
École polytechnique fédérale de Lausanne Project report

Dynamic Mode Decomposition for Wave Propagation
Yannis Voet

École polytechnique fédérale de Lausanne, Switzerland
April 22, 2024

Abstract

Dynamic Mode Decomposition (DMD) is an outstanding tool for data driven analyses and reduced order
modeling of large scale dynamical systems. The method has been successfully applied in a variety of disciplines
including fluid dynamics, image processing, epidemiology and neuroscience. However, relatively little attention
has been paid to wave type propagation phenomena in structural dynamics. In this article, we investigate the
applicability of the method to such problems for snapshot data produced by high fidelity tensorized finite element
simulations. Moreover, we exploit the Khatri-Rao product structure sometimes featured in the data to enhance
existing DMD algorithms. Several numerical experiments confirm our findings and support the application of
DMD to wave type equations.

1 Introduction

Dynamic Mode Decomposition (DMD) [1] has recently emerged as a promising tool for the analysis of large scale
dynamical systems and has quickly gained a strong foothold in fluid dynamics. DMD is a purely data driven
approach for identifying and extracting coherent structure from experimental or numerical data. It assumes that
data is generated from an unknown operator A, whose spectral information provides an (approximate) description
of the underlying dynamics, at least within a certain time window. DMD further connects to the Koopman theory
for nonlinear dynamical systems, which provides the theoretical backbone of the method [2].

While sometimes conceived as an extension of the proper orthogonal decomposition method (POD), the selection
of POD and DMD modes is fundamentally different. According to Schmid [1], POD is built around an “energy
ranking” of the modes based entirely on the singular values of the snapshot matrix storing the data, while DMD,
instead, detects the relevant frequencies of the flow, regardless of whether they are associated to low or high energy
modes. As a matter of fact, as argued in [1, 3], high energy modes may not always be physically relevant, especially
not when combining data with different physical units. Indeed, in such cases, important spectral information might
be lost when truncating the singular value decomposition.

From a more mathematical perspective, the POD basis is an orthonormal basis for the range of the snapshots
and its truncation to the kth basis vector best approximates (in the least squares sense) the range of the snapshots
over all kth dimensional subspaces [3]. On the contrary, DMD forms a Rayleigh quotient matrix by projecting the
operator A into the POD basis and, according to Schmid [1], contains more information on the temporal evolution
of dynamical processes. However, one must bear in mind that DMD is not foolproof and sometimes fails to extract
spectral information even for simple cases. In particular, it has difficulties detecting translational and rotational
invariances and capturing transient phenomena [4].

Nevertheless, the method stood out in numerous difficult applications and is particularly useful for dynamical
processes driven by just a few dominant frequencies and modes. While originally proposed for fluid dynamics,
applications of DMD have been flourishing and now encompass image and video processing, epidemiology and
neuroscience to name just a few [4]. However, to our knowledge, relatively little attention has been paid to wave
propagation phenomena in structural dynamics. In this article, we initiate its application to dynamical systems
stemming from high fidelity tensorized finite element discretizations of wave type equations. The tensorized nature
of the finite element space often allows to approximate each (reshaped) snapshot by a low-rank matrix (or tensor), a
property at the heart of dynamical low-rank methods [5, 6]. Therefore, the snapshot matrix, obtained by gathering
the vectorized snapshots, possesses a Khatri-Rao product structure. To our knowledge, this structure has never
been exploited within the DMD framework. Our article fills the gap by carefully examining its advantages.

The outline of the rest of the article is as follows: section 2 first presents the underlying application and provides
a refresh on tensorized finite element discretizations, from which the snapshot matrix inherits its structure. Section 3
then recalls the fundamental ideas underpinning DMD and sets the scene for the developments of the rest of the
section. In particular, we discuss the approximate computation of truncated SVDs, streaming QR factorizations and
review the solution of structured least squares problems. All methods avoid forming the snapshot matrix explicitly,
which is generally infeasible for large scale computations. We further highlight the difficulties of reconstructing
the solution of second order (and more generally high order) dynamical systems and suggest a simple workaround.
Section 4 presents a sample of numerical experiments ranging from academic examples to more realistic applications.
Finally, section 5 summarizes our findings and advises on directions for future work.

1

2 Isogeometric analysis

The data used within this article stems from high fidelity numerical simulations of certain time-dependent partial
differential equations (PDEs) governing wave type phenomena. The prototypical example of such problems is the
wave equation. Let Ω ⊂ Rd be an open connected domain with Lipschitz boundary and let I = [0, T] be the time
domain with T > 0 denoting the final time. We look for u : Ω× [0, T]→ R such that

∂ttu−∇ · (c2∇u) = f in Ω× (0, T], (2.1)

u = gD on ∂ΩD × (0, T],

c2∇u · n = gN on ∂ΩN × (0, T],

u = u0 in Ω,

∂tu = v0 in Ω,

where u0 and v0 are two initial conditions, gD and gN are Dirichlet and Neumann boundary conditions, respectively,
and ∂ΩD and ∂ΩN form a disjoint partition of the boundary (i.e. ∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD ∩ ∂ΩN = ∅). The
positive valued function c represents the wave velocity. Similar looking PDEs arise in structural dynamics, where
the unknown is a vector valued displacement field and the differential operator is the divergence of a stress tensor
(see e.g. [7]). Finite element discretization methods are based on the weak (or integral) form of the PDE and
approximate the solution in a finite dimensional subspace Vh. Isogeometric analysis consists in choosing spline
functions (i.e. piecewise polynomials) from computer-aided-design (CAD) such as B-splines both for representing
the approximate solution and describing the geometry [8, 9]. Such functions follow a standardized construction in
a so-called parametric domain Ω̂ = (0, 1)d before being defined in the physical domain Ω. In dimension d = 1, the
B-spline basis {B̂i}ni=1 is constructed recursively from the Cox-de Boor formula [10]. In dimension d ≥ 2, the basis
functions are defined by the tensor product

B̂i = B̂i = B̂1i1B̂2i2 . . . B̂did

where B̂lj denotes the jth function in the lth direction and 1 ≤ i ≤ n :=
∏d

l=1 nl is a global index which only
depends on i = (i1, . . . , id) and n = (n1, . . . , nd). The integers ni are the space dimensions in each parametric
direction. With a slight abuse of notation, we have identified the multi-index i = (i1, i2, . . . , id) with the “linear”
index i in the global numbering.

In the isogeometric paradigm, the basis functions also describe the geometry via the spline parametrization
F : Ω̂ → Ω, which maps the parametric domain to the physical domain. Geometries described by such a map are
called single-patch. The basis functions over the physical domain are then defined as Bi = B̂i ◦ F−1 and the spline
spaces over the parametric and physical domains are

V̂h = span{B̂i : 1 ≤ i ≤ n} and Vh = span{Bi : 1 ≤ i ≤ n},

respectively, where 1 is the vector of all ones and vector inequalities are understood componentwise.
A Galerkin discretization of the spatial variables in the weak form (see for instance [11, 12]) now leads to solving

the semi-discrete problem

M ü(t) +Ku(t) = f(t) for t ∈ [0, T],

u(0) = u0,

u̇(0) = v0.

(2.2)

where K,M ∈ Rn×n are the stiffness and mass matrices, respectively. For single-patch geometries, their entries are

Kij =

∫
Ω

c2 ∇Bi · ∇Bj and Mij =

∫
Ω

Bi Bj 1 ≤ i, j ≤ n (2.3)

As with any other standard Galerkin method, K and M are both symmetric and while M is positive definite, K
is generally only positive semidefinite (unless Dirichlet boundary conditions are prescribed on some portion of the
boundary). In isogeometric analysis, M is additionally nonnegative owing to the pointwise nonnegativity of the
B-spline basis functions. The time-dependent right-hand side vector f(t) in (2.2) accounts for the function f and
potential non-homogeneous Neumann and Dirichlet boundary conditions. The vectors u0 and v0 are the coefficient
vectors of suitable projections of the initial conditions into the spline space and u(t) is the coefficient vector of the
approximate solution uh(x, t) in the spline basis.

The B-spline functions also have a rational counterpart, called Non-Uniform Rational B-splines (NURBS), which
enable the exact representation of a broader class of geometries (including conic sections). However, the range of

2

geometries they may describe is still far too limited for most industrial applications. For complex geometries, it
may be necessary to divide the physical domain into Np subdomains (or patches); i.e.

Ω =

Np⋃
r=1

Ωr

where each subdomain (or patch) Ωr is described by its own map Fr : Ω̂ → Ωr. Thus, a multi-patch geometry is
just a collection of patches. The construction of spline spaces over multipatch geometries is rather straightforward,
though the notation becomes more cumbersome and falls outside the scope of this introduction. One must only
remember that patches in isogeometric analysis are analogous to elements in classical finite element discretizations.
Thus, the computed solution is only C0 at patch interfaces.

Thanks to the interplay between analysis and design, isogeometric analysis enables the exact representation of
many common geometries, thereby often eliminating geometry approximation errors induced by triangulations. Its
strength also lies in its ability to construct smooth approximation spaces of regularity up to Cp−1 for p degree
splines, whereas classical Lagrange finite elements only produce C0 spaces. The greater smoothness translates
into superior approximation properties [13, 14, 15] and is very welcome for certain applications where the physical
quantities of interest (e.g. strain, stress) depend on the derivatives of the solution.

For discretizing (2.2) in time, scores of methods have been proposed, including the Newmark, Wilson-θ and
Generalized α methods to name just a few. Most of them are commonly included in textbooks [7, 11], which the
reader may consult for details. These time stepping schemes produce a sequence of snapshots {u0,u1, . . . ,um},
which are stored along the column of an n× (m+1) matrix U , called the snapshot matrix. Its entries are generally
over a field F but given the scope of our application, we restrict ourselves to real data (i.e. F = R) while noting
that the extension to F = C is straightforward. Although this snapshot matrix is generally completely dense, it
can sometimes be very well approximated in a data sparse format, a property directly inherited from the tensor
product nature of the basis functions. As a matter of fact, for some idealized problems on trivial geometries
(e.g. the hypercube (0, 1)d), the snapshot matrix S can be very well approximated by a Khatri-Rao product; i.e.
U ≈ U1 ⊙ · · · ⊙ Ud, where Ui ∈ Rni×m. More generally, for single-patch geometries, it may still be very well
approximated by the sum

U ≈
q∑

k=1

U
(k)
1 ⊙ · · · ⊙ U

(k)
d . (2.4)

In other words, each snapshot is the vectorization of a low-rank matrix (or tensor in dimension d ≥ 3). Analogously
to other notions of rank, a matrix is said to have Khatri-Rao rank q if it can be expressed by a sum of no less than q
Khatri-Rao products. This value is simply the maximum of the Kronecker (or tensor) rank of the snapshots stored
along the columns of the matrix. Dynamical low-rank methods, for instance, directly produce the snapshot data in
this format as well as more general tensor formats [16, 17]. Such methods become essential for large scale applica-
tions, when forming the snapshot matrix explicitly becomes infeasible due to the “curse of dimensionality”. Indeed,

storing U explicitly requires O(m
∏d

i=1 ni) while storing all factor matrices U
(k)
i only requires O(qm

∑d
i=1 ni). The

savings are considerable in high dimensions and for moderate q, as shown in fig. 2.1. Unfortunately, low-rank solvers
were not available for this work and we instead derived an algorithm for approximating U by a Khatri-Rao rank
q approximation. This algorithm is presented in appendix A. The Khatri-Rao product approximation is computed
once and for all during a costly offline phase.

3

10 20 30 40 50 60 70 80 90 100

Number of degrees of freedom in each direction

104

105

106

107

108

109

N
u

m
b

er
o
f

n
on

ze
ro

en
tr

ie
s

Storage requirements

Full
KR, q = 1
KR, q = 2
KR, q = 3
KR, q = 4
KR, q = 5

Figure 2.1: Comparison of the full storage of the snapshot matrix and its structured Khatri-Rao (KR) expression
(2.4) for d = 3, m = 1000 and various values of q.

Although it arises very naturally in our context, we are not aware of any prior work related to Khatri-Rao
structured snapshot matrices. In the rest of this article, we will show how this structure may be exploited to great
advantages. For notational convenience, we sometimes only consider the case d = 2 or d = 3 and note that the
extension to arbitrary dimensions d is straightforward.

3 Dynamic Mode Decomposition

In this section, we first recall some fundamental principles underlying DMD as well as the algorithms they led to
and later discuss how to best exploit the structure of the snapshot matrix to speed them up.

3.1 Background

The Dynamic Mode Decomposition is based on the assumption that the snapshots, stored along the columns of
Xm ∈ Rn×m form a Krylov sequence

{u0,u1, . . . ,um−1} = {u0,Au0, . . . ,Am−1u0}.

for some unknown linear operator A and a starting vector (or initial condition) u0. Thus, if Xm has full rank,
it forms a basis for the Krylov subspace Km(A,u0). In practice, many of the snapshots may be nearly linearly
dependent and only produce redundant information. Assuming the first m snapshots are linearly independent, we
decompose um as

um = Xmc+ r

where c is the coefficient vector of the best approximation of um in Xm = span(Xm) and is obtained by solving the
least squares problem

min
v∈Rm

∥Xmv − um∥2.

Recalling that Aui = ui+1 for i = 0, . . . ,m− 1, we obtain the Krylov decomposition

AXm = Ym = XmCm + reTm (3.1)

where em ∈ Rm is the mth canonical basis vector, Ym = [u1, . . . ,um] is a shifted snapshot matrix and

Cm =


0 0 . . . 0 c0
1 0 . . . 0 c1
0 1 . . . 0 c2
...

. . .
. . .

...
...

0 0 . . . 1 cm−1



4

is a companion matrix whose last column is the vector c. Equation (3.1) is at the heart of the Krylov DMD method
and the eigenpairs of Cm provide approximations to some of the eigenpairs of A. Contrary to the Arnoldi method
that constructs an orthonormal basis for the Krylov subspace by a sequence of projections, DMD only assumes
availability of data, while the underlying operator that generated the data is unknown. Unfortunately, the Krylov
DMD method is numerically unstable and Schmid [1] instead proposed computing the thin singular value decompo-
sition (SVD) of the snapshots Xm = UΣV T to form the Rayleigh quotient Sm = UTAU = UTYmV Σ−1, which also
allowed for truncating the smallest singular values. As noted in [1], this Rayleigh quotient is formed by the projec-
tion of the linear operator A onto the POD basis U and is the core of Schmid’s DMD method. Without truncating
the POD basis, it is similar to Cm and therefore yields the same eigenvalues [3, Proposition 3.1]. Since Schmid’s
groundbreaking work, several variants and enhancements have been proposed in the literature. In [3], residual
estimates were provided to only retain good approximations to the eigenpairs of A and a refined Rayleigh-Ritz
(RRR) DMD algorithm was proposed by minimizing the residuals in span(U). In the same article [3], the authors
presented a QR compressed DMD method that takes advantage of highly optimized QR factorization algorithms
for compressing the problem to a lower dimensional space before employing SVD based DMD algorithms (e.g.
Schmid or RRR). A streaming version of the same algorithm was later proposed by adding or removing snapshots
and subsequently updating the QR factorization. Other noteworthy contributions include sparsity promoting and
weighted DMD [3, 18]. The main algorithms proposed in the DMD literature are listed in table 3.1. A complete
description of these algorithms is beyond the scope of this introduction and the interested reader may consult the
references provided.

Algorithms Brief description References

DMD - Schmid Schmid’s DMD algorithm [1] [3, Algorithm 1]
DMD - QR QR compressed DMD [3, Algorithm 3]
DMD - Krylov Krylov DMD with Vandermonde matrix [1]
DMD - RRR Refined Rayleigh-Ritz DMD [3, Algorithm 2]

Table 3.1: Main DMD algorithms and references

As we have seen, many DMD algorithms either require solving least squares problems or computing a truncated
SVD or a (thin) QR decomposition of the snapshot matrix. However, forming the snapshot matrix itself is generally
infeasible in our context, let alone its factorization. Thus, computing a few of its dominant singular values and
vectors is the best one can hope for. Interestingly, most of the algorithms listed in table 3.1 support implicitly defined
snapshot matrices, only available through matrix-vector products, provided there exists suitable alternatives to the
truncated SVD or QR factorizations. In this section, we explore such alternatives and explain how to exploit the
Khatri-Rao structure of the snapshot matrix to perform matrix-vector products implicitly without ever forming it.
This constraint naturally leads to considering iterative methods for structured matrix computations.

3.2 Matrix products and properties

In this section, we recall the definitions of some basic matrix products and operators used throughout the article.

• Kronecker product : Given two matrices A ∈ Rn×m and B ∈ Rp×q, their Kronecker product is defined as

A⊗B =

a11B . . . a1mB
...

. . .
...

an1B . . . anmB

 ∈ Rnp×mq.

• Khatri-Rao product : Given two matrices A ∈ Rn×m and B ∈ Rp×m, partitioned in columns as

A = [a1 . . .am] and B = [b1 . . .bm],

their Khatri-Rao product is defined as

A⊙B = [a1 ⊗ b1 . . .am ⊗ bm] ∈ Rnp×m.

• Hadamard product : Given two matrices A ∈ Rn×m and B ∈ Rn×m, their Hadamard (or elementwise) product
is defined as

A ∗B =

a11b11 . . . a1mb1m
...

. . .
...

an1bn1 . . . anmbnm

 ∈ Rn×m.

5

• Outer product : Given two vector a ∈ Rn and b ∈ Rm, their outer product is defined as

a ◦ b = abT =

a1b1 . . . a1bm
...

. . .
...

anb1 . . . anbm

 .

• Vectorization: Given a matrixA ∈ Rn×m, partitioned asA = [a1 . . .am], the vectorization operator vec : Rn×m →
Rnm is defined as

vec(A) =

a1
...

am

 := a

and vec−1(a) = A (provided m,n are known).

• Diagonal : Given a vector x = (x1, x2, . . . , xn)
T ∈ Rn, the diagonal operator diag : Rn → Rn×n is defined as

diag(x) =


x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . xn


Moreover, it is understood that given A ∈ Rn×n, diag(A) = (a11, . . . , ann)

T extracts the diagonal of A.

3.3 Krylov based SVD

There exist several Krylov subspace methods for computing a few of the dominant singular values and vectors of a
large sparse matrix. The Golub-Kahan Lanczos bidiagonalization method [19, 20], summarized in algorithm 3.1, is
one of them and is the workhorse behind MATLAB’s svds function [21]1.

Algorithm 3.1 Golub-Kahan Lanczos bidiagonalization

Input: Matrix A ∈ Rn×m, unit norm starting vector p1 ∈ Rm, number of iterations s ∈ N.
Output: Approximate truncated SVD A ≈ UsΣsV

T
s .

1: Set P1 = p1, q1 = Ap1, α1 = ∥q1∥, q1 = q1/α1, Q1 = q1.
2: for j = 1, . . . , s do
3: rj = ATqj − αjpj

4: rj = rj − PjP
T
j rj ▷ Full reorthogonalization

5: βj = ∥rj∥
6: pj+1 = rj/βj

7: Pj+1 = [Pj pj+1]
8: qj+1 = Apj+1 − βjqj

9: qj+1 = qj+1 −QjQ
T
j qj+1 ▷ Full reorthogonalization

10: αj+1 = ∥qj+1∥
11: qj+1 = qj+1/αj+1

12: Qj+1 = [Qj qj+1]
13: end for
14: Set α = (α1, . . . , αs)
15: Set β = (β1, . . . , βs−1)
16: Set Bs = diag(α, 0) + diag(β, 1) ▷ Upper bidiagonal matrix
17: Bs = FsΣsGs ▷ SVD of Bs

18: Set Us = QsFs

19: Set Vs = PsGs

Remark 3.1. Similarly to the Arnoldi method, algorithm 3.1 is always supplemented with restarting procedures
to avoid the prohibitive growth of Krylov subspaces [21]. Moreover, it is sometimes possible to use partial re-
orthogonalization schemes to reduce the computational cost. However, these topics fall outside the scope of this
contribution and we instead refer to the dedicated literature [20].

1According to the author’s webpage: https://www.math.uri.edu/meet/james-baglama/

6

https://www.math.uri.edu/meet/james-baglama/

Algorithm 3.1 only requires matrix-vector multiplications with A and AT . We explain in this section how to
perform these operations implicitly for Khatri-Rao products. Without loss of generally, we assume q = 1 since the
same operations can be performed individually on each term of the sum in (2.4). The case d = 2 is well-known and
recalled below. Its proof is instructive and will help us generalize the properties to d ≥ 3.

Proposition 3.2. Let A ∈ Rn1×m, B ∈ Rn2×m, x ∈ Rm, Y ∈ Rn2×n1 and y = vec(Y). Then,

1. (A⊙B)x = vec(B diag(x)AT),
2. (A⊙B)Ty = diag(BTY A).

Proof. We prove each property below.

1. Since B diag(x)AT =
∑m

j=1 xibja
T
j =

∑m
j=1 xi(bj ◦ aj), we immediately obtain

vec(B diag(x)AT) =

m∑
j=1

xi(aj ⊗ bj) = (A⊙B)x.

2. Firstly, diag(BTY A) = (bT
1 Y a1, . . . ,b

T
mY am)T . Secondly, bT

j Y aj = vec(bT
j Y aj) = (aTj ⊗ bT

j) vec(Y). Thus,

diag(BTY A) =

 (aT1 ⊗ bT
1)y

...
(aTm ⊗ bT

m)y

 = (A⊙B)Ty.

For the second property, needless to say that the matrix BTY A is never formed explicitly. Only its diagonal
entries are computed. Even so, we must emphasize that proposition 3.2 merely provides equivalent expressions to
avoid forming the Khatri-Rao product explicitly. While they certainly save up on storage, they do not save up on
operations. Before generalizing these properties to d ≥ 3, we need a suitable generalization of the vectorization and
diagonal operators as well as the outer product of several vectors. These notions are well-known (see e.g. [22]) but
recalled below for the sake of completeness.

Definition 3.3 (vectorization). Let X ∈ Rn1×n2×···×nd be a dth order tensor. The vectorization operator vec : Rn1×n2×···×nd →
Rn1n2...nd stacks the entries of X in reverse lexicographical ordering in a column vector; i.e.

vec(X) =



x11...1

x21...1

...
xn11...1

x12...1

...
xn1n2...nd


Although the lexicographical ordering produces more elegant expression in our context (see appendix A), the

reverse lexicographical ordering is commonly adopted and we stick to this convention.

Definition 3.4 (diagonal). Let X ∈ Rn×n×···×n be a dth order tensor. The diagonal operator diag : Rn×n×···×n →
Rn stacks the diagonal entries of X in a column vector; i.e.

diag(X) =


x11...1

x22...2

...
xnn...n


The next definitions generalize the notions of outer and inner products.

Definition 3.5 (outer product). Let ai ∈ Rni for i = 1, . . . , d. Their outer product X = a1 ◦ · · · ◦ ad is the
n1 × · · · × nd tensor such that

xi1...id = a1i1 . . . adid .

7

Definition 3.6 (inner product). Let X ,Y ∈ Rn1×···×nd be two dth order tensors. Their inner product is defined as

⟨X ,Y⟩ =
n1∑

i1=1

· · ·
nd∑

id=1

xi1...idyi1...id .

The Khatri-Rao product of d matrices is closely connected to a special type of tensor, which we define next.

Definition 3.7 (CP format). Let Ai = [a
(i)
1 . . . a

(i)
r] ∈ Rni×r for i = 1, . . . , d and λ ∈ Rr. A tensor X ∈ Rn1×···×nd

in Canonical Polyadic (CP) format is defined as

X = [[λ;A1, . . . , Ad]] =

r∑
j=1

λj(a
(1)
j ◦ · · · ◦ a

(d)
j).

If r is the smallest number of terms in the sum, the tensor is said to have CP rank r.

Finally, a generalization of the standard matrix product is useful.

Definition 3.8 (µ-mode multiplication). The µ-mode multiplication of a tensor X ∈ Rn1×···×nd with a matrix
A ∈ Rnµ×m is a n1 × · · · × nµ−1 ×m× nµ+1 × · · · × nd tensor defined as

(X ◦µ A)i1...id =

nµ∑
k=1

xi1...iµ−1kiµ+1...idakiµ .

We are now ready to state the generalization of proposition 3.2 to arbitrary dimensions.

Proposition 3.9. Let Ai ∈ Rni×m for i = 1, . . . , d, x ∈ Rm, Y ∈ Rnd×···×n1 and y = vec(Y). Then,

1. (A1 ⊙ · · · ⊙Ad)x = vec([[x;Ad, . . . , A1]]),
2. (A1 ⊙ · · · ⊙Ad)

Ty = diag(Y ◦1 Ad · · · ◦d A1).

Proof. We prove each property below with the same arguments as in proposition 3.2

1. By combining definitions 3.3 and 3.7, we immediately obtain

vec([[x;Ad, . . . , A1]]) = vec(

m∑
j=1

xj(a
(d)
j ◦ · · · ◦ a

(1)
j)) =

m∑
j=1

xj(a
(1)
j ⊗ · · · ⊗ a

(d)
j) = (A1 ⊙ · · · ⊙Ad)x.

2. By combining definitions 3.4, 3.6 and 3.8, we obtain

(Y ◦1 Ad · · · ◦d A1)jj...j =

n1∑
i1=1

· · ·
nd∑

id=1

yi1...ina
(d)
i1j

. . . a
(1)
idj

= ⟨Y,a(d)j ◦ · · · ◦ a
(1)
j ⟩

= ⟨vec(Y), vec(a(d)j ◦ · · · ◦ a
(1)
j)⟩

= ⟨y,a(1)j ⊗ · · · ⊗ a
(d)
j ⟩

= ((A1 ⊙ · · · ⊙Ad)
Ty)j .

Remark 3.10. Although the relations in proposition 3.9 are mathematically elegant, our algorithms do not directly
exploit them for d ≥ 3. The main reason is that they involve tensor operations and all our implementations
performed rather poorly in this setting. Actually, the Tensor Toolbox [23] itself uses the left-hand side of the first
identity for forming the right-hand side, which we are precisely trying to avoid. In practice, both (A1 ⊙ · · · ⊙Ad)x
and (A1 ⊙ · · · ⊙ Ad)

Ty were computed with a single for loop over m. In the second case, parallel computing
capabilities may be leveraged.

It is well-know that the Lanczos bidiagonalization method converges quickly to the dominant, well-separated,
singular values [20]. Thus, good approximations may be computed after only a few steps. The next section discusses
another class of methods for achieving this goal.

8

3.4 Randomized SVD

Randomized algorithms are a valuable alternative when the snapshot matrix is known to be low-rank. This may be
expected for certain classes of problems. The randomized SVD, presented in [24] and summarized in algorithm 3.2,
may yield significant speedups without undermining the accuracy [24]. It is based on sketching and effectively
reduces the cost for computing the SVD from O(nm2) to O(nmr), where r is a user supplied target rank and
should be slightly larger than the rank of A.

Algorithm 3.2 Randomized SVD

Input Matrix A ∈ Rn×m where n > m and r ∈ N.
Output U ∈ Rn×r,Σ ∈ Rr×r, V ∈ Rr×m such that A ≈ UΣV T

1: Generate Gaussian random matrix Ω ∈ Rm×r

2: Set Y = AΩ
3: Compute Y = QR ▷ QR factorization
4: Compute QTY = ŨΣV ▷ Economy size SVD
5: Set U = QŨ

3.5 Streaming QR factorization

Forming the full snapshot matrix explicitly is generally infeasible and obviously so is its QR factorization. However,
it is possible to form a few columns at a time and update those columns if need be. If the QR factorization is
computed for those initial columns, it must also be updated (see fig. 3.1). Streaming procedures are specifically
designed for this purpose. Several variants have been proposed, including householder QR [25] and (modified) Gram-
Schmidt. In this work, we have opted for Householder reflections for improved numerical stability and adapted the
algorithm proposed in [25] to the streaming setting. The result, summarized in algorithm 3.3 keeps track of the
Householder reflectors computed at each step for future compression. In comparison to naively recomputing the
QR factorization each time snapshots are appended, the streaming QR factorization reduces the complexity from
O(n2(m+mnew)) to O(nmnew(m+mnew)).

A Anew Qnew Rnew

Figure 3.1: Streaming QR factorization. The matrix Anew is appended to A and the QR factorization is updated
accordingly. The first part of the upper triangular matrix Rnew remains unchanged.

9

Algorithm 3.3 Additive Householder QR

Input: Matrix Anew ∈ Cn×mnew where n > mnew

Optional input: Matrices E ∈ Cn×m, V ∈ Cn×m, Q ∈ Cn×m, and R ∈ Cm×m from previous executions of
the algorithm on parts of the matrix A
Output: Qnew ∈ Cn×(m+mnew), and Rnew ∈ C(m+mnew)×(m+mnew) such that QnewRnew = [A,Anew]

1: Add mnew columns to Q and V , and mnew columns and rows to R
2: Extend E with mnew orthogonal columns
3: for k = m+ 1,m+ 2, . . . ,m+mnew do
4: a = A(:, k −m)
5: for j = 1, 2, . . . , k − 1 do ▷ Apply reflectors from previous iterations
6: a← a− 2V (:, j)(V (:, j)∗a)
7: R(j, k) = E(:, j)∗a
8: a = a−R(j, k)E(:, j)
9: end for

10: R(k, k)← ∥a∥
11: α← E(:, k)∗a
12: if α ̸= 0 then
13: E(:, k)← E(:, k)(−α/|α|)
14: end if
15: V (:, k)← R(k, k)E(:, k)− a
16: V (:, k)← V (:, k)− E(:, 1 : k − 1)(E(:, 1 : k − 1)∗V (:, k)) ▷ Execute twice to reorthogonalize
17: σ ← ∥V (:, k)∥
18: if σ ̸= 0 then
19: V (:, k)← V (:, k)/σ
20: else
21: V (:, k)← E(:, k)
22: end if
23: for j = k, k − 1, . . . , 1 do ▷ Apply reflections to Q
24: Q(:, k) = Q(:, k)− 2V (:, j)(V (:, j)∗Q(:, k))
25: end for
26: end for

3.6 Khatri-Rao least squares problems

After addressing SVD computations for structured matrices and streaming QR factorizations, we now move to
the solution of least squares problems, another central topic within DMD (see section 3.1). Quite some attention
has been devoted to Khatri-Rao structured least squares problems as they typically arise when computing the CP
approximation of a tensor [20, 22] (see also [26] for other occurrences). More recently they have also surfaced
within DMD for (weighted) snapshots reconstruction [18]. The next proposition states a well-know result, whose
short proof will be very instructive for explaining the difficulties. The identities are stated here for d = 2 but their
extension to arbitrary dimensions is straightforward.

Proposition 3.11. For arbitrary matrices A, B, C and D such that the products AB and CD are compatible

AB ⊙ CD = (A⊗ C)(B ⊙D).

Proof. From the mixed-product property of the Kronecker product [27, Lemma 4.2.10], it is well-known that

AB ⊗ CD = (A⊗ C)(B ⊗D). (3.2)

Moreover, by definition, AB ⊙ CD is a submatrix obtained by extracting a subset of the columns of AB ⊗ CD.
Thus, a factorization of AB⊙CD is obtained from (3.2) by extracting the same subset from the columns of (B⊗D),
that is (B ⊙D).

Similarly to the Kronecker product, the Khatri-Rao product also has several elegant “SVD like” and “QR like”
factorizations. Indeed, a direct application of proposition 3.11 shows that

A1 ⊙A2 = (U1 ⊗ U2)(Σ1 ⊗ Σ2)(V
T
1 ⊙ V T

2), (3.3)

A1 ⊙A2 = (Q1 ⊗Q2)(R1 ⊙R2), (3.4)

10

where UiΣiVi and QiRi are the (thin) SVD and QR decompositions of Ai, respectively. However, a quick inspection
of the formula reveals that Σ = Σ1 ⊗ Σ2 does not contain the singular values of A1 ⊙ A2 and R1 ⊙ R2 is not
upper triangular. Equations (3.3) and (3.4) are merely matrix factorizations but are not the actual SVD or QR
factorizations of A1⊙A2. As a matter of fact, the entries of Σ are the singular values of A1⊗A2, of which A1⊙A2

is a submatrix. It remains unclear if/how eqs. (3.3) and (3.4) may be exploited (if at all).
Instead, least squares solvers for Khatri-Rao products commonly rely on the normal equations and exploit the

useful identity [18, Proposition 3.5]

(A1 ⊙A2)
T (A1 ⊙A2) = (AT

1 A1 ∗AT
2 A2). (3.5)

One of the major drawbacks of the normal equations is the squaring of the condition number of A1 ⊙ A2 and the
subsequent reduction in digits of accuracy. For Khatri-Rao products, this problem was extensively studied in [18].
Therein, the authors explain that the conditioning of the Hadamard product matrix may be significantly better
than the conditioning of the individual matrices involved. Moreover, the suitability of the normal equations as
a solver most critically depends on the conditioning of a certain correlation matrix, obtained by scaling the rows
and columns by the square root of the (positive) diagonal entries. Provided that condition number is moderate,
the solution is computable with a satisfactory level of accuracy. In case the condition number is too large, the
authors suggest alternatives including a seminormal approach and a QR factorization based algorithm. That being
said, in practice, (3.5) remains by far the most popular method for solving Khatri-Rao structured least squares
problems. In our work, forming (3.5) became quite expensive for large Khatri-Rao ranks and we opted instead for
an approximate truncated SVD (computed with algorithm 3.1).

Remark 3.12. If the snapshot matrix has Khatri-Rao rank 1, it might be worthwhile directly approximating the
spectral decomposition of (3.5) with a Krylov subspace method, as was already investigated in [26] in the more
general tensor setting.

3.7 Reconstruction: issues and remedies

DMD is built around the assumption that all snapshots are generated from successive applications of an operator A.
In that respect, a reconstruction based on the initial snapshot, as originally proposed, seems reasonable. However,
in our context, that underlying assumption is often severely flawed. Indeed, the general solution of the semi-discrete
problem (2.2) is given by

u(t) = cos(
√
At)u0 + t sinc(

√
At)v0 +

∫ t

0

(t− τ) sinc(
√
A(t− τ))M−1f(τ) dτ (3.6)

where A = M−1K. A detailed derivation is provided in appendix B (corollary B.2). Clearly, the general solution
not only depends on the initial condition u0, but also on v0 and the right-hand side data. Thus, a reconstruction
based only on the snapshot data for U = [u0,u1, . . . ,um] is generally hopeless. As a matter of fact, if the initial
condition u0 is zero, the standard reconstruction method will only return the zero solution and is practically useless
(see examples 4.1 and 4.2 below). Even more advanced reconstruction methods employing all snapshot data might
fail to produce useful results.

Fortunately, this issue is easily resolved by rewriting the second order system as an extended first order sys-
tem, thereby edging closer toward the linear assumption underpinning DMD. This process, commonly known as
linearization, consists in introducing additional variables related to the derivatives of the original unknown. In our
case, denoting v(t) = u̇(t), system (2.2) is rewritten as(

M 0
0 M

)(
v̇(t)
u̇(t)

)
+

(
0 K
−M 0

)(
v(t)
u(t)

)
=

(
f(t)
0

)
for t ∈ [0, T],(

v(0)
u(0)

)
=

(
v0

u0

) (3.7)

and is more compactly expressed as

Mẇ(t) + Kw(t) = f(t) for t ∈ [0, T],

w(0) = w0,
(3.8)

where

M = I2 ⊗M =

(
M 0
0 M

)
, K =

(
0 K
−M 0

)
, f(t) =

(
f(t)
0

)
w(t) =

(
v(t)
u(t)

)
and w0 =

(
v0

u0

)
.

11

Clearly, (3.8) may be recast to standard form ẇ(t) + Aw(t) = g(t) by pre-multiplying by M−1 but we will prefer
(3.8) as it retains the structure inherited from finite element discretizations. Note that

A = M−1K =

(
0 M−1K
−I 0

)
and thus, its spectrum Λ(A) = Λ(K,M) = ±iΛ(K,M) is purely imaginary since Λ(K,M) is real positive. Thus,
the exact solution of (3.8) involving the matrix exponential does not diverge and is obviously equivalent to (3.6).
System (3.8) is a first order system of ODEs and in this framework, the success of DMD seems much more likely.
Obviously, the above argument can be easily generalized to any kth order linear system of ODEs. In practice, we
run the DMD algorithms on the augmented snapshot matrix [U ; V] formed by appending to U the snapshot data
V = [v0,v1, . . . ,vm]. This is somewhat similar to using both the pressure and velocity for Navier-Stokes equations,
as in [3]. However, this technique requires computing a data sparse representation for the augmented matrix, whose
columns now combine data with different physical units. For this reason, we increment the dimension for the
Khatri-Rao product approximation by one but this, unfortunately, also typically increases its rank. Nevertheless,
snapshot augmentation is straightforwardly incorporated into existing DMD codes since it only requires changes to
the input data.

Remark 3.13. A closer look at the Newmark time stepping scheme reveals that it may be possible to represent
both U and V in a common basis formed by appending to the initial conditions u0 and v0 the snapshot data for the
accelerations A also generated during the course of the iterations; i.e. U = BS1 and V = BS2, where B = [u0 v0 A]
and S1 and S2 are square upper triangular matrices. We then obtain the data sparse representation(

U
V

)
= (I2 ⊗B)

(
S1

S2

)
,

which yields significant savings if B = B1 ⊙ · · · ⊙Bd. This format is currently under investigation by the authors.

Moreover, one must distinguish residual estimates returned by DMD algorithms from the quality of the recon-
structed solution. Albeit simple, the following example is insightful. Consider the snapshot sequence {u0,u1, . . . ,um}
produced by an operator A such that ui = zϕ(ti) for some fixed vector z ∈ Rn and for a function ϕ : [t0, tm]→ R.
DMD algorithms will identify the only mode z along with an eigenvalue λ ∈ R with a zero residual. Yet, the
reconstructed solutions read

ûi = zαλi i = 0, . . . ,m,

and might arbitrarily depart from the original snapshots, regardless of how well the coefficient α has been computed.
This simple example shows the discrepancy between residual estimates and the reconstructed solution, which is the
true quantity of interest.

4 Numerical experiments

This section gathers a few numerical experiments comparing the standard DMD algorithms to their data sparse
counterparts. The problems span various levels of difficulty and range from academic level to real world applications.
All examples were generated with GeoPDEs, a MATLAB-Octave software package for isogeometric analysis [28].
We test and compare several algorithms proposed in the DMD literature and listed in table 3.1. The standard
(truncated) SVD in Schmid’s DMD and RRR algorithms may be substituted for cheaper variants discussed in
section 3, including the Lanczos bidiagonalization method (algorithm 3.1) and the randomized SVD (algorithm 3.2).
This will always be indicated in parentheses after the method’s name. All algorithms were adapted to support
implicitly provided snapshot data (i.e. only available through matrix-vector or matrix-matrix multiplications),
except for the QR DMD algorithm. Moreover, since zero or near zero columns are a real possibility in our setting,
we avoid rescaling the columns in the RRR algorithm, although originally advocated in [3]. All algorithms were
implemented in MATLAB R2023a and run on MacOS with an M1 chip and 32 GB of RAM.

4.1 Single-patch geometries

This section is devoted to single-patch geometries (see section 2), for which our data sparse framework is applicable.
We first provide a short description of the examples used in this section. They all arise from isogeometric dis-
cretizations of wave type equations and the snapshot matrix is generated from an implicit Newmark time stepping
scheme.

12

Example 4.1 (2D standing wave). The first example is the academic example of a standing wave on a unit square,
described by u(x, y, t) = sin(2πx) sin(2πy) sin(2πt) for t ∈ [0, 1]. The initial and boundary conditions of the PDE
are computed accordingly. Two snapshots of the discretized solution are shown in fig. 4.1. The snapshot matrix in
this example is 1089 × 201 but we will consider throughout this section different levels of refinement in space and
time to illustrate different properties of the method.

Figure 4.1: Standing wave on the unit square, discretized with cubic B-splines and 30 subdivisions in each direction

Example 4.2 (3D standing wave). The second example is simply the 3D counterpart of the first one and provides
a simple and yet conclusive example of the “curse of dimensionality”; i.e. the prohibitive (exponential) growth of
memory and operations with the dimension. The exact solution is u(x, y, z, t) = sin(2πx) sin(2πy) sin(2πz) sin(2πt)
for t ∈ [0, 1]. Two snapshots of the discretized solution, shown along slices of the unit cube, are displayed in fig. 4.2.
The snapshot matrix for this problem is 35937× 201; i.e. 33 times larger than its 2D counterpart.

Figure 4.2: Standing wave on the unit cube, discretized with cubic B-splines and 30 subdivisions in each direction

Example 4.3. Our third example, inspired from [29], is more realistic and models the acoustic wave equation
(2.1) in a non-homogeneous medium. The wave speed of the medium is c(x, y) = 1 + y. We consider homogeneous

Neumann boundary conditions over the entire boundary and initial conditions u0(x, y) = e−124x2

and v0(x, y) = 0.
The Gaussian pulse travels from left to right in the medium before hitting the right boundary and rebounding.
Figure 4.3 shows a few snapshots of the solution. The size of the snapshot matrix is 62025 × 1001. The geometry
was discretized with C4 quintic splines and 250 subdivisions in each direction.

13

Figure 4.3: Solution snapshots

The ability to approximate the snapshot matrix by (sums of) Khatri-Rao products depends primarily on the
solution itself and the features of the dynamics. The standing waves described in examples 4.1 and 4.2 are just a
single wave modulated by a varying amplitude. Thus, tensorized finite element methods produce a nearly perfect
Khatri-Rao rank 1 approximation; i.e. each snapshot is almost perfectly approximated by a Kronecker product
of vectors and the approximation further improves for finer meshes. On the contrary, the Kronecker rank of the
snapshots for the third example gradually increases as the simulation advances and so does the Khatri-Rao rank of
the snapshot matrix, which in this example can be approximated by a Khatri-Rao rank 40 approximation with a
relative error of 2.8×10−4. This error is perfectly acceptable for our applications. However, the Khatri-Rao rank of
the augmented snapshots increases to 80 for a similar accuracy level. Hence, alternative formats for the augmented
snapshots might be valuable (see remark 3.13). In practice, a low-rank solver would produce the snapshots directly
in low-rank format and approximating it by a Khatri-Rao product is unnecessary. Thus, we do not provide any
timings for this operation. For completeness, the size of the (non-augmented) snapshot matrix of the different
variants and its Khatri-Rao rank are summarized in table 4.1. The problem sizes still allow forming the snapshot
matrix explicitly for the sake of comparison.

We compare the performance of the different methods, both in terms of accuracy and computing time. Our
experiments include the Lanczos SVD and randomized SVD as alternatives to the truncated SVD and incorporated
within Schmid’s DMD. For the two first examples, the maximum number of iterations for the Lanczos SVD method
and the target rank for the randomized SVD were both 10. They were increased to 100 for the last more difficult
example, based on the errors obtained for the reconstructed solutions (see table 4.4 below). Both algorithms only
require matrix-vector multiplications with the (augmented) snapshot matrix, which is provided implicitly. When
comparing computing times, we distinguish the cases where the snapshot matrix is provided explicitly and implicitly.
Moreover, since the Khatri-Rao product approximation of the augmented snapshot matrix artificially increments
the dimension by one, we have run the experiments separately for U (table 4.2) and [U ; V] (table 4.3). For the
latter, the values of n reported in table 4.1 must be doubled, while the Khatri-Rao rank q was capped at 40 just
for the sake of this experiment. In practice, it should be chosen slightly larger to ensure an accurate data sparse
approximation. However, we are not concerned with this step here and simply assume the data is provided in this
format.

Example n m q

Example 4.1 I 1089 200 1
Example 4.1 II 41209 1500 1
Example 4.2 I 79507 200 1
Example 4.2 II 79507 1000 1
Example 4.3 65025 1000 40

Table 4.1: Examples and problem sizes

14

Example SVD Lanczos SVD Randomized SVD
Explicit Implicit Explicit Implicit

Example 4.1 I 1.27× 10−2 6.81× 10−4 9.36× 10−4 1.02× 10−3 2.93× 10−3

Example 4.1 II 5.71× 100 3.85× 10−2 2.11× 10−2 5.13× 10−2 2.71× 10−2

Example 4.2 I 4.01× 10−1 1.70× 10−2 1.73× 10−1 1.98× 10−2 1.52× 10−1

Example 4.2 II 5.37× 100 4.61× 10−2 8.22× 10−1 6.40× 10−2 7.29× 10−1

Example 4.3 4.80× 100 1.77× 100 1.44× 101 4.98× 10−1 1.44× 101

Table 4.2: Timings (in seconds) for Schmid’s DMD for the snapshot data U . Green and red cells identify the
smallest and largest timings, respectively, for each example.

Example SVD Lanczos SVD Randomized SVD
Explicit Implicit Explicit Implicit

Example 4.1 I 2.12× 10−2 2.10× 10−3 1.50× 10−1 2.13× 10−3 3.58× 10−2

Example 4.1 II 1.09× 101 9.27× 10−2 2.48× 100 9.65× 10−2 1.80× 100

Example 4.2 I 7.01× 10−1 8.50× 10−2 1.10× 100 3.85× 10−2 2.97× 10−1

Example 4.2 II 9.83× 100 2.99× 10−1 5.47× 100 1.18× 10−1 1.55× 100

Example 4.3 9.03× 100 5.51× 100 3.80× 102 1.09× 100 1.32× 101

Table 4.3: Timings (in seconds) for Schmid’s DMD for the snapshot data [U ; V]. Green and red cells identify the
smallest and largest timings, respectively, for each example.

Tables 4.2 and 4.3 indicate that our matrix-vector multiplication algorithms perform poorly in higher dimensions
and are even sometimes slower than the truncated SVD. Due to MATLAB’s highly optimized BLAS 2 and 3 oper-
ations, the algorithms perform much better with the explicitly formed Khatri-Rao product. Moreover, comparing
the two last lines of the tables also indicates that the Khatri-Rao rank q heavily impacts the performance of the
method. Nevertheless, we must stress that forming the snapshot matrix is generally infeasible in high dimensional
settings.

We will now draw our attention to the reconstruction of the solutions. Table 4.4 compares the reconstruction
errors for the same examples using the methods from table 3.1. We employ the standard reconstruction method
based on the first snapshot and compute the reconstruction error as the mean elementwise error. In this experiment,
the relative truncation tolerance for SVD based algorithms was set to 10−4; i.e. the singular values and vectors
retained satisfy σi

σ1
≤ 10−4, where σ1 is the largest singular value.

Examples Schmid QR Krylov RRR Schmid (RSVD) Schmid (Lanczos)

Example 4.1 I 6.46× 10−5 6.46× 10−5 8.54× 10−5 2.18× 10−1 6.46× 10−5 6.46× 10−5

Example 4.1 II 1.32× 10−6 1.32× 10−6 3.15× 10−6 2.50× 10−1 1.32× 10−6 1.32× 10−6

Example 4.2 I 9.23× 10−2 9.02× 10−2 1.47× 10−1 2.05× 10−1 9.23× 10−2 9.23× 10−2

Example 4.2 II 9.34× 10−2 9.29× 10−2 1.85× 10−1 2.06× 10−1 9.34× 10−2 9.34× 10−2

Example 4.3 1.20× 10−2 6.36× 10−3 6.88× 10−11 2.53× 100 9.58× 10−2 1.38× 10−1

Table 4.4: Reconstruction errors for each example. Red cells identify the largest reconstruction errors.

Overall, Schmid’s DMD and the QR method often yield similar results and so do cheaper variants based on
the randomized and Lanczos SVD. Combined with tables 4.2 and 4.3, these results indicate that alternatives to
the truncated SVD often yield similar accuracy at a reduced cost. Krylov’s DMD is less robust over the range of
examples tested and the reconstruction error fluctuates considerably. Surprisingly, the RRR method always resulted
in the largest reconstruction error. Similar trends were obtained with the normal reconstruction method proposed in
[18], although the results were slightly more accurate. Figure 4.4 compares a snapshot of the reconstructed solutions
for Schmid’s DMD and the RRR method to the original data (in Khatri-Rao format). While the reconstructed
solution with Schmid’s DMD is visually identical to the original, the one for the RRR method is utterly inaccurate
and confirm our suspicions from table 4.4. However, inspecting fig. 4.5 reveals that the RRR method produced
smaller residuals. Although we could not precisely pinpoint the reason for the method’s failure, section 3.7 provides
plausible causes. In particular, small residuals do not guarantee an accurate reconstruction. That being said, the
RRR method still produced reasonably accurate results for the first two examples, despite the significantly larger
reconstruction error. Nevertheless, we must emphasize that examples 4.1 and 4.2 are academic examples and are

15

exceedingly well described with only a couple of modes, which are precisely the standing waves depicted in figs. 4.1
and 4.2.

Figure 4.4: Reconstruction comparison for example 4.3

0 20 40 60 80 100 120 140
10!4

10!3

10!2

10!1

100
Residuals

Schmid
RRR

Figure 4.5: Residuals comparison for example 4.3

For example 4.3, the reconstructed solution obtained only from the snapshot data U was in all aspects similar to
the one obtained from the augmented snapshot data [U ; V]. As a matter of fact, the data in V probably does not
add any information owing to the zero initial velocity in this example. Thus, in some cases, snapshot augmentation
is not necessary for an accurate reconstruction.

4.2 Multi-patch geometries

We consider in this section multi-patch geometries (i.e. geometries described by a collection of patches). In such
cases, the snapshot matrix cannot be approximated by (sums of) Khatri-Rao products and to our knowledge, data
sparse formats for multi-patch geometries are nontrivial but are currently being investigated (see e.g. [17] for very
recent work in that direction). Most problems of practical interest fall in this category and we only investigate in
this section the applicability of DMD, independently of the availability of data sparse representations.

Example 4.4. Our first example is a slight variation of example 4.3, where a small cavity is added in the middle of
the square. The homogeneous Dirichlet boundary conditions prescribed over its boundary create multiple reflections,
which further complicate the dynamics. The initial conditions are u0(x, y) = e−302(x+0.6)2 and v0(x, y) = 0. The
wave velocity is constant (c = 1) and all other data are set to zero. Snapshots of the solution are shown in fig. 4.6.
The snapshot matrix for this problem has size 62000× 1001.

16

Figure 4.6: Solution snapshots

Example 4.5. Our second example is simpler and models a traction test, commonly employed in material science
for measuring the resistance of rods. Non-homogeneous Dirichlet boundary conditions are imposed at both ends
of the rod and in the initial phase of the test, the slowly varying displacement field follows a linear elastic model.
Figure 4.7 shows the horizontal displacement field at different times. The snapshot matrix for this problem has size
3096× 1501.

Figure 4.7: Solution snapshots

The size of the snapshot matrix for both examples is recalled in table 4.5. Although sparse data formats are not
immediately available for those examples, alternatives to the (truncated) SVD are still valuable. In table 4.6, we
provide timings for the augmented snapshot matrix [U ; V]. As expected, both the Lanczos SVD and randomized
SVD methods outperform the truncated SVD, for a maximum number of iterations and target rank of 100.

Example n m

Example 4.4 62000 1000
Example 4.5 3096 1500

Table 4.5: Examples and problem sizes

Examples SVD Lanczos SVD Randomized SVD

Example 4.4 8.63× 100 3.25× 100 1.01× 100

Example 4.5 2.55× 100 3.05× 10−1 1.13× 10−1

Table 4.6: Timings (in seconds) for Schmid’s DMD for the snapshot data [U ; V]. Green and red cells identify the
smallest and largest timings, respectively, for each example.

The reconstruction errors provided in table 4.7 once again indicate that the RRR method performs rather poorly,
despite the small residuals shown in fig. 4.9. This finding is confirmed in fig. 4.8. The normal reconstruction led to
far better results, especially for the Krylov method.

Examples Schmid QR Krylov RRR Schmid (RSVD) Schmid (Lanczos)

Example 4.4 4.27× 10−4 4.28× 10−4 1.16× 100 9.20× 100 2.53× 10−1 1.87× 10−1

Example 4.5 1.71× 10−3 1.69× 10−3 5.66× 10−3 3.55× 10−1 1.74× 10−2 1.55× 10−2

Table 4.7: Reconstruction errors for each example. Red cells identify the largest reconstruction errors.

17

Figure 4.8: Reconstruction comparison for example 4.4

0 50 100 150 200
10!4

10!3

10!2

10!1

100

101
Residuals

Schmid
RRR

Figure 4.9: Residuals comparison for example 4.4

4.3 Down-sampling

A fine time discretization (i.e. a small time-step) may generate nearly identical snapshots and sub-sampling the
snapshot matrix may sometimes be advantageous to reduce its size without compromising the accuracy of the
subsequent computations. More formally, this process, referred to as down-sampling, consists in extracting a
subset {us,u2s, . . . ,uks} of the columns of U , where s ∈ N is the sampling step. The sampling step is problem
dependent and if suitably chosen, it may speedup the algorithms by a factor s. For instance, fig. 4.10 reveals that
the reconstruction error for example 4.3 remains at an acceptable level for a sampling step of about 10 for most
methods. Unfortunately, we are not aware of any method for estimating s and postpone this issue to future work.

18

0 5 10 15 20

Sampling step s

10!7

10!6

10!5

10!4

10!3

10!2

10!1

R
ec
o
n
st
ru
ct
io
n
er
ro
r

DMD Schmid
DMD QR
DMD Krylov
DMD RRR
DMD Schmid RSVD
DMD Schmid Lanczos

Figure 4.10: Reconstruction error for multiple DMD algorithms

4.4 Steaming QR

We have also tested the streaming QR factorization on example 4.3 and compared it to recomputing the QR
factorization at each step. We restrict experimentation to the most relevant case in our setting, which is the
addition of snapshots. Figure 4.11 shows the evolution of the reconstruction error for streaming QR and the
standard QR always recomputed from scratch. The curves closely match and indicate that streaming QR does not
have detrimental effects on the accuracy of the reconstructed solution. However, both curves dramatically increase
after 25 snapshots, suggesting that an accurate reconstruction is only feasible for small time windows. Indeed,
the dynamics become quite involved as the time window enlarges. Thus, an increase of the reconstruction error is
expected.

10 20 30 40 50 60 70 80 90 100

Number of snapshots

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

R
e
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

Standard QR

Streaming QR

Figure 4.11: Reconstruction error for sequential snapshot additions

5 Conclusion

In this work, we have investigated the application of Dynamic Mode Decomposition methods to wave propagation
problems, discretized by high fidelity tensorized finite element methods. Not only have we provided a positive
answer, but we have also shown how such methods could be combined with Khatri-Rao structured snapshot matrices
produced by (dynamical) low-rank solvers to mitigate the “curse of dimensionality”. In this matrix-free setting,
the snapshot data is only available through matrix-vector or matrix-matrix multiplications and we have shown
how to perform those operations implicitly for arbitrary dimensions. Moreover, we have suggested alternatives to
the truncated SVD and initiated the possibility of down-sampling the snapshot matrix prior to any computations.
However, for tackling relevant problems, the methods also require data sparse formats for multi-patch geometries,

19

which are sadly too limited. Moreover, it is worthwhile investigating whether other data sparse formats (e.g. Tucker
formats as in [16, 17]) yield similar savings.

A Nearest Khatri-Rao product approximation

This appendix describes how to best approximate a matrix by a sum of Khatri-Rao products. Structured matrix
approximations have already been considered for a variety of matrix products, including Kronecker products [30, 20]
and of course the standard matrix product [31]. Actually, some of these problems are closely related and can be
reformulated into one another. To our knowledge, the nearest Khatri-Rao product approximation has not yet
surfaced in the literature and is the object of this appendix. For simplicity, we again consider the case d = 3 to
avoid multiple cumbersome subscripts. Given M ∈ Rn1n2n3×m, we look for factor matrices A(k), B(k) and C(k) that
minimize ∥∥∥∥∥M −

q∑
k=1

A(k) ⊙B(k) ⊙ C(k)

∥∥∥∥∥
2

F

.

The minimization in the Frobenius norm allows to solve separate minimization problems for each column of M .
Indeed, ∥∥∥∥∥M −

q∑
k=1

A(k) ⊙B(k) ⊙ C(k)

∥∥∥∥∥
2

F

=

m∑
j=1

∥∥∥∥∥mj −
q∑

k=1

a
(k)
j ⊗ b

(k)
j ⊗ c

(k)
j

∥∥∥∥∥
2

2

where mj denotes the jth column of M and similarly for the factor matrices A(k), B(k) and C(k). Thus, their
columns are computed by solving m independent minimization problems for each column of M . Moreover,∥∥∥∥∥mj −

q∑
k=1

a
(k)
j ⊗ b

(k)
j ⊗ c

(k)
j

∥∥∥∥∥
2

2

=

∥∥∥∥∥Mj −
q∑

k=1

a
(k)
j ◦ b(k)

j ◦ c(k)j

∥∥∥∥∥
2

F

where ◦ denotes the outer product and Mj ∈ Rn1×n2×n3 is obtained by reshaping (and permuting) mj into a
3rd (and generally dth) order tensor (see algorithm A.1). Equivalently, mj is obtained through the vectorization

of Mj in lexicographical ordering. Finally, the vectors a
(k)
j , b

(k)
j and c

(k)
j are obtained by computing a CP rank

q approximation of Mj . This last problem is rather standard in tensor calculus and several software packages
are available for this purpose; e.g. the Tensor Toolbox [23, 22]. Moreover, the method offers great potential for
parallelism given that the m minimization problems are independent and do not share any data: the columns of M
are loaded into separate processors. The size of the tensors obtained by reshaping those columns is determined by
the integers ni, which are generally always clear from the context of the application. For instance, for (single-patch)
tensorized finite element discretizations, they are the number of degrees of freedom in each parametric direction.
In practice, the factor matrices A(k), B(k) and C(k) are conveniently stored along the pages of third order tensors
A, B and C. Algorithm A.1 provides a MATLAB style pseudo-code for arbitrary dimension d.

Algorithm A.1 Khatri-Rao rank q approximation

Input: Matrix M ∈ Rn1n2...nd×m, partitioned as M = [m1, . . . ,mm], rank q.
Output: Tensors Ai ∈ Rni×m×q for i = 1, . . . , d.

1: Initialize Ai for i = 1, . . . , d.
2: for j = 1, . . . ,m do
3: Mj ← reshape(mj , (nd, . . . , n1))
4: Mj ← permute(Mj , (d, . . . , 1))
5: [A1(:, j, :), . . . ,Ad(:, j :)] = cp(Mj , rank = q)
6: end for

Effectively, algorithm A.1 computes each slice of Ai individually. In line 5, essentially any off-the-shelf algorithm
for computing a CP approximation may be used. In our implementation, we have used the cp als function from
the Tensor Toolbox, which employs an alternating least squares solver.

20

B Exact solution of the semi-discrete problem

In this appendix, we derive the exact solution of the semi-discrete problem recalled below:
M ü(t) +Ku(t) = f(t) for t ∈ [0, T],

u(t = 0) = u0

u̇(t = 0) = v0

(B.1)

where K,M ∈ Rn×n are symmetric and M is positive definite with initial conditions u0,v0 ∈ Rn. The exact
solution may be expressed in terms of matrix functions. This can be easily seen by considering an analogous scalar
problem.

Lemma B.1. The solution of the ODE 
ü(t) + λu(t) = f(t)

u(t = 0) = u0

u̇(t = 0) = v0

(B.2)

with λ ∈ R∗
+ and u0, v0 ∈ R is given by

u(t) = u0 cos(
√
λt) + tv0 sinc(

√
λt) +

∫ t

0

(t− τ) sinc(
√
λ(t− τ))f(τ) dτ.

Proof. The general solution of (B.2) is given by u(t) = uh(t)+up(t), where uh(t) is the solution to the corresponding
homogeneous problem and up(t) is a particular solution. For the homogeneous solution, we immediately obtain

uh(t) = α cos(ωt) + β sin(ωt).

where we denoted ω =
√
λ. Moreover, one can easily verify that

up(t) =
1

ω

∫ t

0

sin(ω(t− τ))f(τ) dτ =

∫ t

0

(t− τ) sinc(ω(t− τ))f(τ) dτ

is a particular solution, where sinc(x) = sin(x)/x. Indeed,

u̇p(t) =

∫ t

0

cos(ω(t− τ))f(τ) dτ

üp(t) = f(t)− ω

∫ t

0

sin(ω(t− τ))f(τ) dτ = f(t)− ω2up(t).

Consequently, üp(t) + ω2up(t) = f(t) as wanted. Finally, the constants α and β are determined by imposing the
initial conditions:

u(t = 0) = α = u0,

u̇(t = 0) = βω = v0,

from which we deduce α = u0 and β = v0/ω. Thus, the general solution is

u(t) = u0 cos(ωt) +
v0
ω

sin(ωt) +
1

ω

∫ t

0

sin(ω(t− τ))f(τ) dτ

and may equivalently be expressed in terms of sinc functions.

The solution of (B.1) is now readily expressed in terms of matrix functions.

Corollary B.2. The exact solution of (B.1) is given by

u(t) = cos(
√
At)u0 + t sinc(

√
At)v0 +

∫ t

0

(t− τ) sinc(
√
A(t− τ))M−1f(τ) dτ (B.3)

where A = M−1K.

21

Proof. There exist multiple equivalent ways of deducing the result, e.g. via the spectral decomposition of M−1K,
or in a more symmetric way using the eigenbasis of (K,M) or the Cholesky decomposition of M . We will employ
the eigenbasis approach. It is well-known that if (K,M) is a symmetric matrix pair and K and M are positive
definite, there exists an invertible matrix U of eigenvectors such that

UTKU = D, UTMU = I, (B.4)

where D = diag(λ1, . . . , λn) is the diagonal matrix of positive eigenvalues (see e.g. [32, Theorem VI.1.15]) and
KU = MUD is the associated eigendecomposition. In particular, the matrix U forms an M -orthonormal basis
of Rn. We change basis and set u(t) = Ux(t) (i.e. x(t) = U−1u(t). Substituting this expression in (B.1), pre-
multiplying by UT and using (B.4), we obtain the set of uncoupled equations

ẍ(t) +Dx(t) = UT f(t)

x(t = 0) = U−1u0

ẋ(t = 0) = U−1v0

whose exact solution, thanks to lemma B.1, is given by

x(t) = cos(
√
Dt)U−1u0 + t sinc(

√
Dt)U−1v0 +

∫ t

0

(t− τ) sinc(
√
D(t− τ))UT f(τ) dτ.

The result follows after back-transforming by pre-multiplying by U

u(t) = Ux(t) = U cos(
√
Dt)U−1u0 + tU sinc(

√
Dt)U−1v0 +

∫ t

0

(t− τ)U sinc(
√
D(t− τ))U−1UUT f(τ) dτ

and noting that M−1K = UDU−1 is the spectral decomposition of M−1K and M−1 = UUT .

Remark B.3. It is sometimes possible to give more explicit expressions for specific choices of right-hand sides (e.g.
f(t) = b or f(t) = sin(ω̃t)b, where b is a constant vector). See [33] for a derivation.

22

References

[1] P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, Journal of fluid mechanics
656 (2010) 5–28.

[2] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, D. S. Henningson, Spectral analysis of nonlinear flows, Journal
of fluid mechanics 641 (2009) 115–127.

[3] Z. Drmac, I. Mezic, R. Mohr, Data driven modal decompositions: analysis and enhancements, SIAM Journal
on Scientific Computing 40 (4) (2018) A2253–A2285.

[4] J. N. Kutz, S. L. Brunton, B. W. Brunton, J. L. Proctor, Dynamic mode decomposition: data-driven modeling
of complex systems, SIAM, 2016.

[5] O. Koch, C. Lubich, Dynamical low-rank approximation, SIAM Journal on Matrix Analysis and Applications
29 (2) (2007) 434–454.

[6] M. Hochbruck, M. Neher, S. Schrammer, Rank-adaptive dynamical low-rank integrators for first-order and
second-order matrix differential equations, BIT Numerical Mathematics 63 (1) (2023) 9.

[7] K.-J. Bathe, Finite element procedures, Klaus-Jurgen Bathe, 2006.

[8] T. J. Hughes, J. A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry
and mesh refinement, Computer methods in applied mechanics and engineering 194 (39-41) (2005) 4135–4195.

[9] J. A. Cottrell, T. J. Hughes, Y. Bazilevs, Isogeometric analysis: toward integration of CAD and FEA, John
Wiley & Sons, 2009.

[10] C. De Boor, A practical guide to splines, Vol. 27, springer-verlag New York, 1978.

[11] T. J. Hughes, The finite element method: linear static and dynamic finite element analysis, Courier Corpora-
tion, 2012.

[12] A. Quarteroni, Numerical models for differential problems, Vol. 2, Springer, 2009.

[13] Y. Bazilevs, L. Beirao da Veiga, J. A. Cottrell, T. J. Hughes, G. Sangalli, Isogeometric analysis: approximation,
stability and error estimates for h-refined meshes, Mathematical Models and Methods in Applied Sciences
16 (07) (2006) 1031–1090.

[14] A. Bressan, E. Sande, Approximation in fem, dg and iga: a theoretical comparison, Numerische Mathematik
143 (2019) 923–942.

[15] E. Sande, C. Manni, H. Speleers, Explicit error estimates for spline approximation of arbitrary smoothness in
isogeometric analysis, Numerische Mathematik 144 (4) (2020) 889–929.

[16] M. Montardini, G. Sangalli, M. Tani, A low-rank isogeometric solver based on tucker tensors, Computer
Methods in Applied Mechanics and Engineering 417 (2023) 116472.

[17] M. Montardini, G. Sangalli, M. Tani, A low-rank multipatch isogeometric method based on tucker tensors,
arXiv preprint arXiv:2312.08736 (2023).

[18] Z. Drmac, I. Mezic, R. Mohr, On least squares problems with certain vandermonde–khatri–rao structure with
applications to dmd, SIAM journal on scientific computing 42 (5) (2020) A3250–A3284.

[19] G. Golub, W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, Journal of the Society
for Industrial and Applied Mathematics, Series B: Numerical Analysis 2 (2) (1965) 205–224.

[20] G. H. Golub, C. F. Van Loan, Matrix computations, JHU press, 2013.

[21] J. Baglama, L. Reichel, Augmented implicitly restarted lanczos bidiagonalization methods, SIAM Journal on
Scientific Computing 27 (1) (2005) 19–42.

[22] T. G. Kolda, B. W. Bader, Tensor decompositions and applications, SIAM review 51 (3) (2009) 455–500.

[23] B. W. Bader, T. G. Kolda, Tensor toolbox for matlab, version 3.6 (2023).
URL www.tensortoolbox.org

23

www.tensortoolbox.org
www.tensortoolbox.org

[24] N. Halko, P.-G. Martinsson, J. A. Tropp, Finding structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions, SIAM review 53 (2) (2011) 217–288.

[25] L. N. Trefethen, Householder triangularization of a quasimatrix, IMA journal of numerical analysis 30 (4)
(2010) 887–897.

[26] D. Kressner, L. Perisa, Recompression of hadamard products of tensors in tucker format, SIAM Journal on
Scientific Computing 39 (5) (2017) A1879–A1902.

[27] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.

[28] R. Vázquez, A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs
3.0, Computers & Mathematics with Applications 72 (3) (2016) 523–554.

[29] S. Fraschini, G. Loli, A. Moiola, G. Sangalli, An unconditionally stable space-time isogeometric method for the
acoustic wave equation, arXiv preprint arXiv:2303.07268 (2023).

[30] C. F. Van Loan, N. Pitsianis, Approximation with Kronecker products, in: Linear algebra for large scale and
real-time applications, Springer, 1993, pp. 293–314.

[31] R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge university press, 2012.

[32] G. Stewart, J. Sun, Matrix Perturbation Theory, Computer Science and Scientific Computing, ACADEMIC
Press, INC, 1990.

[33] Y. Voet, On the computation of matrix functions for the finite element solution of linear elasticity problems in
dynamics, Tech. rep., École polytechnique fédérale de Lausanne (2020).

24

	Introduction
	Isogeometric analysis
	Dynamic Mode Decomposition
	Background
	Matrix products and properties
	Krylov based SVD
	Randomized SVD
	Streaming QR factorization
	Khatri-Rao least squares problems
	Reconstruction: issues and remedies

	Numerical experiments
	Single-patch geometries
	Multi-patch geometries
	Down-sampling
	Steaming QR

	Conclusion
	Nearest Khatri-Rao product approximation
	Exact solution of the semi-discrete problem

