
Koopman-based Data-driven Robust Control of Nonlinear Systems
Using Integral Quadratic Constraints

Abstract— This paper presents a novel approach for data-
driven robust control of nonlinear systems using the Koopman
operator. The Koopman operator theory enables the lineariza-
tion of nonlinear system dynamics within a higher-dimensional
space. However, the data-driven Koopman-based models are
inherently approximate, influenced by various factors. To
address this, our focus is on the effective characterization
of modeling errors, which is essential for securing closed-
loop guarantees. We utilize non-parametric Integral Quadratic
Constraints (IQCs) to describe the modeling errors in a data-
driven manner, modeling them as additive uncertainties in
robust control design via the solution of frequency domain (FD)
linear matrix inequalities (LMIs). The IQC multipliers offer a
convex set representation of stabilizing robust controllers, from
which we can determine the optimal robust controller. Finally,
we introduce an iterative strategy that alternates between
IQC multiplier identification and robust controller synthesis,
ensuring a monotonic improvement in a robust performance
index.

I. INTRODUCTION

In recent years, the Koopman operator theory [1] has gar-
nered significant attention for its ability to address the com-
plexities of data-driven modeling and control in nonlinear
systems [2], [3]. This theory offers a powerful approach by
providing a global linear representation of nonlinear dynam-
ics through the evolution of observable functions. However,
achieving this global linearization often entails lifting the
system to an infinite-dimensional space. To overcome this
challenge, practitioners typically employ a finite-dimensional
truncation of the Koopman operator, resulting in a linear
but approximate representation of the system’s dynamics.
A popular method of obtaining linear approximations from
data is Extended Dynamic Mode Decomposition (EDMD)
algorithm [4].

An issue arise when Koopman theory is applied to nonlin-
ear systems with inputs, as the linearity of lifted dynamics
in observables doesn’t guarantee linearity in inputs. While
some approaches, like that in [5], enforce input linearity
by restricting observable functions, others explore bilinear
lifted models for a balance between accuracy and sim-
plicity [6]. Despite accepting infinite-dimensional bilinear
representations for input-affine systems, practical models
remain approximate due to finite-dimensional truncation and
data-driven methods. Thus, understanding modeling error is
crucial for closed-loop guarantees.

Introduced by [7], the IQC approach offers a flexible tool
for uncertain dynamical systems analysis and control. In
our study, we introduce a novel approach for synthesizing
robust controllers for nonlinear systems, leveraging Koop-
man operator theory and IQCs. Specifically, we concentrate

on Linear Time-Invariant (LTI) lifted models of nonlinear
systems obtained through Extended Dynamic Mode Decom-
position (EDMD), relying solely on system data. To mitigate
inherent modeling errors, we propose characterizing model
error using IQCs. By solving FD LMIs, we identify non-
parametric IQC multipliers that describe the modeling error.
Subsequently, we apply the control design methodology
outlined in [8] to develop controllers with robust perfor-
mance assurances. Since the synthesis of robustly stabilizing
controllers depends on the identified IQC multipliers, we
introduce an iterative algorithm alternating between IQC
multiplier identification and controller synthesis. This iter-
ative process ensures monotonic convergence of a selected
performance index.

The paper is structured as follows: Section II provides
a concise overview of Koopman operator theory for au-
tonomous system and non-autonomous systems, and present
data-driven selection of observable functions and data-driven
linear approximation of lifted dynamics, alongside a descrip-
tion of the primary problem. Section III introduce IQCs and
details the proposed method. Initially, it covers the IQC-
based characterization of modeling errors and the synthesis
of robust controllers separately. This is followed by a discus-
sion of the frequency sampling approach for implementing
the optimization problems, and an iterative algorithm that
integrates these processes. Section IV demonstrates the ap-
plication of the proposed algorithm through a simulation
example. The paper concludes with a brief summary in
Section V.

II. PRELIMINARIES

Notations: We denote the sets of real and complex num-
bers as R and C, respectively. the space of square summable
signals of dimension p is represented by ℓp2. Let F denote
a Banach space. Identity matrix of an appropriate size is
represented by I . Notations S ≻ (⪰)0 and S ≺ (⪯)0 signify
that the matrix S is positive (-semi) definite and negative
(-semi) definite, respectively. The conjugate transpose of a
complex matrix S is denoted by S∗ and the pseudo-inverse
of S is denoted by S†. For a complex matrix S with full row
rank, the right inverse is denoted as SR = S∗(SS∗)−1. If
S ∈ C is full column rank, the left inverse is represented as
SL = (S∗S)−1S∗. The frequency response of a discrete-time
system G is indicated by G(ejω).

A. Koopman operator

Firstly, consider a nonlinear autonomous system xk+1 =
f(xk) with state x ∈ Rnx . The Koopman operator K : F →



F associated with this system can be represented Kξ = ξ ◦
f, ∀ξ ∈ F , i.e., (Kξ)(xk) = ξ(f(xk)) = ξ(xk+1). Clearly,
K is linear operator but infinite-dimensional.

Now consider a nonlinear system with inputs,

H :
{
xk+1 = f(xk, uk), (1)

where x ∈ Rnx is the state variable, u ∈ Rnu is the input. Let
uk+1 = g(xk, uk) be any control law. The interconnection
of the system H and the control law gives an autonomous
system, which admit a Koopman operator Kcl:

(Kclξ)(xk, uk) := ξ(f(xk, uk), g(xk, uk)) = ξ(xk+1, uk+1),
(2)

In this sense, the Koopman operator Kcl globally maps
the closed-loop nonlinear dynamics in the joint space of
state and input to linear dynamics in the lifted space of
observables. The lifted space is a Banach function space,
which is generally infinite-dimensional.

B. Data-driven selection of observable functions
Suppose we have a finite data samples {xk, uk}N−1

k=0 ,
which is generated by an unknown control law uk+1 =
g(xk, uk). We intend to identify a finite set of ob-
servable functions D = {ξj}dj=1 that is nearly lin-
ear under the Koopman operator Kcl. Moreover, we
hope that the finite observable functions have a spe-
cial structure, i.e., D =

[
ξ(xk) uk

]⊤
with ξ(xk) =[

ξ1(xk) ξ2(xk) . . . ξd−nu
(xk)

]⊤
, since this gives[

ξ(xk+1)
uk+1

]
≈

[
K11 K12

K21 K22

] [
ξ(xk)
uk

]
. (3)

Note that ξ(xk+1) ≈ K11ξ(xk)+K12uk is independent with
the control law g, implying that this approximation is not
limited to the closed-loop system between H and control
law g, but applied to any system involved H . Rewrite the
approaximation as

ξ(xk+1) = Aξ(xk) +Buk + εk, (4)

where A = K11, B = K12 and εk denotes the one step
ahead prediction error. Note that the prediction error εk is
introduced by the restriction of the Koopman operator to a
finite dimensional space as well as the structure imposed on
the dictionary.

Suppose we have a set of candidate observable functions,
ξc : Rnx → Rnc , for example,

ξc(x) = [x(1), . . . , x(nx)︸ ︷︷ ︸
mandatory

, sinx(i), x(i) cosx(j), . . .︸ ︷︷ ︸
optional

]⊤.

We hope to find d − nu observable functions from ξc.
Moreover, ξ is supposed to include the original state, since
the control performance objective is often defined over the
original state xk. In this sense, we call the set of observable
functions x(1), . . . , x(nx) mandatory, and the others optional.

The image of Z+ :=
[
ξc(x1) . . . ξc(xN−1)

]
is the output

space of lifted dynamics. We intend to reduce the size of
ξc(x) from nc to d − nu, which can be done by choosing
the orthonormal vectors associated with d− nu − nx largest
singular values of Z+, plus the nx mandatory functions.

Algorithm 1: Selection of observable functions

Data: Z+ :=
[
ξc(x1) . . . ξc(xN−1)

]
• [U,Σ, V ] = svd(Z+)
• Set Ur = U(:, 1 : d− nu − nx)

• ξ(x) =

[
x

U⊤
r ξc(x)

]
Result: ξ(x)

C. Data-driven approximation of the Koopman operator

Based on the data samples {xk, uk}N−1
k=0 and a selected

dictionary of observable functions ξ, EDMD [4] enables the
computation of the matrices A and B in (4) by solving a
least-squares problem as follows,

min
A,B

∥∥∥∥Z+ −
[
A B

] [Z
U

]∥∥∥∥ (5)

where

Z :=
[
ξ(x0) . . . ξ(xN−2)

]
,

Z+ :=
[
ξ(x1) . . . ξ(xN−1)

]
,

U :=
[
u0 . . . uN−2

]
.

The above problem admits a closed-loop solution
[
A B

]
=

Z+

[
Z
U

]†
.

D. Problem Formulation

Consider data {xk, uk}N−1
k=0 collected from a general

discrete-time nonlinear system (1) with sampling time Ts, as
M trajectories of N samples. Assume the data is sufficiently
informative to fully characterize the systems behaviour. Us-
ing the data and a predetermined set of observable functions
ξ, the discrete-time nonlinear dynamics can be approximated
in the lifted space as,

H0 :
{
ξ̂k+1 = Aξ̂k +Buk, (6)

where ξ̂k ≈ ξ(xk). The LTI system H0 is an approximation
of the true system H such that H = H0+∆, where ∆ repre-
sents the error model to be treated as additive uncertainty for
controller design. Thus, the interconnection of the nonlinear
system H with a controller K can be represented as in Fig.
1.

Based on this, we formulate the problem of designing a
data-driven controller providing closed-loop guarantees for
the nonlinear system H , as the following two subproblems,

1) Characterization of the error system ∆ using non-
parametric dynamic IQC multipliers.

2) Synthesis of a fixed-structure controller K = XY −1

for H0 with guarantees of robust stability against ∆
and robust performance with respect to Πp on w → z.



K H0

∆

uy ξ̂

−
ξ(x)

e

Fig. 1. Block diagram of the closed-loop system.

III. DATA-DRIVEN ROBUST CONTROL DESIGN

A. Integral Quadratic Constraints

Two discrete-time signals p(k) ∈ ℓ
np

2 [0,∞] and q(k) ∈
ℓ
nq

2 [0,∞] with sampling time Ts are said to satisfy the IQC
defined by Π if,∫
ω∈Ω

[
P (ejω)
Q(ejω)

]∗ [
Π11(e

jω) Π12(e
jω)

Π∗
12(e

jω) Π22(e
jω)

]
︸ ︷︷ ︸

Π(ejω)

[
P (ejω)
Q(ejω)

]
dω ≥ 0,

(7)
where P (ejω) and Q(ejω) represent the discrete-time
Fourier transforms of p(k) and q(k) respectively and Ω =
(−π/Ts, π/Ts]. Let ∆ be a bounded causal operator. The
IQC defined by Π is satisfied by ∆ if, for any square
summable signal p, (p,∆(p)) satisfy the IQC defined by Π.

Let w → z be a performance channel of the system H , and
let Πp(γ) be a multiplier indexed by γ. The performance with
respect to multiplier Πp(γ) is achieved if the IQC defined by
Πp(γ) is satisfied by Hw→z . Considering the IQC theorem
[9, Corollary 3]:

Theorem 1. The feedback interconnection of a discrete-time
stable LTI system T and a bounded causal operator ∆ as
depicted in Fig. 2, is robustly stable against ∆ and has robust
performance on the channel w → z with respect to Πp(γ)
if,

1) interconnection of T and τ∆ is well-posed, ∀τ ∈ [0, 1];
2) the IQC defined by Π is satisfied by τ∆, ∀τ ∈ [0, 1];
3) for all ω ∈ Ω,[

T (ejω)
I

]∗
Πrp(γ)

[
T (ejω)

I

]
≺ 0; (8)

where,

Πrp(γ) :=


Π11 0 Π12 0
0 Πp,11(γ) 0 Πp,12(γ)

Π∗
12 0 Π22 0
0 Π∗

p,12(γ) 0 Πp,22(γ)

 . (9)

By [9, Remark 3] if Π11 ⪰ 0 and Π22 ⪯ 0, then τ∆ satisfies
the IQC defined by Π for all τ ∈ [0, 1] if and only if ∆
satisfies the IQC.

[
Tqp Tqw

Tzp Tzw

]∆
q(k) p(k)

w(k)z(k)

Fig. 2. General feedback interconnection.

 G11 G12

G21 G22


∆

K

u(k)

y(k)

e(k)

u(k)

w(k)z(k)

Fig. 3. Generalized plant structure of the feedback interconnection.

Fig. 2 describes a system with the interconnection of
nominal closed-loop system T and error system ∆. Incor-
porating controller K in the nominal system T , we can
transform the block diagram in Fig. 1 to a generalized plant
structure as in Fig. 3 where G21 = −I and G22 = −H0.
Then, by applying a lower linear fractional transformation
to the generalized plant G and controller K, the closed-
loop system can be represented as in Fig. 2 with T =
G11+G12K(I−G22K)−1G21. Using A and B obtained by
EDMD, the frequency response function (FRF) of the LTI
model H0(e

jω) = (ejωI −A)−1B can be computed for any
ω ∈ Ω. Based on H0(e

jω) and following the corresponding
generalized plant formulation G, the FRF T (ejω) can be
obtained similarly.

B. Robust Controller Synthesis

The objective of the controller synthesis is to obtain a
controller structured as K = XY −1 which guarantees robust
stability against ∆ and robust performance on the channel
w → z with respect to Πp(γ). For some Π such that the error
system ∆ satisfies the IQC defined by Π, this objective can
be formulated as an optimization problem,

min
K

γ

s.t.
[
T
I

]∗
Πrp(γ)

[
T
I

]
(ejω) ≺ 0, ∀ω ∈ Ω,

T is stable.

(10)

For Φ = GR
21(Y −G22X) and Ψ = I −ΦΦL = GR

21G21 the
closed-loop transfer function T in (10) can be written as,

T = G11 +G12XΦL = G11(ΦΦ
L +Ψ) +G12XΦL

= (G11Φ+G12X)ΦL +G11Ψ.
(11)

Since Ψ is a hermitian idempotent matrix such that,

ΨΦ = Φ− ΦΦLΦ = 0 (12)

ΦLΨ = ΦL − ΦLΦΦL = 0 (13)

we get,[
T
I

]
=

[
G11Φ+G12X G11Ψ

Φ Ψ

] [
ΦL

Ψ

]
= L

[
ΦL

Ψ

]
. (14)

Then, by [10, Proposition 8.1.2] the first constraint in (10)
can be replaced by L∗ΠrpL ≺ 0. Using the fact that any
square matrix accepts a factorisation Πrp(γ) = Π+

rp(γ) +
Π−

rp(γ) with Π+
rp(γ) ≻ 0 and Π−

rp(γ) ⪯ 0, L∗Πrp(γ)L ≺ 0



can be written as L∗Π+
rp(γ)L− (−L∗Π−

rp(γ)L) ≺ 0. By the
Schur complement lemma, this yields the constraint,[

(Π+
rp(γ))

−1 L
L∗ −L∗Π−

rp(γ)L

]
≻ 0. (15)

The quadratic component −L∗Π−
rp(γ)L in (15) can be con-

vexified around a known controller Kc = XcY
−1
c such that,

L∗Π−
rp(γ)L ⪯ L∗Π−

rp(γ)Lc+L∗
cΠ

−
rp(γ)L−L∗

cΠ
−
rp(γ)Lc ≺ 0,

(16)
where

Lc =

[
G11Φc +G12Xc G11Ψ

Φc Ψ

]
,

Φc = GR
21(Yc −G22Xc).

By expanding, it can be seen that (16) implies,

Φ∗Π−
rp,22(γ)Φc +Φ∗

cΠ
−
rp,22(γ)Φ− Φ∗

cΠ
−
rp,22(γ)Φc ≺ 0.

Therefore, by [8, Lemma 1], satisfying (16) also guarantees
that T is stable if Π−

rp,22(γ) ≺ 0 and Kc is nominally
stabilising.

Thus, by [8, Theorem 2], for a known robustly stabilising
initial controller Kc = XcY

−1
c a solution of the convex

problem,

min
γ,X,Y

γ

s.t.
[
(Π+

rp(γ))
−1 L

L∗ −L

]
(ejω) ≻ 0, ∀ω ∈ Ω,

(17)

where L = L∗Π−
rp(γ)Lc + L∗

cΠ
−
rp(γ)L − L∗

cΠ
−
rp(γ)Lc, is

also a solution to (10) if Π−
rp,22(γ) ≺ 0, for the full proof

we refer to [8]. Thus, by solving (17) for any Π+
rp(γ) ≻ 0

and Π−
rp ⪯ 0 such that Π−

rp,22(γ) ≺ 0, we can obtain the
controller K = XY −1 guaranteeing robust performance with
index γ.

Both constraints in (10) are convexified around the initial
controller Kc arriving at (17), resulting in an over approxi-
mation of a convex-concave constraint. The conservatism due
to this over approximation vanishes as K = Kc is attained.
To achieve this, it is proposed to iteratively solve the problem
in [11], replacing the initial controller at each iteration by
the optimal controller obtained in the previous one which
guarantees monotonic convergence of the objective to a
local minimum where K ≈ Kc such that the conservatism
vanishes.

C. Error characterization via non-parametric IQCs

In order to characterize the error system, we aim for
finding a multiplier Π(ejω) such that the input signal u and
the error signal e in Fig. 1 satisfy the IQC defined by Π(ejω)
as in (7). Thus, first the frequency spectrum of the signals
u and e has to be computed using the available data. To
do so, we first simulate H0 with the same input sequence
used for data collection {uk}N−1

k=0 with initial conditions
ξ̂0 = ξ(x0). Next, we obtain the sequence of e corresponding

to the available data as {uk}N−1
k=0 = {ξ(xk)− ξ̂k}N−1

k=0 . Then,
frequency content of e at each trajectory can be obtained as,

E(e−jω) =

N−1∑
k=0

eke
−jωTsk, ∀ω ∈ Ω. (18)

Similarly, the frequency spectrum of the plant input u can
also be computed ∀ω ∈ Ω following (18).

Additionally, for a known robustly stabilising controller
Kc, the IQC stability condition (8) should be satisfied by
the resulting Πrp(γ) as in (9) where γ denotes the robust
performance index achieved by Kc. Thus, for a known
robustly stabilising initial controller Kc, an IQC multiplier
characterizing the error system as well as minimizing the
robust performance index can be obtained by solving the
following FD convex optimization problem,

min
γ,Π+,Π−

γ

s.t.
∫
ω∈Ω

[
U
E

]∗
Π

[
U
E

]
(ejω)dω ≥ 0,[

T
I

]∗
Πrp(γ)

[
T
I

]
(ejω) ≺ 0, ∀ω ∈ Ω,

Π(ejω) = Π+(ejω) + Π−(ejω), ∀ω ∈ Ω,

Π11(e
jω) ⪰ 0, Π22(e

jω) ⪯ 0, ∀ω ∈ Ω,

Π+(ejω) ≻ 0, Π−(ejω) ⪯ 0, ∀ω ∈ Ω,

Π−
22(e

jω) ≺ 0, ∀ω ∈ Ω.

(19)

Here, imposing Π−
22 ≺ 0 in addition to Π− ⪯ 0 yields us

the desired IQC multiplier such that (17) already guarantees
the stability of T , with arbitrarily small conservatism added
to the IQC multiplier identification problem.

Remark 1. Due to the continuous frequency domain Ω,
both problems described above are formulated as finite-
dimensional convex optimization problems with an infinite
number of constraints, referred to as convex semi-infinite pro-
grams (SIPs). A typical approach to solve SIPs is to sample
the infinite constraints in the frequency domain at a suffi-
ciently large set of finite frequencies Ωg = {ω1, . . . , ωg} ⊂
Ω. Note that this sampling approach yields non-parametric
IQC multipliers Π(ejω) at a finite number of frequency points
Ωg .

D. Iterative Approach

We propose an iterative scheme by combining the robust
controller synthesis and the error characterization. The pre-
sented algorithm guarantees monotonic decrease of γ over
each iteration. At the end of the algorithm a controller K that
guarantees robust stability against ∆ and robust performance
on the channel w → z with respect to Πp(γ) is obtained by
only using data trajectories collected from the system and a
lifting dictionary. It should be noted that while we synthesize
a linear controller in the lifted space, due to the nonlinear
state transformation from the state space to the lifted space of
observables the resulting controller is nonlinear in the actual
state space.



Algorithm 2: Iterative algorithm over error system
characterization and robust controller synthesis

Data: measured trajectories: {xk, uk}N−1
k=0 ,

lifting functions: ξ(x),
initial robustly stabilising controller: Kc.

Preparation:
obtain A and B in (6) by EDMD.
compute T (ejω), ∀ω ∈ Ωg.
compute {(Um, Em)(ejω)}Mm=1, ∀ω ∈ Ωg.
obtain RCF Kc = XcY

−1
c .

Iteration: set i = 0.
while γ converges and i ≤ imax do

• update IQC multiplier Π:
solve (19) for ω ∈ Ωg , obtain Π+,Π− ∀ω ∈ Ωg .

• update controller K:
solve (17) for ω ∈ Ωg , (iteratively as in [11]),
obtain K = XY −1.

• set i = i+ 1.
end
Result: K, γ.

IV. NUMERICAL EXAMPLE

To illustrate the proposed method through a simula-
tion example, we examine an inverted pendulum, a widely
employed benchmark for validating nonlinear control ap-
proaches. The system dynamics are,

ẋ1(t) = x2(t), (20)

ẋ2(t) =
g

l
sinx1(t)−

b

ml2
x2(t) +

1

ml2
u(t), (21)

with mass m = 1 kg, length l = 1 m, rotational fric-
tion coefficient b = 0.01, and gravitational constant g =
9.81 m/s2. We discretize the dynamics using the 4th-order
Runge-Kutta method with sampling time Ts = 0.01 s
and consider the discrete-time model as our true nonlinear
system. To collect data, we simulate the discrete-time system
for a single trajectory of N = 5000 samples with initial
condition x0 =

[
0 0

]T
and a random input, such that uk

is randomly chosen from U = [−10, 10] with a uniform
distribution for all k ∈ [0, N − 1]. By also inferring some
knowledge of the dynamics we choose the lifting functions
ξ(x) =

[
x1 x2 sin(x1)

]T
.

After applying the EDMD algorithm the lifted state ma-
trices as in (6) are obtained, yielding a 3-dimensional stable
LTI representation of the system. We consider the tracking
problem where the pendulum angle x1 is desired to track
the reference w. The performance channel output is defined
as z =

[
(W1(w − x1))

T (W2u)
T
]T

such that the tracking
error as well as the control input are penalized during control
design. For optimising a desired tracking response we use a
low-pass filter W1 defined by the Matlab command W1 =
1/makeweight(0.001,1,2,Ts) and we set W2 = 0.1.
We select,

Πp =

[
γ2I 0
0 −I

]
, (22)

such that minimizing H∞ norm of Tzw is our objec-
tive. Next, applying Algorithm 1 with initial controller
Kc = 0, yields the state feedback controller K =[
82.98 9.076 −10.64

]
with robust performance index

γ∗ = 9.6613.
To observe the benefits of Koopman lifting and error

characterization via non-parametric IQCs separately, we con-
sider two other control design methods. For the same robust
performance objective, first we consider the case where
we did not employ lifting such that ξ(x) =

[
x1 x2

]
.

After identifying the system matrices by solving the EDMD
problem, we use Algorithm 1 for robust controller synthesis.
This approach yields a robust performance guarantee with
index γ∗

1 = 31.5295 achieved by the linear state feedback
controller K1 =

[
278.6 22.76

]
. Next, to observe the benefit

of using non-parametric IQCs, we follow the approach in
[12] for the same performance objective. As lifting functions
we again use ξ(x) =

[
x1 x2 sin(x1)

]T
, which yields the

same lifted representation obtained earlier. Considering the
single measured trajectory, we find a lower bound on the
error systems worst case ℓ2-gain by finding the minimum
value of γe > 0 such that

N−1∑
k=0

∥ek∥2 ≤ γ2
e

N−1∑
k=0

∥uk∥2 ,

is satisfied. This yields the lower bound of γ∗
e = 0.0753

achieved on the worst case ℓ2-gain of the error system.
Next, we apply the linear feedback controller synthesis
method from [12, Section 3] which is based on the well
known small-gain theorem. This yields a performance index
of γ∗

2 = 14.5565. Thus, while all three approaches yield
a robust controller that can track a reference in the full
operation range x1 ∈ [−π, π], the performance guarantee
that is be achieved by the proposed method is significantly
better. While we only present state feedback synthesis for
simplicity, the proposed method also allows for dynamic
output feedback controller synthesis to be used when full
state information can not be recovered.

V. CONCLUSION

The proposed method offers a promising avenue for ro-
bustly controlling nonlinear systems through the integra-
tion of Koopman operator theory and IQCs. Utilizing non-
parametric IQC multipliers to characterize modeling errors
proves to be effective, tightening uncertainty around the
lifted LTI model and reducing conservatism in control design
significantly. While the iterative algorithm may not converge
to the global optimum, it ensures a monotonic decrease in the
performance objective. This algorithm facilitates data-driven
control of nonlinear systems with closed-loop guarantees
using linear control methods and solving convex problems.
However, it relies on the assumption that collected data fully
represents system behavior within the operational region.
While this assumption can often be met with sufficiently
large datasets, future research aims to quantify data quality
to enhance a priori guarantees. Simulation examples demon-
strate the benefits of the proposed non-parametric IQC-based



error characterization, highlighting the main contribution
of this work. Future endeavors will extend this approach
to bilinear/LPV lifted models, promising smaller modeling
errors and improved closed-loop performance.
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