnWOl; L1 1

58 A B . N
En remplacant W par WO , L par LnWO s L, par Llﬂwo , On est ramené au <as ou

1
M est totalement isotrope, ce qu'on suppose désormais. D'aprés le théoréme
des diviseurs élémentaires, on peut choisir une base ei,...,e; de Ll’ un
entier r et, pour tout ieir+l,...,n}, un entier ti?l’ tels que ei,...,e;,
t t
e;+1é‘r+l,...,e;g?n, soit une base de L. Modifions cette base de la facon
suivante. Pour je{l,...,n}, posons
e.=e!, si igr,
3 3 r

e,=el+ ‘a,,, si j>r
JJiZ—lliJ’ I
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avec des aijecﬂ pour ie€dl,...,r}, jeir+l,...,n}, 3 déterminer. Cette base

vérifie encore (l). Elle vérifie (3) car 1l'espace engendré par E},...,E}

est égal 3 M qui est isotrope par hypothése. Reste a vérifier (4). On calcule

la base duale:

n
e¥=el*~ J  e'*r(a,), si i&r,
J ) yer+l k jk

e¥=e'*, gi i>r.
A J
Soit iell,...,r}. Comme <§},§;>=O pour tout jefl,...,r}, 5} appartient &
1'espace engendré par e;il,...,eé*. Pour i,je{l,...,r}, soit bijeo’. On peut
donc trouver des a, .co' tels que
kj
n r
- 2: e'*t{a,, ) = ' e'b., mod Lo,
kerrr K 3K ;S I
pour tout jeil,...,r}. On est ramené & chercher des bij tels que le réseau
r
engendré par les vecteurs eg*+z:e;bij, pour jegl,---,r], soit de réduction
i=1
isotrope. Il suffit de poser bij=—<e;*,e3*>/2 pour assurer cette condition.d

II.8. On conserve la situation du lemme précédent. On fixe une base e
...,en vérifiant les conditions de ce lemme. Notons R, resp. R*, le ¢'-module
engendré par el,...,er, resp. e?,...,et. Posons

J={ueU(W); (u-1)L*< L%
(cf. 1.2).

Lemme. Soient X un &' -module libre de rang fini, f, g&ikm%;(X,Ll). Supposons

vérifides les hypothéses suivantes:

(1) £(X)c R*+L @3

&5

(2) g e RHLy

(3) pour tous xl,xzex,
<(f+g) (xl),(f+g) (x,)>=<f(x ), £(x,)> mod ad;
(4) pour tout xe€X-Xe, il existe 1i,jefl,...,r} tel que

<(f+g) (x) ,ei>6(.90’ , <f(x) ,ej >e@et.

Alors il existe heHomG,(X,Ll) et ueJ tels que
f+g+t9h=uof .

Démonstration. Dans cette démonstration, pour tout & -module Yc:LI, on note
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Y 1'image de Y dans Ei. On note S, resp. T, resp. T* le ¢'-module engendré

Par e.,,...,e_, resp. e yeees€ , TESp. €X _,...,e*, Remarquons que €,,...,€
1 s T s+l r 1

s+1 s

et 5%,....,52 sont deux bases de S. D'apres (1), f(X)<:§;. On peut modifier
la base €,,...,e_, sans en changer les propriétés, et trouver deux entiers

1 n 23 prop
e, ¢, avec 0$€<sgg4r, tels que e?,...,zg,soit une base de f(X)N\S, et E§+1,
...,E? soit une base de 1'image de f(X) par la projection de ®* sur T# paral-
lélement 4 5. D'aprés (4), f est injective, on a f+(-s=0, ol ¥ est le rang

de X, et on peut trouver une base xl,...,xg de X, et pour tout ie{s+1,...,(},

un élément yieS, tels que

f(xi)=5§, pour tout i=1,...,",
f(xi)=€2;6+i+§;-€*i’ pour tout i=&tl,...,V.

(a) Montrons que pour tout i€3l,...,r%, on peut trouver zieR tel que 1'
application linéaire
v:§§--~—>fl
définie par V(E§)=Z£ pour tout i=1l,...,r soit telle que:
id§;+v préserve les produits scalaires,
v(ff§;3)=§7;;7 pour tous i=l,...,v.

Ces conditions sont équivalentes a:

(i) pour tout i=l,...,s, E;=g(xi);

(i1) pour tout i=s+l,...,¢, Ei+V(§1)=gCK VK

it+s-s

(iii) pour tous i,j=l,...,r,

On a R=ST, resp. R=9¥T. Si weR, resp. weR, notons w', w", resp. W, oW,
ses composantes sur S$,T, resp. g,f. Les propriétés de la base CTERREELN
rendent (iii) équivalente aux conditions suivantes:
(iv) pour tous 1i,j=1,...,s,
<§§,E§>=<é§+§£,é§+£5>;
(v) pour tous i=l,...,s, j=stl,...,r,

<E§,23>+<z;,E§>+<Z;,Eg>=o;
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(vi) pour tous i,j=s+l,...,r,

<%,z e >4<Z !, 7 =0,
i'7] i'7]

1773
Pour i=1l,...,§, on définit E& par la relation (i). D'aprés (3), la relation
(iii) est vérifiée pour 1i,j§ 6. D'aprés (4), les vecteurs 5?+Z}, pour i<,
sont linéairement indépendants. L'application linéaire qui a E? associe
5§+E;, pour i€, est une injection isométrique d'un sous-espace de S dans
S. Comme S est non dégénéré, le théoréme de Witt nous permet de la prolonger
en un automorphisme isométrique de S que nous noterons id§+v'. Pour i=f+l,...,s,
posons E;=v'(5§). La relation (iv) est maintenant vérifiée. Pour i=s+l,...,¢,
posons
= TR, )

Pour i=p+l,...,r, choisissons Ei tel que

(vii) <€33+EJ! ,Ei>=-<§'(x_j)",é‘;>,
pour tout j=l,...,s. C'est possible puisque les vecteurs E?+E} sont linéaire-
ment indépendants et que 1'espace S est non dégénéré. La relation (v) est

satisfaite pour i=1,...,6: si j=s+l,...,p, elle résulte de (3), si j=¢+l,...,r,

elle résulte de (vii). Pour i=¢+1,...,s, on choisit Eg tel que (v) soit
vérifiée. Maintenant Z, est défini pour i=l,...,s, et v est défini sur s.

i
Pour i=s+l,...,f, posons
SN (T Y T T
Z{==-v(T "X e )
Alors (i) est satisfaite. Gri2ce a (3), (vi) est satisfaite pour i,j=s+l,....¢.

Pour i=f+l,...,r, posons

T
Z= f T (-E<E!L,T>-eEl, ) + ] T (-KF!,z1>/2)
ik k1 ki KigrL k k71

On vérifie aisément que (vi) est maintenant complétement satisfaite.
Remarque. Les vecteurs €§+§i, pour i=1,...,r, sont linéairement indépendants.
En effet considérons une combinaison linéaire

T

e*+z Ya, =0

2: ( i 1) i 77

i=1
avec des afaf‘. Prenons le produit scalaire avec 35 pour je¢st+i,...,rhL

Comme Zieﬁ, on a <é},zi>=0 pour tout i, et on obtient aj=0. Prenons le pro-

duit scalaire avec E§+E5 pour j€il,...,s}. D'aprés la propriété (iii), on
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obtient

s
z: <€*,€;>a =0
=1 4t

7

Comme S est non dégénéré, cette relation pour tout jell,...,st implique
ai=0 pour tout i.

QER, tels que

0
(b) Montrons gque pour tout i=l,...,r on peut trouver eieR*, zi

-0 iy Jp—
=%, 7O=
(viii) e =e¥, z.5z,
(ix) 1'application linéaire uO:R*——?L1 définie par
0,_0,0
u (ei)—ei+zi, pour tout i,
préserve les produits scalaires.
Remarque. (viii) implique que e?,...,eg est une base de R*.

Pour i=1l,...,r, on définit des suites eg(m), zg(m), mpl, avec eg(m)eR*,

zg(m)eR, vérifiant:

(viii) 59(m)=5} ( z:3
(ix) <e$(m)+z (m), e?(m)+z (m)>=<e (m), e?(m)> mod w—a», pour tous i,j=l,...,r;
(x)m si my2, e, (m)_eg(m—l) mod Lrsm 1, zo(m) =z, (m—l) mod Lf&m

Pour m=1, il suffit de poser ei(l)=e§, zi(l)=zi. Pour m>1, supposons définis

eg(m—l) et zg(m-l), cherchons eg(m) et zg(m) sous la forme

0, ._ 0 m~-1
ei(m)—ei(m—l)+Efﬁ s

0 0 m-1
= 1)+
z;(m)=z (m-D)+Z0"
avec EisT*, ZieR. La relation imposée (ix)m s'écrit:
l~mpr, O 0
<E,+Z,,e*+z >+<e*+z ,E +Z >= @  [<e](m-1),e, (m~1)>-
R St S S B i i
0 0 0 0 .
(ei(m-l)-i—zi(m-l),ej (m-1)+zj (n-1)>3 mod we'.
Les vecteurs E?+E&, i=l,...,r sont linéairement indépendants et 1'espace
T*+R (=R+R*) est non dégénéré. Il est alors facile de résoudre le systéme
ci-dessus.
. 0 0 0_,. 0
Les suites ei(m), zi(m), m2l, convergent. On pose ei=llm ei(m),
0 0
zi-lim zi(m).
(c) Soit ueEndF,(w) 1'é1lément défini par
0 0, 0 0,0 .
u(ei)=u (ei)=ei+zi, pour i=l,...,r,

u(e§)=e;, pour i=r+l,...,n.
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C'est une isométrie: cela résulte de (ix) et du fait que <zg,e§>=0 pour
i=1l,...,r, j=r+l,...,n, car zgeR. Donc ueU(W). Le réseau L* a pour base e?,
eO e* _tr+1 *eftn C e 20 L tout i=1 a
ceesese¥ e seeeseX - Comme z_ el pour tou sesesTy ON
(-1 e L, i.e. uel. D'aprés (viii) la réduction de la restriction de
u-1 & R* est égale & l'application v du (a). On a donc
uof(xi)z(f+g) (7(1) mod L&,

pour tout i=l,...,v. Alors uef~-(f+g) est de la forme &h, pour un heHomal(X,Ll).D

III. Les démonstrations.

I1I.1. Reprenons la situation du I.l & 4. On identifie W & HomF,(Wl,Wz).

Quitte & la multiplier par €,, on suppose la forme symplectique donnée par
L * t
<w,w'> trF‘/F°trWlfF’(w s W' ).
Le réseau L étant donné, on pose pour simplifier
J=J1(L), H“Hl(L), B=B(L).
Pour weW, posons
stwi={; w(ws  du.
Si s[w)#0, c'est 3 une constante prés l'unique fonction de SJ 4 support dans
1l'ensemble
= U Atw u.
C(w) & (Atw)e

Réciproquement si une telle fonction existe, slw]} est non nulle. Les fonctions
s{w], pour weW, engendrent 1l'espace SJ. On va traduire concrétement la condi-
tion s{wl#0. Pour cela, on a besoin d'introduire des é1léments particuliers
du groupe Ul'

III.2, Pour tout espace vectoriel W' sur F', tout réseau M de W', et tout
w'€W', notons ordM(w') le plus grand entier me@ tel que w'eMa".

. V14 P
Soient x,yewl, ex,yeEndF,(Wl) 1'élément défini par

ex,y(wl)=x<y,w > —£1y<x,w

171 1>1'

Supposons:

(i) ordLl(x)-i-ordLl(Y)?l'
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Alors e (L) cL.@, et lt+e est inversible. Posons
X,y 1 i X5y
-1
1- 1+e .
(1-e, ) (lte, )

On vérifie que u yeUl. Considérons les conditions supplémentaires:
’

u =
X,y

(ii) ordL(x)+ordL(y);O;
(1i1) ord, (x)+ord. (y)20, et ord, (x)+ord, (v)20;
L L1 L1 L
et pour weW:

(iv) ord, (x)+ord, (wy)20, et ord, (wx)+ord, (y)20.
Ly Ly Ly Ly
On vérifie que (ii) implique u yeJ, (iii) implique u yeH, (iv) implique

Well Atw.

x,ye
I11.3. Soit weW. On a sIwl#0 si et seulement si on a 1'égalité o(u)sw=sw
pour tout ueJ tel que Wau—1€A+W. Comme au lemme I.3, 1'égalité w(u)sw=sw
équivaut a Y(<w,wou>/2)=1. Supposons s{w]#0, et soient x, yew1 vérifiant les
conditions (i), (ii) et (iv) de I1I1I.2. Alors w((w,w°ux,y>/2)=1. On calcule:

<W,Wel >==4tr

X,y FV/F(<W'Y:W'X>2)1

ol W‘=Wo(l+ex’y)—1, puis

<W,Well >=-4 tr

sy F,/F(<wy,wx>2) mod &.

Si aee', on peut remplacer (x,y) par (xa,y). On a donc

Ww(-2 trF,/F(<wy,wx>za))=l

pour tout aed®', d'ol

(A) <wx,wy>2669.

III.4. On peut maintenant commencer la démonstration du théoréme I.4.
Pour teN, soit St le sous—espace des s€S de support dans l'ensemble des

w€W tels que w(LanL)c Lfﬂ_t' L'espace St est stable par la restriction de w

a J.
ére - J J
1 étape. On a 1'inclusion S C&K%%)SO.

Démonstration. Comme $= U S, on a SJ= U SJ
€50 t £50 °t

J J
P
pour tout £ 1, S cw(®,)s, _

et il suffit de montrer que

1 Soient t3l, weW tel que s(w}#0, et w(IuﬁﬂL)c

deft. On va montrer qu'il existe ueUZ tel que w(u)s(w}est_l. Soient

x,yeLfaﬂL. Le couple (xwf-l,y) vérifie les conditions (i), (ii), (iv) de
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III.2. D'aprés III.3,(A), on a donc <wx13t_l,wy>2€ o', d'ol
2
(B) <wx<3t,wya‘}t>2e &lecals.

—_— — t -
- LIS .
Notons L2 LZKLZB, X 1'image de w(LjQﬂL)é dans LZ’ soient Xy,...,X_ des
éléments de L@nL tels que les réductions de wx],f,i‘i-t forment une base de X.
Appliquons le corollaire II.3, Il existe des éléments el,...,er de Lz, des
sous—-espaces X, Y, Wg de Wz, tels que el,...,er s0oit une base de X, X, Y
Y]

soient totalement isotropes, %+Y soit orthogonal & Wg, W2==X$W2®Y,
0

- 0 . _ 0_ . _ £ 2
LZ—LXQLZQLY, ol LX—LZQX, LY—LzﬂY, LZ—LZQWZ, et enfin ei:WXfS' mod L?S R
Soit XELfBﬂL, posons

t 0
WX@'=YX+Y +yY,

0.0 . . t . L= .
avec yXeLX, y eLZ, yYeLY. Comme la réduction de wx&® appartient a X, qui est
la réduction de Lys les réductions de yO et y, sont nulles, et en particulier

0.0 .
y eLZ(& Pour 1e§1,...,r’;, on a
_ t
<ei,yY>2—<ei,wx.$ >2
a(vmicsg,wx:&t>2 mod cSZ
2
=0 mod &,
d'aprés la définition des e, et (B). Comme les ey forment une base de LX’ et
. 2 .
que LYzﬁomaJ(LX,eJ}, on obtient yYstﬁ . D'od
t 2
© w(Lo0L)e cLXaLgeeLf& .
Cette relation reste vraie pour tout w'eC(w) (cela serait faux si on travail-

lait avec L au lieu de LfBﬂL). Posons

& . ~1,
u=348 1dX@1dw(2)®é' 1dY

C'est un élément de UZ' Posons s=w{u)s{w], et soit w'€W tel que s{w')#0.

Alors il existe a€A, w"eC(w) tels que u—lo(a+w')=w". Alors

w' (L@l e uew" (L lanL)dt+L2¢&t+1 ,

c szj
d'aprés (C). Donc w'(LfsnL)c.Lzﬁ}_t, et seSt_l.
ITI.5. On est ramené & démontrer 1'inclusion Séctw(ﬂ%)SL.

Remarque: cette inclusion est triviale si Lc];ﬁh
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Fixons une base el,...,en de Ll vérifiant les conditions du lemme II.7
relativement au réseau L. Soit weW tel que s[w}#0 et w(LfaﬁL)c:Lz. Si xelL
et yGLfaﬂL, le couple {x,y) vérifie les conditions (i), (ii), (iv) de III1.2,
donc

) <wx,wy>ze¢9’ pour tous x6L, yeLiﬁf\L.
En particulier si x,yel, on peut appliquer la relation (D) au couple (x,y®).
D'ot <wx@3wy@>zedh¢. Comme au II1.4 on peut alors trouver une décomposition

_ 0
LZ'Lf@LfBLY telle que

-1 __0
w(L)CLx@’ QLZQLY,
~1

w(L)+L2—Lx¢P +L2.

Grdce a (D), on voit que
0

(E)  w(l@NL)< L@L Lo
Quitte & ajouter & w un élément de A, on peut ajouter & w(ei) n'importe quel
élément de L2, ceci pour i=l,...,n. On peut donc supposer:

-1 .
w(ei)eLxﬁ' y pour tout i=l,...,r
et alors, d'aprés (E):
w(L) e L oLl
& L 8L o

(Mais maintenant la méme relation n'est pas vraie pour tout w'eC(w)).

L'idée de la démonstration est la suivante. On va introduire un certain

élément s€S., Par construction on aura sew(}%)SL. On montrera que s s'écrit

o=z
€

I ais[wij pour un certain ensemble fini I d'indices et des coefficients
i

complexes a, mon nuls, de telle sorte que: il existe i€l tel que W, =g

0

0
si iel, ifie, Wi vérifie les mémes conditions que w, mais le sous-espace Xi
qui lui correspond par la construction ci~dessus est de dimension stricte-
ment inférieure & la dimension de X. En raisonnant par récurrence sur cette

dimension, on pourra supposer SCWi]€&K3§)SL pour tout ifi,. Par différence

on obtiendra s[w]ew(M%)SL.

IT1I.6. Posons

a
Hom (LX,LY)={neH0mo,(LX,LY); pour tous x,yGLX, <nx,y>2+<x,ny>2=0}.

On identifie Homa(LX,LY) 4 un sous-ensemble de EndF,(wz) formé d'éléments
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Soient L!, resp.

de restriction nulle a W%BY. Si nGHoma(LX,LY), l+neU2. 1

LY,

le @' -module engendré par les e;» pour ie{l,...,r}, resp. i€ir+l,...,n}.
Posons
ld.._: a "
Hom (LX,LY)xHomoJ(LI,LY)c:EndF,(wz)xW.

On munit 4L d'une mesure de Haar. Enfin si zeW, on note z', resp. 2", 1'élé-

ment de W défini par

z! 152 1 z' w=0,
resp.
z" =0, 2" w=z, .
1] g™y
Soit ueU2 1'é1ément défini au I111.4, posons z=uew. On a
z(L)CLZ,
(F) .
z(LfS(\L) < L}éﬁeLzﬁaLY.

Pour {n,N)e#H., posons
-1 -1, -1
z[n,N}=(l-& n)z+® nz'+& N.
Gri3ce 2 (¥), z[n,NjeB.
Soit f:¥l—»«€ une fonction localement constante. Posons

s=§ﬁ £(n,N) @((1+em)u b dn dN.

Sz[n,N}
Lemme. (1) On a seu(&z)SL.

(2) On peut choisir la fonction f telle que s(w)#0 et s soit combinaison

linéaire de fonctions s{wtv], ol veW vérifie:

(1) v(ei)eL si ie{r+1,...,n},

X’
-1
vieNel® , si ie{l,....r];

(ii) pour tous yy» yzeLY, on a la congruence:

<(w'*+v*)(y1),(w'*+v*)(y2)>1.=.<w'*yl,w'*y2>1 ggg}ﬁ_ld'.

Démonstration. Comme z{n,N]eB, on a Sz{n,N]eSL pour tout {(n,N)ett, et (1).
I1 en résulte que seSJ, et est combinaison linéaire de fonctions s[x], pour
xeW. On doit étudier le support de s. Pour xeW, on a

© s=)_ f@m L, w25, g o) () dn

ol a&=Hom(L1,LY)A&Hom(Ll,LY). Pour que le terme sous le signe somme soit non

nul, il faut et il suffit qu'il existe aeA tel que



122

(H) u{l-gn) &+x)=a+z[n,N],

=—«+(1+§n}u_la+u~1(l+@:1n)z{n,N1.

On vérifie que

--<+(1+m)u'1aeHom(Ll,LX@"l)JrA,

u_1(1+@rln)z[n,N}E w mod A.
Donc si s{(x)#0, on a xsw+v mod A, ol veHom(Ll,LXQ:l). Soit donc VGHom(Ll,LX@:l),
et x=w+v. On coustate que la classe de « dans A est bien déterminée par (H),
et qu'on peut résoudre (H) par

L=gnv+N+dnw', a=&v.
La somme figurant dans 1'expression (G) se réduit a

W<, wtv>/2+<zn,Nl,a>/2),
ol a et « sont comme ci-dessus. C'est égal a

Y(R(n,N)+<w,v>/ 24N, v>+@mn(viw' ) ,viw'>/2),
ot B(n,N) est une certaine fonction indépendante de v. Posons
£(n,N)= Y(-pln,N)—<&nw',w'>/2).
Alors
s (x)=(<w,v>/2) Sn YN, v>+@n (viw ') v >/2-<gnw' ,w'>/2) dn dN.
C'est 1l'intégrale d'un caractére du groupe M. Elle vaut 0 si ce caractére
est non trivial, une constante non nulle si le caractére est trivial. Le
caractére est trivial si et seulement si les conditions suivantes sont
vérifiées:
<N,v>e &, pour tout NeHom(L",LY),
<nvtw'),v+w'> s<nw’ ,w'> mod dflad, pour tout neHoma(LX,LY)_

On vérifie qu'elles sont équivalentes aux conditions (i) et (ii) de 1'énoncé.
Elles sont vérifiées pour v=0, donc s{w)#0.

On suppose désormais f telle que les conclusions du lemme soient vérifiées.

II1.7. D'aprés le lemme, on peut écrire s=2:I ais{wi}, ol I est un en-—
i€
semble fini d'indices, les conditions suivantes étant vérifiédes:

- si i,j&€I, i#j, on a C(wi)nC(wj)=¢;
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- pour tout ie€l, ai%O;
- il existe ioeI tel que W =w3
- pour tout iel, il existe ngw, vérifiant les conditions du lemme II1I1.6,

tel que wi=w+vi.

En particulier les éléments v, vérifient
v (LIS Ly, w, (L) G Ly 4L,
D'aprés la premiére relation, on peut construire un sous-espace Xi de Wz
associé a vy de méme que X avait été associé & w. La seconde relation montre
que dimF,XiédimF,X.

Lemme. Soit iel. S8i ifig, on a dim,,X, < dimF,X.

UL

. -1 s
Démonstration. Supposons dimF.Xi=dim X. Alors wi(L)=LXB +L2. Considérons

P
les hypothéses du lemme II1.8, ou on pose "X=LY", f=ew'*, g=@v§. L'hypothése
{1) est satisfaite car w'(ej)=0 pour jeir+l,...,nY, (2) 1l'est car
@wi(eg)eLxﬁ si jefr+l,...,n}, (3) 1l'est d'aprés le (ii) du lemme III.6.
Enfin, comme w(L)+L2=L>{a—“1+L2, que w(LAAL)E Ly, et L=R+LMAL, on a

-1 . . . .
w(R)+L2=LXw- +L Si xeLY—LYén il existe donc j€l¥l,...,rt tel que

9¢
<x,wej>¢c¥, i.e. <x,w'ej>¢d’, i.e. <f(x),ej>¢¢ﬁcﬂ. De méme pour f+g. C'est
la condition (4). Appliquons le lemme: il existe beHom(LY,Ll), et uleJ,

tels que

u w'*=w'*+v§+b.

1

0 .
QLX, et en transposant, on obtient

En prolongeant b par 0 sur L2

1]

-1
w'u =w'+vi+a,

1

avec a€A. D'autre part w"eB, d'ou w"ulew"+A, et finalement

wu_le wtv +A=wi+A.

1 i
Mais alors C(w)=C(wi) contrairement & nos hypothéses. [}

Grice a ce lemme et an (1) du lemme III.6, on peut raisonner comme on
1'a indiqué & la fin du paragraphe III.5. On obtient alors sfwjetu(H%)SL.

Cela achéve la démonstration de 1'inclusion SJc:w( )S., et en méme temps
0 L

celle du théoréme 1.4,

111.8. Démontrons maintenant la proposition I1.5. Traduisons les hypothéses
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de cette proposition & 1'aide des notations III.l. On a w,w'€W. On suppose:
-1 _a-l 1.
(1) w " (LyaL =w" "(L,)NL,=L;
(2) W(Kw,wu>/2)=y(<w',w'u>/2), pour tout ueH.
On veut en déduire qu'il existe keK2 tel que Atw=k(A+w').
Soit el,...,en une base de Ll vérifiant les conditions du lemme II.7.
Pour i€fl,...,r}, on a el, donc w(ei)eLz, w'(ei)ELz. Quitte & ajouter
4 w et w' des éléments de A, on peut supposer w(ei)=w'(ei)=0. Pour
ie§r+1,...,n}, posons
s ti L P ti
z;=wed 1, zi=w'e s 1.
On a zieL2 et les images de Zr+l""’zn dans LzlLiﬁ sont linédairement in-

dépendantes: si

n
J. z.d. e Lgo
i=y4+1 — % éﬂ’
avec des coefficients diecﬁ, on a
}E .o id. e w (LNl B=Ls5;
. i My 0L =15,
i=r+l
donc df&@tﬁ pour tout i d'aprés les propriétés de la base §el,...,en§.

Le méme résultat vaut pour les zi.
t.
Soient i,j€€r+l,...,n}, SUppoOsSoONs tigtj, posons x=e_, y=eja-J. Le couple
(x,y) vérifie les conditions (i), (iii) de III.2. Donc u yeH, et
L]
< = ' ' .
w( w,wux,y>/2) W<w' ,w ux,y>/2)

On calcule comme en III.3:

<w,wu >E -4 tr
x

.y F,/F(<wy,wx>2) mod &,

on obtient alors
<wy,wx>2=.‘=‘ <w'y,w'x>2 mod &,
puis

<we.,9ti we tj> <w'! i,y @tj> dc&ti'
1 s jaﬁ' zawei@" W ej % MO & ,

t, ,
2 zmodale.

D'aprés la proposition II.1, on peut trouver des éléments z;+l,...,z;€L

Kz,,z. >, 8<z!,z!>
1] i ]

2
tels que
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t,
Z;Ezi mod Ly 1, pour tout iedr+l,...,n%,
[ LT P
<Zi’zj>2 <Zi’zj>2 pour tous i,jef{r+l,...,n%.
D'aprés le corollaire II.5, il existe kek,, tel que kzi=z; pour tout
igfr+l,...,n}. Définissons a€W par
a(ei)=0, si ie{l,...,r},
“t' '] '3
ae)=(z{-z & 1, si ieirtl,....n}.
On a a€A, et 1'égalité
(w'+a)(ei)=kwei, pour tout ieil,...,n%,

i.e. w'+a=kw.
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Chapitre 6. Représentations de petit rang du groupe symplectique

1-Notations générales :

Le corps de base est noté F ; ce sera soit @ soit un corps local non
archimédien de caractéristique O. Soit X un F-espace vectoriel de dimen-
sion finie, notée n ; on note X* le dual de X et on munit W:=X+ X* de la
forme bilinéaire alternée usuelle. On note G:=Sp(X + X*) le groupe symplec-
tique associé ; il contient naturellement 1'ensemble des éléments (X+-x;§
ol 5€ G1(X) (et * est la transposition) et on note encore Gl(X) le sous-
groupe de G formé de ces éléments. On note P(X) le sous—groupe de G norma-
lisant X j; il admet G1(X) comme sous-groupe de Levi et son radical unipot-
ent, noté N(X), est abélien ; il est décrit au chap.I,III.5. On utilisera
le fait que l'application u +yu-l est un isomorphisme de N(X) sur S%(X) ~
Lie N(X), 1'ensemble des 2-tenseurs symétriques.

On note A 1l'anneau des adéles de Q et pour toute place, notée Vv, Qv
le complété de @ & la place v. Quand F=Q, on met en indices, pour éviter
les doubles parenthéses, des notations de groupes le corps contenant @
dans lequel on prend les points de ces groupes, sauf pour G et OT défini
plus loin, ou on garde la convention usuelle.

Les (quasi)-caractéres de N(X) s'identifient, d'aprés ce qui préceéde,
aux formes linéaires continues de $2(X) & valeursdans €*. Quand F= @, on
s'intéresse aux caractéres de NA(X) triviaux sur NQ(X) ; apréds choix d'un
caractére non trivial de Q\A, ils s'identifient aux points rationnels de
S2(X*), i.e. Sz(X*)Q. Quand F est local non archimédien aprés choix d'un
caractére non trivial de F dans €%, noté\y, les caractéres de N(X) s'iden-

tifient 4 S2(X*). Dans tous les cas S2(X*) est 1'ensemble des formes qua-
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dratiques symétriques sur X ; GL(X) opére dans $%(X*), avec un nombre fi-
ni d'orbites si F est local. Soitfﬁ une telle orbite et T 6(5 ; on note\.l,/T
le caractére de NQ(X)\NA(X) (si F=0) ou de N(X) (si F est local) qui s'en
déduit. Le stabilisateur de T dans Gl(X) est noté OT(X), c'est aussi dans
le cas local le stabilisateur de %% dans G1{(X). On peut le décrire de la
facon suivante : on note Rad T le radical de T dans X et uOT(X) le radical
unipotent de OT(X). Alors uOT(X) est 1'ensemble des éléments de GL(X)

dont la restriction & Rad T est 1'identité et qui agissent trivialement
dans le quotient X/Rad T. Le quotient OT(X)/uOT(X) est isomorphe au produit
de G1l(Rad T) avec le groupe orthogonal, noté OT’ de la forme quadratique

non dégénérée sur X/Rad T qui se déduit de T. Par choix d'un supplémentai-

re de Rad T dans X, on identifie Ow

o 4 un sous-groupe de GL(X) (5G). On

pose
b = c@Ncih),
,LT(A) = OT(Q)\OT(A).
Pour toute orbite ﬁ de S2(X*), si F est local on note ﬁ la fermeture deﬂ
dans S2(X*) et gi F= Q pour toute place de Q, notée v, on note ﬁv la QV-
orbite dans $%(X*) engendrée par les extensions Qv—linéaires des élé-
ments de ﬁ. Par abus de langage, on parlera du rang de ﬁ au lieu du rang

des éléments appartenant & .

2- Enoncé du théoréme

Ici F=Q. Soient ﬁaeLz(f(A)) et TeS?(x*),. On note ¢ le coefficient

de Fourier de Y relativement & %%, i.e. :

Feec(h), (g):=j (ng).(n") dn.

fr NN, ) P
On a un développement en série de Fourier :
-2

Voex, 00, Vgeo(h), gtm) = 2pco i A K-

On dit que ? est singuliére de rang inférieur ou égal a k {(ou k est un

entier strictement inférieur 3 n) si 1l'on a f%==0 pour tout T de rang
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strictement supérieur 4 k ; on note alors YéLz(f(/A),Sk). Plus précisé-
ment soit ﬁune orbite de S$%(X*), on dit que 50 est concentré sur /@ si
les conditions suivantes sont vérifiées :

. (fT=O, VT de ranngangﬁ et Tﬁﬂ 5

. ?ﬂ est orthogonale & Ek < rangp Lz(f(/A),f k).
Clairement Lz(ﬂ A),/;) est un sous~G(/A)- module de Lz(/(/A)). Dans [HZJ ,
Howe démontre alors le théoréme suivant

Théoréme : ([sz, 2.3 et 2.10) (i) On note LZ(/(/A), <n) 1l'ensemble des

éléments de Lz(f(/A)), notés V , qui vérifient ?‘1‘: O pour toutr TE 82 (X*)

de rang #n. Alors on a :
2 = 2
L (f(/A)’ <n) _@/3) orbite de S2(X*) de rang < nL (/UA)’/G )

En outre Lz(/(/A),/S) =0 si le rang de /§ est_impair.

(ii) On suppose gque /5 est une orbite de rang pair strictement inférieur

a n et que /go’ est formé d'éléments semi-définis positifs. Alors

L3¢ f(/A), [5) est somme directe de sous-représentations irréductibles

n'intervenant chacune qu’avec une multiplicité finie et la projection or-

thogonale sur Lz(/(/A),ﬂ) des séries théta formées & 1'aide de la paire

duale ( Sp(X@X*), OT) ou T est un élément quelconque de ﬂ , est dense dans

Lz(f(/A),/} ). (Ces séries f sont en fait dans Lz(./(/A), Srang/s ).

(iii) Plus précisément on a une bijection entre sous-représentation ir-

réductibles de Lz(f(/A),/i) comptées avec multiplicités et sous-représen-

tations irréductibles de L?( IT(/A)) comptées avec multiplicités.

Remarque : si /ﬁ est de rang impair <n, on a des résultats analogues en

travaillant avec le revétement d'ordre 2 de Sp.

3- Définition locale du petit rang et lien avec la définition globale :

Pour pouvoir utiliser des arguments locaux, Howe commence (c.f.[H‘])
par définir la notion de petit rang pour une représentation (unitaire)

de G quand F est un corps local, On suppose donc ici F local. Soit k un
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entier (resp./$ une orbite de S$2(X*)) on note gk (resp. 9& ) 1'ensem—
ble des fonctions lisses & support compact sur N(X) dont la transformée
de Fourier s'annule sur 1'ensemble des éléments de rang inférieur ou égal
a k (resp. appartenant a ﬁ ). Soit (7r,V) une représentation unitaire de
G, on dit que (#,V) est de rang inférieur ou égal a k (resp. est concen-—
trée sur TQ) si rr'(yk)V=O (resp. m( (j/':‘ JV=0). Le lien entre les défi-

nitions globales et locales est donné dans le lemme suivant :

Lemme : ([Hz},2.&) Soit ?e L2(/(A)). On note V le sous-Sp-module engen-

dré par Y et soit k un entier <n. Alors les conditions suivantes sont é-

quivalentes :

(i) tout élément de V est de rang inférieur ou égal a k,

(ii) il existe v une place de @ telle que V vue comme représentation de

Sp(QV} (csSp(A)) soit de rang inférieur ou égal 2 k,

(iii) pour toute place v de ®, (ii) est vrai.

4- On se place dans le cadre lisse :

Les arguments locaux utilisés dans la démonstration du théoréme se
trouvant dansIHﬁL ne distinguent pas le cas archimédien du cas non archi-
médien. Dans cet exposé, je vais traduire Mﬂ dans le cadre lisse en exclu-
ant le cas archimédien. Et je donnerai 1'équivalent de 2(iii) par une mé-
thode légérement différente de celle de{ﬁ?}, mais qui fait le lien avec
la représentation métaplectique (cf.l12 et 13). En outre pour ne pas exclu-
re le cas du rang impair, on travaille avec le revétement métaplectique
d'ordre 2 de Sp, noté é%. On note systématiquement avec des " les images
réciproques dans SEdes sous~groupes de Sp ; 1l'absence de “gignifie un
relévement comme groupe. Donc & partir d'ici F est un corps local non ar-
chimédien de caractéristique 0. On munit S2(X*) de sa topologie usuelle

et on nmote avec  la fermeture d'un sous—ensemble de S$2(X*). On note Ind
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1'induite lisse et ind 1'induite compacte.

La notion de petit rang, ou plus précisément d'8tre concentré sur la
fermeture d'une orbite est, dans ce cadre, équivalente & une condition
sur les modules de Jacquet relativement 3 des caractéres de N(X). Soient

~
(177, V) une représentation lisse de Sp, ﬁ une orbite de S%(X*) ; on note
NTV le sous-espace vectoriel de V formé des éléments (11(n)-\f&(n))v ol
A~
n parcourt N et v parcourt V. Remarquons que OT(X) laisse stable NTV et

opére donc dans V/NTV. Alors on a :

N,V

Lemme :{ vE& V l T ( 9ﬁ> Yv = ﬁj =/1 Ve

v¢E

On notera V [ﬁJ ce sous-espace vectoriel de V. En particulier V est con-

centré sur]&- si V=V[/1]
Par un calcul élémentaire on obtient

Vee f:(N(X)), Vvev, V1es2axn, mEv-vime ny. (1)
Supposons que T ( g/i Jv=0 ; alors pour tout T' éﬂ: il existe f & H,a

A A
tel que £(T') # 0. D'ol avec (1), vE(T') € N V et v € NTV. Réciproquement

T
it v € ~ N.,Vet f€ . Onad tout T € §%(X%),
soit v ﬂ T'f/b Ve y/& a donc pour tou (X*)

N.V. Le lemme résulte alors

7 N
£(T)v ENTV dtou avec (1) T(f)v € T €82 (x*)T

de 1'assertion suivante, réutilisée dans la suite

' . . . .
1'application naturelle V -—JTI; € $2(X%) V/NTV est injective (2)

Quand on a défini Lz()/(AA),ﬂ ) en 2, on a évité les sous-représenta-
tions liées & des orbites différentes de/g . Dans le cadre lisse, on uti-
lisera la définition suivante du méme type (cf.6(i))

Définition : Soient /3 une orbite de S%(X*) et T 6/3 . On dit que (7, V)

GL{X) N(X)
OT(X) N{X)

est concentré& sur ﬁ si 1'application naturelle V —~3 Ind V/NTV)

v 2 (Y (m( b’)v-é'NTV/NTV)), est injective.
Remarque : la définition est équivalente aux conditions suivantes :

v = V[ﬁ'] et V [/S']= 0, pour toute orbite A' telle que ﬂ ¢.7§ ',

, P
Pour toute représentation V de Sp, on note V le noyau de 1'application

G1l(X) N(X)

naturelle V - IndOT(X) N(X)

v =/ fan
V/NTV. Ona: V TkﬁT‘V' Supposons d'a
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bord que V=0, Soit T'€ S?(X*) tel que Np VAV, 51T @ £, il existe fg(j{),
tel que F(T') # 0. En particulier avec (1), on a pour tout v @NT,V,

T (f)v#0 et T(f)vEV ; d'ol une contradiction qui prouve que V=V{/;]. Soit
maintenant P' une orbite de SZ(X*) telle que b £ It_'. On a par définition

V[P']Cn

T'G}S NT'V= ¥=0. D'ol la nécessité des conditions. Réciproquement,
supposons que V=V[f] et V[P‘} =0 si -(3,','75/3 et montrons que V est nul.

$'il n'en est pas ainsi, 1l existe T'€& S2(X*) et v€V tels que v & NT‘V'
Choisisons T' et v avec ces propriétés tels que le rang de T' soit le plus
grand possible. Soit f € fﬂz(N) tel que fsoit nul sur les éléments de SZ(X%)
de rang inférieur ou égal 4 celui de T' non équivalents & T' et £(T') #0.
Alors avec (1), on a 1(f)v & NT'V et rr(f)vENT..V si T" n'est pas équiva~-
lent & T', par maximalité de T' si rang T" > rang T' et par hypothése sur

f si rang T" {rang T'. A fortiori n(f)véV[@'}—{O‘{ ot &' est 1'orbite de T'.
Or puisque TM(F)VEV et w(f)v @NT.V on a sirement p' 9‘{5 et puisque V=V[/5]

on a aussi p'c {—3,_. D'ou pe [g—(l et la contradiction 7[(f)v£V[/g']—iO}= ¢.

5~ Enoncé du théoréme local :

Théoréme : Soient (W ,V), (w',V') des représentations lisses de Sf),ﬂ une

orbite de S?(X*) et TEp .

(i) 8i rang p<n alors V[/;]est un sous-$p-module de V. 8i V= V[Ib] (rang f <n)

alors nTe&B NTV est un sous-Sp-module et tout sous-quotient irréductible

de V est concentré sur une orbite incluse dans (5

(ii) On_suppose que (17,V) est irréductible et concentrée surfp et que le

rang de?: est <n. Alors[[se factorise par Sp si et seulement si le rang

de b est pair.

(iii) On suppose que (T ,V) et (xw ',V') sont concentrées sur ﬂ Soit F

un homomorphisme de OAT—mOdules de V/NTV dans V'/NTV', alors il existe une

sous-représentation, notée V, de V et f' un Sp-homorphisme de ¥ dans V'

tels que 1'on ait : .V/NTVG,)V/NTV,
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. le diagramme suivant est commutatif :
__.._E_I__> LAl

. ¥
N —E—s v

A
Si V est irréductible, V/NTV est irréductible comme Og-module. Réciproque-

<t h

ment, si V/N

- . /\ 2 :
TV est irréductible comme OT—module, alors V contient une uni-

que sous-représentation irréductible, notée V et l'on a :-V/vacﬁgv/NTV.

P
(iv) On note ¥ le caractére de G1(X) défini par (5 J€) Feldetﬁklz Sk

w(T; Y £) ol k est le rang de p et CJ(T;a’E) est le scalaire interve-

nant dans la représentation métaplectique pour la paire (SP’OT) (cf.ﬁﬂ2.2.1

et 1.3.4.). On suppose que rang ﬂ <n ; on note q? 1'application de 1'ensem~

A
ble des classes de représentations irréductibles de Sp concentrées sur ﬁ

dans 1l'ensemble des classes de représentations irréductibles de 0z définie

-
par @(V)=V/NTVMcf.(iii) et Rq.(ii) plus bas). Alors ; est bijective.

Le méme résultat est vrai si rangﬁ:=n 4 condition de se limiter aux repré-

~ .
sentations de Sp qud. ne se factorisent pas {resp. qui se factorisent) &

Sp si n est impair (resp. pair).

Remarque : (i) é; s'interpréte & 1'aide de la représentation métaplectique
pour la paire (Sp,OT) mais n'est pas en général la bijection conjecturée

. . SN fEaN (s c s ﬂ
par Howe. La démonstration de (i)(ii)(iii) est une trancription deﬁ{

{(ii) On a utilisé OT au lieu de OT(X) ; cela est justifié par le résultat

u /\
suivant : si rangP( n, OT(X) agit trivialement sur V/NTV et Gl(Rad T) y

agit par le caractére V .

Ce théoréme est démontré dans les é qui suivent.

6~ Quelques lemmes

6.1 Lemme : Soient H un groupe totalement discontinu et U un sous-goupe

abélien distingué de H, isomorphe 4 un produit de F . Soient (w,V) une

représentation lisse de H et/X un_caractére de U, On note

?KV le sous-espace vectoriel de V engendré pari(ﬁ(u)—x(u))g ol uéU,ver
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(i) L'image de 1'application naturelle u:V p—gIndHStab X v/qxv contient
H

1'induite compacte.

(ii) Soit W une représentation lisse de Stab}{x sur laquelle U agit par

H
Stabe

H '

W et V=ind W. Soit
= staby x 0 = [

un

le caractére‘x . On pose ici V= Ind
autre caractére de U, alors on a :

. V/UXV" 0 si X'¢ Hey .

. 1'application de V dans V/?%y est, si X ‘e Ho s

i

1'évaluation en un point (quelconque), qggé 6», de H qui vérifie )l'=lx.

L V/U T =V i ,'e H. t V/U,,¥ = 0 si
/U .,V /U/('Vg,}}e X e /U, si

X P
x‘ﬁéﬁ.x .
On ne fera pas la démonstration de ce lemme ; (ii) est complétement élémen-
taire et (i) se démontre sous la forme plus précise suivante :
7 A —_—

on pose &j =2f6 KC(U) ! f(A')=O/ VX’G H.x - HX} . Alors on a:

. 1'application naturelle de TT((é )V dans V/HXV
est surjective,

= inql
-l g)V) = mdStabe /U (1)

6.2. Lemme (notations de 6.1) Soient {7y', W') une autre représentation

lisse de StabHX sur_laquelle U opére par X et [) un_homomorphisme

~ >
Stabe—équivariant de W dans W'. On note p et ¢ les homomorphismes H-

équivariants entre les induites lisses et compactes de W et W', Alors les

conditions suivantes sont équivalentes :

(i) f est injectif,
(ii) ? est injectif,
N . :
(iii) ¢ est_injectif.
bl
On a évidemment (i) = (ii) = (iii). Supposons donc que 6 est injectif.
L'exactitude du foncteur de Jacquet et 6.1(ii) assurent que e est injec-

~
tif d'ou aussi e . D'ol le lemme.

(En fait ce lemme a une version beaucoup plus générale, cf.[ﬁ-z]).

6.3. Lemme : Soient ﬁ une orbite non nulle de S2%(X*) et TE ﬁ . On choi-

sit)%)e X—ﬁﬂ, X' un_supplémentaire de Fxo dans X et un systéme de repré-
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sentants, noté f, de 1'ensemble des éléments non nuls de la forme T'(xo,xo),’f'é'/?s,

modulo F*2, Pour tout e & f , on pose 3

fe=2T'€ ;S ! T'(xO,X')=O et T'(xo,xo)=e} s

et on note R le sous-groupe de G1{(X) stabilisant Fxo. Alors on a :
(i) Ueef R je est dense dans/l R

{ii) pour tout e ff R ?e est une orbite non vide sous 81(X') (cy G1(X)).

L'ensemble des restrictions des éléments de :Fe a X' est une orbite, notée

/5 o de S2(X'*). Généralisant la définition de fe 4 F* tout entier en

= 1 %2 ' . . PN .
posant fe $sie 4: £ px2, 1 application qui & /4 associe ﬂe est une

application entre ensembles ordonnés. Plus précisément soient ﬁ, /5' des

orbites de $2(X*) alors on a :
pep = po=toufp =l
otpospim pep

(11i) pour tout e € 5 , on choisit a’eé G1(X) tel que ba;l'l‘ & :Fe.

Alors Ue ¢ OT(X) a/e R est un ouvert dense de Gi(X).

(i) est clair.
(ii) la premiére partie résulte du théoréme de Witt. Supposons que /56/5'
et que ﬁe #¢ ; soit T € fe ; il existe une suite déléments de fb' qui

i,...,T;,.. . Pour p suffisament grand T;(xo,xo)

converge vers T, notée T
€ e F*2 et utilisant des éléments de R on peut donc remplacer Ti,..,T;,..
en enlevant éventuellement un nombre fini de termes par des éléments de
5; (ol fé est défini de faconm analogue & ye & partir de /S’) ; et cela

prouve que /Le c {5; La réciproque est claire.

(iii) est une conséquence immédiate de (i).

7~ Quelques notations supplémentaires et le cag de /5= 0 :
On adopte les notations /&, T, ;, Xo’ X' de 6.3. Ici on choisit un
systéme de représentants de F* modulo F*2, noté simplement F*/F*2, conte-

nant f On note Pl le sous~groupe parabolique de Sp stabilisateur du dra-
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peau OC'FXOC X. On note H son radical unipotent ; c'est un groupe de Hei~-
senberg dont on note Z le centre. On note T1 le sous-tore de Pl’ ensemble
des é1éments de G1(X) agissant par 1'identité sur X' et Sp' le sous-groupe
de P, agissant par 1'identité sur x et normalisant X'@x'"=x" GBX: . On

stabilisateur dans T, d'un caractére non

note *1 le sous-groupe de T1 1

trivial de Z. Soit e¢F* ; on note Yo le caractére de Z défini par 4€(z)=
Q/(e(z-l) et pour toute représentation lisse, notée {({r,V) de Z, ZeV 1'en~
semble des éléments (T (z)~- qg(z)v) ou z€Z et v€V. On note ,f un¢ représen-

. N S T
tation lisse irréductible de H de caractére central Q@ 3 sur . opere Sp
et rl par la représentation métaplectique. On a alors le lemme suivant

p . P
7.1. Lemme : Soit (77,V) une représentation lisse de Sp.

) e ez s
(i) Soient veV et U un sous-groupe unipotent de Sp (du type considéréen 6.1)tel

que (U)v=v. Alors on a aussi -v(é})v=v. En particulier Vkﬂest 1'ensemble

Ay
des points fixes par Sp. Et le théoréme 5 est vrai pour /?=O.

K 1] : ) . 3 P“
(ii1) L'application naturelle : p:V —> GQBeF*/F*ZIndff;gﬁ'xHV/Zev

a4 _pour noyau Vﬁﬂ . Son image contient la somme des induites compactes.

(iii)Pour tout e €¥*/F*?, on note l£3=HomH( JZ’V/ZeV)' Alors 1'application

—~ N\
naturelle de Lzéalj dans V/ZeV est un isomorphisme de £lxSp'xH-module (ol

ce groupe agit diagonalement sur lt} en particulier H y agit trivialement).
(1) résulte d'une part du fait que g; est engendré comme groupe par K et

U ol K est n'importe quel sous—groupe compact ouvert de g; et d'autre part
de ce que Vﬁdkﬁvﬁﬂ/NOV@ﬂ, i.e. N(X) y agit trivialement (cf.4(2)).

(ii) Le noyau de p coincide avec /)G%OZEV, ce qui entraine que Z y agit
trivialement. D'aprés (i), il est inclus dans Vﬁﬂ et 1'inclusion récipro~
que est claire (cf.(i)). La fin de (ii) résulte de 6.1(1).

(ii1) est classique et résulte de ce que ]Z en tant que représentation

irréductible de H n'a pas d'extensions par elle-méme non triviales (cf.
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chap.11.1.8). [J

Le théoréme 5 se prouve par récurrence sur dim X. En particulier on va
faire intervenir é%' et on note donc N(X'), $2(X'*) les analogues de
N(X), $*(X*) pour é%'. De méme soit T'€ $2(X'*) et soit V' une représen-
tation lisse de Sp', on utilisera les notations N'T,V', OT,(X'), OT"
G1(X'),.. en analogie avec celles concernant X et Sp. On aura encore be-

soin du lemme suivant : (remarquons que HXN(X') contient N(X))

. N\
7.2. Lemme : Soient e € F* et V une représentation lisse de Sp. Avec les

notations de 7.1, on a :

(i) V/ZeV est comme (* 1XGL(X"))xN(X')xH-module isomorphe &

TXGL(X")aN(X")sH
:I;EITX'),N(X) ( 2% QDC) ) gg_mA est la représentation de dimen-

Ind

. /“.‘.‘ ~
sion un de *1%xG1(X')xN(X) correspondant au caractére A qui vaut q% sur

Z{(c3N(X}), }det ll/zg aa&a } (1e_caractére intervenant dans Jz gﬁf{?]) sur

:i}gzix*) et qui est trivial sur (1#(?(x59X')+SZ(X'}) (caN(X)).

(ii) 1'application de restriction de :

B, T,x GL(X'")xN(X'")xH
IndfT:§§’xH V/ZeV dans Ind:TTETTX')xN(X')xH V/ZeV

est injective et bijective sur les induites compactes. On la notera Bé

et si e € £ on notera Te 1'é1lément K;IT (cf.6.3) et Be le composé de

B' avec 1'application naturelle, notée B" de :
e ——— e —
Tx GL(X")xN(X")»H o Ty G1{X")xN(X")xH
ST G VAT vy ety dans

% GL(K' ) N(X')»H
x T
Ind:‘lroT X" WN(X) (”/e/NTe U;@ €, ).

Ind

En particulier Be est injective si et seulement si 1£'est concentré sur

Be:

(iii) Soit e £ { , on a :

T —
VN,V ¥ U ¥ @e. , comme *Ix0. (X')xN(X)-modules.
e e Te e A e T s

e
(i) est vrai si 1'on a l?;= §, c'est-d-dire V/ZEV'= :z. Le cas général
s'en déduit immédiatement avec 7.1(iii).
. a -
(ii) Pour simplifier les notations, on pose ici P=P,, L={s+1, Sp")xH,

‘._/\ —— - — —
P=T1xGl(X')xN(X');H, L= #IxGL(X")xN(X')xH et 1'0on a : L=L1 P et P a une
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unique orbite pour son action par translation a droite dans L\P ; d'ot
un isomorphisme topologigue de L\P sur L\P dont on déduit immédiatement
la partie de (ii) concernant Bé. La fin de (ii) résulte de 6.2, ol l'on
. B gy 1 - ' - {
fait H TlXGl(X YAN(X")xH, U (1+F(x&9X )27 et l HﬁélU et de ce qui a
déja

été démontré sur Bé.

(iii) est un calcul facile.

8. Diagramme permettant une récurrence :

On adopte toutes les notations de 6 et 7. Soit (ar, V) une représenta-

tion lisse de §B. On considére le diagramme suivant, en supposant f% 0 :

v

v/v[ol E

Pad
|1
D, ¢ pr/px2 Ind =TrSp'sH U(@f

Ry
T

V/N \

T xGl(X JaN(X" )~ H
:"r,?r‘(x e Y

)»N(X)

Ind ) N(X)

ol . A et C sont les fléches naturelles (cf. 7.1(i) pour la division par
v[o])

. B est la somme des Be pour eé-g définis en 7.2(ii) et des fléches
nulles pour e €& F*/F*2-f |

. D est la somme des restrictions dé 1'induite 3 chacun des ouverts
Ggfgsﬂgzrﬁ.N(X) (c£.7.3) en remarquant que RN(X) = TIGI(X') N(X') H.

. E est 1'application naturelle.
I1 est clair que ce diagramme est commutatif et 1'on a le lemme suivant:

Lemme : Les deux conditions suivantes sont équivalentes :

{a) pour tout e € £ ,’Ut est concentré sur /Z et pour tout e £ F* tel

que T ne représente pas e, on a Et= 0.

(b) V/V[O} est concentré sur/5 .
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Montrons que (a) et (b) sont toutes deux équivalentes & ce que E soit in-
jectif. Pour (b) c'est clair en tenant compte de 1'injectivité de D qui
résulte de 6.3. Il résulte de 7.2(ii) que (a) entraine 1'injectivité de
B et avec 7.2(i) celle de E. L'injectivité de E avec 7.2(i) entraine 1'in-
jectivité de B restreinte qux induites compactes et (a) en résulte comme

dans la preuve de 7.2(ii).

9. Début de la récurrence ; le cas de Slz :

En toute exactitude la récurrence débute soit a S1, soit a P==0 . Mais

2

ce dernier cas a déja été wvu.

/\
Proposition : Soient (1, V) une représentation lisse de 812 et ﬁ; une

orbite non nulle de S2(X*)=TF, ici,i.e. une classe de carrés, notde eF*?

ol e € F*, On suppose que (I, V) est concentrée sur ﬁ .

(i) On suppose (T ,V) irréductible, alors si 7 ne se factorise pas en

une représentation de Slz, (7, V) est 1'une des composantes irréductibles

de la représentation métaplectique associé & e (ou 2e avec les notations

- . . air impair .
du chap.Il), notées, avec des notations ev1dentes,,/p et ]p P . 51

# se factorise en une représentation de 312 alors la caractéristique ré-

siduelle est différente de 2 et (7, V) est une représentation cuspidale

A b

bien déterminée, notée ici ( 1" , V= ).

(ii) En toute généralité (7, V) se décompose en somme directe de repré-

sentations irréductibles isomorphes & 1'une des représentations décrites

en (i).

(iii) Soit W un sous-—espace vectoriel de V/NTV sur lequel 1 (=ici OEYX)
Fe)

7~ < .
et OT ) agit par un caractére, alors 1'image réciproque de Ind_, W
F1IN(X)

V/NTV (ot B est le

dans V par l'application naturelle V . Iné%/l:N(X)

sous groupe de Borel de Sl, normalisant N(X), il coincide dans les nota-

tions générales avec GI1(X) N(X)) est stable par Sl,.

(iv) Le théoréme § est vrai pour giz.
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(La démonstration qui suit m'a été communiquée par J.L.Waldspurger.)
(1) Supposons d'abord que (T ,V) ne se factorise pas par Sl,. Dans ce cas
(i) résulte essentiellement de Qb—PQ), comme cela est suggéré dans ([Hﬂ).
Remarquons quefimpair est une représentation cuspidale ; il est trés fa-
cile de calculer les modules de Jacquet relativement aux caractéres de
N(X), c'est ici le radical unipotent d'un sous-groupe de Borel de Sl,,
cf.11l plus loin ; notons ici simplement //la représentation métaplectique
associéed e, on a par exemple que 1'application naturelle de ]psur /ONqu
est la somme directe de 1'évaluation au point ! et au point -1 de F. Cela
prouve entre autre la remarque suivante dont on aura besoin dans la suite:

soit w € /pair@fpair=:v’ on suppose que w engendre cette représentation,
notée 7, alors les images des "(K )w dans V/NTV, oﬁ.]appartient au norma-
lisateur de N(X) dans 512, engendrent un espace vectoriel de dimension 2.
Supposons maintenant que (1 ,V) se factorise par S1,. On choisit une re-
présentation lisse irréductible, notée ¥, de Gl, telle que [ intervienne
dans la restriction de T a Sla. On note f 1'ensemble des caractéres, né-

s e
cessairement quadratiques,l de F* tels que T . D'aprés (@—g,
2.7 et 2.8), le nombre d'orbites ﬁ' non nulles telles que V/NT,V'# 0 pour
T'e/S' est !F*/F*zuﬂq—l etfﬂ)-”-l,Z ou 4. On veut donc i telle que /ﬂ/=!F*/F*2/;
cela nécessite que la caractéristique résiduelle soit #2 et que [ soit
1l'ensemble des caractéres quadratiques. Fixons l,ﬂ"éjz~{idj; on note E
1'extension quadratique de F correspondant éX . D'aprés (ﬁJ,7.17) et (@FIJ
4.7) dont on adopte les notations, on a ﬁ; ”ﬁ(p) ol M est un caractére
de E*, De I}/(g)x'x?r' et ([L—I‘J,p.738), on tire
VxeE, BT /0= NGO, ot g€ Gal(B/m)-jial (%)

Ainsi p est déterminé sur les éléments de norme ! de E et vérifie :

AT T ¥ MWL Y T e g Y TWe x x'

D'od l'existence de T avec les propriétés souhaitées et grice & (*) 1'uni-
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cité de [ . En outre T est cuspidale grace & m#p( et({J—L}é.?)
(ii) On écrit V=V'@Vcusp oi V' est la composante isotypique pour le ca-
ractére par lequel 3/1 agit sur fpalr et chsp est la somme des espaces

A . .
propres pour les autres caractéres de t1. Il résulte facilement de (i)
que chsp est somme directe de représentations cuspidales du type décrit
en (i) et que tous les sous-quotients irréductibles de V' sont isomorphes
. ppair < . - . . I
a f (la représentation triviale ne peut pas intervenir). Aimsi il faut
prouver (ii) uniquement pour V' ; on va d'abord le faire en supposant que
V' est de longueur 2. On pose ici E:=]ppalr et on note avec un indice N
les modules de Jacquet usuels. On note A le sous-groupe de Sl, image ré~
ciproque des matrices diagonales. On a donc la suite exacte :0 5E V'-aE 50,
Considérons le module de Jacquet EN ; A3«3 g-l),éy opere parlaf/zcg(a,a yd
ou ¢ est 3 valeurs dans les racines 4-iémes de 1. Il n'y a que deux ac~-
tions possibles de A dans V& :
[ . s s

L) VN EN o EN avec action semi~simple,

2) Vﬁ = Ce, @ Ce, avec 1'action suivante :

a,g ) (a,g )v(a) 1/2

lal ([( £ ol ,‘((a,ﬁ)%ar/ wa,£)
0 X(a, £) v(a)=valuation de a.
§1

51 51
.oyt 2412 2 2
.cas 1) 1 V' s Ind,B VN In EN@ In EN.

(L
Oroma : 0.aE 1 §i2 ' t

: 03E —Indg E —E50, avec E & E.
D'ou 1'image de V' par (1) est incluse dans E®E et on a alors 1'égalité.
.cas 2) : considérons CCT,T_H: On fait agir A par‘a l w(a, £ )Tv(a)' Alors

on a 3 V& 2y @[T,T‘{]f(T—ql/Z)ZC[TsT_y’
-1/2 1/2
q (T-

e.2 —_ 1, ey —> q ).
D'odt V' s'injecte dans Ind.giz C[T,T'l]/('r—ql/z)z. On note ¢[T,T7]" 1e
méme espace mais muni de l'action de A : "OJ e (a,g )T~v(a)' On note

A -
, - -1

I 1'opérateur d'entrelacement entre Ind%lz C[ﬁ,T l] et Indol? €1, 7],

donné par :

_ 0 I, ,1ln
L) = (1-17) f«f«_l o) (o 1B) dn.
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Et on note I' 1'opérateur du méme type entre Ind qﬁ,T—H' et Ind €ﬁyT_H.

-1 .
On a : I'ol = ¢ (1-qT?) (l-q "T?) id avec ¢ € G*(cf, K-P).En spécialisant I en

1/2
=q

fa
T , on a 1l'existence d'une représentation, notée E', de Sl, avec les

propriétés suivantes

1/2
/’

0 =E —1Ind c[T,T"B/(T—q —E'— 0

0. E'4Ind m[T,T'lj'/(T—qll)z_,_, E 50
I(E)=0, I(E")#0, I'(E')=0, I'(E)#0.
- - o~
Posons Jt= Ind ¢[T,T 5 , y{'=Ind G[I,T 5', V 1'image réciproque de v’dans
Jf ; [ : e 1/21‘7”
. Par exactitude du foncteur d'induction, on a : VxV/(T-q ). Re-

~ 1 " ~
gardons V) (T-q /%*“IU).C'est un quotient de V et n'a donc que E comme

quotient. Or il est inclus dans Idt/(T—ql/z)“A’z E'. Ainsi 1'on a :

1@ < (1-¢" P A

1/2

On en tire que I(g)/(T—q )%}1' est un sous-module de (T—ql/z)oi'/(T—ql/%ﬁ&'

~ Uk'/(T-ql/z)Vk'; or ce dernier module a un unique sous-module irréduc-—
tible, E'. D'ou : I(G)/(T—ql/z)zdt'=0. On en tire que l'on a :

1/2,2

/22y,

D'ol avec 1l'expression de I'oIl déji donnée, on a :

I'oI(W « (T—q

c(l—qu)(l—q_sz)’{lc (T—qllz)z,)l et Ve (T—ql/z)dt.
Ainsi V/est un sous-module de (T—ql/z)ai/(T—ql/z)%A ZLA/(T—ql/Z)Jt, qui
n'a qu'un sous-quotient irréductible isomorphe a E, d'oti une contradiction.
Pour terminer la preuve de (ii), on va prouver (iii), ce qui est plus
fort.

(iii) Pour la

'partie cuspidale" de V, (iii) est facile, on peut supposer
que fi agit par un unique caractére et on note E la représentation fournie
par (i) correspondant & ce caractére. On a un isomorphisme canonique

Mo V;:.Homﬁz(E,V)@ E.
Grice 4 p on identifie V/NTV et H°m§12(E’V)' Et on a clairement, avec la
notation du lemme , u_l(W) inclus dans Ind?qu(X) \ /}V:=V'. De plus le

-1
quotient V'/p " (W) n'a comme modules de Jacquet non nul que celui corres-

pondant au caractére trivial de N(X). Grace a 4(2 et 7.1(i) V'/u—l(w) est
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une représentation nulle ou une représentation triviale de Siz. L'action
du centre de Siz montre la nullité, d'od le résultat cherché.
Prouvons (iii) dans le cas qui reste, c'est-a-dire quand tous les sous—
quotients irréductibles de V sont isomorphes é‘f?air:=E. Soit W comme dans
1'énoncé. On note Vle sous-S1,-module de V engendré par Ind W (cf.6.1).
Si 1'on montre que bh:ind W alors comme plus haut on obtient que V) ind W
=V, d'on (1ii). Supposons que U%ﬁind W et choisissons ve¢ Ind W tel que V'
le sous—Siz-module de V engendré par v ne soit pas dans ind W ; grdce &
([B—ﬂ »2.24) on peut supposer que W est de dimmension 1. Comme V' est de
type fini on choisit une sous-représentation de V' propre et maximale,
notée V". Si V"=0 on a V'=E et une contradiction immédiate. Supposons donc
V"#0, d'aprés (3&43,3.12) V" est encore de type fini ; on choisit encore
V"' une sous-représentation de V" propre et maximale. D'aprés ce que 1l'on
a déjd vu V'/V"' est isomorphe a4 E®E et, par définition de V', est engen-
dré par 1l'image de v. Or par choix de v, les images des r(y )v, oil resB,
dans (V'/V"’)/NT(V'/V"') engendrent un espace vectoriel de dimension un,
ce qui est la contradiction cherchée grace & la remarque faite dans la
démonstration de (i).
(iv) il ne reste plus qu'a prouver la premiére partie d  théoréme 5(iii).
Mais ici la démonstration est immédiate, on prend V=V et 5(iii) résulte
de la décomposition suivante de V :

v (V/NTV)J(@ S paity (V/NTVI)K, o pimpair, (V/NTVB{,,QQ v?od oA x"
sont les caractéres pour 1l'action de :I sur Vv (ou V/NTV) et (V/NT%%"'

sout les espaces propres relatifs.

10~Preuve du théoréme 5 (sauf (iv)) :

On suppose dans tout ce qui suit ﬂ# 0.
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Commercans par vérifier que si V est concentré sur /S avec rang /5 <n alors :

—
(‘/i)«;l(Rad T) uOT(X) (cf. 4 pour les notations) agit par le caractére

£ k[dettﬂk/2 cD(T;bf,E.) dans V/NTV (cf.5(1ii))
{(C'est la remarque 5(ii)).
En conjuguant éventuellement par J/e’ on peut évidemment supposer que 1'on
a T=Te avec e & f . Grdce & 8, on sait que Ugest concentré sur /.'le
et on remarque que rad T est inclus dans X' et que c'est le radical de Té
(:=TIX')' Grice a 7.2(iii) om calcule l'action de @d T) par récurrence.
On en déduit le fait que uOT(X) agit trivialement par une astuce due &
Howe (cf.[ﬁz] (2.46)) : plus généralement soit W une représentation de
LlOT(X) Gl/(i-{;i T) sur la quelle Gl/(}'-(a\d’l“) agit par un caractére, alors UOT(X)
agit trivialement sur W :

en effet on a, V u & uOT(X), Vo'e Gl/(';(.:a‘:iT), Vwc—w,

Ty ey v = T
Or pour u fixé, on ia’—lug l Y€ Gl@“ﬂ)} contient 1'élémentddans sa
fermeture ; d'ou T (u) w=w.

Preuve de 5(ii) : On peut évidemment supposer que V[O]= 0 . Pour tout

e 6[ , on définit Ué fﬁe] comme V[N . Par hypothése de récurrence,

A
on sait que 2[158] est un Sp'-module donc, clairement un 3% lxSp'xH-sous-
module de V;. On pose ici : (on adopte toutes les notations de 7 et 8)
{o}).
glo!

1o 2l ﬁ '
vi=A (@ eef Ind:ﬁp', H< v’e{./}e]w{) @ e € F*/F*%=

Vérifions que 1l'on a : V‘=V[}S] .
Seit T' € §2(X*)- E . Supposons d'abord que l'on a T'(xo,xo) # 0. Soit
e éf ; si T'(xc,xo) & eF*? | il résulte facilement (par un calcul de mo-
dule de Jacquet par étage) de 6.1(ii) (appliqué a H=P1 et U=Z) que :
A P
Ie’T,:= Indi‘mp,xﬁ( Vol /N Indfﬁp.xﬁ( v.e/f) =o.
Si T’(xo,xo}e eF*2, il résulte de 6.1(ii), comme plus haut, que 1l'appli-

A
. B .
cation naturelle de Indzﬁp'x H( U’e ‘9‘/9) sur le,T' se factorise par

1'évaluation en un point )é Pl bien choisi et que Ze T est isomorphe
>
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[f / N' @w@f / Nl g T f ou Nl est le sous-groupe de N(X) égal &
1+(Fx @x +x @X ). En outre avec 6.3, on a (),T & /L L'inclusion de
V[ﬁ] Aans V' est alors claire Réciproquement soit v € V' et supposons que
v & NT'V o T'é€ S2(X*)- —[; . Si T'(xo,xo)_—f'o, les calculs précédents don~
nent une contradiction. Si T'(xo,xo)=0, il existe }€ G1(X) tel que
XT'(xo,xo) #0 et 7 J-l)v=v ; donc en particulier f{ Knl)vdi NV
ie. ve& N VT'V et on obtient une contradiction comme précédemment.

Pal T 2
Ainsi V' est stable en particulier par P, et par G1(X) (presque par dé-

1
la) .

finition), il est donc stable par Sp qui est engendré par ces deux groupes.

D'ou 5.(i).

Preuve de (ii) : Pour avoir l'action de‘? sur V, il suffit gréce & 1'in-

jectivité de A (ici Vﬁﬂ:= 0, cf.4 Remarque) de connaitre 1l'action de 1
/\
sur les Ind,//gb H( yZQOJf;)’ i.e. sur Etgﬁ‘/; quand e € f ; rappelons

qu'ici, grice & 8, BZ=O sieg EF*2. Cela sé fait par récurrence, l'ac-
. /\ ’

tion de 1 sur ji étant bien connue.

Preuve de 5(iii) : On va d°f abord démontrer que si W est un sous-— 0—~module

Gl(X)*N(X) : —mo—
QE‘V/NTV alors v:i=C~ I daﬂnk);N(X) W (notations de 8) est un sous Sp mo

dule de V.
Comme dans la preuve de (i), il suffit de démontrer que V est stable

A
par Pl' Pour tout e & f s, on note We 1'image de W par Je ; c'est un sous-—

A
OT -module de V/NTV . Donc en particulier W GD(; (notations de 7.2) est
€ A e , SN azes as
un sous—Ow (X')-module de L? / N Z9' (cf. la remarque 5(ii) déja démon-
e e

trée). On note Z? son image réciproque par l'application naturelle de
1
U» — In dgl%§ ggg; ; LZ /N% o» €lle est stable par Sp’ (hypothése de
e

. 7 N
récurrence) et par L. D'ol :

-1 Fa CT (X" )xN(X" ) %
B (@eég Ind Ef()\ (X' RN (X) Hwe ) =@eeF*/F*ZInd'l)prH szfe

e
Et par commutativ1te du diagramme 8, on a :

_ 1 Gl(X)rN(X) _
v=oc (‘(x)m(x) W= A" ep F*/F*Zld(\p H(U”wf)

Cela prouve bien que V est stable par Pl’ d'ol le résultat.

/\
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Pour prouver (iii) il est maintenant clair que 1'on peut supposer que e
est un isomorphisme. On construit & partir de V' un diagramme analogue a
8, en mettant des '. On a toujours V[0] = V'LO]=ZOﬁ Pour tout e &£ , on
transporte ( , grace a Jor €0 un isomorphisme de V/NTV sur V'/NT v', i-
somorphismes de 6} {X)-modules d'aprés Sremarque(ii). §l est clai: que les
diagrammes pour V :t V' sont reliés par des fléches ?’ et ? déduites de
facon naturelle & partir de € et des 6efde la facon suivante : (pour

simplifier 1'écriture j'omets dans les induites les groupes par rapport

auxquels on induit) ; remarquons aussi que v;= L9;=O sie & F#/F*2- £ |

® ecf IndP‘ u('awfe

= 0 a0 S Q
////,a e€f nd e®Je
A ¥ ¢ A
v v —

o GL(X)N(X)
> Ind V/NTV
¢! ?L
S Indm)N(X)V'/NTV'
ot ,)C=rﬁ?(x')m(x'),u.

On pose : V = (C*I? ey wn

A
-1 >-1_, P 1
(B "¢ B)(@eeg Ind U o f).

<l
[}

Quand on revient 4 la définition de B donnée en 7.2(ii), on voit que par

s 2 . N\ ™ v 7] z
récurrence, V est construit de facon analogue & V aux inductions par éta-

. = A
ges prés. En particulier par récurrence on admet que V est stable par Pl'
Par commutativité du diagramme, on a :

-1
V=A"V.

~ o /A- N -
D'ol V est stable par'i’\l et par G1{(X),par construction. D'ol V est une
P . S soscs -, 1
sous~représentation de V. Il ne reste plus qu'a vérifier que €:=C é)q§
. . '3 -z '3 /\ z . 3 s 4
qui est une application linéaire, Gl(X)-équivariante de V dans V, est en

oo, . ;
fait Sp~équivariante. Par la commutativité du diagramme on a :
ry -1~ -1 -l
- 1] - = ¥ 1 -
f e CIV A (B e B)A[V'

En particulier, ce qui est écrit & droite est une application linéaire
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- = A
et comme A(V)< V (cf. plus haut), par récurrence, on sait qu'elle est Pl-
» . r) P) ] -— - ” . - N z
equivariante. Ainsi ¢ est aussi Pl—equlvariante, d'ol Sp-équivariante
par 1'argument déjid utilisé. On a donc prouvé la premiére partie de 5.
(iii). Mais on déduit immédiatement que si V est irréductible alors

e
V/NTV 1'est aussi comme OT~module. Réciproquement supposons que V/NTV soit
irréductible et soit V un sous—module non nul de V. On note g 1'ensemble

o
des éléments de gC(N(X)) dont la transformée de Fourier est nulle sur

7{—/& 5 on a (cf.4(1l)):

= CLX)AN(X)
(Y )IV=0 & Vo Ker (V3 Ind ° V/N.V)
%} 0 0X)» N (X) T _
D'ol puisque V est concentrée surlﬂ s T (lj )V # 0. Et avec 6.1(1), r(y)V

_
est un sous—(ﬁ?}()-—module, non nul, de indGl(X)xN(X) V/N_V stable par N(X).
o7 N® T

Par irréductibilité, on a 1'égalité qui force p( y){# 1 ( (j)V. Ainsi V con-
tient T ( % )V et 1l'intersection des sous-modules non nuls de V est non nul-

le, ce qui termine la démonstration de (iii).

11-Lien avec la représentation métaplectique ; premiféres notations et re-

marques,
Soient ﬂ une orbite de S*(X*) et T é/$ , on garde les notations généra-
les et on forme la représentation métaplectique associée a la paire duale
(Sp, OT-). Pour éviter des confusions, on notera OT(Y)’ le groupe orthogo=-
nal de la paire ol Y:=X/Rad T. On réalise cette représentation, notée (&7,
j) dans 1'espace de Schwartz sur Hom(X,Y). Rappelons que l'on a fixé un
caractére non trivial de F & valeur dans C*, continu, noté T

Soit T'€ S2(X*) ; on pose :

IT'= i Z € Hom{X,Y) ] z* Tr = T‘}' (* est la transposi-
tion).
On remarque que XT' est stable par multiplication & gauche par OT(Y) et a
droite par Op,(X). /ZTFOT(Y) )LT' 0, (X).

De plus soit c}é N(X) et ?96/ , alors on a pour tout zéI-T,:
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(oply )fo) (2) =gy plD).

Ainsi 1'application qui & fﬁ/ associe sa restriction a X y se facto-

T
rise par le module de Jacquet Jﬁ/NT.f . On a en fait :

11.1 Lemme : soit T' € 82(X*).

W i1 Ef, Il =0er X, =0

(ii) 8i T'E/_S » alors I—T.# ¢ et 1'application de restriction & L, de

f sur {cf('ZT') est 1l'application naturelle de /ﬂ f/NT,f .

(iii) f est concentré sur/; .

Il est clair que si T' éﬁ (resp. €& ) alors ,ZT,=(Z) (resp. #). Le lemme
(i) et (ii) se démontre alors de facon élémentaire en utilisant le critére
de Jacquet. Quant & (iii), il est conséquence immédiate de (ii) en remar—
quant que nﬂ'éﬁ N’Iff =2 fpéf \ (f(z)=0 ‘V(‘c surjectiff%f.

On fixe z, un homomorphisme surjectif de X sur Y dont le noyau est le

/
radical de T. Alors on a : {on note /’; = Z}ﬂé/[?(z)=0 si rangZ<k:=dim Y§ )

11.2 Remarque : (i) IT= 05(Y) z_ et Stab, vy Zo=i1}.
T

4
(ii) f/NTf g fc( XT) ~ fi(OT(Y)), comme OT(X)x OT(Y)—module ot OT—(Y) agit

P p N T u
sur LaC(O,f(X)) par la représentation réguliére gauche et Gl(Rad T) OT(X)

agit par le caractére (5’ s £) —s det gk/z skw(r;a,g) {od k=dim Y)

A ~
(caractére habituel de la représentation métaplectique) et OT(C.,OT(X))

agit par la représentation réguliére droite tordwe par le caractére J

précedemment défini (cf. aussi 5(iii)).

’ 7 —\
PPy ~N —-
(iii) '/k/NTfk Y j/NTf comme OT(X), OT(Y) modules.
(i) est clair et (ii) est une conséquence immédiate de 11.1(ii). Quant &
(iii), il résulte de ce que 'ZT est inclus dans 1l'ouvert de Hom(X,Y) for-
’
mé des éléments surjectifs, de la définition de fk et de 11.1¢(i1).

11.3 Corollaire : Soit (‘n‘z, Vz) une représentation irréductible de O-,f(Y);

alors il existe des représentation irréductibles (TT'l, Vl) et ("i’ Vi)

AT s
de Sp (éventuellement distinctes) telles que VI@V2 soit isomorphe & un

PAS
guotient de int Vi@Vz & un quotient de ka comme prOT(Y)-modules; ici

~
/k est le sous-Sp~module de f engendré par /l'c (il est stable par OT(Y))'
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I1 résulte de 11.2(ii) et de la remarque qui suit , que v/[wg], le plus
grand quotient isotypique de type (FTZ, VZ) de Jg(cf. Chap.1I,I11.5), est
non nul. De méme, avec 11.2(ii), pour fk[ﬁzj ol on remplace /par fk'
Le corollaire résulte alors de chap.III, 3 4 .3

11.4 Remarque : (notations de 11.3) Le plus grand quotient isotypique de

'
égc(GT(Y)) comme OT(Y}~module, pour la représentation réguliére gauche,

de type ( ﬂz,Vz) est isomorphe & Vj&Vz* (QE_V * est la contragrédiente

2

lisse de Vz). Cet isomorphisme entrelace la représentation réguliére dro-

2

4
ite de OT(Y) sur zﬂc(OT(Y)) et la représentation contragrédiente sur V,*.
s
. N ~ x
Cette remarque est classique, la fléche de gac(OT(Y)) sur Vé@Vz est la
fléche naturelle quand on voit Vj@Vz* comme un sous-espace vectoriel de

End vz, (cf.chapC3, lemme II1.3).

11.5 Remarque : toute représentation irréductible de OT(Y) lisse est iso-

morphe & sa contragrédiente lisse. {cf. Chap.IV,théoréme II.1).

En fait on gardera, dans ce qui suit, la notation Vz* parceque c'est la

contragrédiente qui intervient naturellement.

12. Preuve de 5(iv). {on garde la notation c/; définie en 11.3)

Remarquons d'abord que 1l'injectivité de 4? résulte de 5(iii), déja prouvé.

On va prouver la surjectivité de é? 4 l'aide de la proposition suivante :

-
Proposition : Les quotients irréductibles de “/k comme SpXOT(Y)~modules

forment le graphe de é En particulier % est surjective et les quo-

tients irréductibles interviennent avec multiplicité 1 comme quotients.

Soit (VlQQVZ) un quotient irréductible de ka ou Vy (resp.Vz) est une re-~

. . o
présentation irréductible de Sp (resp. OT(Y))' Montrons que V., est concent—

1

rée sur ﬁ . pour cela, on note ~f1 1'ensemble des éléments de Jﬂ dont le

support est inclus dans 1'onvert de Hom(X,Y) formé des homomorphismes sur-
4

jectifs et % 1'ensemble des éléments de C’C(N(X)) dont la transformée de

Fourier est nulle sur E'—ﬁ . A l'aide de 6.1(1) et de 11.1(ii)et 11.2(iii)

on voit que W(Ej)gfk et _fé ont méme modules de Jacquet relativement a
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N(X) et & ses caractéres, i.e. /{(= ﬁ(y)/ (cf.4(2)). Ainsi fk est en—
A
gendré comme Sp-module par [r(g)fk. On sait que V1 est un quotient irré-

A
ductible de , comme Sp-module ; on choisit V'« f telque j FAAEVER N
k k k 1

I1 est clair, grice & 11.1(i) et 5(i) que V1 est concentré sur une orbi-

te de S$%(X*) incluse dans /}; et il faut démontrer que cette orbite est

[L. Pour cela il suffit de démontrer que Vl/NTVI#O. Supposons le contrai-
re et soit ye "(y)fk' On a déja (f?émT,éﬁ NT' | et comme
(/k/V')/NT,(/k/V')=O pour tout T' E(} s 1l'image de (/ dans /#/V' appar-
tient a /)T'GSZ(X*) NT,Ji/V', d'ou ;peV'. Ainsi V' contient ﬁ(sf)fk
et par stabilité par é}), il contient ./;{ d'ol une contradiction.

On réalise alors VIXNTVI‘&VZ comme quotient irréductible de J{;/NT ‘fk

4 .1 -
~ Lﬂc(OT(Y)). 11 résulte de 1l.4 que VllNTViQ;est comme OT-module isomorphe
a Vg. Aingi §(V1)=V2. On obtient 1l'unicité de Vv, quand Vv, est fixé griace
4 1'injectivité de é et & 1 .4. La surjectivité de ® résulte done de

11.3.

13. Lien de i avec la conjecture de Howe.

Comme 12 le laisse penser, en général 1'existence de @ ne prouve pas la
conjecture de Howe pour jp et méme dans ce cas particulier ol dim¥Y < dim X,
les méthodes élémentaires qui suivent ne permettent pas de prouver la con-
jecture de Howe. Toutefois & 1'ailde de é;, on va pouvoir décrire la bijec—
tion de Howe quand celle ci est démontrée. Pour énoncer ce que 1'on peut
prouver, j'ai d'abord besoin de quelques notations.

Pour tout entier r tel qu'il existe un sous-espace isotrope de Y de dimen-—
sion k-r, noté Y', on fixe un élément, noté tr de Hom(X,Y) qui vérifie
Er(X)=Y'$ - On note T = Z?? zZ, et Pr 1'orbite de T_ dans $2(X*). 11 est
immédiat de wérifier que ﬁr ne dépend pas du choix de Y' ni de celui de
T, et que le rang de Fr est 2r-k. On note Q(Y') le sous-groupe paraboli-

que de O—,f(Y) stabilisant le drapeau 0OCY' et uQ(Y') son radical unipotent.
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Le quotient Q(Y")/MQ(Y") s'identifie au produit de G1(Y') par un groupe
orthogonal, celui de la forme orthogonale non dégénérée associée i T

. = 4 .
notée T . On notera ce groupe orthogonal Of~(Y' /¥'). (La notation est

r

compliquée mais elle évite les confusions avec OT déji défini comme sous-—
r

groupe de OT (X)<s G1(X)). On notera §/3 la bijection § pour l'orbite

r r
ﬁ . On admet évidemment Y'=0 alors r=k, ﬁ = ﬁ et Q(Y')=0T(Y).
T r

On généralise la notation jk définie avant 11.2, en posant pour tout

entier r vérifiant : O<r<k=dim Y :

. Hom(X,Y)>r est l'ouvert de Hom(X,Y) formé des
homorphismes de rang >, )

- I T Hom(X,7), ) (<),

. jpr le sous~§;-module de J’ engendré par Jp;,
il est stable par OT(Y)'
I1 est clair que ]2 . Hom(X,Y)>r sont stables par GL(X)xN(X) et par OT(Y).
On démontrera en 15 et 16 la pr;position suivante :

Proposition: (notations ci-dessus) Soit VIQQVZ un quotient irréductible

. . . N . . s
de(/p ou v, (resp. VZ) est une représentation irréductible de Sp (resp.

OT(Y))‘ Alors on a :

(1) il existe un sous-espace isotrope, noté Y' (éventuellement nul), de

dimension, notée k-r, tel que V1 soit concentrée sur /6r et i1 existe un

quotient irréductible de V§/UQ(Y') V% (comme Q(Y')-module) sur lequel G1(Y')
,—n+2r~k

opére par )det , noté 72, tel que Vl=§~1(\72).
r

(ii) soit (1T2, V2) une représentation irréductible de OT(Y) et Y' un sous-

espace isotrope de Y de dimension notée k-r tel que V%/UQ(Y')Vg (#0) ad-

mette un quotient irréductible, noté V2, sur lequel G1(Y') opére par
}—n+2r—k

. On choisit Y' de dimension maximale avec cette propriété

Idet

et V2 comme précédemment, alors (%PJ(VZ)C)VZ)est un quotient irréducti-

&
ble def. ’

En particulier, si la conjecture de Howe est vraie, V2 est unique avec
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les propriétés précédentes et ﬂégl(§2%g>vz est 1'unique quotient irréduc-—
T

tible de jﬂ isotypique de type (1r2, Vz) en tant que représentation de

07(Y) .

14. Etude de ji/‘f;+l (cf.13 pour les notations).

14,1 Lemme : soit 7€ Hom(X,Y) ; on note r le rang de T et m le rang de

¢ *Tr . Alors, on a 2r-m<k. Supposons 2r-m=k, alors Y posséde un sous-es-—

pace isotrope de dimension k~r et *T gz & /@ . Supposons 2r-m<k, alors
T

il existe une base de voisinages (ouverts compacts) de Z dont les fomec-

tions caractéristiques sont dans Ji+l'

Notons Y' le radical de la restriction de T & T(X) ; c'est un sous-espace
isotrope de Y de dimension r-m, d'ou 2(r-m)+m<k, i.e. 2r-mgk,en particu-
lier dim Y'=k-r, si 2r-m=k. On suppose maintenant que 2r-m<k, c'est-a-di-
re qu'il existe un sous-espace non nul, noté Yl’ de Y telque la restric-—

N e + . N

tion de T a Yl soit non dégénérée et Yl contienne z{X). D'ol :
L ., .

Y = Y1 69Y1. On choisit un sous-espace vectoriel, noté X1 de X, inclus

dans Ker ¢, de méme dimension que Y, et un homorphisme, noté z, de X dans

1

Y, d'image Y, et de noyau un supplémentaire de X,. On note X =Ker Tg, d:'od

1 1

les décompositions :

X=X+ X (1

- Hom(X,Y)=Hom (X, ¥)+Hom (X, Y) (2)

. Hom(X ,¥)=Hom(X ,¥," )+ Hom(X,,Y ) 3
Gr3ce & (1), on identifie XT a gd'(caX*) et on note gy oo élément de Sp
qui échange X1 et XT et vaut 1'identité sur X et Xf (< X*). On note n

le caractére de Hom(X,Y) (ou de Hom(Xl,Y)) qui vaut p( z')=\( (-ﬁﬂﬂf) ).

On choisit un réseau, noté L de Hom(Xl,Y) de la forme L1+L2 ot L1 est un

réseau de Hom(Xl,YT) et L, un réseau de Hom(Xl,Yl) (c£.(3)). On pose :

2
L= {t'e Bom(X,, V) [ W ( 'y ,v))=1,¥veLf.

Soient Lyun petit voisinage de Z1§ dans Hom(X,Y) et UZ un voisinage
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de 0O dans Hom(XlY)[\Kerl4, alors 1'hypothése sur Y,, assure que 1'on peuk

choisir L1 suffisamment petit et L2 suffisamment grand de telle sorte que

1'on ait :

\fc'é z +‘L'0+( V4L') on a rang z'Zrangz+dimYl, (4)
dC'e T +( ﬁ-%L) on a rang,z’Zr,
Zt'é z;+(l}‘+L) | rangz'=rjc r+( D’-Hﬁ’l) (5).

On note Y le produit de ypar la fonction caractéristique de T+ UL et

on calcule :

(0%(()f)(t’) 0si ' & c+co+ahj,

mesure de L sinon.

s ' v
On remarque que grice a (4), cela prouve que CJT(?) < j7r+dhnY1 . D'ou

£ ji+di v Et grace 4 (5), on voit que la différence de ? et de la
¢ m Yy —
fonction caractéristique de Z*>UQ-U3 est incluse dans ji+l' D'ol le ré-
sultat. Mais on a en fait montré plus

14.2 Corollaire : (i) Soit T'& $%(X*) de rang >2r-k, alors 1'application

naturelle de /N, ]P dans J?N ,/’ est surjective.
—_—_— r+1" T r+l ——— T —

(ii) On suppose que ‘/Z¢+l # 0, alors il existe un sous-espace isotrope de

dimension k-r dans Y.

(i)Grdce a 11.1, dont on adopte les notations, il suffit de montrer que
pour tout Cé<XE, et pour tout voisinage de T, noté a;, i1 existe U7,
un voisinage de 7 inclus dans v dont la fonction caractéristique rest-

reinte & XT’ coincide avec la restriction d'un élément de Jp a

r+l T'*

Soit é'(T" on pose ici r'=rang T, merang T'. Si r'>r, c'est clair et
cela se produit, en particulier, si 2r'~-m=k. Supposons donc qui 2r'-m<k

et r’fr. On continue avec les notations de la démonstration de 14.1 ; 1le
voisinage [J' cherché est de la forme Z+lf4’yz dont on note c{’ la fonc-

tion caractéristique. On prend pour Y, un sous-espace de dimension k-2r'+m,

1

+dim le k-r'+m

telle que Y“—f”é]i,+1. Or k-r'+m>k-r'+2r-k=2r-r'>r. On est denc ramené

. . Y. %
comme cela est 0581ble et on a vu u'll existe /6f|
P q r
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4 démontrer la méme assertion en supposons maintenant que rangz =r'+l.
Au bout d'un nombre fini de pas on aboutit & rang Z >I, ce qui termine
la démonstration.
(ii)Puisque /GU/;+1 #0 par hypothése, il existe r'<r tel que \f;.ﬁéji,+l.
En particulier il existe Cé-Hom(X,Y)>r, tel que les fonctions caractéris-
tiques de voisinages suffisamment pe;its de T ne sont pas dans Jf’+l'
Utilisant 14.1, on doit donc avoir rang £*Tt =2r'-~k et donc 1l'existence
d'un sous-espace isotrope de Y de dimension k-r'. Comme k~r'zk—r, (ii)
est clair. O
Dans la suite de ce paragraphe, on suppose que /VJfr+l% 0 et on fixe un
sous—espace isotrope Y' de dimension k-r. On a défini en 13 /Sr, Q(Y").. .
On définit aussi Pyt de la fagon suivante :

Pyr S (Hon(x, 1)) 5 lHom (X, Y 4/¥"))

Vlc' € Hom(X,Y'*/Y") (pY.?)(z:')= JHom(X,Y')?(é'.W) dv, ou Z' est

un reldvement de z' en un élément de Hom{X,Y'™).

On a alors :

14.3 Lemme : Py+ est un homomorphisme de §}—module qui entrelace 1'action

de Q(Y') sur ]’avec 1'action de Q(Y¥') sur J{Hom(X,Y"YY')), notée Caf
r
et définie par :

N n
o
. TrlGl(Y');uQ(Y') est le caractére ldet | N

est la représentation métaplec-

. ”i‘r]oTr(Y'*/Y')

tique évidente.
Cela se voit en factorisant Py» par les applications suivantes : (on fixe
Y' un sous-espace isotrope de Y en "dualité" avec Y')
' J/ rdioy 1 .
(Hom(X,Y))____}v/%Hom(X+X*,Y D+ (Hom(X,Y' /Y') et 1'évaluation de
f(ﬁom{x+x*,Y')) au point O.

14.4, Corollaire : Le noyau de Py _contient °/i+1-SE- Ji/‘];+l #0.

I1 est clair que py,(?)=0 si le support de f est inclus dans 1l'ouvert

A
Hom(X,Y)>r+l. Le noyau de Pyr contient donc Jﬁ+1 par Sp-équivariance.
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On vérifie alors que \/;! f;-i—l #0 en montrant que py,(?)#{} pour ({ une
fonction caractéristique d'un voisinnage convenable de T , inclus dans
Hom(X,Y), , od € € Hom(X,Y) vérifie T(0=Y'". p

Grace & Pyrs On définit naturellement un homomorphisme, noté ﬁ;, de/
O Y)
Q(Y )
Feels  Vpeop (), (571 (¢)) (5 )mpy (20 (x) ).

dans ind (Hom(X,Y'L/Y')) en posant

. . A P .
On obtient alors un homomorphisme (Sp XOT(Y))-equlvarlant :

0 ({) |L 1

: //f 1 ____)1ndQ(Y) S (Hom(X,Y'/Y")).

Je ne sais pas démontrer que ﬁ%, est bijectif, mais en notant
i

fzr_k(Hom(X,Y'L/Y')) 1'analogue de "/k dans f(remarquons que dimY' /Y'=

2r-k), on a le lemme suivant : (méme définition pour ff'lr—k (...0)

14.5.Lemme : 'p\;., induit un homomorphisme surjectif de fr/ ‘/]r+1 sur

O (Y) f

(Y ) 2r-

i
 (Hom(X,Y'/Y") et |7
On factorise py,, de la fagon suivante :

~ / & OT(Y) L ind ’ 0.(Y)
Pyr: o/ —— indQ(Y') (Hom (X, Y' ))__.-—91ndQ(Y ) Hom(X,Y' /Y s

ol 1l'on pose, pour tout yéuf, ;p' & f(Hom(X,Y' ):
Freog(, « () (5)=(2000) ¢ onex v+
Ve o,y 0, o' (o) D=y vy p ! G 4V,

et indy' est le morphisme obtenu naturellement 4 partir de o'.

On a :
OT(Y) A <L
w (/D & indgggry S Bon(LY' ), o fr(Hom(X, Y1) est 1len-
semble des fonctions & support dans les homorphismes surjectifs ¢)]
o« (S Gom(x, ")) = Sy (Hom(X, X' YN @

Montrons qu'en (1) on a une égalité ; pour cela on pose :
j= {Cé Hom (X, Y) / rang(r*Tz) SZr—k} s
-l eX| rangt=r~/.
remarquons que pour tout T eF » on a rangT<r {cf. la premiére partie

de 14.1) et donc que f' est un ouvert (non vide & cause de l'existence
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e
de Y') de } stable par OT(Y)' De plus pour tout Ze€JF ' la dimension du
radical de T restreinte & T(X) est k-r et donc il existe un unique, a
multiplication & gauche prés par un élément de Q(Y'), élément, noté r N
de OT(Y) tel que ({ T )(X)=Y’L. Cela entraine immédiatement que ¢f?};')
) AN G S P ‘

est isomorphe a 1ndQ(Y') Jp (Hom(X,Y'")}) ; on note y cet isomorphisme.
On prolonge y en une fonction notée ?’de ./QHom(X,Y)>r) et prolongeant
;5 par O on voit ?7 comme un élément de u/(Hom(X,Y)). I1 est clair que

~ f! ] 'd [ [ e, 2 N

y € r et que 1'on a M(?o)=u(77). D'ou 1'égalité en (1l). On vient donc
de prouver en tenant compte de (2) et de 1'exactitude de 1'induction que

0..(Y)
T ]ﬁ (Hom(X,Y'7Y')'

5&, induit un homomorphisme surjectif de Jfl sur indQ(Y') Ir-k

P ~
Le lemme résulte alors de la Sp-équivariance de Pyr+

14.6. Lemme : On pose ici :

j:'= { T € Hom(X,Y)| c*Tc =Tr’ rang5'=rf .
Et on choisit T, € Hom(X,Y) tel que ZO(X)=Y’L. Alors on a :
- 0.
Fr=0:(0 ¢, 0 (0.

Stab est le centre du radical unipotent de Q(Y'), noté N(Y')

T
OT(Y) o
(cf. Chap.I,III.5).

On note Q le stabilisateur dans OT (X) de Ker CO. C'est un sous=-groupe
r
parabolique de OT (X) et il existe un homomorphisme surjectif, noté j de
T
€ sur Q(Y')/N(Y') tel que l'on ait :

Fzng, (¢ =3C¥) T

En particulier 1l'espace de Schwartz J&~7') est naturellement isomorphe

O (X)gwf
a ind .| 'T (O=(Y)/N(Y")) comme O. (X)x0=(¥)-module ot O0z(Y) agit par
— 6] c' T [t Tr T T
la représentation réguliére gauche, OT ) par sa représentation dans 1'in-
r

duite et Q agit par le composé de j et de la représentation réguliére dro-

ite. (démonstration aprés 14.7)

14.7. Corollaire : On a un isomorphisme de 0T (X)xOT(Y)—modules de
T

J e

1 1 . N 1 4o
;f r/NTr £ _sur 1nd6 x c(OT(Y)) [€4) 9, ol C, est 1l'espace de la repré
sentation de dimemsion un associée au caractére (0’,& );ﬁgzdetgfk/za k
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¢ (T;det g £ } (cf.5remarque pour la notation) de OT X).
Démonstration de 14.6 : On remarque d'abord que 1'on arOT(Y);F'OT (X)=ff'.
Soit T €F', On a Ker [ et Ker r, (notation de 1'énoncé) sont izclus dans
Rad Tr et en multipliant éventuellement Z & droite par un élément de
G1(Rad Tr)(c_:gOT (X)) on peut supposer que 1'on Ker &=Ker z,- En outre le
radical de T regzreint 4 7 (%) est de dimension r-(2r-k)=k-r. En multipli-
ant éventuellement 7 & gauche par un élément de OT(Y) on peut supposer
que ce radical est Y' et donc que z(X)<:Y"L , avec égalité pour des rai-
sons de dimension. On a donc prouvé que l'on a

F'= 05(1) F GL(RadT) ot

F = {c€ Hom(X,Y) | Kerz = Ker r, TO=Y et c*Tz:=Trf.
Montrons que l'on a :

¥z = F =z q (ol Q=StabOT )

La premiére égalité résulte du théoréme de Witt eft comparant Z(Xl) et

[ .
Ker O)

LO(XI} ou X, est un supplémentaire de Ker < dans X. Pour la deuxiéme
égalité, on fixe un sous-espace non dégénéré de yrt supplémentaire de Y',
noté Yl' On identifie Yl et Y'L/Y' ; alors r et ¢ induisent des isomor-
phismes de X/Rad T sur Y% Y'*/Y' et multipliant éventuellement T & droite

par un élément de OT s on peut supposer gue ces isomorphismes sont les
r

mémes. Alors 7 et ro différent par la multiplication a droite par un

élément de Stab(Rad Tr) qui agit trivialement sur X/Rad Tr'

On a donc prouvé i la fois que “=OT(Y) COOT (X) et que j défini comme
r

dans 1'énoncé, est surjectif. La description de Stab st évidente

T e
0. (Y
(1) o
et pour terminer la démonstration de 14.6, il ne reste plus qu'ad s'assurer

que Q est un sous-groupe parabolique de OT (X) et que si tepR', il exis-
r
te 46 Op (X) unique 3 la multiplication & gauche par un élément de Q
T

prés tel que Ker cy= Ker to. Or on a Q\OT (X)¥Stab (Ker'zo)\Gl(RadTr)
r

Gl(RadTr)

et Ker ¢ ~ (Rad Tr)’ d'ol les assertions cherchées.

Démonstration de 14.7: L'application naturelle de Jf; surf;"/NT Jp; est
r
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la restriction & _l& (cf.11.1(ii). Avec la notation j ' de 14,6, on a :

r

V C'GJ& -fﬁ', rangz <r. Ainsi par cette application de restriction &
r

,[T,, les éléments de Jf; sont nuls sur 'LT -F' et g'identifient donc

r T
a des éléments de‘]p(f'). Il est clair que tout élément de'f(fw) si pro-

longe en un élément de V/?Hom(X,Y)>r) puis par O en un élément de ‘f;.

Ainsi : f;/NT f; ':f(ﬁ') et le lemme résulte de 14.6.
r

15. Preuve de la proposition 13(i) :

Soit (VlQDVZ) un quotient irréductible de /pcomme dans 13(i). Il existe
/\ ’
r tel que Vﬂ@ VZ soit un SpKOT(Y)-quotient irréductible de Ji/ Ji+l' Fi-

xons un tel r et un sous—é}-mcdule, noté W de .]i tel que ji/w;zvl.

Montrons que V, est concentrée sur ﬁr' €9

On sait que V1 est concentré sur une orbite, notée /A’, incluse dansﬂ.
5 T_ : . 1 -

Pour démontrer que ﬁ = ﬁr’ il suffit de prouver que l'on a VI/NT'VI a,

¥ T' avec rang T' > 2r-k et Vl/N VI#O. La premiére assertion de nullité

T
- . 2 12 = + (]
résulte immédiatement de ce que (J/;/d/t+l)/NT,( ji/(/2+l) 0 si rang T
est strictement supérieur & 2r-k, grice & 14.2(i). Supposons que Vl/NT V1
T
est nul. Cela entraine que (J/;+W/W)&T((Jf;+w)/w)= 0. Avec 11.1(i) on a
T
(~f;+W/W)/NT.(J/£+W/W)=O si IT, (cf.11.1) ne coupe pas Hom(X,Y)>r. C'est
le cas si rang T' < 2r-k grdce & la premiére partie de 14.1. D'ol tous
les modules de Jacquet de in+W/w relativement aux caractéres de N(X),
» A .
sont nuls ; d'ol, cf.4(2), on a Jp;c:w. Par Sp-invariance, on a aussi

jprc W et VI=O, ce qui est une contradiction. Remarquons, pour la suite

’ . .
que l'on a prouve le résultat suivant :

Soit V. un quotient irréductible de J’/v/ alors 1'application naturel-
1 r' v r+l
¥ 1
le de ‘fr/NTr‘/; dans VI/NTrV1 est non nulle. (2)

Montrons qu'il existe un quotient irréductible, notéV, de Vf/uQ(Y')Vg

sur_lequel G1(Y') opére par le caractére ldet (-n+2r-k et tel que V1=
-1 -

& . (3)
Ay

Grace 4 (1), (2) et 14.7 on obtient un diagramme commutatif ol aucune fléche
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n'est nulle, de 0T (X)xOT(Y)~modules : A
/ AN xS anagte € N,
I/ Jpr-i-l)/NTr( o) —— /rm‘l‘r/ -mdQ\r C(OT(Y)/’N(Y Het,

T
l 7
vl/NTrvlqpvz
Par irréductibilité de VI/NT vlgavz, A est surjectif. On a besoin de l'as-
sertion intermédiaire suivanie :

A se factorise pour donner un élément non nul de

-
0. (X)

. T '
Homd; (X)(lnda r V§/N(Y )vggcu , vl/NTrvl) (4)
r

Admettons (4) pour le moment et terminons la preuve de (3). Utilisant
({B-Z},Z.ZQ) et 1'irréductibilité de 5(iii), on transforme A en un é16-
ment de HomQ(VglN(Y')V*, éz(VI/NT Vlkaggxoﬁ 552 est la fonction module
de Q. i

En calculant 52, on trouve que ce dernier groupe coincide avec :

II' “n

HomQ(Y,)(VE/uQ(Y')V"Z‘, |det (V) /Ny VEC ).

Pour calculer l'action de Gl(Y')uQ(Y') sur {detrnn(vl/NT VIX@C4, on uti-
r

lise 5 remarque (ii) et le fait que Tr différe de T en ajoutant des plans

2r-k

hyperboliques. D'ou £ k w (T3 Yo )= & u)(Tr; Y- € ), et 1'action

de G1(Y') se fait par le caractére [det ,—n+2r—k.

D'ot (3) qui prouve
13¢i).

Prouvons (4) :

Clairement il suffit (cf.11.4) de prouver que si W est une représentation
lisse de axOT(Y) dont on note W lgﬁgl?i)grand quotient isotypique comme
OT(Y)—module de type V%, alors indQ ¥ W est le plus grand quotient iso-

typique, comme OT(Y)—module, de type V,. On note ¢ la représentation de

9
o

OT(Y) dans ind W et dans W , et g 1'idéal de é;(OT(Y)), ensemble des

fonctions vérifiant pour tout VeV, ¢ ‘/OT(Y) f(J")Trz(()v=o . Et il faut

montrer que 1l'onm a : ind(F (J)W)=€(J )indW. On utilise la description

donnée dans q§—z], 2.24) de 1'induite compacte pour démontrer 1'inclusion

de ind({) (J)W} dans e(g)indw : pour cela on fixe un compact de 6.\1. X,
T
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A
noté K et g un point de OT

r
tion de 0T (X) dans f (g )W nulle en dehors de ﬁgK vérifiant ?(qgk)=
r

q. Y(g) alors Y est dans f(g YindW., Ecrivons :

(X) et il faut démontrer que si Y est une fonc-

f(qgk)=q. Z ; ((fi)wi ot la somme est finie et ou f € f’(o {Y))
et w, €W,

i
Remarquons que cette somme est invariante pour 1l'action de gKg—lﬂ 6. In-
tégrant sur ce compact, on peut supposer que chaque w, est lui-méme inva-

-1 N N . N .

riant par gKg A a. Mais a ce moment la ? appartient a Z}»f(fi)lndw,
c'est toujours ([B—ﬂ 52.24). D'ol la premidre inclusion cherchée, 1l'autre

inclusion étant claire on a prouvé (4), ce qui termine la démonstration.

15. Preuve de 13(ii).

On fixe V, une représentation irréductible de OT(Y)' D'aprés 11.3, il ex-
iste une représentation irréductible, notée Vs de g} telle que v.ev,

soit un quotient de Jp. On fixe un entier r maximum avec la propriété qu'
il existe un sous-espace isotrope, noté Y', de dimension k-r, tel que
(avec les notations de 13) VE/“Q(Y')VS admet un quotient irréductible, noté

(vn+2r—k

VZ’ sur lequel G1(Y') opére par le caractére Idet . I1 résulte

de 15(1) et (3) que, quelque soit Vi une représentation irréductible de

§B, Vi@N2 n'est pas un quotient de J//Jpr. Ainsi V@V, est un quotient
irréductible de .f;. Grdce a 14.5, 1l suffit donc de démontrer que

é -1 OT(Y)
Py Q¥

rdce & 12 (appliqué a Sp on (Y' /Y') au lieu de Sp OT(Y) on s it, en
r

: . L n
(V2 zgvg est un quotient de ind jzr_k(ﬂom(X,Y' /Y'))[det ‘ .

utilisant 1'exactitude de 1'induction ({B~Z},2.25(a)) que l'on a une flé-

che surjective :

O—(Y} O )
ko , -1, =y = -k
ndgiyty fz _ (Hom (X, Y /") [det" sur :.ndQ(Y )(fﬂr(v Vs et pr-k
00 2r-k
i.e. % (V )lndQ(Y 3 2fdet ( .
O )
2r-k =
Or on a aussi : Hom (ind det s V,)=Hom o (VE, V)40,
05(¥) Q(Y ) 2{ 2 ety 2 V2

par définition de VZ' D'ol 13(ii).
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Final manuscripts should contain at least 100 pages of mathema-
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