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Course details

Lectures Thu 13.15–15.00

Main reference books (but we might deviate):

Hsing & Eubank, Theoretical Foundations of Functional Data Analysis, Wiley

Da Prato & Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge

Webpage: moodle

Written final exam (cheat sheet allowed)
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What is this course about?

“Modern science and technology provide statistical problems with
observable random variables taking their values in functional spaces.”

Jerzy Neyman, 1966.

In a nutshell, this is precisely what this course is about:

the blending of statistical and functional analysis.
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Functional analysis is the study of infinite-dimensional vector spaces, often with
additional structures (inner product, norm) with typical examples given by function
spaces. The subject also includes the study of linear and non-linear operators on
these spaces, as well as measure, integration, probability on infinite dimensions,
and also manifolds with local structure modelled by these vector spaces.

math.stackexchange.com

Linear Functional Analysis vs Nonlinear Functional Analysis
(Linear Algebra vs Differential Geometry)

Multivariate analysis (MVA) was about the statistical analysis of random
vectors in finite-dimensional vector spaces

Functional data analysis (FDA) is about the statistical analysis of random
vectors in infinite-dimensional vector spaces

Matrix algebra played a fundamental role in MVA. Operator theory will play a
similarly central role in FDA.

Measure, integration, and probability obviously play a crucial role in both.
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Why care?

Function spaces are generically infinite dimensional

Consider any function space that is rich enough to contain (all) polynomials .

Assume such a space is of dimension p <1.

Then, no p + 1 elements of said space can be linearly independent.

But
Pp

k=0 �kx
k = 0 =) �k = 0; 8k (differentiate and evaluate at 0).

(nothing special about polynomials, can work similarly with other systems)
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Is this a problem?

Often no. Many key concepts,
structures, and even theorems
mimic their Euclidean (Rp , p <1)
counterparts mutis mutandis, so we
can be guided by our usual intuition
and proceed “by extension”.

but also

Often yes. Many concepts and structures
behave in strong contrast with our
Euclidean intuition. Correspondingly, many
“Euclidean theorems” are generically false
and we must proceed cautiously.

Victor M. Panaretos (EPFL) Functional Data Analysis 6 / 240



Is this a problem?

Often no. Many key concepts,
structures, and even theorems
mimic their Euclidean (Rp , p <1)
counterparts mutis mutandis, so we
can be guided by our usual intuition
and proceed “by extension”.

but also

Often yes. Many concepts and structures
behave in strong contrast with our
Euclidean intuition. Correspondingly, many
“Euclidean theorems” are generically false
and we must proceed cautiously.

Victor M. Panaretos (EPFL) Functional Data Analysis 6 / 240



Some strange things about infinite dimensions:

The unit ball is not compact.

There exist open subspaces.

There exist discontinuous linear maps.

There is no analogue of Lebesgue measure.

Norms are typically not equivalent.

Covariances are never invertible.

Victor M. Panaretos (EPFL) Functional Data Analysis 7 / 240



Some strange things about infinite dimensions:

The unit ball is not compact.

There exist open subspaces.

There exist discontinuous linear maps.

There is no analogue of Lebesgue measure.

Norms are typically not equivalent.

Covariances are never invertible.

Victor M. Panaretos (EPFL) Functional Data Analysis 7 / 240



Victor M. Panaretos (EPFL) Functional Data Analysis 8 / 240



A bit of history

On December 21st, 1807, a truly unforgettable presentation took place in the
French Academy of Sciences.

... this presentation was the that of a thesis by the 39 year old mathematician and
physicist named Joseph Fourier.

Fourier, like many contemporary scientists, was working on the problem of
heat conduction in metal rods

This work had led him to consider different ways of representing functions on
closed intervals

During the presentation of his thesis he made the following remarkable and at the
same time outrageous claim:

any function on a compact interval can be expressed as a trigonometric series

To be more specific, taking I = [��; �], Fourier claimed that any f : I ! R, as
bizarre as it may be, can be expressed as

f (x ) =
�0

2
+

1X
n=1

(�n cos(nx ) + �n sin(nx ))
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The precise statement was wrong, but can be made correct by a more
assumptions or more nuanced version of “expressed”.

The jury, comprised of Lagrange, Laplace and Legendre, unanimously
rejected the thesis!

The jury had several concerns:

Since trigonometric functions are infinitely smooth, their sums should also be
Since trigonometric functions are analytic, their local behaviour determines
their function globally
How could this be consistent with the arbitrarily local behaviour of a general
function?

Fourier’s critics made the mistake -quite common for that era- to assume
that a property that holds for the elements of a sequence (the partial sums)
is also true for the limit of the sequence

Phrased in more modern language, they thought that subspaces of function
spaces (in this case, trigonometric partial sums) are closed (they are not
necessarily so, in this case trigonometric series are not closed in L2[��; �]).

So if you ever feel stumped in the functional world, don’t be discouraged:
some of the greats were also equally stumped!
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Still, could this all just be a mathematical indulgence?

In practice, aren’t all data ultimately recorded to finite precision?

Can’t we just set the measured resolution as the dimension p?

Can’t we then translate into an MVA setting and go on with life?

While it certainly appeals to our mathematical tastes, it’s also very real:

We need to make sure our inferences are stable to resolution (blowup).

Functional nature of data can sometimes be a blessing (perfect testing).

Fixing a finite resolution can introduce serious bias (graphical models).

Some forms of statistical variation are functional in essence (phase variation).

Some sampling regimes are much more naturally functional (sparse/irregular).

Sometimes there is no a priori discretisation (except machine precision).

Should exploit the natural ordering and possible (even low degree) regularity
...

Ultimately:

For the same reasons science treats certain objects within the realm of functional
analysis, statistics must also treat them within realm of functional data analysis.
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“Currently in the period of dynamic indeterminism in science, there is
hardly a serious piece of research which, if treated realistically, does
not involve operations on stochastic processes. The time has arrived
for the theory of stochastic processes to become an item of usual
equipment of every applied statistician.”

Jerzy Neyman, 1960.
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Brain Imaging

Energy

Figure 6: Standardized data from French electrical power. Each curve corre-
sponds to a daily profile of 2006.

reduced to first and second order moments. The standardized version of daily
profiles shows that higher order moments contribute also to the variability in the
dynamic of the curves (see Figure 6). The objective of this empirical evaluation
is to discover groups that reflects this heterogeneity to better understand the
underlying structure.

Data preprocessing. From the practical point of view we count have a discrete
equidistant grid of 17520 (= 365x48) time points of an underlying continuous
process. After splitting the process as in (1) with δ = 1 day, the corresponding
discrete versions of (Zn) are 48-length vectors zi,J , i = 1, . . . , 365. We use spline
interpolation over each function in order to obtain N = 64 points (J = 6) to be
able to use Mallat’s pyramidal algorithm for the DWT.

4.2.1 Feature extraction and feature selection

We proceed as before: for each zi,6, i = 1, . . . , 365 we compute the wavelet
coefficients via the dwt. Then we calculate both the absolute and relative
energy contributions of the scales j = 1, . . . , 6 to the global energy (as in as in
(7)). We will called them AC and RC respectively. For the RC we compute the
logit transformations. We arrange the coefficients in two matrices of 365 rows
and six columns.

For each data matrix the Steinley-Brusco’s feature selection algorithm is
used. As it needs as input the number of clusters we test it for a wide range
of possibles number of clusters k = 1, . . . ,Kmax for some large positive Kmax.
For our application we used Kmax = 20 ).

The algorithms returns which variables are significant for each k. The results
of the algorithm show that

• The significant scales for revealing the cluster structure are independent
of the number of clusters used on the feature selection algorithm.
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Figure 1: Averages (over 30 years) of mean daily temperature curves (right panel) recorded
at 35 Canadian weather stations (left panel).

model (Cressie 1993) was fitted to the estimated trace-variogram by using the ordinary
least square technique. The spherical model has been widely used in the literature, and
was chosen in terms of its flexibility, simplicity and interpretability of its parameters. The
estimated spherical model for the trace-variogram, was as follows: the nugget was equal to
0, the partial sill equal to σ2 = 7769, and the range was φ = 2184. So the estimated trace-
variogram was γ̂(h) = 7769(1.5h/2184− 0.5(h/2184)3) for h ≤ 2184, and γ̂(h) = 7769 for
h > 2184. Interpreting the range of the fitted model as in a classic geostatistical setting,
we can say that sites separated up to 2184 kilometers are still correlated.

A LMC was fitted to the multivariable random field consisting of coefficients of the
Fourier basis functions used for smoothing the residuals in equation (11). All single (direct)
variograms and cross-variograms were modeled as a linear combination of nugget and
exponential models. Based on the fitted LMC, we estimated the multivariate variogram
by means of equation (5).

We performed three hierarchical functional cluster analysis. The first one was based
on the matrix of Euclidean distances among the coefficients of the Fourier basis functions
used for smoothing the temperature data (using equation 2), and the remaining ones by
weighting this dissimilarity matrix by the trace-variogram and by the multivariate vari-
ogram obtained with the coefficients of the Fourier basis used for smoothing the residuals
in equation (11). We used complete linkage as the agglomeration method. Complete link-
age was also used by Clarkson et al. (2005) for clustering the same data set as considered
here. Two threshold values were considered to obtain the clusters in each case. The first
one (the largest threshold value) was obtained when applying the cluster quality measures
of Davies-Bouldin, Calinsky-Harabasz, Hubert-Levine and Silhouette, respectively (Davies
and Bouldin 1979; Milligan and Cooper 1985). In all cases these measures suggested two
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What do you notice in the functional data plots?

In each scenario we had replicate realisations of a random function.

This is to be compared with classical inference for random processes.

The latter treated circumstances with single realisation.

This required invariance and/or parametric/distributional assumptions.

Replication allows us to be ambitious and seek non-parametric methodology.

This distinguishes FDA from traditional inference for stochastic processes.

“If I were actively concerned with the analysis of data from stochastic
processes (other than as related to spectra), I believe that I should try to
seek out techniques of data processing which were not too closely tied to
individual models, which might be likely to be unexpectedly revealing,
and which were being pushed by the needs of actual data analysis.”

John W. Tukey, The Future of Data Analysis
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A technical remark: Stochastic Processes vs Random Vectors

Compare the two ’60s quotes of Neyman.

Stochastic process: a collection of jointly distributed real random variables:

fXt : t 2 Tg; 8t 2 T ; ! 7! Xt (!) real-valued measurable map

Random vector: a random element of some infinite dimensional vector space:

X ; ! 7! X (!) vector space-valued measurable map

In finite dimensions (finite T ) there is no distinction – a random vector is

the jointly distributed collection of its coordinates, X = (X1; : : : ;Xp)
>

a random element of Rp

They are related via the evaluation functionals: X 7! hX ; ej i = Xj

But in infinite dimensions the two are not always equivalent

FDA seamlessly blends the two, but we need to be aware.
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(Wish) List of Topics

1 Reminder on Normed Vector Spaces

2 Bochner Integration

3 Reproducing kernel Hilbert Spaces

4 Basic operator theory, Mercer’s theorem

5 Random vectors and their moments

6 Gaussian measures, the Hajék-Feldman dichotomy, Conditional Independence

7 Mean square contintuity & the Karhunen-Loève theorem

8 Mean square vs pathwise regularity

9 Weak Convergence, tightness, CLT, LLN

10 Moment estimation and the problem of measurement

11 Functional Principal Components

12 The positive definite continuation problem

13 Intrinsic functional graphical models
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Topological and Metric Preliminaries

Let (S;T) be a topological space:

The closure A of a A � S is the intersection of all closed supersets of A.

A set A � B � S is dense in B � S if A = B in the B -subspace topology.

A subset B � S is separable there is a countable A that is dense in B .

A is compact if every cover of A has a finite sub-cover.

A is sequentially compact if every sequence in A has a subsequence that
converges in A.

Let (M; d) be a metric space:

Denseness is transitive and separability is inherited.

M is compact if and only if it is sequentially compact.
A �M is relatively compact (or pre-compact) if A is compact.

a sequence fxng1n=1 �M is Cauchy, if supm;n>N d(xm ; xn)
N!1�! 0.

M is complete if every Cauchy sequence is convergent.

M is totally bounded if, for any � > 0, it admits a finite cover of �-balls.

(Heine-Borel) if M is complete, then A �M is totally bounded if and only if
it is pre-compact. (hence A is compact , A is closed and totally bounded)
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Normed Vector Spaces Preliminaries

Let (V; k � k) be a normed vector space over the reals:

A subset V 0 � V is a subspace if (V 0; k � k) is itself a normed vector space.

The span of A � V, span(A) is the smallest subspace containing A (smallest
w.r.t. set inclusion order, i.e. the intersection of all subspaces containing A).

Equiv., span(A) is the set of all finite linear combinations of A-elements.

A set A � V is linearly independent if linear combinations of finite subsets
thereof vanish only under identically zero coefficients.

A Hamel basis is a linearly independent set A such that span(A) = V.

If V has a finite Hamel basis, then V is called finite dimensional, and the
dimension of V, dim(V), is defined as the cardinality of this1 Hamel basis.

If dim(V) = p <1 then V is isometrically isomorphic to Rp .

1or any other one, all Hamel bases must have the same cardinality.
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The map d : V � V ! [0;1) defined as d(x ; y) = kx � yk is a metric.

Metric/topological statements made in the context of V without specifying
the metric/topology, are always understood to be w.r.t. d(x ; y) = kx � yk.

Two norms on V are called equivalent if they generate the same topology.

Two norms k � k1 and k � k2 on V are equivalent if and only if

ckxk1 � kxk2 � Ckxk1
for all x 2 V and some fixed c;C <1.

If dim(V) <1, then all norms on V are equivalent.

If dim(V) <1, it is complete and separable regardless of choice of norm.
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Banach Spaces

A normed vector space (V; k � k) that is complete is called a Banach space.

If A is a subset of a separable Banach space B, the closure A in B equals the
completion of A in B.

Caution: a Banach space can be non-separable if it’s not finite dimensional.

(Baire) The intersection of countably many dense open sets in B is dense in B
Caution: a Banach space has countable Hamel basis iff it’s finite dimensional.

Classical Banach spaces that are not finite-dimensional include:

C [0; 1] with the supremum norm kf k1 = supx2[0;1] jf (x )j.
Lp [0; 1], 1 � p <1, with the Lp-norm kf kp =

�R 1

0
f p(u)du

�1=p
L1[0; 1] with the essential supremum norm

kf k1 = ess sup
x2[0;1]

jf (x )j := inffu 2 [0; 1] : jAu(f )j > 0g

where Au(f ) = fx 2 [0; 1] : f (x ) > ug is the (strict) u-superlevel set of f .

All but the last example are separable.
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One can define Lp-spaces of real functions on more general measure spaces

For example real random variables X : (
;F ;P)! R with norm (EjX jp)1=p .

Important inequalities (used to establish that Lp spaces are Banach):

Hölder: For all 1 � p � q � 1 with p�1 + q�1 = 1, we have kfgk1 � kf kpkgkq
Minkowski: For all p � 1, kf + gkp � kf kp + kgkp (yields triangle inequality)

Note that we cannot interpret functions in Lp [0; 1] pointwise:

kf � gkp = 0 () jfx : f (x ) 6= g(x )gj = 0

And yet, C [0; 1] is dense in Lp [0; 1], for any p � 1.

Surprising? And yet coherent:

Lp norms “blind” to perturbations over null sets, and

continuity cannot tolerate perturbations restricted to null sets2.

2any nonempty open set has positive Lebesgue measure.
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Hilbert Spaces

If there exists a symmetric bilinear form h�; �i : V � V ! R on a real normed
vector space (V; k � k) such that

kxk2 = hx ; x i; 8x 2 V;
then V is called an inner product space with inner product h�; �i.
A normed vector space is an inner product space if and only if its norm
satisfies the parallelogram law,

kxk2 + kyk2 = kx � yk2 + kx + yk2
2

in which case the polarisation identity elicits the underlying inner product,

hx ; yi = kx + yk2 � kx � yk2
4

An inner product is continuous in the product norm topology.

A Hilbert space is a Banach space with (norm generated by) an inner product.
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Consequently, L2[0; 1] is a Hilbert space but Lp [0; 1] with p 6= 2 is not.

We say vectors x ; y 2 H are orthogonal, and write x ? y , when hx ; yi = 0.

An orthonormal system is a set E � H comprised of unit norm vectors that
are pairwise orthogonal, i.e. kxk = 1 and hx ; yi = 0 for all E 3 x 6= y 2 E .

An orthonormal system E � H is called complete (in H) or total if

span(E) = H:

(equivalently, if he ; x i = 08 e 2 E () x = 0:)

If furthermore E is countable, it is called a (countable) orthonormal basis.

ONBs and Separability

A Hilbert space H has a countable orthonormal basis if and only if it is separable.

In the non-separable case, we can still show a complete orthonormal set
always exists - provided we use Zorn’s lemma.

Consequence: the unit ball in H is compact if and only if dim(H) <1.
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Two Hilbert spaces f(Hi ; h�; �ii )g2i=1 are isometrically isomorphic if there
exists a unitary map U : H1 ! H2 (linear bijection that preserves inner products)

Classification of separable Hilbert spaces

A separable Hilbert space is isometrically isomorphic to either Rp or `2, depending
on whether it is finite dimensional or not.

Unitary maps map countable orthonormal bases to countable orthonormal
bases, so the isometry manifests via the implied coordinate systems.

These are also known as Fourier coefficients.

(Generalised) Fourier Series in separable Hilbert spaces

Let H be a separable Hilbert space with countable orthonormal basis feng. Then,

1 The sequence
PN

n=1
�nen converges in H if and only if f�ng 2 `2.

2 When x = limN!1

PN

n=1
�nen =

P1

n=1
�nen exists we have �n = hx ; eni.

3 For any y 2 H we have y =
P1

n=1
hy ; enien
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Projections, Closed Subspaces, Direct Sums

Theorem (Projection Theorem)

Let S be a linear subspace of H. If S is closed, then given any y 2 H
1 the functional f : S ! [0;1),

s 7! ks � yk

admits a unique minimiser ŷ 2 S.

2 The unique minimiser ŷ 2 S is characterised by the condition

hy � ŷ ; si = 0; 8s 2 S:

The minimiser is called the projection of y onto S, and the characterisation says
that the residual y � ŷ should be orthogonal to all elements of S.

This motivates the definition of the orthogonal complement of a subspace S 2 H

S? := fx 2 H : hx ; si = 08 s 2 Sg:

So the characterisation (2) now reads that y � ŷ 2 S?:
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A consequence of the last theorem is that given a closed subspace S we can
uniquely decompose any x 2 H as x = xS + xS? ,with xS 2 S; xS? 2 S?:
Recalling that a direct sum of two orthogonal subspaces S1 and S2 (meaning that
x ? y for all x 2 S1 and y 2 S2) is defined as:

S1 � S2 = fx + y : x 2 S1; y 2 S2g
we have essentially shown that:

Theorem (Projection Direct Sum Decomposition)

Given any closed subspace S we may decompose H into the direct sum

H = S � S?:
Finally we consider what happens when we take the orthocomplement of an
orthocomplement:

Proposition (Orthocomplements)

Let A be a subset of a Hilbert space H. Then:

A? is a closed subspace of H.

A � (A?)?.

if A is a subspace (A?)? = A.
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(Wish) List of Topics

1 Reminder on Normed Vector Spaces

2 Bochner Integration

3 Reproducing kernel Hilbert Spaces

4 Basic operator theory, Mercer’s theorem

5 Random vectors and their moments

6 Gaussian measures, the Hajék-Feldman dichotomy, Conditional Independence

7 Mean square contintuity & the Karhunen-Loève theorem

8 Mean square vs pathwise regularity

9 Weak Convergence, tightness, CLT, LLN

10 Moment estimation and the problem of measurement

11 Functional Principal Components

12 The positive definite continuation problem

13 Intrinsic functional graphical models
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When a normed vector space is finite dimensional, it is isomorphic to Rp . Hence
integration of vector-valued functions can be defined coordinate-wise.

For a general separable Banach space B, one has to proceed from first principles
(and there are more than one notion of integral that can be defined).

Our goal: given measurable f : (
;F; �)! B, define the integralR
fd� =

R
f (!)�(d!) Banach-valued function f .

Our tool: we know what
R kf (!)k�(d!) means, so maybe we use that.

Recalling that Lebesgue integrals are defined through simple functions, it is
reasonable to start with f : 
! B being a simple function, i.e. of the form

f (!) =
Pk

i=1 ci1f! 2 Eig; E1; : : : ;Ek 2 F; c1; :::; ck 2 B.

When �(Ei ) <1 for all i , such f is said to be Bochner integrable, andR
fd� � R



f (!)�(d!) =

Pk

i=1 ci�(Ei )

is called its Bochner integral.

It can be seen that this is well-defined: the integral is invariant to
re-parametrising f , since one can always partition the Ei into disjoint sets.
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Like with Lebesgue integration, we can then go by approximation:

Bochner Integral

A measurable function f : (
;F; �)! B is said to be Bochner integrable if there
exists a sequence of simple Bochner integrable functions ffng such that

lim
n!1

Z



kf (!)� fn(!)k�(d!) = 0:

In this case, the Bochner integral of f is defined asZ
fd� �

Z



f (!)�(d!) = lim
n!1

Z
fnd�:

The definition implicitly uses completeness: k R fnd�k � R kfnkd� so that



Z fnd��
Z
fmd�





 � Z kfn � fmkd� �
Z
kfn � f kd�+

Z
kfm � f kd�

. Thus, fR fnd�g is a Cauchy sequence in B and hence converges.

Again, the value of
R
fd� is independent of the approximating sequence ffng.

(merge any two sequences and use same argument as above)
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If f is Bochner integrable, then we can show
R kf kd� <1 (and, consequently,

k R fd�k � R kf kd�). But the converse fails without further assumptions. One
avenue is via “fidi approximation”:

Theorem

Let f : (
;F; �)! B be a measurable and
R
B kf (!)k�(d!) <1. Suppose that

lim
n!1

Z
kf � gnkd� = 0

for some sequence of Bochner-integrable (not necessarily simple) functions

gn : (
;F; �)! Sn � B;

with fSng a sequence of finite dimensional subspaces of B. Then, there exists an
approximating sequence of simple functions, and f is Bochner integrable.

In a separable Hilbert space, we do get the converse:

Corollary

Given a separable Hilbert space H, a measurable f : (
;F; �)! H is Bochner
integrable if and only if

R


kf (!)k�(d!) <1.
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Finally, we can use the Lebesgue dominated convergence theorem to get a
Bochner dominated convergence theorem:

(Bochner) Dominated Convergence Theorem

Let ffng be a sequence of Bochner integrable functions valued in B that
converges to some f valued in B. If there exists a non-negative Lebesgue
integrable function g : (
;F; �)! [0;1) such that

kfn(!)k � g(!); for �� almost all ! and for all n � 1

then f is Bochner integrable, lim
n!1

R kf � fnkd� = 0, and
R
fd� = lim

n!1

R
fnd�.
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1 Reminder on Normed Vector Spaces

2 Bochner Integration

3 Reproducing kernel Hilbert Spaces

4 Basic operator theory, Mercer’s theorem

5 Random vectors and their moments

6 Gaussian measures, the Hajék-Feldman dichotomy, Conditional Independence

7 Mean square contintuity & the Karhunen-Loève theorem

8 Mean square vs pathwise regularity

9 Weak Convergence, tightness, CLT, LLN

10 Moment estimation and the problem of measurement

11 Functional Principal Components

12 The positive definite continuation problem

13 Intrinsic functional graphical models
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The study of infinite-dimensional Hilbert spaces was motivated primarily by
the need to study function spaces.

But it is a prior not clear whether (or when) the norm’s topology furnishes
pointwise information.

Turns out that this question is settled by way of the notion of reproducing kernel:

Definition (Reproducing Kernel)

Let (H; h�; �i) be a Hilbert space of real-valued functions defined over a set E . A
bivariate function K on E �E ! R is said to be a reproducing kernel for h�; �i on
H if it satisfies the following two properties:

1 For every fixed t 2 E , the function Kt � K (�; t) : E ! R belongs itself in H.

2 Kt is reproducing for h�; �i: for all f 2 H and t 2 E , one has f (t) = hf ;Kt i.

When a Hilbert space (H; h�; �i) possesses reproducing kernel, it is said to be a
Reproducing Kernel Hilbert Space (RKHS).

A quick sanity check reveals that these definitions are not empty:

One can readily check that Rp with the usual inner product is an RKHS, taking
E = f1; :::; pg and defining K (s; t) =

Pp

i=1
ei (s)ej (t) where feig is the canonical basis.

Therefore, all finite-dimensional Hilbert spaces are RKHS (by isometric isomorphism).
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How can we know whether a kernel is reproducing?

Fortunately, we can characterise reproducing kernels as non-negative definite
(a.k.a. positive semidefinite) kernels. Recall that a kernel K : E � E ! R is
positive-semidefinite (write K � 0) if it satisfies:

1 K (x ; y) = K (y ; x ) for all x ; y 2 E .

2
Pp

i=1

Pp

j=1 �i�jK (xi ; xj ) � 0 for all p 2 N, all x1; :::; xp 2 E , and all
�1; :::; �p 2 R.

A kernel is strictly positive definite (write K � 0) if it is non-negative definite,
and the inequality in (2) is strict unless �1 = : : : �p = 0.

Theorem (Moore-Aronsjan)

The reproducing kernel of a given RKHS (H; h�; �i) is unique and non-negative
definite. Conversely, given a non-negative definite kernel K on E �E , there exists
a unique RKHS (H(K ); h�; �iK ) of functions on E with K as reproducing kernel.

Caution: When we speak of a Hilbert space, we really mean the set of its elements and the
associated inner product. The same set of functions can be furnished with two different inner
products (meaning all have finite norm) – resulting in two different Hilbert spaces.

So two different positive-definite functions may be reproducing kernels for the same set of

functions, but they will be so under different inner products (note that the ‘reproducing property’

is with respect to a specific inner product).
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Proof

If two kernels K1 and K2 for H have the reproducing property for (H; h�; �i),

f (t) = hf ;K1(�; t)i = hf ;K2(�; t)i ) hf ;K1(�; t)�K2(�; t)i = 0

for all f 2 H and all t 2 E , which implies that K1 = K2. Since Kt 2 H,

K (s ; t) = hKt ;Ksi = hK (�; t);K (�; s)i = hK (�; s);K (�; t)i = K (t ; s):

Finally using both the reproducing property and the fact that Kt 2 H,

kX
i=1

kX
j=1

aiajK (ti ; tj ) =

kX
i=1

kX
j=1

aiaj hKti ;Ktj i =
*

kX
i=1

aiKti ;

kX
j=1

ajKtj

+
� 0:

To show that a positive semidefinite-kernel generates a unique RKHS, define

H0 =

(
nX
i=1

aiKti : ai 2 R; ti 2 E ;n � 1

)
:

to be the span span
�fKtgt2E

�
.

Victor M. Panaretos (EPFL) Functional Data Analysis 36 / 240



Define a symmetric bilinear form in H0*
mX
i=1

aiKsi ;

nX
j=1

bjKtj

+
0

:=

mX
i=1

nX
j=1

aibjK (si ; tj ):

We note that, by construction, K is reproducing on H0 for h�; �i0:

hf ;Kt i0 = f (t); 8 t 2 E & f 2 H0:

Now, we claim that h�; �i is an inner product. Since K is non-negative definite it
must be that hf ; f i0 � 0 for f 2 H0. Defining kf k0 = hf ; f i0, it remains to show
that kf k0 = 0 =) f = 0. To show this:

We can directly verify that h�; �i0 satisfies the Cauchy-Schwarz inequality, i.e.,

jhf ; gi0j2 � hf ; f i0hg ; gi0 = kf k20kgk20; 8 f ; g 2 H0

Next, since K is reproducing for h�; �i0 on H0, we have

jf (t)j2=jhf ;Kt i0j2�hf ; f i0hK (�; t);K (�; t)i0 = hf ; f i0K (t ; t)

which vanishes if hf ; f i0 = 0.
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To complete our construction (pun intended), we must now complete H0 with
respect to h�; �i0. If ffng is a Cauchy sequence in H0, then, for any t 2 E ,

jfn(t)� fm(t)j2 = jhfn � fm ;Kt i0j2�kfn � fmk20K (t ; t)

so ffn(t)g is a Cauchy sequence in R, and hence fn(t) converges to a real limit.
Collecting these limits as t ranges in E , we obtain a real function f (t). We will
now need to relate these pointwise limits to limits in the norm.

First, we treat a special case “lemma”: if ffng is Cauchy in H0 and converges
pointwise to zero, then it also does so in the k � k0-norm (i.e. kf k0 ! 0 as well).

To this aim, note that a Cauchy sequence is necessarily bounded, so let
kfnk0 < B <1. Furthermore, the Cauchy property implies that for any � > 0
there exists an N such that kfn � fN k0 < �=B for all n > N . Now fN 2 H0 so,

fN (x ) =
Pp

i=1 �iKti (t): (for some f�ig and ftig)
Now, we can use Cauchy-Schwarz and the reproducing property to write

kfnk20 = hfn�fN ; fni0+hfN ; fni0�kfn�fN k0kfnk0+
pX

i=1

�i fn(ti ) � �+

pX
i=1

�i fn(ti )
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By pointwise convergence of fn to 0 we can choose n sufficiently large to bound
the second term on the RHS by �. In summary: for any � > 0, there exists an n

sufficiently large such that kfnk20 < 2�, so that pointwise convergence to zero
implies norm convergence to zero.

Now let H be the collection of functions on E that are pointwise limits of Cauchy
sequences in H0. For f ; g 2 H, define

hf ; giH = lim
n!1

hfn ; gni0

where ffng and fgng Cauchy sequences in H0 converging pointwise f and g ,
respectively. To show that this is well-defined we need to:

Show that the limit exists.

Show that the limit is invariant to the choice of Cauchy sequences
For existence, using the polarisation identity and the reverse triangle inequality,���hfn ; gn i0 � hfm ; gm i0

��� = 1

4

���kfn + gnk0 � kfn � gnk0 � kfm + gmk0 + kfm � gmk0

���
�

1

4
(k(fn � fm ) + (gn � gm )k0 + k(fm � fn ) + (gn � gm )k0) �

1

2
(kfn � fmk0 + kgn � gmk0)

so hfn ; gni0 is Cauchy in R (since fn , gn are Cauchy in H0) and thus has a limit.
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For invariance, take fefng and fegng are another pair of Cauchy sequences in H0

that converge to f and g pointwise, then fefn � fng and fegn � gng are Cauchy
sequences in H0 converging to zero pointwise. Thus our “lemma” implies that
kefn � fnk0 ! 0 and kegn � fnk0 ! 0. A second use of the polarisation identity and
reverse triangle inequality now gives���hfn ; gn i0 � h~fn ; ~gn i0

��� = 1

4

���kfn + gnk0 � kfn � gnk0 � k~fn + ~gnk0 + k~fn � ~gnk0

���
�

1

4

�
k(fn � ~fn ) + (gn � ~gn )k0 + k(~fn � fn ) + (gn � ~gn )k0

�
�

1

2

�
kfn � ~fnk0 + kgn � ~gnk0

�
So (H; h�; �iH) is a Hilbert space. By direct calculation, we can furthermore verify
that it admits K as a reproducing kernel, and so is an RKHS for K .

To show that (H; h�; �iH) is the only Hilbert space with kernel K , let (G; h�; �iG) be
another RKHS with kernel K . Then, H0 is a subspace of G. Hence,
G = H?

0 �H0 (in the k � kG-sense). So, for any f 2 H?
0 (k � kG-sense):

on the one hand f (t) = hf ;Kt iG since K is reproducing for (G; h�; �iG)
on the other hand hf ;Kt iG = 0 since Kt 2 H0 and f 2 H?

0 .

So H?
0 = f0g. Hence G = H0 i.e. G is the completion of H0. But K reproduces

both h�; �iH and h�; �iG , so we must have h�; �iH = h�; �iG = h�; �i0 on H0. It follows
that (H; h�; �iH) = (G; h�; �iG), as both are completions of (H0; h�; �i0).
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Notice that our proof automatically establishes that

H(K ) = span
�fKtgt2E

�k�kH(K)

i.e. finite linear combinations of Kt ’s are dense in H(K ). Consequently:

Theorem (Separability)

If E is separable and K is continuous then (H(K ); h�; �iK ) is separable.

Proof.

Let ftng be a countable dense subset of the separable set E . Then, by conituinty

of K , the collection of functions fPk

i=1 aiK (�; ti ) : ai 2 Q; k � 1g is a countable
dense subset of span

�fKtgt2E
�
, which is in turn dense in H(K ). By transitivity

of denseness in metric spaces, we conclude that H(K ) is separable.

Theorem (Continuity)

If K is continuous near f(t ; t) : t 2 Eg, functions in H(K ) are continuous on E .
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Proof.

If f 2 H(K ), then jf (t)� f (s)j = jhf ;Kt �Ksij � kf kK kKt �KskK : However,

kKt �Ksk2K = hKt �Ks ;Kt �KsiK = K (t ; t) +K (s ; s)� 2K (t ; s);

which converges to zero as s ! t by the continuity of K near f(t ; t) : t 2 Eg.

Corollary (continuity of Kernel and continuity near diagonal)

A reproducing kernel K : E � E ! R is continuous everywhere if and only if it is
continuous near the diagonal f(t ; t) : t 2 Eg.

RKHS are distinguished among Hilbert spaces, because norm convergence implies
pointwise convergence:

Theorem (From Norm to Pointwise Convergence)

Let H(K ) be an RKHS containing functions of E . If ffng is a sequence of
functions in H(K ) such that kfn � f kK ! 0, then fn(t)! f (t) as n !1 for all
t 2 E . If, furthermore, supt2E K (t ; t) <1, then the convergence is uniform:
supt2E jfn(t)� f (t)j ! 0.
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Proof.

Imitating a step in previous proofs, (use of reproducing property and
Cauchy-Schwarz: jfn(t)� f (t)j2 = jhfn � f ;Kt iK j2�kfn � f k2KK (t ; t):

It follows that the evaluation functional et : H(K )! R given by

et (f ) = f (t) = hf ;K (�; t)iK
is a continuous linear map for all t 2 E for an RKHS (H(K ); h�; �iK ).
Conversely we can ask, for H a Hilbert space of functions on E , when are the
evaluation functionals continuous? Turns out this is only true for RKHS.

Thus, RKHSs are characterized by the continuity of the evaluation functionals:

Theorem (Evaluation Functionals and RKHS)

Let H be a Hilbert space of real functions on E . Then, the evaluation functionals
are continuous maps, if and only if H is a RKHS.

The proof makes use of the Riesz representation theorem, and is postponed to
that point (Riesz representation itself depends in no way on RKHS).
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A natural question is: when are two RKHS topologically equivalent?

We answer this in two steps.

Proposition (Loewner order and RKHS inclusion)

Let K1;K2 � 0 on E � E . If there exists C > 0 s.t. C 2K2 �K1 � 0, then:

H(K1) � H(K2).

for any f 2 H(K1), kf kK1
� Ckf kK2

.

So using the above result twice, we obtain:

Proposition (Equivalence of RKHS norms)

If there exist C ; c > 0 s.t. C 2K2 � K1 � c2K2 � 0 on E , then:

H(K1) = H(K2).

the corresponding norms are equivalent, i.e. for any f 2 H(K1) � H(K2)

ckf kK2
� kf kK1

� Ckf kK2
:

This clarifies an earlier comment qualifying uniqueness, in that two distinct
kernels can generate the same RKHS as a set, but still with different norm.
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(Wish) List of Topics

1 Reminder on Normed Vector Spaces

2 Bochner Integration

3 Reproducing kernel Hilbert Spaces

4 Basic operator theory, Mercer’s theorem

5 Random vectors and their moments

6 Gaussian measures, the Hajék-Feldman dichotomy, Conditional Independence

7 Mean square contintuity & the Karhunen-Loève theorem

8 Mean square vs pathwise regularity

9 Weak Convergence, tightness, CLT, LLN

10 Moment estimation and the problem of measurement

11 Functional Principal Components

12 The positive definite continuation problem

13 Intrinsic functional graphical models
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Bounded Linear Operators

A map T with domain dom(T) and range range(T) is called a linear operator if

1 dom(T) and range(T) are vector (sub)spaces over the reals,
2 T(�x + y) = �T(x ) + T(y), for all x ; y 2 dom(T) and all scalars � 2 R

We will be primarily concerned with linear operators whose domain and range are
subspaces of (possibly different) Banach spaces, say (B1; k � k1) and (B2; k � k2).
A linear operator is bounded on its domain if there exists 0 < C <1 such that

kTxk2 � Ckxk1; 8x 2 dom(T):

Often we speak of bounded linear operators acting on a Banach space B without
specifying the domain. It is then implicitly understood that the domain equals B.

Caution: Linear operators may be bounded on a proper subspace of a Banach
space, but not over the entire Banach space.

The kernel (or null space) of a linear operator T is defined as

ker(T) := fx 2 dom(T) : Tx = 0g:
The rank of a linear operator T is rank(T) := dim(range(T)).
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Theorem (Boundedness and Continuity)

The following three statements are equivalent:

The linear operator T : dom(T)! range(T) is bounded on its domain.

The linear operator T : dom(T)! range(T) is a continuous.

The linear operator T : dom(T)! range(T) is Lipschitz continuous.

Proof.

We will show (1) =) (3) =) (2) =) (1). Assuming (1), we have that

kT(x + u)� Txk2 = kT(u)k2 � Ckuk2
which establishes Lipschitz continuity, and hence continuity. Now assume (2).
Then there exists � > 0 such that for all kuk1 < 2� in dom(T),

kT(u)k2 = kT(u)� T(0)k2 � 1:

Consequently, noting that (obviously) � x
kxk1

< 2� for all 0 6= x 2 dom(T)

kT(x )k2 =




kxk1
�

T

�
�

kxk1
x

�



2

=
kxk1

�




T�� x

kxk1

�



2

�
kxk1

�
� 1
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The vector space B(B1;B2) of bounded linear maps from B1 to B2 equipped
with the operator norm,��T��

1
= sup

x2B1:kxk1=1
kTxk2; T 2 B1;

is a Banach space. If B1 = B2 = B, we denote this space by B(B).
By definition of boundedness, for any x 2 B1, we have

kTxk2 �
��T��

1
kxk1:

The Banach space B� := B(B;R) is called the dual space of B, and its
elements are called bounded linear functionals.

We say that sequence fxng in a Banach B converges weakly to x 2 B if the
real sequence Txn converges to Tx for all T 2 B�.

A couple of examples:

1 Evaluation functionals on B1 = C [0; 1]: Let t 2 [0; 1] be an arbitrary point, and define the
map Tt : f 7! f (t) from B1 = C [0; 1] to B2 = R. Clearly, Tt is linear, and
kTt f k2 = jf (t)j � kf k1 = sups2[0;1] jf (s)j with equality holding iff f constant function.

2 Hilbert-Schmidt integral operators on B1 = L2[0; 1]: Let B1 = L2[0; 1] and define the

linear map T by (Tf )(�) =
R 1

0
K (�; t)f (t)dt for f 2 L2[0; 1] and K (�; �) 2 L2([0; 1]2).

Then, Tf 2 L2[0; 1]. Further, kTf k2 � kf k2
R 1

0

R 1

0
K 2(s; t)dsdt , so

��T��
1
� kKk.
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Inverses and their Boundedness

A bounded linear operator T 2 B(B1;B2) is said to be
1-to-1 if ker(T) = f0g.
onto if range(T) = B2.
bijective if it is 1-to-1 and onto.
open if T(U ) � B2 is open for all open U � B1.

The identity operator I 2 B(B) uniquely satisfies x 7! x for all x 2 B.

If T 2 B(B1;B2) is bijective, it has an inverse: an operator T�1 : B2 ! B1 s.t.:

T�1T = I:

The inverse T�1 of a bijective operator T is unique and is invertible with inverse

[T�1]�1 = T

When T is linear, then so is T�1.
Uniqueness: if A and B are both inverses then (A� B)Tx = 0 for all x 2 B1, or
equivalently (since T is onto) we have (A� B)y = 0 for all y 2 B2.

Inverse: for any y 2 B2, there is a unique x 2 B1 such that y = Tx since T is a bijection.
Hence T(T�1)y = T(T�1)Tx = Tx = y showing the existence/form of the inverse.

Linearity: 8 y1; y2 2 B2 there exist x1; x2 2 B1 s.t. yi = Txi & T�1yi = xi , i = 1; 2. Thus

T�1(y1 + cy2) = T�1(Tx1 + cTx2) = T�1(T(x1 + cx2)) = x1 + cx2 = T�1y1 + cT�1y2:
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Theorem (Open Mapping theorem)

If T 2 B(B1;B2) is onto, then it is open.

The proof is a consequence of the Baire property of Banach spaces.

Corollary (Banach Inverse Theorem)

If T 2 B(B1;B2) is bijective, then T�1 2 B(B2;B1).

Proof.

When T is bijective, then T�1 exists and is bijective (and thus onto), so by the
open map theorem (T�1)�1(U ) = T(U ) is open for all open U � B1. Hence,
T�1 is continuous.
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Theorem (Unit Perturbations of the Identity)

For B a Banach space let T 2 B(B) with
��T��

1
< 1. Then I� T is bijective and

(I� T)�1 = I+
P1

j=1 T
j :

For perturations of the form I+ T, the summation would be over alternating signs.

Proof

(I� T)x = 0 =) x = Tx and so kxk = kTxk. But kTxk � ��T��
1
kxk < kxk since��T��

1
< 1. So x 2 ker(T) implies that kxk = 0, and I� T is bijective. Since��T��

1
< 1, we also have

P1

j=1

��T��j

1
<1. By the triangle inequality, the partial sum

sequence Sn := I+
Pn

j=1
Tj is Cauchy in B(B) and thus has a limit in B(B), say

S = I+
P1

j=1
Tj . Now

��I� Sn(I� T)
��
1

=
��Tn+1

��
1
� ��T��n+1

1
! 0: So

S(I� T) = I

Lemma (Sherman-Morrison-Woodbury identity)

For operators S, T, U and V with S and T invertible, we have

(T + US�1V)�1 = T�1 � T�1U(S+ VT�1U)�1VT�1:

(proof by direct verification, multiply RHS by T + US�1V)
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Theorem (Riesz representation)

Any Hilbert space (H; k � k) is isometrically isomorphic to its dual H�. Said
differently, T 2 B(H;R) be a bounded linear functional. Then, there is a unique
element rT 2 H, called the representer of T, such that

Tx = hx ; rTi; 8 x 2 H:

Furthermore,
��T��

1
= krTk.

Proof

If T � 0, take rT = 0. Otherwise, consider ker(T)?. This is a closed subspace of
H by an earlier result. Choose y 2 ker(T)? such that Ty = 1. Then, 8 x 2 H,

T(x � (Tx )y) = Tx � TxTy = Tx � Tx = 0;

i.e., x � (Tx )y 2 ker(T). As y 2 ker(T)?, we have hy ; x � (Tx )yi = 0, which
implies that hx ; yi = Tx hy ; yi = Txkyk2. So we may take rT = y=kyk2 and get

Tx = hrT; x i 8x 2 H:

To show uniqueness If we could find another representer r 0T, then hx ; rT � r 0Ti = 0
for all x 2 H, which implies that rT = r 0T.
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The Adjoint

Corollary (Existence and Uniqueness of the Adjoint)

Let (H1; h�; �i1) and (H2; h�; �i2) be Hilbert spaces. To every T 2 B(H1;H2)
corresponds a unique T� 2 B(H2;H1) determined by the relation

hTx1; x2i2 = hx1;T�x2i1 8; x1 2 H1; x2 2 H2:

The operator T� is called the adjoint of T.

When case H1 = H2, we say that T is self-adjoint if T� = T.

Proof

The functional hTx1; x2i2, seen as a function of x1 for fixed x2, is bounded and
linear. So, by the Riesz representation, there exists a unique y 2 H1 (depending
on x2) such that hTx1; x2i2 = hx1; yi1. Thus, we take T�x2 = y . This definition
gives us a linear mapping. To see that it is bounded, first note that for any
x1 2 H1, we have hT�x2; x1i1 = hy ; x1i = hx2;Tx1i. So,

kT�x2k21 = hT�x2;T�x2i = hx2;T(T�x2)i �
��T��

1
kT�x2k1kx2k2,

which implies that kT�x2k1 �
��T��

1
kx2k2.
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Note that by the Riesz representation, xn ! x weakly in a Hilbert space H if and
only if hxn ; yiH ! hx ; yi for all y 2 H.

Therefore, if xn converges weakly to y in H1, then Txn ! Tx weakly in H2:

hTxn ; z i2 = hxn ;T�z i1 ! hx ;T�z i1 = hTx ; z i2; 8; z 2 H2

.

Some specific examples:

1 Matrices: when H = Rd , any T 2 B(H) is a d � d matrix T, and T� is the
linear transformation associated with the matrix TT.

2 Integral operators on L2[0; 1]:

hTf ; gi = R 1
0

R 1
0
K (s ; t)f (t)g(s)dtds = hf ; R 1

0
K (s ; �)g(s)dsi. Thus,

(T�g)(�) = R 1
0
K (s ; �)g(s)ds . So, T is self-adjoint if K is symmetric.

3 Evaluation maps: Let H(K ) be an RKHS of functions on E and Tt be the
evaluation functional corresponding to a fixed t 2 E . Then, for � 2 R, we
have �Tt (f ) = �f (t) = �hf ;K (�; t)i = hf ; �K (�; t)i. Thus,
T�t (�) = �K (�; t) for t 2 E . Also,

��Tt��1 =
��T�t ��1 = K 1=2(t ; t).
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Theorem

For (Hi ; h�; �ii ), i = 1; 2 two Hilbert spaces, and T 2 B(H1;H2), we have��T��
1

= supfjhTf ; gi2j : kf k1 = 1; kgk2 = 1g:

Furthermore, if H1 � H2 and T is self-adjoint, then��T��
1

= supfjhTf ; f ij : kf k = 1g:

Proof

Assume T 6= 0 wlog and denote the above supremum by M . By Cauchy-Schwarz,

M = jhTf ; gi2j � kTf k2kgk2 �
��T��

1
kgk2 =

��T��
1
:

For the reverse, for any kxk = 1 with Tx 6= 0 (one exists since T 6= 0). Then,

M �
�����Tx ; Tx

kTxk2

�
2

���� = kTxk22
kTxk2 = kTxk:

which implies that M � ��T��
1

.
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Now consider the self-adjoint, and this time set M = supfjhTf ; f ij : kf k = 1g.
Just as in the first part of the proof,

��T��
1
�M .

For the reverse inequality, note that if f ; g 2 H satisfy kf k = kgk = 1, then the
polarization identity holds since T = T�.

4hTf ; gi = hT(f + g); (f + g)i � hT(f � g); (f � g)i:

Since jhTh ; hij �Mkhk2, it follows that

jhTf ; gij �Mfkf + gk2 + kf � gk2g=4 =Mfkf k2 + kgk2g=2 =M :

Thus, the first part of the proof implies that
��T��

1
�M .
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Theorem

Let T 2 B(H1;H2). Then,

1 (T�)� = T,

2
��T���

1
=

��T��
1

and
��T�T��

1
=

��T��2

1
,

3 ker(T) = (range(T�))?,

4 ker(T�T) = ker(T) and range(T�T) = range(T�),

5 H1 = ker(T)� range(T�) = ker(T�T)� range(T�T), and

6 rank(T�) = rank(T).

It’s worth reflection on (3), (4), and (5) in the self-adjoint case.

Proof

Part (1) follows from definition. For part (2), let xi 2 Hi for i = 1; 2. Recall from
an earlier proof that

��T���
1
� ��T��

1
. This used in conjunction with part (1)

yields
��T��

1
� ��T���

1
proving

��T��
1

=
��T���

1
. From this identity, and using

the definition of operator norm, we can get that
��T�T��

1
� ��T��2

1
. On the other

hand, kTx1k22 = hT�Tx1; x1i1 �
��T�T��

1
kx1k21, which implies

��T��2

1
� ��T�T��

1
.
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For part (3), let x1 2 ker(T) in which case, hx1;T�x2i1 = 0 for all x2 2 H2. Thus,
x1 2 (range(T�))?. Conversely, let x1 2 (range(T�))?. Then, since
T�Tx1 2 range(T�), we have kTx1k22 = hx1;T�Tx1i1 = 0.

For part (4), if x1 2 ker(T), then of course x1 2 ker(T�T). If x1 2 ker(T�T), then
0 = hx1;T�Tx1i1 = kTx1k21, which proves the first identity of part (4). The
second identity follows from the first one, part (3), and the fact that for any
subspace M, (M?)? =M.

Part (5) follows from parts (3) and (4) and the fact that for any closed subspace
M of H1, we have H1 =M�M?.

For part (6), first assume that rank(T) <1 so that range(T) is finite dimensional
and hence closed. Applying part (5), we have that for x 2 H2, T�x = T�x 0,
where x 0 is the projection of x onto range(T). So,
range(T�) � T�(range(T))) rank(T�) � rank(T) <1. Interchanging T and T�

yields rank(T) � rank(T�) implying that rank(T) = rank(T�) if one of these
ranks is finite. If one of them is infinite, the same argument also shows that the
other rank must be infinite.
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Non-Negative Definite and Positive Definite Operators

Definition

An operator T on a Hilbert space H is said to be non-negative definite (or simply
non-negative) if it is self-adjoint and hTx ; x i � 0 for all x 2 H. It is called
positive definite (or just positive) if strict inequality holds for all x 6= 0. For two
operators T1 and T2, we write T1 � T2 (respectively, T1 � T2) if T2 � T1 is
non-negative (respectively, positive) definite.

For any operator T, we can verify that the operator T�T is non-negative definite.

Theorem

Let T 2 B(H) for a Hilbert space H. If T is non-negative (respectively, positive),
then there exists a unique non-negative (respectively, positive) operator S 2 B(H)
such that S2 = T and S commutes with any operator that commutes with T.

We use the notation T1=2 for S, and it is called the square root operator of T.

Note that the non-negative operator is only assumed bounded.

For compact operator (to be defined soon) the spectral theorem (to be
proven soon) will directly give this result, but compactness is not necessary.
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Proof

Assume w.l.o.g. that
��T��

1
� 1 so that we can verify that

��I� T
��
1
� 1. The

proof relies on the fact that the Maclaurin expansion (1� z )1=2 = 1 +
P1

j=1 cj z
j

is absolutely convergent for all jz j � 1 with all the cj ’s being negative.

Consequently, the series Sn := I+
Pn

j=1 cj (I� T)j is Cauchy and must therefore
converge to some operator S 2 B(H). We can directly verify that S is self-adjoint.

Writing S = I+
P1

j=1 cj (I� T)j ; we can rearrange terms by absolute convergence

to show that S2 = T. Now,

hSx ; x i = 1 +

1X
j=1

cj h(I� T)j x ; x i � 1 +

1X
j=1

cj = 0

as cj < 0 and 0 � h(I� T)j x ; x i � 1. Further, since Sn commutes with any
operator that commutes with T this property also holds for the limit S.

We can verify that S is positive if and only if T is positive.
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To prove uniqueness, suppose there is another operator V with these properties.
Then,

(V� S)V(V� S) + (V� S)S(V� S)

= (V2 � S2)(V� S) = 0:

As both operators on the left hand side of the last expression are non-negative
definite, they must each be identically zero. Thus,

(V� S)V(V� S)� (V� S)S(V� S) = (V� S)3 = 0:

So, (V� S)4 = 0, which implies that for all x 2 H,
k(V� S)2xk2 = h(V� S)4x ; x i = 0. Consequently, (V� S)2 = 0. Applying a
similar argument now yields V� S = 0 and completes the proof.
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Projection Operators

Recall the projection theorem: If M is a closed subspace of a Hilbert space H,
then for each x 2 H, there exists a unique y 2 H such that
kx � yk = inffkx � vk : v 2Mg.

Let PM be the map that sends x to its projection onto M. Call it a projection
operator.

Theorem

If M is a closed subspace of H, then PM is a self-adjoint operator in B(H) and
satisfies PM = P2

M.

Proof

We first show that PM is linear. For x1; x2 2 H, a1; a2 2 R and y 2M, we have
ha1PMx1 + a2PMx2; yi = a1hPMx1; yi+ a2hPMx2; yi =
a1hx1; yi+ a2hx2; yi = ha1x1 + a2x2; yi: Thus, PM(a1x1 + a2x2) =
a1PMx1 + a2PMx2. We can verify the self-adjointness of PM. Finally for x 2 H,
PMx 2M. The norm minimization feature of projection now has the
consequence that P2

M = PMPM = PM.
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Being idempotent, projection operators are non-negative definite.

Also, kPMxk = kP2
Mxk � ��PM��

1
kPMxk, which implies that��PM��

1
� 1. Note that kPMxk � kxk , i.e., projection operators are

contractions. Combining the two statements, we obtain
��PM��

1
= 1.

If M has dimension one and is spanned by x with kxk = 1, then P(M) can
be written as x 
 x , where (x 
 x )y = hx ; yix for any y 2 H.
(this is because of the uniqueness of the projection along with the identity

hx ; yi = h(x 
 x )y ; x i, which implies that hhx ; yix ; (x � hx ; yix )i = 0.


 is called the tensor product operator. It can be defined more generally as
follows. Let xi 2 Hi for i = 1; 2. Then x1 
1 x2 : H1 ! H2 is defined as
(x1 
1 x2)y = hx1; yix2 for all y 2 H1. If H1 = H2, we use 
 in place of

1. Further,

��x1 
 x2
��
1

= kx1k1kx2k2.
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Compact Operators and the Spectral Theorem

So far our study of operators is very coarse – we mostly looked at:

Questions of boundendess/continuity.

Questions of bijectivity and inversion.

None of these speak of their “operational structure”. In finite dimensions, this is
reflected by the spectral theorem and the SVD.

Roughly speaking, these tell us how the operator transforms to the unit ball.

This, in turn, gives us an “X-ray” of the operator’s internal structure.

So far we only touched on boundedness – which tells us that there is no direction
along which the unit ball is stretched infinitely.

In finite dimensions the unit ball is compact, and so its image under a
(necessarily continuous) linear operator is also compact.

This fails in infinite dimensional vector spaces (see Riesz’s theorem, up next).

So we will need to elicit some form of compactness of the image, for a similar
study – this motivates the notion of compact operator.

Victor M. Panaretos (EPFL) Functional Data Analysis 64 / 240



Definition

An linear operator T : B1 ! B2 is said to be compact if for any bounded sequence
fxng � B1, fTxng contains a convergent subsequence in B2.

In other words, if the unit ball in B1 is mapped to a pre-compact set in B2.

Think of what a linear operator does to the unit ball in finite dimensions.

Exercise: Compactnes =) boundedness

Exercise Bounded linear operators with finite rank are compact.

“Unfortunately” the compactness can fail if the rank is not finite.

Lemma (Riesz’s lemma)

Let X be a normed linear space, Y be a closed proper subspace of X , and
� 2 (0; 1). There exists x 2 X with kxk = 1 such that kx � yk > � for all y 2 Y.
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Proof.

Since Y ( X , there is an x 2 X such that x =2 Y . Since Y is closed, x is at
strictly positive distance from any Y , i.e. infy2Y kx � yk = d > 0. Since
� 2 (0; 1), there is some y0 2 Y at distance ��1d from from x (or else the
distance of x from Y would be at least ��1d and so certainly not d as stated),
i.e. kx � y0k = ��1d .
We claim that

x� :=
x � y0

kx � y0k =
x � y0

��1d

verifies the theorem’s claim. It is obviously a unit vector, and furthermore,

kx� � yk =




 x � y0

kx � y0k �
kx � y0k
kx � y0ky





 = kx � (y0 + kx � y0ky)k
kx � y0k � d

��1d
= �;

because y0 + kx � y0ky 2 Y . Hence, x� is at distance at least � from Y .

Corollary (Riesz’s Theorem)

The unit ball in a Banach space B is compact iff it is finite dimensional. In other
words, the identity operator is a compact operator iff B is finite dimensional.

Proof: Exercise.
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Corollary

For infinite dimensional Banach spaces B1 and B2, let T 2 B(B1;B2) be a
bijective operator. Then T is not a compact operator.

Proof: Exercise

Theorem

1 The closure of the range of a compact operator is separable.

2 If either of two operators is compact, so is their composition.

3 The set of compact operators in B(B1;B2) is closed.

Exercise Prove parts (1) and (3) the above theorem.

Theorem

Let T 2 B(H1;H2). Then,

1 T is compact iff there exists a sequence of bounded linear finite rank
operators Tn such that

��T � Tn
��
1
! 0 as n !1.

2 T is compact iff T� is compact.

Exercise Prove the ‘if’ part of part (1) of the above theorem, as well as part (2).
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Spectral Theory of Compact Self-Adjoint Operators

Symmetric matrices admits a spectral decomposition.
Since compact operators on Hilbert spaces are “limits of matrices”, can we
hope for a similar decomposition for self-adjoint such operators?

Given a Hilbert space H let T 2 B(H). If � 2 R is such that

Te = �e

for some non-zero e 2 H (not necessarily unique), we say that:

� is an eigenvalue of T.

e is an eigenvector of of T, associated with the eigenvalue �.

E�(T) := fx 2 H : Tx = �xg � ker(T � �I) is the eigenspace of �.

The collection of all eigenvalues �(T) is called the spectrum of T.

Since the kernel of a bounded operator is always a closed subspace of H,
ker(T � �I) is itself a Hilbert space for any scalar �.

By definition, ker(T � �I) 6= f0g iff � is an eigenvalue. In other words, an
eigenspace is by definition non-trivial.

Victor M. Panaretos (EPFL) Functional Data Analysis 68 / 240



Two ingredients will work for us:

Self-adjointness will yield orthogonality of eigenspaces.
Compactness will yield countability and convergence to zero of eigenvalues,
on the one hand, and finite-dimensionality of the eigenspaces, on the other.
Combined they will yield existence of an eigenvalue.

Theorem

For a bounded and self-adjoint operator, eigenspaces corresponding to distinct
eigenvalues are orthogonal.

For operators that are only bounded, one can make the weaker statement that
eigenvectors corresponding to distinct eigenvalues are linearly independent.

Proof

Let T� = T be bounded, and �1 6= �2 be two distinct eigenvalues of T. Take
x1; x2 to be vectors in the corresponding eigenspaces. Then,

�1hx1; x2i = h�1x1; x2i = hTx1; x2i = hx1;T�x2i = hx1;Tx2i = �2hx1; x2i:

If hx1; x2i 6= 0, we could divide by hx1; x2i arriving at the contradiction �1 = �2.

Now let’s bring in compactness...
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Theorem

Let T 2 B(H) be a compact and self-adjoint operator. Then,

1 The subspaces fE�(T) : � 6= 0g are all finite-dimensional (hence closed)

2 For any � > 0, the set f� 2 �(T) : j�j � �g is finite.

3 The spectrum of T is countable.

Self-adjointness is actually superfluous, it just makes the proof a bit shorter.

Proof

(1) Suppose dimfker(T � �I)g =1. Then, by Riesz’s lemma, there exists a sequence
feng1n=1 � ker(T � �I) with kenk = 1 for all n and kem � enk > 1=2 for all n 6= m . So,
kTem � Tenk = �kem � enk > �=2 for all n 6= m . If � 6= 0, this contradicts the
assumption that T is a compact operator.

(2) Suppose the stated set is infinite (possibly uncountably infinite). Then, it contains an
infinite sequence f�j g1j=1 of distinct eigenvalues of T, which by definition satisfies
j�j j � � > 0 for all j . Choose unit vectors ej 2 E�j (T), and observe that these constitute
an infinite orthonormal sequence, since the �j are distinct. This for any n 6= m ,

kTen � Temk2 = k�nen � �memk2 = k�nenk2 + k�memk2 =� 2�2

which again contradicts compactness of T.

(3) �(�) = [n�1f� 2 �(T) : j�j � n�1g which is a countable union of finite sets.
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Lemma (Existence of an Eigenvalue)

If T 2 B(H) is compact and self-adjoint, then it always possesses either kTk1 or
�kTk1 as an eigenvalue.

Consequently, a compact and self-adjoint operator is non-zero if and only if it
possesses a non-zero eigenvalue.

Proof.

By self-adjointness,
��T��

1
= supfjhTx ; x ij : kxk = 1g. So there is a sequence

xn 2 H such that kxnk = 1 and jhTxn ; xnij ! �, where j�j = ��T��
1

. Thus

kTxn � �xnk2 = kTxnk2 + k�xnk2 � 2hTxn ; �xni � �2 + �2 � 2�hTxn ; xni ! 0:

By compactness of T, we can extract a subsequence fxnk g such that

Txnk
k!1! x 2 H:

which combined with the fact that Txnk � �xnk ! 0 yields �xnk ! x , so that

T�xnk � �Txnk ! Tx :

by continuity of T. The two blue limits stipulate that Tx = �x .
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Theorem (Spectral Theorem for Compact Self-Adjoint Operators)

Let T 2 B(H) be a compact self-adjoint operator with (countably many)
eigenvalues j�1j � j�2j � :::, indexed by non-increasing magnitude. Then,

1 The eigenspaces of T corresponding to non-zero eigenvalues yield a direct
sum decomposition of range(T),

2 Writing Pk for the projection onto the eigenspace of an eigenvalue �k ,

T(x ) =
P

n�1 �nPn(x ); 8 x 2 H:

Corollary (Spectral Decomposition)

There exists an ONB feng of of range(T) comprised of T-eigenvectors, and

T(x ) =
P1

n=1 �nhx ; enien ; 8 x 2 H:

If each eigenspace is one-dimensional, the basis is unique.

Notice that the second statement is not merely a corollary – the two statements
are actually equivalent (exercise).
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Proof (of the corollary, which is equivalent to the theorem).

If we show that range(T) admits a countable orthonormal basis of T-eigenvectors
fej g, then it will follows that range(T) 3 Tx =

P
j�1 aj ej for all x 2 H with

aj = hTx ; ej i = hx ;Tej i = �j hx ; ej i for all j � 1.

To construct such a basis, consider the set fui ;j g, where for fixed j , u1;j ;u2;j ; :::
is an orthonormal basis for the j th eigenspace. There are countably many
eigenspaces, they are finite dimensional, and they are mutually orthogonal. So we
can order fui ;j g into a countable orthonormal set, say fej g.

It remains to show completeness of fej g in range(T), i.e.

range(T) = spanfej : j � 1g:

For any finite n and c1; c2; : : : ; cn 2 R (not all of which are zero), we havePn

j=1 cj ej 2 range(T) because each ej is an eigenvector:

ej = ��1j Tej 2 range(T):

Thus, spanfej : 1 � j � ng � range(T) for all finite n , which in turn implies that

spanfej : j � 1g � range(T). Consequently, spanfej : j � 1g � range(T).
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From the projection theorem, we can now write

range(T) = spanfej : j � 1g � N ;

where N containsall elements of range(T) orthogonal to spanfej : j � 1g. To
complete the proof, we must show N = f0g.

To this aim, let TN be the restriction of T to N . This restriction is:

1 self-adjoint on N because T maps N to N
(for x 2 N and y 2 spanfej : j � 1g, we have hTx ; yi = hx ;Tyi = 0 and
Tx 2 spanfej : j � 1g? = N ).

2 compact, which is inherited directly from T.

Hence TN 6= 0 if and only if it posesses a non-zero eigenvalue. But any non-zero
eigenvalue of TN is also an eigenvalue for the original operator T. And all such
non-zero eigenvalues were already captured in the collection f�j g1j=1, which leaves
TN being the zero operator as the only option.

It follows that, N � ker(T), and since we also have N � range(T), it can only be
that N = f0g.
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The spectral decomposition paves the way for many important results...

If T � 0 is compact with spectrum f(�j ; ej )g1j=1, then

�k = max
e2spanfe1;e2;:::;ek�1g?

hTe ; ei
kek2

for all k with spanfe1; e2; : : : ; ek�1g being the entire H if k = 1.

So, if we arrange the �j ’s so that j�1j � j�2j � : : :, then

j�k j = max
e2spanfe1;e2;:::;ek�1g?

kTek
kek :

Thus, for a compact, self-adjoint operator T, we have
��T��

1
= j�1j.

If T is a compact, self-adjoint operator then so is Tn for all n � 1. Further,
Tn =

P
j�1 �

n
j ej 
 ej , i.e., f(�nj ; ej )g1j=1 are the eigenpairs of Tn .

A compact and self-adjoint operator is non-negative iff all of its eigenvalues
are non-negative.

One can define fractional powers of compact and non-negative operators. If

S :=
P

j�1 �
1=2
j ej 
 ej , then it is easily verified that S = T1=2, the square

root operator of T. Obviously, T1=2 is compact.
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It is possible to extend the spectral decomposition result to non-self-adjoint
compact operators in B(H) and to compact operators in B(H1;H2).

Let T 2 B(H1;H2) be a compact operator. So, T�T and TT� are compact,
non-negative operators in B(H1) and B(H2), respectively.

They have the same non-zero eigenvalues, say, �1 � �2 : : : � 0. The
eigenfunction of T�T (respectively, TT�) associated with �j is denoted by f1j
(respectively, f2j ). Further, f2j = Tf1j =�j and f1j = T�f2j =�j with �j =

p
�j

for all j . We always take �j ’s to be non-negative.

The triple (�j ; f1j ; f2j ), j = 1; 2; : : :, is called a singular system of T with the
�j ’s being called the singular values of T, while the f1j ’s and the f2j ’s are
called the right and the left singular functions, respectively.
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The Singular Value Decomposition

Theorem (Singular Value Decomposition)

Let T 2 B(H1;H2) be a compact operator. Then, T =
P

j�1 �j f1j 
1 f2j , i.e.,
Tx =

P
j�1 �j hx ; f1j if2j for any x 2 H1 with

(a) f�j g = f�2j g being the non-increasing eigenvalues of T�T and TT�,
(b) ff1j g being the orthonormal eigenfunctions of T�T ) ff1j g1j=1 is an o.n.b. of

range(T�T) = range(T�) = ker(T)?, and
(c) ff2j g being the orthonormal eigenfunctions of TT� satisfying T�f2j = �j f1j for

all j . Also, ff2j g1j=1 is an o.n.b. of range(TT�) = range(T).

Victor M. Panaretos (EPFL) Functional Data Analysis 77 / 240



Let T 2 B(H1;H2) be a compact operator. Then, it follows from the
previous theorem that

��T��
1

= �1.

An operator T 2 B(H1;H2) is compact iff the SVD holds.

The singular values converge to zero necessarily �n ! 0.

A pseudo-inverse can be obtained as follows. For each i = 1; 2, let feikg1k=1

be an o.n.b. of Hi (generated from the singular system). Now, if
x =

P1
k=1hx ; e1k i1e1k , we have Tx =

P1
j=1 �j hx ; f1j if2j . A condition that

characterizes y =
P1

k=1hy ; e2k i2e2k 2 range(T) is

1X
j=1

hy ; f2j i22=�2j <1:

This is called Picard’s condition and, when it holds, we may set

Tyy =

1X
j=1

��1j hy ; f2j i2f1j :
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Theorem

The range of an infinite rank compact operator is not closed.

Proof

Let T have the singular system f(�j ; f1j ; f2j )g1j=1. Since �j # 0 as j !1, we can

choose a subsequence fjkg such that �jk < k�1 for all k . Define

y =
P1

k=1 �jk f2jk . Clearly, y 2 range(T) as f2jk = T(f1jk =�jk ). But Picard’s
condition fails to hold for y . Thus, y =2 range(T).

For compact operators, the existence of an approximate solution is
guaranteed when Picard’s condition holds.

But the unboundedness of the pseudoinverse makes the solution very
unstable.

The degree of instability depends on how fast the singular values of T decays
to zero: “mildly ill-posed” if �j � j�� for some � > 1, and “severely
ill-posed” if �j � exp(��j ) for some � > 0.

To obtain stability (further to existence) in ill-posed linear equations, we
must use “regularization” leading to “regularized inverses”.
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Hilbert-Schmidt Operators

Let H1 and H2 be separable Hilbert spaces and feij g be an a countable ONB for
Hi . If T 2 B(H1;H2) satisfies

1X
j=1

kTe1j k22 �
1X
j=1

hTe1j ; e2j i22 <1;

then T is called a Hilbert-Schmidt operator.

The collection of Hilbert-Schmidt operators H1 ! H2 is denoted by
BHS (H1;H2).

The infinite sum in the above definition is independent of the choice of the
o.n.b., i.e., if the sum converges for some o.n.b., it does for all o.n.b.’s and
they all have the same value (exercise).

In the same vein, if T if Hilbert-Schmidt, then so is T�.

Finally, for some (and thus any) o.n.b.’s fe1j g and fe2kg of H1 and H2

respectively, we have
P1

k=1 kT�e2kk22 =
P1

j=1 kTe1j k22.
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If T 2 B(H1;H2) is compact, then it follows from the spectral decompostion
that if we choose fe1j g as the union of the right singular functions and an
o.n.b. of ker(T), then

P1
j=1 kTe1j k22 =

P1
j=1 �

2
j . Thus, T is Hilbert-Schmidt

iff its singular values are square summable.

Clearly, BHS (H1;H2) is a linear space. One can define an inner product on it
as follows.

hT1;T2i =
1X
j=1

hT1e1j ;T2e1j i2;

where fe1j g is an o.n.b. of H1. The corresponding norm is given by��T�� = fP1
j=1 kTe1j k2g1=2 = fP1

j=1hT�Te1j ; e1j ig1=2.

(exercise: check that the inner product is well-defined)

Theorem

The linear space BHS (H1;H2) equipped with the above inner product is a
separable Hilbert space. For any choice of o.n.b.’s fe1j g and fe2kg of H1 and H2

respectively, fe1j 
1 e2kg is an o.n.b. of BHS (H1;H2).
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Theorem

Any Hilbert-Schmidt operator is compact.

Proof

Let T be a Hilbert-Schmidt operator, and for each � 1, define Tn by
Tnx =

Pn

j=1hTx ; e2j i2e2j , x 2 H1, where fe2j g is an o.n.b. of H2. Clearly, Tn is
a finite rank operator for each n . Thus, it is enough to show that��T � Tn

��
1
! 0 as n !1. Let kxk1 � 1. Then, the Cauchy-Schwarz inequality

and the fact that (T � Tn)x =
P

j>nhTx ; e2j i2e2j implies

k(T � Tn)xk22 =
P

j>nhTx ; e2j i22 =
P

j>nhx ;T�e2j i22 �
P

j>n kT�e2j k22. The
proof is now complete on observing that since T� is a Hilbert-Schmidt operator, it
follows that

P
j>n kT�e2j k22 ! 0 as n !1.

Exercise: Let (
;F; �) be measure space and T : 
! BHS (H1;H2) be
measurable with

R ��T��d� <1. Show that
R
Tfd� = (

R
Td�)f for any f 2 H1.
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Theorem (Schmidt-Mirsky-Eckart-Young)

Let T be a Hilbert-Schmidt operator with singular system f(�j ; f1j ; f2j )g1j=1.
Then, for any finite k , we have������T �

kX
j=1

xj 
1 yj

������ �
������T �

kX
j=1

�j f1j 
1 f2j

������
for any set of functions xj 2 H1, yj 2 H2, j = 1; 2; : : : ; k .

The above theorem states that the spectral decomposition of a
Hilbert-Schmidt (and thus compact) operator provides the best finite
dimensional approximation in a Hilbert-Schmidt sense.

This is core in FDA, as well as its other versions (and its refinements under
additional structure).

Victor M. Panaretos (EPFL) Functional Data Analysis 83 / 240



Proof

It is enough to show that��T �Pk

j=1 xj 
1 yj
�� � ��T��2 �Pk

j=1 �
2
j =

P1
j=k+1 �

2
j . W.l.o.g., we can assume

that the (yj ; xj ) are orthonormal. In that case, if fej g is any o.n.b. of H1, then

��T � kX
j=1

xj 
1 yj
��2

=

1X
l=1

*0@T�T +

kX
j=1

(xj � T�yj )
1 (xj � T�yj )
�

1A ej ; ej

+
1

�
kX

j=1

kT�yj k21:

As (xj � T�yj )
1 (xj � T�yj )
� is non-negative, the result will follow once we

establish that
Pk

j=1 kT�yj k21 �
Pk

j=1 �
2
j .
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Now, the spectral decomposition of T� gives T�yj =
P1

l=1 �l hyj ; f2l i2f1l so

kT�yj k21 = �2k +

 
kX

l=1

�2l hyj ; f2li22 � �2k

kX
l=1

hyj ; f2li22
!

�
 
�2k

1X
l=k+1

hyj ; f2li22 �
1X

l=k+1

�2l hyj ; f2li22
!

� �2k

 
1�

1X
l=1

hyj ; f2li22
!
:

The last two terms on the RHS are non-positive meaning that

kX
j=1

kT�yj k21 � k�2k +

kX
j=1

kX
l=1

(�2l � �2k )hyj ; f2li22

=

kX
l=1

[�2k + (�2l � �2k )

kX
j=1

hyj ; f2li22] �
kX

l=1

�2l :

The last inequality follows from the orthonormality of the yj ’s and Parseval.
Victor M. Panaretos (EPFL) Functional Data Analysis 85 / 240



Let T 2 B(H1;H2). We can then define the square root of the non-negative
operator T�T, denoted by (T�T)1=2, on B(H1). Set jTj = (T�T)1=2:

Definition

An operator T is called trace class if for some o.n.b. fej g of H1, the quantity��T��
tr
:=
P1

j=1h(jTjej ; ej i1 is finite. In this case,
��T��

tr
is called the trace norm

of T.

Similar argument as in the Hilbert-Schmidt case shows that the infinite sum
does not depend on the choice of the o.n.b.

For any trace class operator T, we have
��T��

tr
=

��jTj1=2��2
.

Exercise: Show that if T is trace class, then T�T is compact. Thus, if
f(�j ; fj )g1j=1 denote the eigenvalue-eigenfunction pairs of T�T, then��T��

tr
=
P1

j=1

p
�j .

All this simplifies in the case of non-negative operators
(symmetrisation/positivation unnecessary), in fact the more natural definition
goes through the non-negative case first.

Hilbert-Schmidt inner product: We can now re-express the HS inner product
as

hT1;T2i = trfT�1T2g:
(verify this as an exercise)
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P1
j=1 kTfj k22 =

P1
j=1hT�Tfj ; fj i1 =

P1
j=1 �j � f

P1
j=1

p
�j g2 =

��T��2

tr
.

Consequently, if T is trace class, then T is Hilbert-Schmidt. This implies that
a trace class operator is compact. Further,

��T�� � ��T��
tr

. Also, T is trace
class iff its singular values are summable.

If T 2 B(H) is a trace class operator, then its trace is defined as
tr(T) =

P1
j=1hTej ; ej i, where fej g is an o.n.b. of H. It can be shown that

this infinite series is absolutely convergent and does not depend on the choice
of the o.n.b.

Thus, if T is self-adjoint, then tr(T) =
P1

j=1 �j , where f�j g is the sequence

of eigenvalues of T. If T is non-negative, then tr(T) =
��T1=2

��2
.

Moreover, if T1 and T2 are two trace class operators and a1; a2 2 R, then
tr(a1T1 + a2T2) = a1tr(T1) + a2tr(T2) and tr(T2T1) = tr(T1T2).

Exercise: If T is a non-negative operator such that
P1

j=1hTej ; ej i = 0 for an
o.n.b. fej g of H, then T = 0.
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The following inclusions hold:

finite rank ) trace class ) Hilbert-Schmidt ) compact ) bounded

and the inclusions are strict if the operators are defined on an infinite
dimensional Hilbert space.

Rank 1 operators. Let u ; v 2 H for some Hilbert space H. Define the linear
operator u 
1 v : H ! H by (u 
1 v)(�) = hu ; �iHv . Then u 
1 v is trace
class, and ��u 
1 v

��
1

=
��u 
1 v

�� =
��u 
1 v

��
tr
= kukHkvkH.

For T 2 B(H) we have: ��T��
1
� ��T�� � ��T��

tr
.

Let U;V 2 B(H) and T be a trace class operator on B(H). Then,��UTV��
tr
� ��U��

1

��T��
tr

��V��
1

&
��UTV�� � ��U��

1

��T�� ��V��
1

.

The above are consequences of Hölder’s inequality for Schatten p-norms, of
which all the above are special cases (p = 1, p = 2, p =1), and defined via�

tr fjTjpg �1=p
If T is compact, then
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Integral Operators and Mercer’s Theorem

For a measure space (E ;F; �), recall the definition of an integral operator K
associated with a measurable square integrable kernel K (�; �) on E � E .

We have seen K 2 B(L2(E ;F; �)) and
��K��

1
� kKkL2(E�E).

We will be interested in the following context:
1 E is a compact metric space
2 F is the Borel �-field on E
3 the support of � is the whole of E .
4 K is continuous on E � E (hence also uniformly continuous).

Exercise: For every f 2 L2(E ;F; �), (Kf )(�) is uniformly continuous on E .

Theorem

Under the above assumptions, K is compact.

The proof relies on establishing a finite rank approximation of K by considering a
uniform finite dimensional approximation of K by polynomials (Stone-Weierstrass
theorem).
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If K is symmetric, then K is self-adjoint. So, the spectral decomposition
yields K =

P1
j=1 �j ej 
 ej , where f(�j ; ej )g is the eigenvalue-eigenfunction

sequence of K.

The uniform continuity of (Kf )(�) implies that the version of ej given by
ej (�) = ��1j

R
E
K (s ; �)ej (s)�(ds) is uniformly continuous in t . We will

always assume this for the ej ’s.

Example

Let E = [0; 1] and K (s ; t) = min(s ; t). This is the covariance kernel of the
Brownian motion on [0; 1]. The operator K is given by

(Kf )(t) =

Z 1

0

K (s ; t)f (s)ds =

Z t

0

sf (s)ds + t

Z 1

t

f (s)ds :

The eigenvalues and the eigenfunction of K are found by solving the following
equation in � and e .Z t

0

se(s)ds + t

Z 1

t

e(s)ds = �e(t) for all t :
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Differentiating both sides with respect to t yields

te(t) +

Z 1

t

e(s)ds � te(t) = �e 0(t),
Z 1

t

e(s)ds = �e 0(t) for all t :

Differentiating the above equation once again yields e(t) = ��e 00(t) for all t .
Note that if � = 0, then e � 0 so that the ker(K) = f0g. For � 6= 0, a general
solution for this differential equation is

e(t) = a sin(t=
p
�) + b cos(t=

p
�)

with boundary constraints e(0) = 0 and e 0(1) = 0. Thus, b = 0 and
a cos(1=

p
�) = 0, which leads to 1=

p
� = (2j � 1)�=2, j = 1; 2; : : :. Thus, the

eigenvalues and the associated eigenfunctions of K are

�j =
1

f(j � 0:5)�g2 and ej (t) =
p
2 sinf(j � 0:5)�tg; j � 1:
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Theorem

An integral operator is non-negative (positive) definite iff its integral kernel is
non-negative (positive) definite.

A central theorem now is:

Theorem (Mercer)

Let K 2 B(L2(E ;F; �)), where

1 E is a compact metric space

2 F is the Borel �-field on E

3 the support of � is the whole of E .

4 K is continuous on E � E (hence also uniformly continuous).

If the operator’s integral kernel is non-negative definite, K � 0, then the spectral
decomposition of K admits a pointwise version,

K (s ; t) =

1X
j=1

�j ej (s)ej (t) for all s ; t

where f(�j ; ej )g are the eigenpairs of K, and convergence is absolute and uniform.
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Mercer’s theorem gives an equivalent representation of the kernel in terms of the
eigenvalues and the eigenfunctions of K. There are several important
consequences of Mercer’s theorem.

Theorem

Under the conditions of Mercer’s theorem,
��K��

tr
= tr(K) =

R
E
K (t ; t)�(dt) and��K�� = kKkL2(E�E).

Theorem

Let K be a continuous, symmetric and non-negative definite kernel with the
eigen-decomposition K (s ; t) =

P1
j=1 �j ej (s)ej (t) in the sense of Mercer’s

theorem. Then, for any positive integer r for which �r > 0, we have

minrank(W )=r

R
E�EfK (s ; t)�W (s ; t)g2�(ds)�(dt) =Pj>r �

2
j

where the minimum is achieved by W (s ; t) =
Pr

j=1 �j ej (s)ej (t).
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The proof of Mercer’s theorem follows from the following string of result.

Lemma

Under the conditions of Mercer’s theorem, we have
(1)

P1
j=1 �j e

2
j (t) � K (t ; t) for all t ,

(2)
P1

j=1 j�j ej (s)ej (t)j � fK (t ; t)K (s ; s)g1=2 for all s ; t ,

(3) limn!1 sups;t
P1

j=n+1 j�j ej (s)ej (t)j = 0, and

(4) the function
P1

j=1 �j ej (s)ej (t) is well-defined and uniformly continuous in
(s ; t) with the sum converging absolutely and uniformly.

Victor M. Panaretos (EPFL) Functional Data Analysis 94 / 240



Back to RKHS

Let’s reconsider the RKHS associated with a continuous, symmetric and
non-negative definite kernel K . It follows from Mercer’s theorem that
K (s ; t) =

P1
j=1 �j ej (s)ej (t) for all s ; t . With some work, we can show

f 2 H(K ), f (t) =

1X
j=1

�jaj ej (t); with
1X
j=1

�ja
2
j <1:

Equivalently, f (t) =
P1

j=1 cj ej (t), where the cj ’s satisfy
P1

j=1 c
2
j =�j <1.This

implies that
P1

j=1 c
2
j <1 so that f 2 L2(E). Since the ej ’s are orthogonal in

the L2(E) sense, it follows that cj = hf ; ej iL2(E).
Also, kf kH(K ) = fP1

j=1 c
2
j =�j g1=2. Hence, for f 2 L2(E), we have

f 2 H(K ),
1X
j=1

hf ; ej i2=�j <1:
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Since K is compact with f(�1=2j ; ej )g1j=1 as its eigenvalue-eigenfunction sequence,

it follows that K1=2 is compact with f(�1=2j ; ej )g1j=1 as its
eigenvalue-eigenfunction sequence.

So, it follows from Picard’s condition that for f 2 L2(R)

f 2 H(K ), f 2 range(K1=2) i.e., H(K ) = range(K1=2):

Since K1=2 is compact, H(K ) is not closed in L2(E).

Furthermore, kej kH(K ) = �
�1=2
j kej kL2(E) so that keej kH(K ) = 1, whereeej =p�j ej . Also, heei ; eej iH(K ) = �ij .

Since fej g1j=1 forms an o.n.b. of range(K1=2) (equipped with the L2(E) inner

product), it follows that feej g1j=1 is an o.n.b. of H(K ) = range(K1=2) (equipped
with the H(K ) inner product).

Moreover, K (s ; t) =
P1

j=1 �j ej (s)ej (t) =
P1

j=1 eej (s)eej (t).
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(Wish) List of Topics

1 Reminder on Normed Vector Spaces

2 Bochner Integration

3 Reproducing kernel Hilbert Spaces

4 Basic operator theory, Mercer’s theorem

5 Random vectors and their moments

6 Gaussian measures, the Hajék-Feldman dichotomy, Conditional Independence

7 Mean square contintuity & the Karhunen-Loève theorem

8 Mean square vs pathwise regularity

9 Weak Convergence, tightness, CLT, LLN

10 Moment estimation and the problem of measurement

11 Functional Principal Components

12 The positive definite continuation problem

13 Intrinsic functional graphical models
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�-field(s) and random vectors in Hilbert space

Henceforth, let H be a separable Hilbert space equipped with the inner product
h�; �i and associated norm k � k. What is a natural �-field of events?

The usual Borel �-field B(H) is given by the smallest �-field containing all
the open subsets of H and is denoted by.

But events are more naturally formulated through functionals – we could also
define another �-field on H, namely the smallest one which makes all
bounded linear functionals measurable, which by Riesz representation is

C = �fh�; f i�1(B) : B 2 B(R); f 2 Hg:
Theorem

The �-fields C and B(H) are the same.

Consequently, given a measure space (
;F;P) we have:

Theorem

X : (
;F;P)! (H;B(H)) is measurable iff hX ; f i is measurable for all f 2 H.
Furthermore, if X is measurable, its distribution is uniquely determined by the
collection of marginal distributions of hX ; f i as f ranges in H.
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A random vector in H is (a.k.a random element X of H) is a measurable map
from a probability space (
;F;P) to (H;B(H)).

Lemma

When H is separable, X (or more precisely, its distribution) is tight:

given any � > 0, 9 a compact set K such that �(K c) � PfX =2 K�g < �

This will follow easily later, when we give a characterization of compact subsets of
H via the notion of flatness (totally bounded () flat and bounded).

The argument below is almost as easy, and applies to any separable metric space (so that we
have a countable dense subset) that is complete (so that compact = closed + totally bounded).

For fsng � H, let bn (�) := fx 2 H : kx � snk � �g.

Obviously, H = [1
k=1bk (�) for any � > 0, so �

�
[n
k=1 bk (�)

�
" �(H) � 1.

So there is nm � 1 such that �
�
[nm
k=1 bk (1=m)

�
� 1� 2m�:

Now define K = \1m=1 [
nm
k=1 bk (1=m). We claim it is compact. It is obviously closed.

For any � > 0, K � [nm
k=1bk (1=m)� [nm

k=1 bk (�) by taking m sufficiently large (m > 1=�).
So we have shown it is totally bounded (admits a finite �-cover for any � > 0).

Finally,

�(K c) � �
�
[1m=1 \

nm
k=1 bk (1=m))

�
�

1X
m=1

�
�
\nm
k=1bk (1=m)

�
<

1X
m=1

(1� 2m�) = �:
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The Characteristic Functional

The characteristic functional is defined naturally:

Definition

The characteristic functional of X is given by �(f ) = E(eihX ;f i) for f 2 H.

As a direct corollary to our earlier theorem, it determines the distribution of X .

Yet it is not as useful as in finite dimensions:
1 Bochner’s theorem is false when dim(H) =1.
2 Lévy’s continuity theorem is false when dim(H) =1.

To see # 1, recall Bochner’s theorem:

a continuous function f : Rd ! R with f (0) = 1 is non-negative definite if and

only if it is the characteristic function of a probability distribution.

Now take �(x ) = exp(�kxk2=2), x 2 H, which fits the bill (cts, PSD, �(0) = 1).
If there is a random vector X with c.f. �, then for any orthonormal fei ; ej g,

E(ei(ti hX ;ei i+tj hX ;ej i)) = expf�(t2i keik2+t2j kej k2)=2g = e�t
2
i =2e�t

2
j =2 $ N (0; I2�2)

So, for an ONB fekg of H, we have hX ; ek i i :i :d:� N (0; 1) which leads to
kX k2 =P1

k=1hX ; ek i2 =1 almost surely...
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Mean Vector

The Bochner mean E[X ] of a random vector X : (
;F;P)! (H;B(H)) is
defined to be its Bochner integral

R


X (!)P(d!), provided it exists.

Recall that for Hilbert spaces, a necessary and sufficient condition for existence of
the Bochner integral is the existence of

R


kX (!)kP(d!). Hence:

The Bochner mean of a H-valued random element X exists if and only
if E(kX k) <1, and in this case kE(X )k � E(kX k).

A different (weaker) approach is to go via linear functionals:

Suppose that E(jhX ; f ij) <1 for each f 2 H.

Define the linear functional � : H ! R given by �(f ) = E(hX ; f i).
It can be shown that � is a bounded.

By Riesz representation 9 �� 2 H such that h��; f i = E(hX ; f i) 8 f 2 H.

We call �� the Gelfand-Pettis mean of X .

The Gelfand-Pettis mean of a H-valued random element X exists if and
only if E(jhX ; f ij) <1 for each f 2 H.
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When E(kX k) <1, the two means agree and the Bochner mean � satisfies

h�; f i = E(hX ; f i); 8 f 2 H:

Exercise: Show by counterexample that existence of a Gelfand-Pettis mean
need not imply existence of mean in Bochner sense when dimfHg =1.

Consequently, the Gelfand-Pettis mean is a weaker notion of mean than the
Bochner mean.

What happens when the evaluation functionals are continuous?

Let H is a RKHS of functions defined over a set E

Evaluation can be represented as a continuous linear functionals

Consequently, if the weak mean �� exists then it is also a pointwise mean

f��g(t) = E[X (t)]; 8 t 2 E:

So if the strong mean exists, it also equals the pointwise mean,

fE[X ]g(t) = E[X (t)] 8 t 2 E :

But when H is not an RKHS (e.g. H = L2, which strictly speaking is not a
function space) the pointwise mean doesn’t even have a meaning.

In summary, we can think of different notions of ‘mean’ when dimH, which may
exist under different settings; but notice that when any two exist, they coincide.
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Covariance operator

The covariance operator of a random vector X : (
;F;P)! H in a separable
Hilbert space H is defined as the Bochner integral

K = Ef(X � �)
 (X � �)g
in the Hilbert-Schmidt sense, provided it exists. Here � = E(X ) is the Bochner
mean, which exists whenever the covariance exists.

In effect, we consider the tensor (X ��)
 (X ��) as a random vector in the
Hilbert space of Hilbert-Schmidt operators on H, and take its Bochner mean.

So, a necessary and sufficient condition for the existence of covariance
operator is E(

��(X � �)
 (X � �)
��) <1.

Since
��(X � �)
 (X � �)

�� = kX � �k2, an equivalent necessary and
sufficient condition is E(kX k2) <1. This in turn implies that the Bochner
mean also exists.

Note that we can re-write K = E(X 
X )� �
 �:

Exercise: The covariance operator satisfies

hKf ; gi = cov(hX � �; f i; hX � �; gi); 8 f ; g 2 H:

Relate this to Gelfand-Pettis integrals, and to pointwise integrals when H is an RKHS.
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Theorem

The covariance K of a random vector X in a separable Hilbert space such that
EkX k2 <1 is:

1 self-adjoint

2 non-negative definite

3 trace class (and hence compact) with trace

��K��
tr
= tr(K) = E(kX � �k2) =

1X
j=1

�j ;

with f�j g the eigenvalues of K.

Proof

Clearly, K is self-adjoint and non-negative definite. Let fej g be an o.n.b. of H.
Then, kX k2 =P1

j=1hX ; ej i2, so that

E(kX k2) =P1
j=1 E(hX ; ej i2) =

P1
j=1hKej ; ej i =

��K��
tr
= tr(K) =

P1
j=1 �j .

So, when dim(H) =1, there is no random element with the identity operator as
its covariance operator...
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Corollary (Spectral Decomposition)

When the covariance operator K of a random vector X in a separable Hilbert
space exists, it admits the spectral decomposition

K =

1X
j=1

�j�j 
 �j

where f�j g are eigenfunctions thereof, forming an ONB of range(K), and f�j g
are its eigenvalues, which in turn are non-negative, have finite multiplicities, and
form a sequence in `1.

Theorem

In the same context as above,

P
�
X � � 2 range(K)

�
= 1:

Further, with probability one,

X � � =
P1

j=1hX � �; �j i�j ,
where the hX � �; �j i’s are uncorrelated, with zero mean and variance �j .
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Proof.

For the first part of the theorem, note that (range(K))? = ker(K�) = ker(K)
since K is self-adjoint. So, for any f 2 (range(K))?, we have

E(hX � �; f i2) = hKf ; f i = 0:

. (alternatively, Kf 2 range(K) so that hKf ; f i = 0)

Thus, with probability one, X � � ? (range(K))? i.e.

X � � 2 �(range(K))?
�?

= range(K).

The second part follows from the spectral decomposition of K.

The the Fourier expansion of X w.r.t. the eigenvectors of K is “optimal”:

Theorem (Optimal Fourier Truncation)

Let fej g be an ONB of H. Then, for any r � 1,
EfkX � ��Pr

j=1hX � �; ej iej k2g = E(kX � �k2)�Pr

j=1hKej ; ej i �
EfkX � ��Pr

j=1hX � �; �j i�j k2g =
P1

j=r+1 �j
with equality holding when ej = �j for j = 1; 2; : : : ; r .

Exercise: Prove the last statement.
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Cross-Covariance Operators

The cross-covariance operator of two H-valued random elements X1 and X2

satisfying E(kXik2) <1, i = 1; 2, is defined as

K12 = Ef(X1 � E(X1))
 (X2 � E(X2))g:

jhK12f ; gij � hK1f ; f i1=2hK2g ; gi1=2 for any f ; g 2 H, where Ki is the
covariance operator of Xi for i = 1; 2.

Clearly, K�
12 = Ef(X2 � E(X2))
 (X1 � E(X1))g= K21.

In general this is not a self-adjoint operator, so it will admit an SVD:

K12 =
X
j�1

�j�1j 
 �2j ; �j � 0;

f�2j g being the non-increasing eigenvalues of K�12K12 = K12K21

f�1j g is ONB for range(K�12) comprised of K�12K12-eigenfunctions
f�2j g is ONB for range(K�21) comprised of K�21K21-eigenfunctions
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Note that we can defined cross-covariance for jointly distributed random vectors
fXig2i=1 being in distinct Hilbert spaces (Hi ; h�; �ii ).

Effectively a single random vector in the product Hilbert space�
X1

X2

�
in H1 �H2

So we can think of covariance and cross-covariance operators in “block
format” – assuming the means are zero, to alleviate notation,

E
��

X1

X2

�


�
X1

X2

��
= E

��
X 2

1 X1 
X2

X2 
X1 X 2
2

��
=

�
K11 K12

K�
12 K22

�

Obviously this generalises to a product H1 
 : : :
Hp , yielding a p � p

covariance operator matrix. (check that it is � 0 on the product space)

Example: take a Hilbert space of functions on E = [0; 1]. You may partition
[0; 1] into finitely many disjoint intervals and consider the restrictions of a
random function on each interval.
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Cross-Correlation Operators

Theorem (Baker, 1973)

Let (X1 X2 )
> be a random vector in the product Hilbert space H1 �H2 such

that K11 and K22 exist. Then, there exists a unique bounded R12 2 B(H1;H2)
such that

1 K12 = K
1=2
11 R12K

1=2
22

2
��R12

��
1
� 1

3 R12 = P1R12P2 where Pj is the projection onto range(Kjj )

The operator R12 is the cross-correlation operator of X1 with X2

Note that only cross-correlation operators make sense (there is no intrinsic
self correlation of X1 alone, unless H1 is itself a product space).

The theorem allows us to express R12 = K
+1=2
11 K12K

+1=2
22 , for K

+1=2
ii the

pseudoinverse of K
+1=2
11 .

Accordingly, we can define the correlation operator matrix

�
IH1

R12

R�12 IH2

�
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(Wish) List of Topics

1 Reminder on Normed Vector Spaces

2 Bochner Integration

3 Reproducing kernel Hilbert Spaces

4 Basic operator theory, Mercer’s theorem

5 Random vectors and their moments

6 Gaussian measures, the Hajék-Feldman dichotomy, Conditional Independence

7 Mean square contintuity & the Karhunen-Loève theorem

8 Mean square vs pathwise regularity

9 Weak Convergence, tightness, CLT, LLN

10 Moment estimation and the problem of measurement

11 Functional Principal Components

12 The positive definite continuation problem

13 Intrinsic functional graphical models
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Gaussian Random Vectors

Gaussian Vector

A random vector X in H is said to be a Gaussian if hX ; yi has a Gaussian
distribution on R for every y 2 H.

Note that the Dirac measure �� at some � 2 R is considered Gaussian ‘N (�; 0)’

It follows from the definition that a Gaussian measure must be fully determined by
a weak (Gelfand-Pettis) mean/covariance pair (�;K), implicitly specified via

h�; hi = E(hX ; hi) & hh ;Kgi = cov(hX ; hihX ; gi):

Theorem (Fernique)

If X is a Gaussian random element then there exists a t0 > 0 such that
Efexp(t0kX k2)g <1.

In particular, a Gaussian vector X satisfies E(kX kk ) <1 for all k � 1.

So Gaussian vectors have “Bochner moments” of all orders.

Hence the Gaussian measure has (and is determined by) a strong (Bochner)
mean and covariance pair, which necessarily coincides with the weak ones.
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Theorem (Hajék-Feldman Dichotomy)

Let N (�1;K1) and N (�2;K2) be two Gaussian measures on a separable Hilbert
space H. Then:

N (�1;K1) and N (�2;K2) are either singular or equivalent.

They are equivalent if and only if the following three conditions all hold:

1 range(K
1=2
1 ) = range(K

1=2
2 ) = H0

2 �1 � �2 2 H0

3

�
K
�1=2
1 K

1=2
2

��
K
�1=2
1 K

1=2
2

�� � I is Hilbert-Schmidt on H0

In the case where the two measures are shifts of each other (they share the same
covariance K), only condition 2 is non-vacuous.

In this case, we can write for N2-almost all x 2 H
dN1

dN2
(x ) = exp

nD�
K
+
�1=2

(�1 � �2);
�
K
+
�1=2

(x � �1)
E
� 1

2

����K+
�1=2

(�1 � �2)
���2
o

with K+ the pseudoinverse of K.
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One can easily verify that the characteristic functional of a N (�;K) on H is

�(f ) = expfihf ; �i � hKf ; f i=2g; f 2 H:

Conversely, if the characteristic functional of a probability measure on H is of
the above form, then the measure is Gaussian with mean � and covariance K.

Exercise: Show that if X is Gaussian, then P(X � � 2 range(K)) = 0.

Exercise: Let X be a H-valued Gaussian random element with mean � and a
strictly positive-definite covariance K. Then, for any proper closed subspace
S of H, we have P(X 2 S) = 0.

In fact, it can be shown that if X is a Gaussian random element in H, and S
is a Borel measurable subspace of H, then P(X 2 S) = 0 or 1.

Consequently, the penultimate statement is also true for Borel measurable
affine sets.
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Precision Operator Matrix

Theorem (Gaussian Equivalence and Correlation Operators, Bogachev)

Let (X1; :::;Xp) be a Gaussian random vector in the product Hilbert space
H1 � : : :�Hp with (trace-class) covariance operator matrix fKij g. The joint
distribution of (X1; :::;Xp) is equivalent to the product of its marginal
distributions if and only if the following two conditions hold:

1 The correlation operator Rij is Hilbert-Schmidt.

2 The correlation operator matrix fRij g is strictly positive-definite.

We now obtain an important (IMHO) generalisation:

Theorem (Partition Operator and Cond. Independence, Waghmare/Masak/Panaretos)

In the same (Gaussian) setting, assume that the joint distribution of (X1; :::;Xp)
is equivalent to the product its marginals. Then the correlation operator matrix
R = fRij g is invertible on H1 � : : :�Hp , and the following two are equivalent

1 Xi is conditionally independent of Xj given Xk

2 The (i ; j ) operator-entry of R�1 vanishes.

We can now legitimately call R�1 the precision operator matrix.
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Independence and Conditional Independence

If we have random vectors (X1;X2;X3) in H1 �H2 �H3, we say that X1 is
conditionally independent of X2 given X3

Law(X1;X2jX3) = Law(X1jX3)Law(X2jX3):

Since we know that the �-fields C and B(H) are the same, we can equivalently
interpret this in terms of linear functionals:

for all fi 2 Hi ; hX1; f1i1 ?? hX2; f2i2j fhX3; hi3 : h 2 H3g:

The latter is particularly useful in case Hi are RKHS.

Warning:

the equivalence condition may seem natural, but it excludes the case of
“partitioning function’s domain”, unless the function is allowed to have
discontinuities at the partition boundaries.

we need to grapple with continuum issues when considering intrinsic
conditional independence (as opposed to extrinsic conditional independence).
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(Wish) List of Topics

1 Reminder on Normed Vector Spaces

2 Bochner Integration

3 Reproducing kernel Hilbert Spaces

4 Basic operator theory, Mercer’s theorem

5 Random vectors and their moments

6 Gaussian measures, the Hajék-Feldman dichotomy, Conditional Independence

7 Mean square contintuity & the Karhunen-Loève theorem

8 Mean square vs pathwise regularity

9 Weak Convergence, tightness, CLT, LLN

10 Moment estimation and the problem of measurement

11 Functional Principal Components

12 The positive definite continuation problem

13 Intrinsic functional graphical models
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Second order stochastic processes

If we insist on the Hilbert space perspective, then interpreting a random vector as
a random function requires us to consider an RKHS ambient space.

But there exists a different notion of a “random function” devoid of any RKHS
requirements: a stochastic process

How can the two be aligned? Could it be that we simply have to make
assumptions on the law of X ?

Let’s take it step-by-step:

When our “data” are functions on E , typically is a compact metric space, we
could consider a random function X as a stochastic process
X = fX (t) : t 2 Eg.

This immediately makes sense as a “function”, compared to the more
abstract representation of X 2 H = L2(E ;B(E); �), say.

For X = fX (t) : t 2 Eg to be a stochastic process, all that is required is for
each X (t) to be measurable (
;F;P)! (R;B(R))

This alone won’t guarantee that X is measurable as (
;F;P)! (H;B(H))
(let alone valued in H)

Victor M. Panaretos (EPFL) Functional Data Analysis 117 / 240



Consider a stochastic process X = fX (t) : t 2 Eg, and define its mean function
and covariance kernel by

m(t) = E[X (t)]; t 2 E ; and

K (t ; s) = covfX (t);X (s)g; t ; s 2 E ;

respectively, which exist provided EjX (t)j2 <1 for all t 2 E .

Processes with well-defined mean function and covariance kernel are called
second-order processes.

Note that K (�; �) is bone-fide non-negative definite.

A priori X (t) does not seem to possess any form of continuity – we don’t even
have a topological context to make sense of continuity.

But we have finite “variances”, so such context could be furnished by the Root
Mean Square Distance between random variables:

RMSE(X (t);X (s)) =
�
EjX (t)�X (s)j2�1=2 = kX (t)�X (s)kL2(
;F;P)

(and recall that L2(
;F;P) is in fact a Hilbert space)
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Mean-square continuous stochastic processes

A second-order process X = fX (t) : t 2 Eg is called mean-square continuous if

lim
tn!t

E
�
[X (tn)�X (t)]2

	
= 0

for every t 2 E (finer/higher notions of mean square regularity similarly defined)

Since MSE = bias2 + variance, we expect that mean-square continuity is
characterised by the regularity of the mean and covariance kernel – and it is:

Theorem (mean-square continuity and mean/covariance covariance)

Let X = fX (t) : t 2 Eg be a second-order process. Then, the following
statements are equivalent.

1 X is mean-square continuous.

2 Both m(�) and K (�; �) are continuous.

3 m(�) is continuous and K (�; �) is continuous near the set f(t ; t) : t 2 Eg.
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Proof

(b) ) (a): Follows from the definition of mean-square continuity.
(a) ) (b): Note that

jm(t)�m(s)j � EfjX (t)�X (s)jg � E1=2fjX (t)�X (s)j2g:

Thus, continuity of m(�) follows from (a).
To prove continuity of K (�; �), we can without loss of generality assume that
m � 0. Also, for any t ; s ; t 0 and s 0, we have

K (t ; s)�K (t 0; s 0) = fK (t ; s)�K (t ; s 0)g+ fK (t ; s 0)�K (t 0; s 0)g:

By using the Cauchy-Schwarz inequality, it follows that

jK (t ; s)�K (t ; s 0)j = jCov(X (t);X (s)�X (s 0))j
� K 1=2(t ; t)E1=2fjX (s)�X (s 0)j2g; and

jK (t ; s 0)�K (t 0; s 0)j = jCov(X (t)�X (t 0);X (s 0))j
� K 1=2(s 0; s 0)E1=2fjX (t)�X (t 0)j2g:

So, mean square continuity of X implies continuity of K (�; �).
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(b) ) (c): Direct.
(c) ) (a): Let m � 0. The proof follows upon noting that for any t 2 E and any
sequence tn ! t ,

E
�
[X (tn)�X (t)]2

	
= [K (tn ; tn)�K (t ; t)]� 2[K (tn ; t)�K (t ; t)]

! 0 as n !1:

Since mean-square continuity implies continuity of K , we can use Mercer’s
theorem to obtain the immediate corollary:

Corollary (Mercer for Mean Square Continuous Processes)

Let X = fX (t) : t 2 Eg be a mean-square continuous stochastic process with
covariance kernel K (�; �). Then, for any finite measure � supported on E , we have

K (t ; s) =

1X
j=1

��j �
�
j (t)�

�
j (s);

where the sum converges absolutely and uniformly on E . Here, the ��j ’s and the
��j ’s are the eigenvalues and the eigenfunctions of the integral operator on

L2(E ;B(E); �) with K (�; �).
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But can we relate the stochastic process X (t) with the eigenfunctions ��j (t) of

K , like we are able to relate a random X in H = L2(E ;B; �) with the
eigenvectors ej of K?

The answer to this will come in the form of the Karhunen-Loève Expansion.

We cannot just write
P

j

�R
E
(X (u)�m(u))�j (u)�(du)

�
�j (t) because

even though �j 2 H, it’s not guaranteed that
R
E
X 2(t)�(dt) <1.

Need to construct a version of “hX �m ; �j i”, say IX (�j )

Consider a sequence of successive refinements of a measurable partition of E ,
say, En = fEi ;n : 1 � i � m(n)g that eventually separates points. Let
ti ;n 2 Ei ;n for 1 � i � m(n), and Tn = fti ;n : 1 � i � m(n)g.

For any f 2 H, define a “stepwise approximate version” of “hX �m ; �j i” as

IX (f ; Tn) =
m(n)X
i=1

fX (ti;n)�m(ti;n)g
Z
Ei

f (s)�(ds) =

Z
Ei

(XTn (s)��Tn (s))f (s)�(ds)

with XTn
(s)� �Tn

(s) =
Pm(n)

i=1 fX (ti ;n)�m(ti ;n)g1fs 2 Ei ;ng
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Such approximation is a reasonable vehicle to get to our expansion, as long as it
does not depend on the choice of partition sequence.

Let’s calculate E [IX (f ; Tn)� IX (f ; T 0n)]2 for two partitions (En ; Tn) and (E 0n ; T 0n),

=

m(n)X
i1=1

m(n)X
i2=1

K (ti1;n ; ti2;n)

Z
Ei1;n�Ei2;n

f (s1)f (s2)�(ds1)�(ds2)

+

m 0(n)X
j1=1

m 0(n)X
j2=1

K (tj1;n ; tj2;n)

Z
E 0
j1;n

�E 0
i2;n

f (u1)f (u2)�(du1)�(du2)

� 2

m(n)X
i=1

m 0(n)X
j=1

K (ti ;n ; tj ;n)

Z
Ei;n�E 0j ;n

f (s)f (u)�(ds)�(du):

Since fX (t)g is mean square continuous, K is continuous on E �E , uniformly so
since E is compact.

Thus, each term (excluding signs and multipliers) can be made arbitrarily close toZ
E�E

K (s ;u)f (s)f (u)�(ds)�(du)

for large values of n .
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We now use the completeness of the space L2(
;F ;P) to conclude that:

1 9 a random variable IX (f ) 2 L2(
;F ;P) which is the limit of IX (f ; Tn)
2 IX (f ) is independent of the choice of the partition sequence (En ; Tn).

Looking back: we are effectively using mean square continuity to “relate” the
Hilbert structures of L2(
;F ;P) and L2(E ;B(E); �). Concretely:

Theorem (Loève Isometry)

Let E be compact, fX (t)gt2E be means-square cts, and f ; g 2 L2(E ;B(E); �).

1 E[IX (f )] = 0,

2 cov(IX (f ); IX (g)) = E[IX (f )IX (g)] =
R
E�E K (s ;u)f (s)g(u)�(ds)�(du)

3 E[IX (f )fX (t)�m(t)g] = R
E
K (s ; t)f (s)�(ds) = (Kf )(t) for any t 2 E ,

where K is the integral operator on H associated with K (�; �).
4 If f�j ; �j g are the eigenpairs of K, then covfIX (�i ); IX (�j )g = �j1fi = j g.

The proof is essentially already done – just use our partitioning approximation.
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The isometry is basically in (b): interpreting

E[IX (f )IX (g)] = hIX (f ); IX (g)iL2(
;F ;P)
hK1=2f ;K1=2giL2(E ;B(E);�) =

R
E�E K (s ;u)f (s)g(u)�(ds)�(du)

we get an isometry h 7! IX (K
�1=2h) (w/ inverse via extending X (t) 7! K (�; t))

between

the RKHS range(K1=2) � L2(E ;B(E); �) and
spanfX (t)�m(t) : t 2 Eg � L2(
;F ;P)

the former with its RKHS inner product (i.e. no closure in L2(E ;B(E); �)).

So it is two subspaces of L2(
;F ;P) and L2(E ;B(E); �) that are isometric:

The RKHS of K is clear. Remember that this can be seen as the closure

span
�
fKtgt2E

�k�kH(K)

=

(
nX

i=1

aiK (�; ti ) : ai 2 R; ti 2 E ;n � 1

)k�kH(K)

where K (�; t) is in L2(E ;B(E); �) by continuity and compactness of E .

The closed span of X (t)�m(t) is

span
�
fX (t)�m(t)gt2E

�L2(
;F;P)
=

(
nX

i=1

(X (ti )�m(ti ))ai : ai 2 R; ti 2 E ;n � 1

)L2(
;F;P)
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The main result now is:

Theorem (Karhunen-Lòeve expansion)

For E compact and X = fX (t) : t 2 Eg mean-square continuous process, if we
define

Xn =

nX
j=1

IX (�j )�j ;

Then,
lim
n!1

sup
t2E

E[fX (t)�m(t)�Xn(t)g2] = 0:

Proof

Define X c = X �m . The previous theorem implies that

E [fXn(t)�X c(t)g2] = E [fXn(t)g2]� 2E [Xn(t)X
c(t)] + E [fX c(t)g2]

=

nX
j=1

�j�
2
j (t)� 2

nX
j=1

�j�
2
j (t) +K (t ; t) = K (t ; t)�

nX
j=1

�j�
2
j (t):

We have seen that the right hand side above converges to zero uniformly over
t 2 E , due to “Mercer for mean-square continuous processes”.
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The two ingredients that go into the KL expansion are:

The Loève isometry.

Mercer’s theorem for continuous covariances over compact sets.

Here is a more familiar version of the statement (obviously equivalent):

Theorem (Karhunen-Lòeve expansion)

For E compact and X = fX (t) : t 2 Eg mean-square continuous,

X (t) = m(t) +

1X
n=1

�1=2n �n�n(t);

where

f�n ; �ng are the eigenpairs of K

f�ng are uncorrelated random variables of mean 0 and variance 1.

and the series converges in mean square uniformly over t .
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And what about optimality of the expansion? For any ONB of L2(E ;B(E); �),
say fej gj�1 we can directly check that

lim
n!1

Z
E

E [fX (t)�m(t)� eXn(t)g2]�(dt) = 0

where eXn =
Pn

j=1 IX (ej )ej . In terms of IMSE, K ’s eigensystem is best:

Theorem (KL Optimality, IMSE)

In the same context as in the previous theorem,Z
E

E[fX (t)�m(t)� eXn(t)g2]�(dt) �
Z
E

E[fX (t)�m(t)�Xn(t)g2]�(dt)

for any choice of ONB fej gj�1 of L2(E).
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Example: Brownian Motion on [0; 1]

Recall that we can find the eigensystem of the kernel minfx ; yg explicitly.
:

minfx ; yg =
1X
k=1

2�
k � 1

2

�2
�2

sin

��
k � 1

2

�
�x

�
sin

��
k � 1

2

�
�y

�
Thus, when started at 0, BM can be represented as KL expansion:

1X
k=1

�k sin

��
k � 1

2

�
�x

�
; �k � N

 
0;

2�
k � 1

2

�2
�2

!
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(Wish) List of Topics

1 Reminder on Normed Vector Spaces

2 Bochner Integration

3 Reproducing kernel Hilbert Spaces

4 Basic operator theory, Mercer’s theorem

5 Random vectors and their moments

6 Gaussian measures, the Hajék-Feldman dichotomy, Conditional Independence

7 Mean square contintuity & the Karhunen-Loève theorem

8 Mean square vs pathwise regularity

9 Weak Convergence, tightness, CLT, LLN

10 Moment estimation and the problem of measurement

11 Functional Principal Components

12 The positive definite continuation problem
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The KL expansion obtained is interpretable only in the mean squared sense
unlike the almost sure expansion of a random vector X in L2(E ;B(E); �).

What additional measurability assumption is required to ensure that the
collection of pointwise measurable random variables

fX (!; t) : t 2 Eg
is also measurable map

from (
;F ;P) to (L2(E ;B(E); �);B(L2(E ;B(E); �)))?

Definition (Joint measurability)

A random element X : 
� E ! R is said to be jointly measurable if it is
measurable with respect to the product �-field F �B(E).

Joint measurability implies that:

for each t 2 E , X (�; t) is a random variable (
;F)! R
for each ! 2 
, X (!; �) is a measurable function (E ;B(E))! R

So now, we can think of X (!; �) as a vector in L2(E ;B(E); �), provided the
norm is finite, and ask is it also measurable with respect to the L2-norm’s
Borel �-algebra.
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Theorem

Suppose that a stochastic process fX (!; t) : t 2 Eg is jointly measurable and
that

R
E
X 2(!; t)�(dt) <1 for all ! 2 
. Then, the vector

X : 
! L2(E ;B(E); �); ! 7! X (!; �)

is measurable from (
;F ;P) to (L2(E ;B(E); �);B(L2(E ;B(E); �))).
Equivalently, X is a random vector in L2(E ;B(E); �).

Proof

By joint measurability, the assumption that
R
E
X 2(!; t)�(dt) <1 for all ! 2 


for each ! 2 
 and Fubini’s theorem, it follows that for each f 2 L2(E ;B(E); �),
the map

! 7! hX (!; �); f iL2(E ;B(E);�)

is measurable. Thus, from an earlier theorem (equality of the Borel and bounded
linear functional �-algebras), it follows that the map X is measurable map from
(
;F ;P) to (L2(E ;B(E); �);B(L2(E ;B(E); �))). Equivalently, X is a
L2(E ;B(E); �)-valued random element.
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Measurability (joint or not) is often tedious to check. But when we deal with
Borel �-algebras, it suffices to check continuity.

Is there a similar approach here?

Theorem

Let X (�) = fX (�; t) : t 2 Eg be a stochastic process with continuous sample
paths, i.e., X (!; �) is a continuous function on E for each ! 2 
. Then,

1 X is jointly measurable and hence is a random element in H.

2 The distribution of X is uniquely determined by its finite dimensional
marginals, i.e., the distributions of (X (�; t1);X (�; t2); : : : ;X (�; tn)) for all
t1; t2; : : : ; tn 2 E and all n � 1.

Gaussian processes vs Gaussian vectors. We can now compare the definitions
of a Gaussian process (defined via FIDI) to that of a Gaussian vector (defined
via bounded linear functionals).

OK, but mean square continuity does not equate to sample path continuity –
and it can’t, we need a bit more.

It will turn out that we can translate quantitatively refined continuity
(Hölder) in mean square to continuity of sample paths .
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Theorem (Kolmogorov’s inequality)

Let X = fX (t) : t 2 Eg be a stochastic process, and suppose that there are
finite constants �; �;C > 0 such that

E fjX (t)�X (s)j�g � C jt � s j1+�

for all t ; s 2 E . Then, there is a modification of X with continuous sample paths,
indeed 
-Hölder paths for all 
 2 (0; �=�).

To see why translates to a Hölder condition at the level of the L2(
;F;P)
norm/metric, take � = 2 and re-write the inequality as

kX (t)�X (s)kL2(P) =
�
E
�jX (t)�X (s)j2	�1=2� pC jt � s j 1+�

2 ; �;C > 0:

So we need at least 1=2-Hölder continuity in RMSE (� > 0) if we are to use
this result for sample path continuity.

Lipschitz continuity in RMSE will yield 1=2-Hölder paths.

Can relate this directly to covariance (exercise): If for a centred stochastic
process X = fX (t) : t 2 Eg and constants C > 0; a > 1, we have

K (t ; t) +K (s ; s)� 2K (s ; t) � C jt � s ja
then for 
 < a=2, X admits a modification with 
-Hölder continuous paths.
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“Modification” refers to the fact that we can’t discern deterministic
continuity but rather “continuity in law”

A stochastic process fY (t)gt2E is said to be a modification of another
process fX (t)gt2E if P[X (t) = Y (t)] = 1 for all t 2 E .

In this case, P[X (t) = Y (t) 8 t 2 S ] = 1 for any countable subset S of E
(and thus for a dense such set, if E is separable), but maybe not for S = E .

Modifications have the same FIDI as the original process.

An example: Brownian motion. Let X = fX (t) : t 2 [0; 1]g be a centered
Gaussian process with

covfX (t);X (s)g = min(t ; s); s ; t 2 [0; 1]:

We can check that it has independent increments and that PfX (0) = 0g = 1.

Now take a = 4 and verify that Ef(X (t)�X (s))4g = 3jt � s j2.

So, there is a modification, say, Y of X with continuous sample paths.

Indeed they are 
-Hölder for all 
 < 1=4.

In fact, this is true for any 
 < 1=2 because
Ef(X (t)�X (s))2kg = Ck jt � s jk (� = 2k and � = k � 1) for all k � 2.
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So what happens to the Karhunen-Lòeve expansion when a mean-square
continuous process on E is indeed a random element in L2(E)?

Theorem (Mean Square Continuity)

For E compact and X = fX (t) : t 2 Eg jointly measurable and mean-square cts,

1 We have
R
E
X 2(t)�(dt) <1, and the process can also be viewed as a

random vector in L2(E).

2 The process mean m(t) = E[X (t)] satisfies
R
E
m2(t)�(dt) <1 and

moreover m = E(X ), in the Bochner sense.

3 The covariance operator Ef(X �m)
 (X �m)g exists in the Bochner sense
and coincides with the integral operator with kernel is covfX (s);X (t)g.

4 for any f 2 L2(E), we have IX (f ) = hX �m ; f iL2(E).

So, in the setup of the above theorem, the Karhunen-Lòeve expansion holds both:

in mean-square, uniformly in t

almost surely, in the L2-sense

The random coefficients obtained by the process from the Loève isometry
coincide with the eigenbasis linear functionals applied to the random vector
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Proof

Note that

E
�Z

E

X 2(t)�(dt)

�
=

Z
E

fK (t ; t) +m2(t)g�(dt);

and the RHS is finite, because of mean square continuity. So we have both joint
measurability and square integrability, which establishes (1),

Finiteness of the RHS also establishes that m 2 L2(E), so that for any
f 2 L2(E),

E(hX ; f iL2(E)) = E
�Z

E

X (t)f (t)�(dt)

�
=

Z
E

m(t)f (t)�(dt) = hm ; f i:

Here we used joint measurability and Fubini. It follows that the vector m is the
Gelfand-Pettis expectation of X . But we already established that
E(kX k2

L2(E)) <1 so the Gelfand-Pettis mean is the Bochner mean, proving (2).

Next the fact that E(kX k2
L2(E)) <1 means that the Bochner covariance

operator is well-defined (in the Hilbert-Schmidt sense) and will be uniquely
determined by hEf(X �m)
 (X �m)gf ; giL2(E) as f ; g range in L2(E). This
is because an ONB fej g for L2(E) gives rise to a tensor basis fei 
 ej g for the
space of Hilbert-Schmidt operators on L2(E).
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So, using Fubini’s theorem and joint measurability, for any f ; g 2 L2(E), we have

hEf(X �m)
 (X �m)gf ; giL2(E) = E(h(X �m); f ih(X �m); giL2(E))

= E
�Z

E�E

fX (s)�m(s)gfX (u)�m(u)gf (s)g(u)�(ds)�(du)
�

=

Z
E�E

K (s ;u)f (s)g(u)�(ds)�(du) = hKf ; giL2(E):

where K is the integral operator with kernel K (s ; t) = covfX (s);X (t)g. It
follows that the operators K and Ef(X �m)
 (X �m)g coincide, proving (3).
For the last part, let (En ; Tn) be a partition as defined earlier. Then, the joint
measurability and Fubini’s theorem implies that for any f 2 L2(E),

E
�
(IX (f ; En ; Tn )� h(X �m); f i)2

	
=

m(n)X
i1=1

m(n)X
i2=1

K (ti1 ; ti2 )

Z
Ei1�Ei2

f (s1)f (s2)�(ds1)�(ds2) +

Z
E�E

K (s; u)f (s)f (u)�(ds)�(du)

� 2

m(n)X
i=1

Z
Ei�E

K (ti ; u)f (s)f (u)�(ds)�(du):

and the RHS converges to zero as n !1.
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Mean-square continuity and RKHS

One can imagine that things simplify if we take some RKHS instead of
L2(E ;B(E); �) – since evaluation maps are continuous. We expect that joint
measurability and mean square continuity should be automatic.

Indeed, so it is. Let H(R) be a RKHS associated with a continuous kernel R(�; �)
defined on E � E , with Mercer expansion

R(s ; t) =
X
n�1

�nrn(s)rn(t):

Theorem

Let X be a random element of H. Then fX (t) : t 2 Eg (i.e., X viewed as a
collection of random variables) is a stochastic process. Conversely, if the stochastic

process fX (t) : t 2 Eg is such that the sequence �
�1=2
n

R
E
X (t)rn(s)�(ds) is in

`2 for all ! 2 
, then it is also a random vector in H(R).

Proof

Assume first that X is a random vector in H(R). Then,
X (t) = hX ;R(�; t)iH(R) = et (X ) for all t 2 E . By continuity of the evaluation
maps et (�)’s, it follows that X (t) is a random variable for all t 2 E .
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For the other direction, the condition implies that fX (t) : t 2 Eg is in H(R) for
each ! 2 
. Fix a f 2 H(R). Then, there exists a sequence fn 2 H(R) such that
fn(�) =

Pn

i=1 aiR(�; ti ) and fn ! f in k � kH(R). Now,

hX (!; �); fniH(R) =

nX
i=1

aiX (!; ti ):

By measurability of X (t) for all t 2 E , it follows that the mapping
! 7! hX (!; �); fniH(R) is measurable for all n � 1. Thus, the mapping

! 7! hX (!; �); f iH(R) = lim
n!1

hX (!; �); fniH(R)

is measurable. Hence, X is measurable with respect to the bounded linear
functional �-algebra of H(R), and thus with the Borel �-algebra. Since it is also
of finite norm almost surely it is a bona-fide random vector in H(R).
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So if we start with a random vector X in the RKHS H(R), we can get a
stochastic process automatically. Is it mean-square continuous? And what is its
mean function and covariance kernel?

Theorem

Let X be a random element of H(R) with Bochner second moment, i.e.
E(kX k2R) <1. Denote its mean vector and covariance operator by � and K.
Then, X (t) := hX ;Rt iR is a mean-square continuous process on E .
Furthermore,

The process pointwise mean satisfies

m(t) := E[X (t)] = h�;R(�; t)iR = �(t):

The process covariance kernel satisfies

K (s ; t) � covfX (t);X (s)g = hKR(�; t);R(�; s)iR:

Moreover, K 2 H(R)
H(R) with kKkH(R)
H(R) � E(kX � �k2R) <1.

Note that K is NOT the integral operator on H(R) associated with the kernel
K (�; �) - difference from the L2(E ;B(E); �) setup.
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Proof

Since X (t) = hX ;R(�; t)iR, the expressions of m(t) and K (t ; s) follow.
The continuity of R on E � E implies the continuity of m(�) and K (�; �), which
in turn implies that X is a mean-square continuous process.

Define a new stochastic process Y = fY (t ; s) : (t ; s) 2 E � Eg with
Y (t ; s) = [X (t)�m(t)][X (s)�m(s)]. Note that Y = (X �m)
 (X �m)
takes values in the tensor product space H(R)
H(R), which is also a RKHS
associated with the kernel eR(t ; s) = R(�; t)R(�; s). Thus, Y is a random element
of H(R)
H(R). Also,

E(kY kH(R)
H(R)) = R(k(X�m)
(X�m)kH(R)
H(R)) = E(kX�mk2H(R)) <1:

Further, K (�; �) is the mean function (and thus the mean element) of the random
element Y , and thus K 2 H 
H(R). So,

kKkH(R)
H(R) = kR(Y )kH(R)
H(R) � E(kY kH(R)
H(R)) = E(kX �mk2H(R)):
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Theorem (Karhunen-Lòeve expansion, RKHS case)

Let X be a random element in the RKHS H(R) with E(kX k2H(R)) <1. Denote
its Bochner mean vector and covariance operator by m and K, respectively. If
f(�j ; �j )g denote the eigenpairs of K, then

covfX (t);X (s)g =
1X
j=1

�j�j (t)�j (s);

where the sum converges absolutely and uniformly, and

lim
n!1

sup
t2E

E
h
fX (t)�m(t)�Xn(t)g2

i
= 0;

where Xn(t) :=
Pn

j=1hX �m ; �j i�j (t) for all t 2 E .

Note that we also have X �m =
P1

j=1hX �m ; �j i�j almost surely.
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Proof

From the previous theorem, it follows that

K (t ; s) = hKR(�; t);R(�; s)iR =

1X
j=1

�j h�j ;R(�; t)iRh�j ;R(�; s)iR =

1X
j=1

�j�j (t)�j (s):

Since K (t ; t) = hKR(�; t);R(�; t)iR, we have

sup
t2E

K (t ; t) � ��K��
1
sup
t2E

R(t ; t) <1:

So, we have

sup
t ;s2E

1X
j=1

�j j�j (t)�j (s)j � sup
t ;s2E

0@ 1X
j=1

�j�
2
j (t)

1X
j=1

�j�
2
j (s)

1A1=2

= sup
t ;s2E

fK (t ; t)K (s ; s)g1=2 < 1:

Finally, the last assertion can be established by following arguments similar to
those used in the proof of the Karhunen-Lòeve expansion earlier and noting that
the hX �m ; �j i’s are uncorrelated.
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When does a process take values in a RKHS?

Consider the standard Brownian motion X on E = [0; 1], which has
covariance kernel K (s ; t) = min(s ; t).

Observe that

K (t ; s) =

Z 1

0

Ifu 2 [0; t ]gIfu 2 [0; s ]gdu =

Z 1

0

(t � u)+(s � u)+du :

Defining

H1 =

�
f : f (t) =

Z 1

0

(t � u)+g(u)du ; g 2 L2[0; 1]

�
;

it follows that any f 2 H1 is absolutely continuous, satisfies f (0) = 0, and
admits an almost everywhere (weak) derivative, say _f , that lies in L2[0; 1].
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Further, from our earlier results, it follows that H1 is a RKHS with kernel
K (t ; s) = min(t ; s). The inner product of the RKHS is given by

hf1; f2iH1
= h _f1; _f2iL2[0;1] =

Z 1

0

_f1(u) _f2(u)du :

is the space W 0
1 [0; 1] = ff 2W1[0; 1] : f (0) = 0g.

W1[0; 1] is the space of all absolutely continuous functions that are a.s.
differentiable with the a.s. derivative 2 L2[0; 1].

However, it is well known that a.s. all the sample paths of the standard
Brownian motion are nowhere differentiable. Thus,

P(X 2 H(K )) = 0:
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Theorem

Suppose that X is a random vector in the RKHS H(K ) with finite Bochner
second moment E(kX k2K ) <1. If K (�; �) is the coincides with the covariance
kernel of X , it must be that dimfH(K )g <1.

Proof

Since E(kX k2K ) <1, it follows that the covariance operator K of X is a trace
class operator on H(K ), and so it is compact.
At the same time, by the penultimate theorem the reproducing property K (�; �),
we have for all t ; s 2 E ,

Kt (s) = hKs ;Kt iK = K (t ; s) = hKK (�; t);K (�; s)iK = hKKt ;KsiK = (KKt )(s):

This implies that KKt = Kt for all t 2 E , which in turn implies that Kf = f for
all f 2 H(K ) (by a limiting argument, approximating any such f from within the
span of Kt ). So, K is the identity operator on H(K ). However, the identity
operator is compact if and only if H(K ) is finite dimensional.
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Driscoll (1973) – Necessary and sufficient conditions for the sample paths of
a Gaussian process to lie in a RKHS.

Luḱıc and Beder (2001) – General case. They showed that for a stochastic
process with covariance kernel K ,

necessary condition for the process to take values in H(R) is that
H(K ) � H(R), and the random element in H(R) associated with the process
has a valid covariance operator.
For the last condition, it is enough to assume that E(kX k2H(R)) <1.

The above “subset” condition is also sufficient if H(K ) is a separable Hilbert
space, e.g., when K is continuous.

The condition H(K ) � H(R) holds if there exists a constant c 2 (0;1)
such that cR �K is a non-negative definite kernel. Also, in that case, there
exists a b > 0 such that kf kH(R) � bkf kH(K ) for all f 2 H(K ).
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(Wish) List of Topics

1 Reminder on Normed Vector Spaces

2 Bochner Integration

3 Reproducing kernel Hilbert Spaces

4 Basic operator theory, Mercer’s theorem

5 Random vectors and their moments

6 Gaussian measures, the Hajék-Feldman dichotomy, Conditional Independence

7 Mean square contintuity & the Karhunen-Loève theorem

8 Mean square vs pathwise regularity

9 Weak Convergence, tightness, CLT, LLN

10 Moment estimation and the problem of measurement

11 Functional Principal Components

12 The positive definite continuation problem

13 Intrinsic functional graphical models
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Weak Convergence (Convergence in Law) in Hilbert spaces

Denote by P(H) the set of probability measures on (the Borel �-algebra) of a
separable Hilbert space H.

We say that a collection f�ngn�1 � P(H) converges weakly to � 2 P(H) ifZ
H

f (x )�n(dx )
n!1!

Z
H

f (x )�(dx ); 8 f 2 Cb(H);

that is, for all continuous, bounded functions H ! R. In that case, we write

�n
w! �:

A collection f�ngn�1 � P(H) is uniformly tight if for every � > 0, there exists a
compact subset C � H such that

�n(C ) � 1� �; 8n � 1:

Theorem (Prokhorov)

Weak convergence is metrisable. Furthermore, a collection f�ngn�1 � P(H) is
sequentially pre-compact in the topology of weak convergence if and only if it is
uniformly tight.
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In view of Prokhorov’s theorem, to prove that �n
w! �, we must

1 Show that f�ng is uniformly tight
(not always easy)

2 Show that all subsequences f�nk g converge to the same limit, namely, �.
(usually easier)

But for (1) we will need a characterisation of compact sets in H. To this aim:

Define d(x ;A) = infz2A kx � zk be the distance of x 2 A from A � H.

Define the �-extension of A � H as A� := fx 2 H : d(x ;A) < �g
Call a set C � H flat if for every � > 0, there exists a finite dimensional
subspace S � H whose �-extension covers C .

We can now state:

Theorem (Compact = Closed + Bounded + Flat)

A subset F of a Hilbert space H is totally bounded if and only if it is flat and
bounded. So, F � H is compact if and only if it is closed, bounded and flat.

Alternatively: C � H is compact iff 8 � > 0, 9 a dimension d � d(�) <1 such
that C can be covered by the �-extension of a d-dimensional closed ball.
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Proof

The second claim follows immediately once we establish the first claim.

We start with the 1)0 part. Let C � H be totally bounded. Then, C is
bounded. Let � > 0, and choose finite cover of �-balls of C , say,
F = fB�(x1); ::: : : : ;B�(xM�

)g. Then, C � [M�

i=1B�(xi ). But for
S = spanfx1; : : : ; xM�

g we also have C � S�.
For the `(0 part, let C � H be bounded and flat. Fix � > 0. By flatness, there
exists a finite dimensional subspace S such that C � S�. By boundedness, there
exists c > 0 such that C � fx : kxk � ag =: Ba(0). Since S is a finite
dimensional subspace and hence closed, the set A := S \B (a+�)(0) is compact
being a closed and bounded subset of a finite dimensional space. Thus, there
exists an �-ball cover, say, F = fB�(x1); ::: : : : ;B�(xM�

)g so that d(y ;F ) < � for

each y 2 A. Noting that Ac \ S � B
c

(a+�)(0) and C � Ba(0), it follows that
d(x ;Ac \ S) � � for any x 2 C . Thus, for any x 2 C , we have
� > d(x ;S) = d(x ;A). So, if z 2 A is such that kx � zk = d(x ;A) (such a
point exists because A is compact), we have that kx � zk < �, and so, for some
i = 1; 2; : : : ;M�,

kx � xik � kx � zk+ kz � xik < �+ � = 2�.

Thus, F forms an �-cover of C , which implies that C is totally bounded.
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[Boundedness+flatness] is equivalent to an “equi-small tail” condition:

Theorem

Let fekg be an ONB of a separable Hilbert space H. The following are equivalent:

1 C � H is flat and bounded.

2 8 � > 0, 9 d� � 1: C � S�, where S = spanfe1; : : : ; ed�g.

3 8 � > 0, 9 d� � 1: supx2C




x �Pd�
j=1hx ; ej iej




2 �P1
k=d�

hx ; ek i2 < �2

Effectively: a closed and bounded is compact if it can be approximated uniformly
well through finite dimensional subspaces (� through basis truncation).

In the context of L2(E), and if we are merely interested in a sufficient condition
for compactness (as opposed to a characterisation), the following is very useful:

Theorem (RKHS balls in L2(E) are pre-compact)

Let H(K ) be the RKHS of functions on E associated with a Mercer kernel K (�; �)
on E � E . Then, any C � H(K ) that is bounded in the metric of H(K ) is

pre-compact in L2(E) (so C
k�kL2(E) is compact).

Exercise: Establish this by showing that the unit ball in H(K ) is contained within the

image of a bounded ball around zero in L2(E) under the map K1=2, where K is the

(compact!) integral operator with kernel K .
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We will now see that tightness of a sequence of probability measures can be
obtained, by showing that they are “mostly flatly supported”, and then showing
tightness at a finite dimensional level.

A collection f�ngn�1 2 P(H) is said to be flatly concentrated if for every � > 0,
there exists a finite dimensional subspace S such that �n(S�) � 1� � for all n � 1.

Theorem

A collection f�ngn�1 2 P(H) is uniformly tight if for each �; � > 0, there exist
y1; :::yk with associated (finite dimensional) span S = spanfy1; :::; ykg, yielding

1 Flat concentration:
inf
n�1

�n(S�) � 1� �:

2 Tightness of the associated finite dimensional marginals:

inf
n�1

�n

�
fx 2 H : max

1�j�k
jhx ; yj ij � rg

�
� 1� �

for some r 2 (0;1).

Note that the last display can be interpreted as PfjhXn ; yj ij � rg � 1� � for all
n � 1, for Xn with distribution �n .
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Suppose that f�ngn�1 satisfies (a) above, where �n is the distribution of Xn . If
the sequence of distributions of hXn ; f i converge weakly for all f 2 H, then (b)
above holds. So it is not so surprising that now we can get:

Theorem (Weak Convergence via Marginals + Flat Concentration)

Let X , Xn be random elements in a separable Hilbert space H. Assume that

1 hXn ; f i w! hX ; f i as n !1 for all f 2 H.

2 For all �; � > 0, there exists a finite dimensional subspace S such that
P(Xn 2 S�) � 1� � for all n � 1.

Then, Xn
w! X as n !1.

Proof

The assumptions of the previous theorem are satisfied. Defining �n = P �X�1
n , it

follows that f�ng is uniformly tight and hence precompact in the topology of weak
convergence. Suppose that there exists two subsequences f�n 0g and f�n 00g of

f�ng such that Xn 0
w! eX1 as n 00 !1 and Xn 00

w! eX2 as n 00 !1. By the

continuous mapping theorem, hXn 0 ; f i w! h eX1; f i as n 00 !1 and

hXn 00 ; f i w! h eX2; f i as n 00 !1 for all f 2 H. But by the first assumption in the
theorem, the distributions of h eX1; f i, h eX2; f i and hX ; f i agree for all f 2 H.

Hence, eX1
d
= eX2

d
= X .
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A useful variant is:

Theorem

Let fej gj�1 be an ONB of H. For each N � 1, denote PN to be the orthogonal
projection onto spanfe1; e2; : : : ; eN g. Let fXngn�1 be a sequence of random
elements in H. Suppose that there exists a random element X 2 H such that

1 PNXn
w! PNX as n !1 for all N � 1.

2 limN!1 lim supn!1 P(kXn � PNXnk � �) = 0 for all � > 0.

Then, Xn
w! X as n !1.

In the special case of Gaussian measures we have:

Theorem (Gaussian weak convergence)

A sequence of Gaussian measures N (�n ;Kn) on a separable Hilbert space
converges weakly, if and only if the following two both hold true:

1 �n converges in the Hilbert norm to some �.

2 K
1=2
n converges in the Hilbert-Schmidt norm to some K1=2.

When N (�n ;Kn) converges weakly, the limit is itself Gaussian.
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The Central Limit Theorem in Hilbert Space

We now have all the tools to upgrade the FIDI CLT to a general CLT:

Theorem (CLT in Separable Hilbert Space)

Let X1; :::;XN be i.i.d. random vectors in a separable Hilbert space (H; k � k) such
that EkXik2 <1. Let � and K be their Bochner mean and covariance. Then,

p
N

 
1

N

NX
i=1

Xi � �

!
w�! N (0;K):

(actually pairwise independence is enough)

Assuming E[Xi ] = 0 and EkXik4 <1, and defining Xi = Xi 
Xi , we see that

Xi are iid Hilbert-Schmidt operators satisfying EjjjXi jjj2 <1, and thus

p
N

0BBBBB@
1

N

NX
i=1

Xi| {z }
K̂n

�K

1CCCCCA
w�! Z � N

�
0;E[X̂1 
 X̂1]�K
K

�

Note that the weak limit is a Gaussian random self-adjoint operator.
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Proof.

Take � = 0 WLOG. First we check the “projection” part. Let

Zn =
p
N
�

1
N

PN

i=1Xi � 0
�
=
p
N �XN . For any f 2 H, we have:

hZn ; f i d! N (h�; f i; hKf ; f i)

by the one-dimensional central limit theorem. For the “tightness” part, let feng
be an ONB of H, and define SK = spanfe1; :::; eK g; and PK to be the projection
operator onto SK . Then, for any � > 0, and any K <1

P[Zn =2 SK� ] = P
�k(I � PK )Znk2 > �2

��Ek(I � PK )Znk2
�2

=

PN

i=1

PN

j=1 E [hPKXi ;PKXj i]
N �2

=
Ek(I � PK )X1k2

�2

by Markov’s inequality and then noticing that only the N “diagonal terms” in the
double sum survive by (pairwise) independence (and they are all equal). To
conclude the proof, note that the RHS can be made smaller than any �, by
choosing K large enough.
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LLN in separable Banach Spaces

Clearly, we get a Hilbertian law of large numbers (in mean square, and thus also in
probability) from the CLT, under second Bochner moment conditions.

But, like in finite dimensions, only first Bochner moments are needed for an
almost sure LLN, indeed in the more general context of a separable Banach space:

Theorem (Strong Law of Large Numbers)

Let fXng be a sequence of i.i.d. random elements in a separable Banach space
(B; k � k). Suppose that E(kX1k) <1. Then,

P

(




 1n
nX
i=1

Xi � E(X1)






 n!1�! 0

)
= 1:

Proof.

Without loss of generality, we take E[X1] = 0. Bochner integrability implies that
for any � > 0 we may approximate Xi by a simple version

Xi ;� =
PN�

j=1 xj ;�1fXi 2 Bj ;�g & EkXi �Xi ;�k < �:
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Crucially, the coefficients xj ;� are the same for all i , because the random vectors
are identically distributed, and the expectation depends only on their common law.

Now we may bound

lim sup
n!1



 �Xn



 � lim sup
n!1



 �Xn � �Xn;�



+ lim sup
n!1



 �Xn;�



 almost surely:

For the first term in the RHS, the scalar SLLN yields:

lim sup
n!1



 �Xn � �Xn;�



 � lim sup
n!1

1
n

Pn

i=1 kXi �Xi ;�k < � almost surely:

As for the second term in the RHS, the scalar SLLN applied to the Bernoulli
random variables 1fXi 2 Bj ;�g yields, with probability 1,

�Xn;� =
PN�

j=1 xj
1
n

Pn

i=1 1fXi 2 Bj ;�g n!1�! PN�

j=1 xjPfX1 2 Bj ;�g = EX1;�

Noticing that kEX1;�k =� kEX1|{z}
=0

� EXi ;�k � EkXi �Xi ;�k < � we conclude

lim sup
n!1



 �Xn;�



 < �; almost surely;

so that, putting things together, lim sup
n!1



 �Xn



 < 2�.
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In the special case of a separable Hilbert space, we can also obtain a rate of
convergence for the SLLN, in the form of the following theorem.

Theorem (Rate of Convergence)

Let fXng be a sequence of i.i.d. random elements in a separable Hilbert space
(H; k � k). Suppose that E(kX1k) <1. Then,




 1n

nX
i=1

Xi � E(X1)






 = O

 r
logn

n

!
:
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(Wish) List of Topics

1 Reminder on Normed Vector Spaces

2 Bochner Integration

3 Reproducing kernel Hilbert Spaces

4 Basic operator theory, Mercer’s theorem

5 Random vectors and their moments

6 Gaussian measures, the Hajék-Feldman dichotomy, Conditional Independence

7 Mean square contintuity & the Karhunen-Loève theorem

8 Mean square vs pathwise regularity

9 Weak Convergence, tightness, CLT, LLN

10 Moment estimation and the problem of measurement

11 Functional Principal Components

12 The positive definite continuation problem

13 Intrinsic functional graphical models
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From random vectors to random functions

Our limit theory directly yields consistent and asymptotically Gaussian estimators
of the mean function and covariance operator, based on an iid sample
fX1; :::;Xng in a separable Hilbert space:

The empirical mean �Xn = 1
n

Pn

i=1Xi .

The empirical covariance Kn = 1
n

Pn

i=1(Xi � �Xn)
 (Xi � �Xn).

These are unbiased, and indeed are the best linear unbiased estimators (BLUE) of
their estimands, in terms of mean Hilbert squared error risk and mean
Hilbert-Schmidt squared error risk, respectively.

Furthermore, we obtain a.s. rates for the squared loss, of the order logn=n .

In the case of general separable Hilbert spaces, this is totally legit.

But in the case of Hilbert spaces of functions, one might ask:

do we ever perfectly observe the “Platonic” version of Xi?

Isn’t it, rather, that we may be able to access (noisy) functionals?

Assuming Hölder continuous mean/covariance, evaluations are natural functionals.
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The Platonic functional data

The iid replicates Xi and their mean function:

�(t) = E[X (t)]

The
covariance surface:

K (s ; t) = E[X (s)X (t))]
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(some) forms of measurement

Continuous

Regular/Dense

Yij = Xi (j=N )

with i = 1; : : : n; j = 0; : : :N

Irregular/Sparse

Yij = Xi (Tij )

with i = 1; : : : n; j = 1; : : : ri and
Tij 2 [0; 1] and ri 2 N random.
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(some) forms of noisy measurement

Dense/Regular + noise:

Yij = Xi (j=N ) +Uij

with i = 1; : : : n; j = 0; : : :N and Uij
random.

Sparse/Irregular + noise:

Yij = Xi (Tij ) +Uij

with i = 1; : : : n; j = 1; : : : ri and
Ti 2 [0; 1] and ri 2 N and Uij random.
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Enter smoothing

Two major approaches arose deal with discrete measurements:

1 Smooth discretely observed curves, get proxy mean/covariance

and,

2 Smooth mean/covariance directly3, then (if needed) predict curves (kriging)

In either case: typical smoothing assumption was that paths or covariance are C 2

Led to a doctrine that what separates functional from high dimensional data
is path smoothness.

We will see that this is not true, and path smoothness is superfluous.

It is the trace-class nature of covariances that separates the two data forms.

And this can be furnished via mean-square continuity in the case of L2(E).

3Especially useful for sparsely sampled functions.
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First approach: smooth-then-pool

Popularised by Ramsay & Silverman (1997), widely used when E = [0; 1] and
design is regular/dense.

Assumes sample paths are twice continuously differentiable (C 2).

(in fact, only weak second derivative is necessary)

One defines smoothed curves eXi as

eXi (t) = arg min
f2C2(E)

8<:
rX

j=1

(f (tj )�Yij )
2
+ �kf 00k2L2(E)

9=; ; i = 1; : : : ;n ;

for � > 0 a regularising constant.

Each solution eXi a cubic spline with knots at tj
Can represent in at most r -element basis, useful for computations in R

Proxy curves f eXig used in lieu of unobservable fXig
Take empirical mean/covariance of proxy curves.

Alternatively: Use local polynomical smoothing, or your favourite smoother.
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Second approach: pool-then-smooth

“PACE” (Yao, Müller & Wang (2005), but idea due to Staniswalis & Lee (1997))

Assuming mean is zero, consider the discrete r � r covariance matrix M̂ as

M̂ =
1

n

nX
i=1

(Yi1; : : : ;Yir )(Yi1; : : : ;Yir )
>:

Key observation: its population version K satisfies:

M = E
�
(Yi1; : : : ;Yir )(Yi1; : : : ;Yir )

>
�
= fK (ti ; tj )gri ;j=1 + �2Ir�r

because Uij are independent of Xi , and iid mean zero, var �2!

Motivates estimation strategy via diagonal removal:

Define a discretely sampled kernel K̂ (ti ; tj ) = M̂i ;j , i 6= j (“raw” covariance)

Assuming K 2 C 2(E2), do 2D smoothing of K̂ to get estimator of K .

If needed, predict Xi by best linear prediction of KL coefficients (kriging).

When mean is non-zero, we “pool and smooth” the curves to estimate/subtract.
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The “matrix cells” corresponding to the discrete covariance

Notice that in the dense/regular case, smoothness can be entirely circumvented:

If we have some Hölder continuity, can approximate by step functions
averaging within “pixels” (instead of smoothing)

This yields rates of convergence that depend on Hölder exponent.

It can in principle be applied with either order of pooling/averaging but
pooling first is more natural.
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Some remarks:

The smooth-then-pool approach can apply to irregular dense observations.

This comes at a computational cost (need � nr basis functions).

Smooth-then-pool cannot apply, however, to irregular and sparse settings.

By contrast, the pool-then-smooth approach does – it doesn’t really require a
regular design, all we need is at least ri = 2 measurements per curve.

In fact, even ri = 2 (fixed) suffices for consisntency.

Li & Hsing (2010) analysed the pool-then-smooth approach with respect to
both r and n , yielding a method indifferent to sparse/dense case (under C 2

assumptions, still)

Rates of convergence reveal the “phase transition” between sparse and dense
sampling regime.

We will soon relax the C 2 path/covariance assumptions (C 2 mean is )

In pictures...
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Smoothing the covariance with irregular/sparse observations

The latent covariance surface and the scatterplot of product observations: (Yij �Yik )i;j ;k
where Yij = Xi (Tij ) +Uij
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Error contamination affecting diagonal points

E[Yij �Yik ] = K (Tij ;Tik ) + �jk�
2;

assuming mean zero.
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We exclude diagonal observations.
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We can estimate the covariance by 2D smoothing (e.g. locally linear or locally
quadratic smoothing) of the product (non diagonal) observations:

(Yij �Yik )i ;j 6=k

Li & Hsing show consistency/rates under C 2 assumption on mean and
covariance.

We will get the same rates while relaxing C 2 covariance assumption
(allowing for rough paths) – smoothness will be required for the mean, but
this is innocuous, and has no bearing on paths.
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Rough paths

Is this really worth fussing about?

Yes: continuous time Markov processes (diffusions) are the most classic example of
random functions, and have nowhere differentiable paths, a.s.

They should be fair game for us, and not artificially excluded.

Sample path of standard BM. The covariance surface of a BM.

Important observation:

The BM covariance is non-differentiable near the diagonal. This will happen with
all diffusions. Recall that this is what relates to sample path properties.

When the C 2 assumption fails near a segment of the diagonal, the associated
Gaussian process is a.s. non-differentiable almost everywhere on the corresponding
interval (Cambanis 1973, Theorem 6).

However, the BM covariance if flat (infinitely smooth) away from the diagonal.
This is where the smoothing is supposed to take place.
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Brownian
Motion
dX(t) = dW (t)

Ornstein
Uhlenbeck
dX(t) = X(t)�dt + �dW (t)

Black
Scholes
dX(t) = X(t)�dt + X(t)�dW (t)

Brownian
Bridge

dX(t) =
X(t)

(1�t)
dt + dW (t)
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Regularity excluding the diagonal

Define the triangle

4 =
�
(s ; t) 2 [0; 1]2 j 0 � t � s � 1

	
and observe that C j4 determines K completely.

Now consider some diffusion examples restricted on 4:

Brownian motion: K (s ; t) = t

Brownian bridge: K (s ; t) = t � st

Ornstein-Uhlenbeck process w/ drift �: K (s ; t) = e��(t+s)(e2�t � 1)=(2�)

Geometric Brownian motion: K (s ; t) = expf(t + s)=2g) expftg � 1)

These are instances of a very general setting with a covariance of form

K (s ; t) = gfmin(s ; t);max(s ; t)g;

for some smooth function g .

Any continuous time Gaussian process that is Markov adheres to this form.
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Reflected Triangular Smoothing

Motivates the following modification of the pool-then-smooth procedure:

Smooth and reflect scatterplot restricted to lower triangle:

(Yij �Yik )i;j ;k ; 1 � k < j � r

where Yij = Xi (Tij ) +Uij
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Concretely, let’s use local polynomials as our smoothing method of choice.
Define: bE (X (s);X (t)) =

(ba0(s ; t) if t < s ;bE (X (t);X (s)) otherwise:

where

(ba0(s ; t); ba1(s ; t); ba2(s ; t)) =

argmin
a0;a1;a2

1

n

nX
i=1

2

r(r � 1)

X
1�k<j�r

h
fYikYij � a0 � a1 (Tij � s)� a2 (Tik � t)g2

� KhI2�2 ((Tij � s) ; (Tik � t))
�

Recalling that:

Yi (Tij ) = Xi (Tij ) +Uij i = 1; : : :n ; j = 1; : : : r(n);
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This method yields the Li & Hsing rates, without the C 2 covariance assumption:

Theorem (Mohammadi & Panaretos ,2023)

Assume that the evaluation points are sampled uniformly and independently at
random and that

m 2 C 2[0; 1], C 2 C 2(�), supt2[0;1] EjX (t)j4+� <1, and EjUij j4+� <1.

kernel function K (�) is suitably chosen (some analytical conditions required).

Then

sup
0�s�t�1

���bE(X (s)X (t))� E(X (s)X (t))
��� = O

�
h�4

logn

n

�
h4 +

h3

r
+
h2

r2

��1=2
+O

�
h2
�
; a:s:

Corollary (Dense Sampling Scheme)

If furthermore observations are sufficiently dense and bandwidth parameters are
tuned at an appropriate rates, then we have, almost surely

sup
0�s�t�1

���bE(X (s)X (t))� E(X (s)X (t))
��� = O

�
logn

n

�1=2

matching the rate in the SLLN (i.e., the Platonic rate)
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(Wish) List of Topics

1 Reminder on Normed Vector Spaces

2 Bochner Integration

3 Reproducing kernel Hilbert Spaces

4 Basic operator theory, Mercer’s theorem

5 Random vectors and their moments

6 Gaussian measures, the Hajék-Feldman dichotomy, Conditional Independence

7 Mean square contintuity & the Karhunen-Loève theorem

8 Mean square vs pathwise regularity

9 Weak Convergence, tightness, CLT, LLN

10 Moment estimation and the problem of measurement

11 Functional Principal Components

12 The positive definite continuation problem

13 Intrinsic functional graphical models
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Functional Principal Components � The Karhunen-Loève Expansion

PCA needs no additional introduction, once we have the KL-expansion

(or the Fourier expansion given by the spectral decomposition, if we are dealing
with general vectors)

Assuming X has a Mercer covariance kernel,

X (� )�m(� ) =

1X
n=1

�n'n(� )

0@i.e. E






Xt �m �
qX

n=1

�n'n(� )







2

=
X
n>q

�n

1A
where �n = hX �m ; 'ni are zero mean uncorrelated with variance �n .

Captures complete curve dynamics – Canonical FDA framework:

Separation of variables (stochastic vs functional)

Quantification of smoothness ('i contributes as �i=
P

i �i )

Variance components / functional fluctuations around mean

Optimal finite dimensional representation
(modeling/methodology+inference/regularization)
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Some history:

1947/49 Independent introduction by Karhunen and Loève

,! Linear filtering of stoc. proc. and series rep. of Wiener measure.

1950 Ulf Grenander shows importance in statistics (birth of FDA?)

,! Uses as coordinate representation for likelihood ratios

1958 C.R. Rao hints potential usefulness for growth curves

,! Components of variance interpretation

...

1973 Kleffe considers empirical version ( 1
T

PT

t=1(Xt � �X )
 (Xt � �X ))

,! Large sample convergence

1982 Dauxois, Pousse & Romain develop asymptotics of empirical version

1986 Besse & Ramsey (psychometrics) use as PCA

1991 Rice & Silverman:

“Estimating Mean and Covariance When Data Are Curves”

Subject then takes off, largely thanks to the Ramsey & Silverman book.
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Role of KL Expansion in FDA Problems

Motivates methodology but also shows up in inference:

Functional Regression (Estimation, many different variants)

E.g., estimate � 2 L2 on the basis of yt = hXt ; �i+ "t , t = 1; :::;T .

Functional Analysis of Variance (Testing)

Do several random functions with same covariance share same mean?

Functional Classification (Discrimination)

Given a random function, classify between fm1;R1g; :::; fmk ;Rkg
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As an example, consider the functional linear regression model (with scalar
response):

yi = hXi ; �i+ "i ; i = 1; :::;N :

where EkXik2 <1 & "i are zero-mean and variance �2, uncorrelated with the
random vectors Xi in H. Assume we have “complete observations”.

Purple: Estimate � 2 H given observations (X1; y1); :::; (XN ; yN ).

1 Assume that E[Xi ] = E[yi ] = 0 and that covariance K of X is known and
strictly positive definite.

2 Define � = E[yX ] the covariance between y and X , and observe:

� = E[yX ] = E[hX ; �iX ] = K�

3 Can then easily estimate � “easily” by �̂ = 1
N

PN

i=1 yiXi

4 Tempting to then estimate � by

�̂ = K�1�̂:
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Role of KL Expansion in FDA Problems

This näıve approach won’t work.

Expand � and � in the eigenfunction basis given by K:

� =

1X
n=1

h�; 'ni| {z }
�n

'n � =

1X
n=1

h�; 'ni| {z }
�n

'n :

Then, employing the estimator �̂ = K�1 f̂ amounts to estimating

�̂n =
�̂n
�n

:

But

�̂n = h�̂; 'ni =
*

1

N

NX
i=1

yi

1X
k=1

�ik'k ; 'n

+

=
1

N

NX
i=1

yi�in =
1

N

NX
i=1

 
1X
k=1

�ik�n + "i

!
�in
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Rearranging and putting things together, we have

�̂n =
�̂n
�n

=
1

N

NX
i=1

 
1X
k=1

�ik�in
�n

�n

!
+

1

N

NX
i=1

"i
�in
�n

:

Let’s consider the variance of this estimator. The two terms are uncorrelated

(because E["i ] = 0 and "i is uncorrelated with Xi ).

Thus variance of second term gives lower bound:

var

"
1

N

NX
i=1

"i
�in
�n

#
=

1

N�2n

�
E["2i �2in ]� E2["i�in ]

	
=

1

N�2n
E["2i ]E[�2in ]

=
�2�n
N�2n

=
�2

N�n
:

In conclusion:

var[�̂n ] � �2

N�n

while ��1n !1, since
P

k �k <1...

PCA can be used to to interpret which features of � can be estimated well,
and to what level of precision.

It can also be used implicitly to obtain consistent estimators.
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Plug-In Estimation and Perturbation Bounds

The plug-in approach: if we have estimator K̂ of K, then we can

estimate the eigenpairs of of K by those of K̂

There is a zoo of possible observation scenarios, and a corresponding zoo of
estimators.

If we can get perturbation bounds, then performance of plug-in estimators
can be gauged by performance of K itself.

Viewing the eigenpairs as functionals of the corresponding covariance, their
degree of regularity will yield correspondingly coarse/refined performance
guarantees:

Contituiny will yield consistency.

Lipshitz/Hölder continuity of functionals, will yield rates of convergence.

(Fréchet) differentiability, will yield a central limit theorem (in the Platonic
case, anyway)

This leads us to consider perturbation bounds.

Victor M. Panaretos (EPFL) Functional Data Analysis 190 / 240



Theorem (von Neumann’s trace inequality)

Let A;B : H1 ! H2 be Hilbert-Schmidt operators between separable Hilbert
spaces. Then

j hA;Bi j � j trfAB�g j �
X
n�1

�n(A)�n(B);

where �j (�) denotes to the j th singular value (always non-negative by convention).

In fact, equality holds if and only if the two operators commute.

Proof.

Since the two operators are compact, they admit SVDs. Take an ONB for H1 by
extending the left singular vectors of A, and an ONB for H2 by extending the right
singular vectors of B. By the isometric isomorphism that identifies each of these
bases to the canonical basis fej g of `2, we reduce the statement to the setting:

H1 = H2 = `2, A = I�U , B = V
I

�;
 are diagonal square-summable infinite arrays

I = f�ij g is the identity array.

U ;V are orthogonal infinite arrays (U>U = V >V = I )

and we need to show that: jtracef�U
V >gj � tracef�
g:
Victor M. Panaretos (EPFL) Functional Data Analysis 191 / 240



We express � and 
 as weighted averages of the projectors Pk =
Pk

i=1 eie
>
i ,

with feig the canonical basis of `2:

� = (�1 � �2)P1 + (�2 � �3)P2 + : : :+ (�p�1 � �p)Pp�1 + ::: =
P1

i=1
�iPi


 = (!1 � !2)P1 + (!2 � !3)P2 + : : :+ (!p�1 � !p)Pp�1 + ::: =
P1

i=1
�iPi

where the telescoping series obviously converges in Hilbert-Schmidt norm. With
this representation, our sought inequality becomes���Pi ;j �i�j trfPiUPjV

>g
��� �Pi ;j �i�j trfPiPj g:

This will follow by the triangle inequality if we can bound each term as

j�i�j trfPiUPjV
>gj � �i�j trfPiPj g;

To show this, take i � j (say), so the RHS is �i�j � j . Letting uk be the j th
column of U ,

PiUPj = (Piu1;Piu2; :::;Piuj ; 0; :::)

So it suffices to show
Pj

k=1hPiuk ; vk i � j : But this follows from the
Cauchy-Schwarz inequality since kPiukk �

��Pi

��
1
kukk � kukk = 1.
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Corollary (Singular Value Perturbation Bound)

Let A;B : H1 ! H2 be Hilbert-Schmidt operators between separable Hilbert
spaces. Then,

sup
j

j�j (A)� �j (B)j �
sX

j

j�j (A)� �j (B)j2 �
��A�B

��
HS
� ��A�B

��
tr
:

Proof.

The first and last inequality are immediate. For the second inequality, we open the
square and use von Neumann’s trace inequality:��A�B

��2

HS
=

��A��2

HS
+

��B��2

HS
� 2tr(AB�) � ��A��2

HS
+

��B��2

HS
� 2jtr(AB�)j

�
X
j

�2j (A) +
X
j

�2j (B)� 2
X
j

�j (A)�j (B)| {z }
�0

=
X
j

(�j (A)� �j (B))
2
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Eigenvectors require a little more work:

Theorem (Eigenvector Perturbation Bound)

Let K � 0 and K̂ � 0 be trace-class on a separable Hilbert space, with eigenpairs
(�j ;uj ) and (�̂j ; ûj ), respectively, both with distinct eigenvalues. Define
u�j = signfhuj ; ûj iguj . Then,

kûj � u�j k � 2
p
2�j

��K̂�K
��
HS
� 2

p
2�j

��K̂�K
��
tr
;

where �1 = (�1 � �2)
�1 and �j = maxf(�j�1 � �j )

�1; (�j � �j+1)
�1g, j � 2.

Distinct eigenvalues allow for individual eigendirections to be identifiable.
But eigenvectors are unique only up to a sign change, hence the use of u�j

Proof

The second inequality on the RHS is immediate, so we focus on the first.

Kûj � �j ûj = (K� K̂+ K̂)ûj � (�j � �̂j + �̂j )ûj = (K� K̂)ûj + (�̂j � �j )ûj

Thus, the triangle inequality and the second inequality in the last corollary imply that

kKûj � �j ûj k �k(K� K̂)ûj k+ k(�̂j � �j )ûj k �
��K� K̂

��
1

+
��K� K̂

��
HS

and since
��K� K̂

��
1
�

��K� K̂
��
HS

the RHS is majorised by 2
��K� K̂

��
HS

.
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Now for all 1 � j � p we aim to lower bound kKûj � �j ûj k
2 below by (2�2

j
)�1jju�

j
� ûj jj

2.

kKûj � �j ûj k
2 =
X

k
hKûj � �j ûj ; uk i

2 =
X

k
(hKûj ; uk i � h�j ûj ; uk i)

2

=
X

k
(�k � �j )

2hûj ; uk i
2 � min

k 6=j
(�k � �j )

2
X

k 6=j
hûj ; uk i

2� ��2
j

X
k 6=j

hûj ; uk i
2

Recalling that u�
j
= signfhuj ; ûj iguj , observe that ku�

j
� ûj k

2 can be written asX
k
hu�j � ûj ; uk i

2 = fsign(hu�j ; uj i)� hûj ; uj ig
2 +
X

k 6=j
hu�j � ûj ; uk i

2

= f1� jhûj ; uj ijg
2 +
X

k 6=j
(hu�j ; uk i � hûj ; uk i)

2 = f1� jhûj ; uj ijg
2 +
X

k 6=j
hûj ; uk i

2

Since
P

k=1
hûj ; uk i

2 = 1,

f1� jhûj ; uj ijg
2 =
X
k=1

hûj ; uk i
2 � 2jhûj ; uj ij+ jhûj ; uj ij

2

=
X
k 6=j

hûj ; uk i
2 + 2fjhûj ; uj ij

2 � jhûj ; uj ijg| {z }
�0

�
X
k 6=j

hûj ; uk i
2

because hûj ; uj i � 1. Thus 2
P

k 6=j
hûj ; uk i

2 � ku�
j
� ûj k

2:

Combining the inequalities in blue, and re-arranging the constant factors, we arrive at

4
��K̂�K

��2
HS

� kKûj � �j ûj k
2 � ��2

j

P
k 6=j

hûj ; uk i
2 � (2�2

j
)�1jju�

j
� ûj jj

2
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Note that the derivation of the two bounds do not have any subtleties related
to infinite dimensions.

However the interpretation of the eigenvector perturbation bound does:

We get a uniform bound when dim(H) <1:
But the factor on the RHS blows up when dim(H) =1:

A crude remedy is given by the following corollary:

Corollary (uniform eigenvector perturbation bound)

In the same context as in the previous theorem, assume that �k = '(k) for some
convex function ' on [0;+1). Then,

sup
j�kn

kûj � u�j k ! 0 as
��K̂�K

��
HS
! 0

provided

��1kn � (�kn+1
� �km )

�1 = o
���K̂�K

��
HS

�
:
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Let’s reflect on the result when estimating the covariance by its empirical version:

With a sample of size n we can hope to estimate up to n eigenvectors.

But the worst case error for the top n eigenvectors grows too fast with n , certainly
much faster than our

p
n perturbation bound:

(�n � �n+1)
�1 vs 1=

p
n

Since K is trace class, �n goes to zero faster than 1=n , and even then�
n
�1 � (n + 1)�1

��1 � n
2 vs 1=

p
n

For Brownian motion, �n goes like 1=n2, so�
n
�2 � (n + 1)�2

��1 � n
3 vs 1=

p
n

In other words, if we want to estimate n eigenvectors, we would need our sample
size to be orders of magnitude large than n .

Equivalently, need to “slow down” how many eigenvectors we expect to estimate
uniformly well for a sample of size n , and take only kn .

The smaller the effective rank the slower we need to go beyond kn the bound
cannot guarantee that we can distinguish between actual modes of variation.

Of course these are asymptotics. A finite portion of eigenvalues can feature “nice
gaps”. Luckily empirical eigenvalues are good estimators of true ones (uniformly).
Importance of the scree plot...
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Lower Bounds

With “Platonic” case, the rate n�1 is obviously optimal for the MSE.

Under partial observation,

In the irregular and sparse regime, Hall, Müller & Wang (2006) get an
optimal rate of

n�
2r

2r+1

when the sample paths are assumed C r .

In the regular regime, based on a regular grid of p points, Belhakem et al
(2021) get an optimal rate of

n�1 + p�2�

assuming an ��Hölder covariance (0 � � � 1), i.e. �
2 � � Hölder paths.

This yields the parametric rate when measurements are sufficiently dense,

p & n
1
2� :
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Toward a Spectral CLT

For a CLT, we need to show that the eigenpairs are obtained as smooth
transformations of the underlying covariance, and use the delta method.

Here is a summary of the basic idea when �k > �k+1, for all k � 1:

1 The triple f�k ; ek ;Kg satisfies the equation

F (�k ; ek ;K) = 0

where

F : R�H� BHS (H)! H� R; F (�;u ;X) =

�
(�I� X)u
hu ;ui � 1

�
:

2 We can verify that this map is continuously Fréchet differentiable with
non-vanishing Jacobian when �k is simple.

3 Thus we can make use of the Banach implicit function theorem: there is an
open set U 3 K, and unique implicit functions �k (�) : U ! R and (up to
sign) vk : U ! H such that

1 �k (�) and vk (�) are continuously differentiable.

2 �k (K) = �k and vk (K) = ek

3 Xvk (X) = �k (X)vk (X) & hvk (X); vk (X)i = 1 for all X 2 U .
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Via the delta method, these implicit functions now yield
p
n-CLTs for the

k th eigenpair.

Note that the logic in the argument can apply simultaneously to any finite set
of eigenpairs, yielding the corresponding joint asymptotic law.

The exact for of the asymptotic covariance follows from the form of the
derivatives of the implicit functions (which can actually be determined).

Two interesting outcomes of this calculation are:

1 In the Gaussian case, empirical eigenvalues are asymptotically independent.

2 Empirical eigenvectors are dependent, even asymptotically (and how could it
be otherwise...)

Apart from that the specific covariance is not of much use, as it depends on
the true spectrum.

The Gaussianity of the limit can be useful, however, to justify bootstrap
procedures for inferences on (finitely many) eigenpairs.

Recall that all this requires a “base case CLT” for the covariance estimator
itself – e.g. for the empirical covariance in the Platonic case.
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(Wish) List of Topics

1 Reminder on Normed Vector Spaces

2 Bochner Integration

3 Reproducing kernel Hilbert Spaces

4 Basic operator theory, Mercer’s theorem

5 Random vectors and their moments

6 Gaussian measures, the Hajék-Feldman dichotomy, Conditional Independence

7 Mean square contintuity & the Karhunen-Loève theorem

8 Mean square vs pathwise regularity

9 Weak Convergence, tightness, CLT, LLN

10 Moment estimation and the problem of measurement

11 Functional Principal Components

12 The positive definite continuation problem

13 Intrinsic functional graphical models
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Let K
(s ; t) : 
! R be a partial covariance kernel4 on a domain


 =
[
a2A

(Ia � Ia)

for a (possibly uncountable) cover fIaga2A of [0; 1].

We consider the following problem:

How can K
(s ; t) be completed to a covariance kernel K (s ; t) on [0; 1]2?

4i.e. 8 I � I � 
, the restriction K
jI�I is a covariance kernel
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We can refine or vary the question:

Do there always exist completions? How many?

Is there canonical choice among them? Is it constructible?

Is a unique completion necessarily canonical?

Can we find necessary and sufficient conditions for unique completion?

Can we constructively characterise all completions?

How do completions vary when we perturb K
? (estimation)

How do these questions relate to a process fX (t) : t 2 [0; 1]g such that

CovfX (u);X (v)g = K
(u ; v); (u ; v) 2 
:
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Some background

1 Analysis/Probability: continuation of positive definite functions

is a p.d. function � determined by its restriction on (��; �)?

Equivalent to our problem in stationary case,

K
(u ; v) = �(u � v); 
 = fju � v j < �g
Related to

truncated (trigonometric) moment problem
continuation of characteristic functions
Major results by Carathéodory, Gnedenko, Gneiting, Esseen, Krein, Calderon,
Rudin...

2 Matrix Algebra and Statistics: non-negative matrix completion

Key results by Gohberg, Johnson, Dempster...

Victor M. Panaretos (EPFL) Functional Data Analysis 204 / 240



Arises naturally in FDA:

Covariance Recovery from Sample Path Fragments

I1, I2, I3,... a sequence of intervals eventually covering [0; 1]

fX1(u); :::;Xn(u)g are independent sample paths of a Gaussian process X

Observe
X1jI1 ; : : : ; Xn jIn

Can we estimate K = CovfX (u);X (v)g on [0; 1]2 when jIi j < 1, 8 i � 1?

Descary & Panaretos (2019)
Delaigle et al. (2020)
Lin et al (2020)
Kneip & Leibl (2020)
...
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Recovering Covariance from Sample Path Fragments
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Example: Bone Mineral Density

BMD measurements for 117 females taken between the ages of 9.5 and 21 years
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Back to our completion problem

How can K
(s ; t) be completed to a covariance kernel K (s ; t) on [0; 1]2?
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The simplest non-trivial case

Define the set of completions as

C(K
) = fK � 0 on [0; 1]2 : K j
 = K
g:

Previous work focusses on sufficient conditions for jC(K
)j = 1.

We wish to comprehensively understand the set C(K
)

Let’s start with the simples case: the 2-serrated case.


 = (I1 � I1) [ (I2 � I2) with I1 = [0; b]; I2 = [a ; 1] a � b:
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Define K? : [0; 1]
2 ! R as

K?(s ; t) =

(
K
(s ; t); (s ; t) 2 


K
(s ; �);K
(�; t)

�
H(KI1\I2 )

; (s ; t) =2 


where H(C ) denotes the RKHS of a covariance C .

Proposition (Waghmare & Panaretos, 2022)

K? is a bona fide covariance and K? 2 C(K
).
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Theorem (Waghmare & Panaretos, 2022)

Recursive application of the 2-serrated formula yields a valid completion
K � 2 C(K
), indeed the same completion irrespective of the order it is applied in.
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An Example

As an example, let I = [0; 1]

K
(s ; t) = s ^ t ; (s ; t) 2 
 = ([0; 2=3]� [0; 2=3])| {z }
I1

[ ([1=3; 1]� [1=3; 1])| {z }
I2

:

Clearly, this can be completed to the covariance of standard Brownian motion,

K (s ; t) = s ^ t ; (s ; t) 2 [0; 1]2:

In this case the RKHS is explicitly known to be a Sobolev space

Can calculaate the two-serrated completion explicitly.

Turns out to coincide with the standard BM kernel.

Hence, by iterating, any m-serrated completion is the BM kernel

So the completion method seems to give the “right” answer in some standard
examples (more can be produced)
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Is K � Somehow Canonical?

Theorem (Waghmare & Panaretos, 2022)

The covariance K � is the only completion of K
 such that the associated
Gaussian process forms an undirected graphical model w.r.t. G = ([0; 1];
)

Equivalently K � is the unique extension w/ the global Markov property w.r.t.
edge set 


Intuitively, relies exclusively on correlations intrinsic to 
 — propagates only
“observed” correlations via the Markov property, without introducing
arbitrary unseen correlations.

It is unique in doing so among all possible completions

Later shown in Waghmare & Panaretos (2024) that perturbations of K?

decrease the (Fredholm) determinant.

For all these reasons:

We call the completion K � the canonical completion.
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Necessary and Sufficient Conditions for jC(K
)j = 1

Theorem (Waghmare & Panaretos, 2022)

Let K
 be a partial covariance kernel on a serrated domain 
 =
Sm

j=1(Im � Im)

The following three statements are equivalent:

1 K
 admits a unique completion K on [0; 1]2, i.e. C(K
) is a singleton.

2 if Xj � N (0;K
jIj�Ij ), then there exists r 2 f1; :::;mg such that

Xj = AjXr

for m � 1 deterministic linear maps fAj gj 6=r .

3 for some r 2 f1; : : : ;mg, the following Schur complementsa vanish:

KIp=KIp\Ip+1
= 0; for 1 � p < r and KIq+1

=KIq\Iq+1
= 0; for r � q < m :

aFor A � B � 
, KA,(KB=KA)(s; t) = KB (s; t)�


KB (s; �);KB (�; t)

�
H(KA)

i.e.

the covariance of the residuals fXt � �(Xt jXA) : t 2 B nAg.
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Condition (2) implies that X (t) = �[X (t)jfX (s) : t 2 Irg] for one of the
intervals Ir defining the serrated domain.

So when unique completion is possible, the process fX (t) : t 2 [0; 1]g is a
deterministic linear transformation of its restriction fX (t) : t 2 Irg to one
of the intervals Ir defining the serrated domain.

In any case, when a unique completion exists, it must be the canonical one.

Condition (3) is checkable at the level of K
, i.e. at the level of observables

It has nothing to do with smoothness or finite rank assumptions (see next
slide).

Notice that identifiability of K from K j
 does not require unique completion
conditions on K j
 – can assume 
-Markovianity (a very considerably weaker
assumption)
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Uniqueness is intrinsically about rigidity, not smoothness/rank constraints

The following “left/right reflection” example shows that dimensionality or
smoothness play no role:

-2
-1

0
1

2
3

4

t

X
(t)

Let I1 = [0; 2=3], I2 = [1=3; 1] and 
 = I 21 [ I 22 be a 2-serrated domain. Define

X (t) = B(2=3� t)1ft 2 I1 n I2g+B(t)1ft 2 I1 \ I2g+B(4=3� t)1ft 2 I2 n I1g
with fB(t) : t 2 [1=3; 2=3]g a standard Brownian motion on I1 \ I2.
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Characterisation of All Completions — The 2-Serrated Case

Theorem (Waghmare & Panaretos, 2022)

K is a completion of K
 if and only if

K = K? +C

where C is a valid cross-covariance between

X1 � N (0;KI1=KI1\I2) and X2 � N (0;KI2=KI1\I2)

Victor M. Panaretos (EPFL) Functional Data Analysis 216 / 240



Valid C are easily but arbitrarily obtained:

Any coupling of X1 � N (0;KI1=KI1\I2) and X2 � N (0;KI2=KI1\I2) will yield
valid cross-covariance C (s ; t) = covfX1(s);X2(t)g
Like assigning a correlation to two variances – think of 3� 3 matrices 

�21 � ?
� � �
? � �22

!
Can characterise in operator notation – choose k	k � 1 arbitrarily, then

Kf = K?f +

0B@ 0 0 (L
1=2
1 	L

1=2
2 )�

0 0 0

L
1=2
1 	L

1=2
2 0 0

1CA
| {z }

C

0@ f jI1nI2
f jI1\I2
f jI2nI1

1A

Any completion other than canonical one introduces arbitrary correlations

Valid completions in bijection with k � k1-unit ball.

Can build them all once we have K?
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Characterisation of all Completions — General Serrated Domains

Everything in black depends only on K
 (equiv. on its canonical extension K?):

Theorem (Waghmare & Panaretos, 2022)

Let K
 be a continuous partial covariance on a serrated domain 
 of m intervals.
Then K is a completion of K
 if and only if its operator f 7! Kf has the form

Kf (t) =
X
j :t2Ij

Kj fIj (t)+
X
p:t2Sp

RpfDp
(t)+

X
p:t2Dp

R�pfSp (t)�
X

p:t2Ip\Ip+1

JpfJp (t) a:e:

where for 1 � p < m ,

Rp =
h
J�1=2p S�p

i� h
J�1=2p Dp

i
| {z }

w/ kernel K?jRp ; step p of algorithm

+ U1=2
p 	pV

1=2
p

Up = KSp �
h
J�1=2p S�p

i� h
J�1=2p S�p

i
; Vp = KDp

�
h
J�1=2p D�

p

i� h
J�1=2p D�

p

i
and 	p : L

2(Dp)! L2(Sp) are bounded linear maps with k	pk1 � 1.

Furthermore, taking 	1 = 	2 = : : : = 	m = 0 yields the canonical completion.
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The Picture that Illustrates the Formula
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Estimation

Makes sense to choose canonical completion as target of estimation:

When completion is unique, it will be canonical

When completion non-unique, canonical completion is least presumptuous

Canonical completion is pivot to construct all completions

=) It is always an identifiable and interpretable target of estimation
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Estimating specifically the canonical completion is qualitatively different under
non-uniqueness than all previous approaches (which focussed on uniqueness)

1 If we impose uniqueness by way of assumption (a very strong assumption),
then one can use, for example, series estimators or matrix completion.

2 However such estimators will yield arbitrary (almost certainly non-canonical)
completions if uniqueness does not actually hold.

3 To guarantee canonicity, we need to satisfy the system of operator equations
on the previous slide – an inverse problem

4 Can be seen as an adaptive approach: will yield the unique completion when
uniqueness holds, and a stable/canonical one otherwise.
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Let bK
 be an estimator of K
.

Define bK? to be the estimator of K? based on solving a regularised version of the
linear operator system defining K? (i.e. with all 	p = 0), with bK
 in lieu of K
.

Regularisation by spectral truncation (at level Np) of each of p = 1; :::;m � 1
equations,

Rp =
h
J�1=2p S�p

i� h
J�1=2p Dp

i
replacing unknown quantities with their “hat counterparts”.
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Rate of Convergence

Let Ap;k be the squared Hilbert-Schmidt error when approximating

Rp =
�
Jp
�1=2S�p

�� �
Jp
�1=2Dp

�
by replacing Jp with its rank-k truncation.

Theorem (Waghmare & Panaretos, 2022+)

Assume that for every 1 � p < m , we have

eigenk (K
jIp�Ip ) = �p;k � k��

Ap;k � k�� .

then
k bK? �K?kL2(I�I ) = OP

�
kK̂
 �K
k
m�1L2(
)

�
where


m�1 =
�

4�+�+3

h
�

2�+�+1

im�2
; m > 1;

provided the regularisation parameters are chosen to satisfy

Np � kK̂
 �K
k2
p=�L2(
) = OP(1)
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k bK? �K?kL2(I�I ) � kK̂
 �K
k
m�1L2(
)

where 
m�1 =
�

4�+�+3

h
�

2�+�+1

im�2
for m > 1.

Remarks on the exponent 
m�1:

It strictly decreases as a function of the number of intervals m

It can get arbitrarily close to 1 for a large enough rate of decay of
approximation errors �.

An increase in the rate of decay of eigenvalues � is accompanied by a
decrease in the rate of convergence.

If K
 2 C r (
) then the same applies to the kernels K
jJp�Jp of Jp implying
�p;k is o(1=k r+1) for every 1 � p < m and thus � = r + 1 .

All other things being equal, an increase in the smoothness of K
 also tends
to a decrease in the rate of convergence
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Example: Bone Mineral Density

BMD measurements for 117 females taken between the ages of 9.5 and 21 years
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Figure: Completed covariance of the BMD data.
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From Serrated to Regular Domains

With some more effort, we also have

Theorem (Waghmare & Panaretos, 2024)

Let K
 be a continuous partial covariance kernel on a regular domain 
. Then,

There exists a canonical completion K? of K
.

There exists an increasing sequence 
j � 
 of serrated domains with
[j
j = 
, such that the canonical completions Kj of K


��

j

converge
pointwise to K?.

Leads to a novel result even in a classical context:

Corollary (Stationarity and �-Markov extensions)

Any positive definite function on [��; �] admits a canonical extension to (�1;1)
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Using positive-definite completion to define continuum graphical model?

To gain some intuition, consider the p � p matrix case

Ask for completion that maximizes Gaussian differential entropy

1

2
log f(2�e)pdet(K )g

Solution: “missing entries” of ��1 should be zero.

This is precisely what our procedure would produce.

Except we have no inverse and no usual determinant now...

Still, clearly there must be a connection to graphical models
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Continuously Indexed Graphical Models?

KW

K
(u
;�)

K (�; v)
(u ; v)
+
u

+u

+v

+
v


X

Say that X � N (0;K ) has the graph

 � U �U if for every u ; v 2 U
separated in 
 by W � U , it satisfies
the global Markov property:

Xu ?? Xv j XW

Theorem (Waghmare & Panaretos, 2024+)

Equivalent to satisfying the completion
formula

K (u ; v) = hK (u ; �);K (�; v)iH(KW )

for any W separating (u ; v) in 


Thus the graph 
 of a process can
described in terms of its covariance K
without reference to the inverse.
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KW

K
(u
;�)

K (�; v)
(u ; v)
+
u

+u

+v

+
v


X

Holds whether U is finite, countably
infinite, uncountably infinite... in fact
for virtualy any U .

Characterizes graph structure via the
covariance, bypassing invertibility

But... can we operationalize it and go
the other way round?

Given the covariance K of a process,
can we work out the graph 
?

Here, there is no such thing as an
inverse, but the completion equation
can help us “approximate” the graph
via successive serrated versions.
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Resolving Uncountably Large Graphs

A pragmatic approach: partition the domain U into � = fU1; : : : ;Upg.


 
�

Instead of asking whether there is an edge between u ; v 2 U , we ask whether
there is an edge between (some point in) Ui and (some point in) Uj .
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Turns out 
� now admits a nice inverse zero characterization: for 1 � i ; j � p, let

Kij : L
2(Uj ; �)! L2(Ui ; �)

be the integral operator induced by the integral kernel Kij = K jUi�Uj
given by

Kij f (u) =

Z
Uj

Kij (u ; v)f (v)d�(v)

Define the covariance operator matrix K� induced by the partition � as

K� = [Kij ]
p
i ;j=1:

Define the correlation operator matrix R� induced by the partition � as

R� = [Rij ]
p
i ;j=1 = [K

�1=2
ii KijK

�1=2
jj ]

p
i ;j=1

= dg(K)�1=2Kdg(K)�1=2 = I+dg(K)�1=2(K� dg(K))dg(K)�1=2 = I+(R� � dg(R�))

because dg(R�) = I by definition. So the correlation operator matrix is a bounded
and self-adjoint perturbation of the identity.
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Thus, contrary to K�, the correlation operator matrix R� is “typically” invertible:

If inf �(R� � dg(R�)) > �1, then R�1� is well-defined.

And so now we are legitimised to state:

Theorem (Waghmare & Panaretos, 2024+)

If R� is invertible, the graph 
� is related to the inverse P� = R�1� as follows:


� = [ fUi �Uj : kPij k 6= 0g:

Choosing a finer partition � yields a higher resolution version 
� of 
.

Importantly, this characterization behaves coherently under refinement.

Corollary (Waghmare & Panaretos, 2024+)

Let X � N (0;K ) on U with K continuous. If � is a parttiion of U with R� is
invertible, then 
X is identifiable up to �-resolution. Furthermore, if there exists a
sequence f�j g1j=1 such that (a) the correlation operators R�j are invertible and
(b) the partitions separate points on U , then 
X is identifiable exactly.
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Plug-In Estimation

As discussed in the context of functional PCA:

There is a zoo of possible observation scenarios...

... and a corresponding zoo of covariance estimators.

Ideally, we would like to have plug-in estimators.

First, we estimate K by the appropriate (for the observation scenario) K̂.

Then we get R̂� and P̂� by applying the steps described to K̂.

Going from K� to R� and P� involved inverses.

We are thus going to need regularised plug-in estimation.
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Estimation Methodology: Block Thresholding

Thresholding in the Operator Norm
1 Covariance Operator Matrix Estimator.

K̂ = [K̂ij ]
p
i ;j=1

2 (Regularised) Correlation Operator Matrix Estimator

R̂ = I+ (�I+ dgK̂)�1=2(K̂� dgK̂)(�I+ dgK̂)�1=2

3 Precision Operator Matrix. P̂ = R̂�1.

4 Estimation of 
 by thresholding at level �.


̂ = [fUi �Uj : kP̂ij k1 � �g
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What about performance guarantees for our estimators, say at a given resolution

These come in asymptotic and a non-asymptotic forms:

Asymptotic Guarantees. This is well-suited to the plug-in mentality, which is
flexible w.r.t. the measurement problem. In this setting we can pursue
plug-in rates of convergence, which take as input the rate of convergence of
the chosen covariance estimator at the given regime, and yield the rate of
convergence of the other estimands.

Non-Asymptotic Guarantees. Beyond rates of convergence, which are
asymptotic in nature, we can also consider finite-sample guarantees for the
various possible observation regimes. Finite sample guarantees are by nature
specific to the estimator used, which in turn needs to be tailored to the
corresponding sampling regime.

An advantage of non-asymptotic theory is that it makes no reference to limits,
hence allows us to address recovery of the continuum version of 
X .

I.e. it can tell us how to successively refine the partition � as sample size
increases, in order to construct a consistent estimator at infinite resolution.
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Since we have an inverse problem at hand we need some regularity conditions.

First that inf �(R� � dg(R�)) > �1, so that R�1� is well-defined.

Then a “source condition”: for some bounded operator matrix �0 with all the
diagonal entries zero and � > 0, we have

R� � dgR� = [dgK]��0[dgK]� :

Note that this implies that R� � dgR� is compact.

The assumption simply ensures that K� dgK = [dgK]1=2+��0[dgK]1=2+� is
linearly well-conditioned for inversion by [dgK]1=2.
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Our first result now relates kR̂� � R�k to kK̂�Kk, K and kR�k:

Theorem (Asymptotic Guarantees – Correlation)

In the presence of our two regularity assumptions, and given any sequences
�n > 0 and �n � kK̂�Kk, we have

kR̂� � R�k � 5 � kR�k �
�
(�n=�n)

2 + (�n=�n)
�
+ 2 � ��^1n � k�0k � kKk2���^1:

The estimator R̂� is consistent so long as the regularization parameter �n is
chosen such that �n ! 0 and �n=�n ! 0 as n !1. The optimal rate is given by

10 � (kR�k _ k�0kkKk2���^1) � �
�^1

1+�^1
n

and it is achieved for the choice �n = �
1

1+�^1
n .

If K̂ is the empirical covariance,

�n is OP(n
�1=2),

the optimal choice of the regularization parameter is given by
�n � n�1=2(�^1+1)

and we obtain the rate of convergence kR̂� � R�k = OP
�
n��^1=2(�^1+1)

�
.
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With our assumptions, R� is strictly positive. The operator R̂� is also strictly
positive for all sufficiently large n , by virtue of being consistent. So for all
sufficiently large n , we may write

P̂��P� = R̂�1� R�R
�1
� � R̂�1� R̂�R

�1
� = R̂�1�

h
R� � R̂�

i
R�1� = P̂�

h
R� � R̂�

i
P�:

and it can be shown that kP̂�k is bounded in probability under our assumptions.
As a result, the convergence rates for kR̂� � R�k also apply to kP̂� � P�k.

Theorem (Asymptotic Guarantees - Precision and Graph Recovery)

In the same context as the last result, and with the optimal choice of the
regularization parameter �n , we have

kP̂� � P�k = kP�k(kR�k _ k�0kkKk2���^1) �OP(�
�^1

1+�^1
n ):

If we choose �n such that �n=�
�^1=(1+�^1)
n ! 0, then

P[
̂�(�n) 6= 
̂�
X ]

n!1�! 0:
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