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1 Abstract
Dynamic mode decomposition (DMD) is a powerful tool for extracting the coher-
ent structures and essential dynamics of complex flow fields. However, in many
cases, traditional DMD may yield modes that contribute minimally to the over-
all approximation quality of the snapshot sequence. Sparse DMD addresses the
issue of selecting the modes that have a significant influence and contribute the
most by enforcing certain sparsity structure on the vector of amplitudes. This
goal is achieved by augmenting the least square residuals with a regularization
term. Utilizing the L1 norm regularization facilitates this objective due to its
inherent sparsity-inducing properties and transforming the optimization prob-
lem into convex one. Then the algorithm alternates between enforcing sparsity
and minimizing the residual. Once a certain balance or trade-off is attained, the
sparsity structure is fixed and the nonzero amplitudes are determined. Several
examples from flow fields are used to evaluate the performance of sparse DMD
and its efficiency in capturing the significant modes.
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2 Introduction
In the study of fluid dynamics, the behavior of the fluid flows is often described
by an infinite dimensional system governed by nonlinear equations. Despite the
inherent complexity of these systems, they can often be approximated effec-
tively by models of low complexity. And this gives the rise of some spatially
organised patterns or features, coherent structures, that persist in the flow and
play significant role in its dynamics. Understanding and identifying these coher-
ent structures is at the core of unraveling the intricate dynamics and transport
phenomena present within fluid flows.

In recent years, there has been a surge in developing techniques for extract-
ing these structures. Among these techniques are the proper orthogonal decom-
position (POD) and the dynamic mode decomposition (DMD). Both of these
methods depend on a sequence of snapshots, which are numerical values observ-
able in the flow field, such as vorticity, pressure, velocity, or temperature, to
extract dominant spatial and temporal patterns inherent within the data. How-
ever, POD inforces orthogonality on the spatial modes whereas DMD modes
may be non-normal, meaning they do not satisfy the orthogonality condition.
But this non normality enables DMD to capture certain dynamical effects that
may not be captured by POD.

However, not all modes contributes the same in the fluid flows and the
challenge remains in capturing the ones that exert the most significant influence
on flow dynamics . This limitation could introduce unwanted noise and give
poor approximation. Some may propose to just truncate the modes with least
amplitudes, however, such an approach may overlook modes with crucial effects
on the flow dynamics. In response to this challenge, we introduce in this paper
a variant of the DMD known as sparse dynamic mode decomposition (Sparse
DMD). In the sparse DMD the computation of the modes remains unchanged
while a novel approach is employed to compute their amplitudes. The goal is
to enforce a certain sparsity structure on the vector of amplitudes by imposing
a regularity term on the least squares problem between the matrix of snapshots
and the linear combination of DMD modes. Through this regularity, l1 is utilized
which serves as a convex relaxation of the non-convex cardinality function. One
of the sophisticated ways to solve this convex optimization problem is the usage
of alternating direction of multipliers. This iterative method alternates between
promoting sparsity and minimizing the least square residual. By striking the
balance between them, a vector of amplitudes is obtained where modes with
significant effects retain non-zero amplitudes, while less influential modes are
effectively suppressed with zero amplitudes. Once the desired sparsity structure
is achieved, we compute the optimal amplitudes of the dynamic modes to obtain
a concise and interpretable representation of the flow dynamics.

Through this paper, in section 2, we provide a theoretical background on
the koopman operator and DMD modes, elucidating their formulation and sig-
nificance in the context of flow analysis. In section 3, we introduce the sparse
DMD and present its formulation by including the derivation of the two opti-
mization problems and their solution. In section 4, we present the evaluation
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of the decomposition by checking the performance loss on a synthetic example.
Furthermore, we validate it on two real world datasets: flow around a cylinder
and flow over a heated cylinder with Boussinesq approximation. In section 6,
we summarize the key findings and provide a detailed proof of the theoretical
part in the appendix.

3 Theoretical Background and Problem formula-
tion

3.1 Koopman Operator
The evolution of a fluid system represented by x with the state space X ∈ RM

is given by the following system:{
dx
dt = F (x(t))

x(t0) = x0

where F is in general a nonlinear function that maps xi+1 to xi over a time in-
terval ∆t. This function arises usually from partial differential equations which
captures the essential characteristics of the flow from physical modeling and
conservation principles.
In the case when F is linear, the solution of the system is expressed in terms of
the spectral elements of F. Assume that Z and Λ are the eigenvectors and eigen-
values of F respectively (i.e. FZ = ΛZ) then the solution is xk =

∑M
i=1 bizie

λit

where bi are the corresponding amplitudes calculated from the initial condition.
These eigenvectors are called DMD modes. However as F is in general nonlinear
we aim in transforming this system into a linear one.

Consider taking some observable of the flow which can be physical quantities
such as temperature, pressure or energy of the inaccessible state x denoted by
ψ(x) : X → C. In this case the dynamics of the nonlinear system is projected
into the space of observable by introducing Koopman operator K such that

K(ψ(xi)) = ψ(xi+1) (1)

It is clear from 1 that the Koopman operator is linear. Hence the koopman
operator transforms the problem with a nonlinear function to one with linear
operator. So the function ψ on which K operates can be written as a linear
combination of the Koopman eigenfunctions {ϕi}.

3.2 DMD Matrix
Each numerical value of a scalar or vector valued observable is a snapshot.
Consider forming snapshot matrix S of M snapshots obtained in N+1 repeated
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application of K with time lag ∆t

S =


ψ1(x0) ψ1(x1) ... ψ1(xN ) ψ1(xN+1)
ψ2(x0) ψ2(x1) ... ψ2(xN ) ψ2(xN+1)

: : : : :
: : : : :

ψM (x0) ψM (x1) ... ψM (xN ) ψM (xN+1)


Then it makes sense to consider a matrix A ∈ CM×M such that: Aψ(xt) =
(Kψ)(xt) = ψ(xt+1).
In this Scenario, if we defineX = [ψ(x0), ..., ψ(xN )] and Y = [ψ(x1), ..., ψ(xN+1)]
then the relationship between X and Y can be succinctly expressed as

Y = AX (2)

So the matrix A solves the following least square problem min ∥AX − Y ∥2F .
In general this problem has infinite solution if XT has a nontrivial null space.
DMD aims for the minimal norm solution which is given explicitly by A = Y X†

where X† is the Moore–Penrose pseudoinverse of X. Now by considering the
action of K on the space spanned by {ψ1, ψ2, ..., ψM}, we seek a matrix U that
minimizes the residual of

(Kψi)(xk) =

M∑
j=1

ujiψj(xk) + ρi(xk), i = 1, ...,M, k = 0, ..., N (3)

which is equivalent to solving the following least square problem

min ∥XTU− Y T ∥F

It is clear from here that UT = A. Assume that U = QΛQ−1 then

(Kϕi)(xk) ≈ λiϕi(xk)

where ϕi = ψiQ. Therefore the Koopman mode decomposition
Kkψ1(x)
Kkψ2(x)

:
KkψM (x)

 =

M∑
i=1

ziϕiλ
k
i (4)

where Z = Q−T . By using the fact that U = AT , the columns of Z are the
right eigenvectors of A.

3.2.1 DMD modes

As discussed above to compute the Koopman or DMD modes we need to com-
pute the eigenvectors of the matrix A. The eigenvalues and eigenvectors are
computed using the Rayleigh quotient of A with respect to Range(X). First we

4



start by taking the truncated SVD of X = UΣV ∗ ≈ UkΣkV
∗
k . The reason for

considering a truncated SVD is that the smallest singular values can be com-
puted with large errors due to the noise vector. In this case, the solution vector
has an inaccurate component in the direction of the corresponding vector. Then
using Y = AUkΣkV

∗
k , the Rayleigh quotient which is the DMD matrix has the

form
FDMD = U∗

kY VkΣ
−1 (5)

Each eigenpair (λ,w) of the matrix FDMD gives the eigenpair (λ,Ukw) of A.

3.2.2 Amplitudes of DMD modes

After computing the eigenvalues and eigenvectors of the DMD matrix, our next
task is to approximate the numerical snapshots using linear combination of
DMD mode, i.e.

ψ(xi) = ψi =

l∑
j=1

αjzjλ
i−1
j , i = 0, ..., N (6)

where αj are the amplitudes of the corresponding DMD modes. Determination
of the unknown amplitudes corresponds to solving the following least square
problem

min
α

∥X − ZDiag(α)Vmode∥2F

where Vmode =


1 λ1 ... λN−1

1

1 λ2 ... λN−1
2

: : : :

1 λl ... λN−1
l

 is the vandermonde matrix corresponding

to the eigenvalues Λ. Using the SVD of the matrix X with Z = UkW and
invariant of the norm under orthonormal matrices, the above problem could be
rewritten as

min
α

∥ΣkV
∗
k −WDiag(α)Vmode∥2F (7)

Proposition 3.1. The optimization problem 7 is equivalently represented in a
quadratic minimization problem

min
α
H(α) = min

α
(α∗Pα− q∗α− α∗q + s) (8)

where

P = (W ∗W )⊛(VmodeV ∗
mode), q = Diag(VmodeV Σ∗W ), s = trace((ΣV ∗)∗(ΣV ∗))

where ⊛ represents the elementwise multiplication between two matrices and the
overline signifies the complex conjugate.

By using 3.1, the solution to this quadratic minimization problem is

αDMD = P−1q (9)

The proof of this proposition is presented in appendix A.
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4 Sparse DMD
Not all computed DMD modes have a great influence on the overall dynamics of
the system. Including all the modes could introduce some noise and affect the
accuracy of the data. To mitigate this issue, it is preferable to choose a subset of
the DMD modes that contribute the most. One way is to ignore the modes with
amplitudes less than a threshold value. However, sometimes the amplitudes
computed by the traditional DMD are not sufficient to separate relevant from
negligible modes especially when the data matrix contains statistical outliers or
is otherwise compromised by high amplitude noise. For this reason, a better
way in selecting subsets is the sparse DMD, which selects a subset of DMD
modes that contributes the most to the quality of approximation. This goal is
achieved in two steps. In the first step, the sparsity structure or pattern of the
amplitudes α is identified. After establishing the sparsity pattern, the non-zero
values of α are determined.

4.1 Sparsity Structure
To ascertain the sparsity pattern of the amplitude vector α, an additional term
is added to the objective function in 8

min
α
H(α) + γ

l∑
i=1

|αi| (10)

The reason for utilizing the L1 norm goes back to its properties and ability
to induce sparsity in the amplitude vector while preserving important features
of the data and its robustness towards outliers. Unlike the L2 norm which
penalizes large values uniformly.

In order to solve the above optimization problem it is better to be written
equivalently to constrained optimization problem with two variables

min
α

H(α) + γ|β|1 subject to α− β = 0 (11)

In this formulation, an alternating method can be employed. This method
alternates between having a sparsity structure and having a good approximation
by minimzing the least square residual. First, we start with an initial β to
calculate α. Subsequently, we fix α and calculate the updated β. This process
iterates until we reach the optimal solution where the residuals are less than a
certain tolerance.

resprim = ∥αi+1 − βi+1∥2 ≤ ϵ (12)

resdual = ∥βi+1 − βi∥2 ≤ δ (13)

To solve the above constrained problem and get the iterates we start from the
lagrangian formulation

Lρ(α, β, λ) = H(α) + γ∥β∥1 +
1

2
(λ∗(α− β) + (α− β)∗λ+ ρ∥α− β∥22)
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Where λ ∈ CM is the lagrange multiplier and ρ is a positive parameter that
introduces a quadratic penalty on the deviation between α and β This gives the
following iterates

αi+1 = argmin
α

Lρ(α, βi, λi) (14)

βi+1 = argmin
β

Lρ(αi+1, β, λi) (15)

λi+1 = λi + ρ(αi+1 − βi+1) (16)

In appendix A it is shown that solving these iterates results in

αi+1 = (P +
ρ

2
I)−1(q +

ρ

2
ri) (17)

βj
i+1 = Sκ(v

j
i ) (18)

with ri = βi − λi

ρ , vi = αi+1 − λi

ρ , κ = γ
ρ and

Sκ(v
j
i ) =


vji − κ if vji > κ

0 if vji ∈ [−κ, κ]
vji + κ if vji < −κ

By the end of this, we get a vector β carrying the sparsity structure ( number
of non-zero amplitudes and the places or indices of these non-zero ones). Now,
we move to the second step where this sparsity structure is fixed and the non-
zero amplitudes are determined. This is equivalent to solving the following
constrained convex optimization problem

min
α

H(α) subject to ETα = 0 (19)

where the matrix E ∈ Rl×s, s is the number of non-zero elements in beta,
represents the sparsity structure. Each column of E is a unit vector with non-
zero element corresponding to the non-zero amplitude of α.

The solution to 19, shown in appendix A, is

αopt =
[
I 0

] [ P E
ET 0

] [
q
0

]
(20)
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Algorithm 1 Sparse DMD Algorithm

1: function SparseDMD(X, Y , γ, ρ, max_iter, εabs, εrel) ▷ Input
parameters

2: [U, S, V ] = svd(X) ▷ The SVD of matrix X.
3: Ur = U(:, 1 : r), Vr = V (:, 1 : r), Sr = S(:, 1 : r) ▷ truncate to a rank r
4: FDMD = U

′

r × Y × Vr × s−1 ▷ Compute the DMD matrix
5: [Wr, Dr] = eig(FDMD) ▷ Compute the eigenvalues and eigenvectors of

the DMD matrix
6: ϕ = Ur ×Wr ▷ DMD modes
7: Calculate P, q, s and Vmode ▷ Calculate auxiliary variables
8: Initialize β and λ ▷ Initialize parameters
9: for i = 1 to max_iter do ▷ Loop over maximum iterations

10: Compute αi+1, βi+1, λi+1 according to 17,18,16
11: if resprim < εprim and resdual < εdual then
12: break
13: end if
14: end for
15: ind_zero = find(|β| < 1.e− 12)
16: E = I(:, ind_zero) ▷ Compute E which resembles sparsity structure
17: Compute αopt according to 20
18: Return a_opt, ϕ, λ
19: end function

5 Experimental Result

5.1 Synthetic Example
In this section, sparse DMD is applied on certain snapshots. We started testing
it first on a synthetic example. A test matrix A ∈ RM×N with M = 1000
and N = 400 is generated with entries uniformly distributed in [0, 1], and then
A = A/∥A∥2. Eigenvalues resulting from the standard DMD along with the
subsets selected from the sparse DMD are shown in Figure 1. In Figure 2(a),
sparsity structure (number of non-zero amplitudes) is determined as a function
of the sparsity parameter γ. While the performance Perf = 100× res

∥X∥F
, where

residual res = ∥X − ZDiag(αopt)Vmonde∥F , with respect to γ is represented in
Figures 2(b),2(c). As expected, as the sparsity parameter γ increases, a sparser
solution is obtained but this comes at the cost of compromising the quality of
the approximation.
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Figure 1: Eigenvalues resulting from the standard DMD algorithm represented
by circles and subset of eigenvalues resulting from sparse DMD represented by
crosses for the synthetic matrix A.

(a) (b)

Figure 2: Illustration of the decay of the number of nonzero amplitudes (re-
sembling the sparsity structure) and the variation of the performance loss of
the approximation with respect to the sparsity parameter γ for the synthetic
example

5.2 Flow around a cylinder
In this example, the data snapshots taken from [4] are vorticity data of a flow
around cylinder, discretized with dimension 89351. The simulation data with
∆t = 0.02 are down-sampled, and the test case contains 151 snapshots. In
Figure 3, the eigenvalues obtained from the DMD analysis are depicted, accom-
panied by the subset chosen through the sparsity-promoting DMD approach. In
figure 4(a) and 4(b), consistent conclusions are drawn about the behavior of the
non zero amplitudes and the performance with respect to sparsity parameter γ.
In figure 5, the dynamic modes with nonzero amplitudes are depicted. By check-
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Figure 3: Eigenvalues resulting from the standard DMD algorithm represented
by circles and the subset of eigenvalues resulting from sparse DMD represented
by crosses for the cylinder flow.

ing the residuals of these modes, residual(i) = ∥Y VrS−1
R Wr(:, i)− λ(i)ϕ(:, i)∥2,

it is noticed that only the modes with good residuals have nonzero amplitudes
and are being selected.

(a) (b)

Figure 4: Illustration of the decay of the number of nonzero amplitudes (resem-
bling the sparsity structure) and the variation of the performance loss of the
approximation with respect to the sparsity parameter γ for the cylinder flow.
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Figure 5: DMD modes with nonzero amplitudes resulting from sparsity promot-
ing DMD for the cylinder flow case.

5.3 Heated Cylinder with Boussinesq Approximation
In this example, a simulation of a 2D flow is generated by a heated cylinder, and
the fluid flow and heat transfer are analyzed using the Boussinesq approximation
to model and solve the buoyancy problem. The data set is taken from [5][1] ,
where the simulation was done with Gerris flow solver and was resembled onto
a regular grid. The data snapshots represents the v-velocity component of the
flow, discretized with dimension 67500. The test case contains 151 snapshots.
The set of lambda chosen through sparse DMD is shown in figure 6 and the
performance loss and number of nonzero amplitudes with respect to gamma are
illustrated in figure 7(a) and 7(b). In figure 8,9 and 10, It is shown from the
calculated residuals that the modes chosen from the sparse DMD has the least
residual compared to the ones from the traditional DMD. Which proves the
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efficiency of sparse DMD in extracting the modes contributing the most.

Figure 6: Eigenvalues resulting from the standard DMD algorithm represented
by circles and the subset of eigenvalues resulting from sparse DMD represented
by crosses for the heated cylinder flow.

(a) (b)

Figure 7: Illustration of the decay of the number of nonzero amplitudes (resem-
bling the sparsity structure) and the variation of the performance loss of the
approximation with respect to the sparsity parameter γ for the heated cylinder
flow.

Figure 8: Some of the DMD modes with their residuals from the traditional
DMD.
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Figure 9: Real part of DMD modes with nonzero amplitudes resulting from
sparsity promoting DMD for the cylinder flow case.

Figure 10: Imaginary part of DMD modes with nonzero amplitudes resulting
from sparsity promoting DMD for the cylinder flow case.
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6 Conclusion
In this paper, we addressed the challenge of selecting the modes that contribute
the most in the fluid dynamics while discarding the ones that introduce noise to
the data. This objective was accomplished by introducing the L1 norm of the
vector of amplitudes to the least square problem for determining the amplitudes
of the modes. The L1 norm promotes sparsity in the amplitude vector, trans-
forming the optimization problem into a convex one, that could be efficiently
solved by alternating between minimizing residual and promoting sparsity. Once
the desired sparsity is achieved, it is fixed and the amplitudes are calculated ac-
cordingly. Through the implementation of the sparse DMD on the flow through
cylinder and flow over a heated cylinder with Boussinesq approximation, we
demonstrated its effectiveness in assigning nonzero amplitudes to the most in-
fluential modes while eliminating those that are less relevant. Furthermore, in
the synthetic example, we illustrated that the degree of sparsity and the perfor-
mance loss depends on the sparsity parameter chosen.

A Appendix A
Proof of proposition 3.1

∥ΣV ∗ −WDαVmode∥F
= trace((ΣV ∗ −WDαVmode)

∗(ΣV ∗ −WDαVmode))

= trace((ΣV ∗)∗ − V ∗
modeD

∗
αW

∗)(ΣV ∗ −WDαVmode)

= trace((ΣV ∗)∗(ΣV ∗)− (ΣV ∗)∗WDαVmode − V ∗
modeD

∗
αW

∗ΣV ∗ + V ∗
modeD

∗
αW

∗WDαVmode)

= trace((ΣV ∗)∗(ΣV ∗)− ΣV ∗WVmodeDα − V ∗
modeW

∗ΣV ∗D∗
α +D∗

αW
∗WDαVmodeV

∗
mode)

= trace((ΣV ∗)∗(ΣV ∗))− trace(ΣV ∗WVmodeDα)− trace(V ∗
modeW

∗ΣV ∗D∗
α)

+ trace(D∗
αW

∗WDαVmodeV
∗
mode)

where the third equality is obtained by using trace(AB) = trace(BA). The
first term in the last equality is just s. For the second and third term we
apply the fact that trace(QDα) = diag(Q)

∗
α for any matrix Q, in particular

for Q = trace(V ∗
modeW

∗ΣV )∗, which gives the term q. And for the last term,
the equality trace(D∗

βADαB
∗
) = β∗(A⊛B)α is utilized with β = α, A =W ∗W

and B = V ∗
modeVmode which gives P = A⊛B.

proof of the lagrangian iterates
For 14, we have using completing the square that

Lρ = H(α) + γ∥βi∥1 +
1

2
(λ∗(α− βi) + (α− β)∗λi + ρ∥α− βi∥22

= H(α) + γ∥βi∥1 + ∥λi
ρ
∥22 +

1

2
(λ∗i (α− βi) + (α− βi)

∗λi + ρ∥α− βi∥22 − ∥λi
ρ
∥22)

= H(α) + γ∥βi∥1 + ∥(α− βi) +
λi
ρ
∥22 − ∥λi

ρ
∥22
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as the terms γ∥βi∥1 and ∥λi

ρ ∥22 are independent of α, then 14is equivalent to the
following

argmin(H(α) + ∥(α− βi) +
λi
ρ
∥22)

Substituting the expression ofH(α) and denoting ri = βi− λi

ρ gives the following

argmin(α∗Pα− q∗α− α∗q + s+
ρ

2
∥α− ri∥22)

= argmin(α∗Pα− q∗α− α∗q + s+
ρ

2
α∗α− ρ

2
α∗ri −

ρ

2
r∗i α+ ρ∥ri∥22)

= argmin /(α∗(P +
ρ

2
I)α− (q∗ +

ρ

2
ri)α− α∗(q +

ρ

2
ri) + s+ ρ∥ri∥22)

By solving the above quadratic optimization problem, we get

αi+1 = (P +
ρ

2
I)−1(q +

ρ

2
ri)

For 15, we have also using completing the square that Lρ = H(αi+1)+ γ∥β∥1+
∥(β−αi+1)− λi

ρ ∥22 −∥λi

ρ ∥22 and the terms H(αi+1) and ∥λi

ρ ∥22 are indepenedent
of β, then 15 is equivalent to the following

argmin(γ∥β∥1 +
ρ

2
∥β − vi∥22)

The solution to the above optimization problem is

βj
i+1 = Sκ(v

j
i )

with κ = γ
ρ and

Sκ(v
j
i ) =


vji − κ if vji > κ

0 if vji ∈ [−κ, κ]
vji + κ if vji < −κ

Proof of 19
The Lagrangian formulation of this constrained problem gives

L(α, λ) = H(α)∗λE
Tα+ (ETα)∗λ

= α∗Pα− q∗α− α∗q + s+ λ∗ETα+ (ETα)∗λ

which gives the rise of two equations. The first with respect to α

2Pα− 2q + Eλ+ Eλ = 0

pα+ Eλ = q

and the second with respect to λ

ETα = 0

Hence the solution for the above system is
[
P E
ET 0

] [
α
λ

]
=

[
q
0

]
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