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1. Introduction. DMD, a mathematical method that was developed to under-4

stand the evolution of a dynamical system without prior knowledge of their govern-5

ing equations, proves to be well-suited for extracting insights from real-world data6

captured as snapshots over time. Video data falls into this scheme, and therefure7

DMD is a suitable method to understand video data. Additionally, another property8

of DMD, wwhich we will delve into later, is the higher the dimension of the snap-9

shot/observation/measurement is, the better DMD can understand or reconstruct the10

underlying dynamics. Video data typically falls into this category, with each frame11

representing an image residing in a high-dimensional Euclidean space. The specific12

focus of this report is on background extraction in video learning tasks.13

2. DMD and video background extraction.14

2.1. DMD. Consider a discrete dynamical system15

zi = T (zi−1)16

where the states zi, i = 0, 1, . . . lie in a state space X . Consider observables (e.g.,17

measurements) f ∈ F : X → C and we define the Koopman operator, which is a key18

concept of DMD, as follows:19

Kf(zi) = f(T (z)) = f(zi+1).20

By its definition, K is linear, and if the space of observalbes F is “nice” enough,21

(e.g., F ⊆ L2(X,µ)), K has a discrete spectral decomposition, and DMD is a way to22

approach this spectral decomposition given only snapshot data of the dynamics.23

Let S = [s1 · · · sn] ∈ Cd×n be the snapshots, that is, si = [f1(zi) · · · fd(zi)];24

they are the measurements of the states z1, . . . , zn. Let X = S(1 : n − 1), Y = S(2 :25

n), our task is to find a best fit matrix A such that ∥XTA − Y T ∥F is as small as26

possible. Mathematically, one of the optimal A can be computed by A = (Y X†)T27

where † denotes the pseudo-inverse. However, computing the pseudo–inverse of a28

rank–deficient matrix is unstable. To avoid the ill–conditioness, we apply the Schmid29

DMD. Let UkΣkV
H
k be the truncated rank–k SVD of X, the Schmid DMD computes30

an approximation of AT in span{Uk} as31

AT = UkU
H
k Y (UkΣkV

H
k )†Uk = UH

k Y VkΣ
−1
k .32

We also provide our own DMD implementation with normalization.33

The above computational approach in finite dimension has its counter part in func-34

tional space. It is equivalent to first restrict K to the subspace spanned by f1, . . . , fd35

where we assume36

si = [f1(ti) · · · fd(ti)]T ,37

with f1, . . . , fd are not fully known but only known their evaluations at t1, . . . , tn (we38

can think of ti as time). After the restriction, the above DMD approach corresponds39

∗Joint work with Nian Shao.

1

This manuscript is for review purposes only.



to the following least square problem40 ∫
|fA−Kf |2dδN41

where δN is the discrete measure, f = [f1 · · · fd] is a quasi-matrix in the sense of [5].42

From this discussion, we can expect that our computed A’s eigenvalues approximate43

the true eigenvalues of K better and better with more snapshots (i.e., more time steps44

so that the discrete measure approximates the underlying measure of the sample45

space) and more observables (i.e., larger subspaces so that the restricted map approx-46

imates the original map). Then the eigenvalue of A is the approximated eigenvalues47

of K with Rayleigh-ritz procedure to restrict to span{f1, · · · , fd}.48

Let A = QΛQ−1 be the corresponding eigenvalue decomposition of A. From the49

minimization process, we know that50

Kf ≈ fA,51

thus,52

KfQ ≈ fQΛ,53

and we know that ϕ = [ϕ1 · · ·ϕd] = fQ are the approximated eigenfunctions of K. But54

they are only known to us at the given snapshots, i.e., we only know ϕ(t1), . . . , ϕ(tn).55

Then we can express the partially known observables f in terms of ϕ,56

fT = Q−T (fQ)T = Q−TϕT =
∑

ziϕi57

where zi is the ith columns of Q−T . Then it follows straightforwardly to obtain the58

so-called koopman mode decomposition59

KkfT (s1) ≈
∑

ziϕi(s1)λ
k
i .60

The vector ziϕi(s1) has key information of our dynamical system, especially for the61

task of video background extraction, which will be discussed in the following subsec-62

tion.63

2.2. Video background extraction. Consider the vector zi, each entry of zi,64

zi(j), is the component that how much of fj belongs to the eigenfunction ϕi, if we65

collect all of these component into one vector zi ∈ Cd, it extracts the component that66

how our snapshot f = [f1 · · · fd] belongs to the ith eigenfunction ϕi. Note that this67

vector zi will envolve with respect to time in the same way as the eigenfunction ϕi68

envolve with respect to the koopman operator K by the formula69

KkfT (s1) ≈
∑

ziϕi(s1)λ
k
i .70

That is, we decompose the whole dynamical system in terms of the individual envo-71

lution of the components corresponding to each eigenfuction ϕi.72

Consider our data now as video and each snapshot is an image, the zi vector is73

also an image. It captures how much each frame can be decomposed into different74

eigenfuntcion ϕi. But we can have physical interpretation for zi in terms of video.75

Imagine one extreme case that ϕ1 has eigenvalue 1, then the component that corre-76

sponding to ϕ1, z1, will not change with respect to time, i.e., zi capture the unmoved77

component in the video, which by definition, is the background. For the component78
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vector zi that corresponds to an eigenvalue of K with a large negative real part, it will79

decay rapidly and therefore corresponding to the object that disappear quickly in the80

video. For example, when a car go pass by a section of the highway, we can expect81

that the components that corresponding to the car, if we express them in koopman82

modes, shall correspond to eigenvalues with large negative real parts. On the other83

hand, the components that corresponding to the road should close to 1. These key84

observation provide us with a criteria to select koopman modes as background or85

foreground; we can look at the quantity | log(λi)|, if this quantity is small, meaning86

that the corresponding koopman mode has approximated eigenvalue close to 1, which87

is more likely to correspond to the background.88

3. Our approach.89

3.1. Low rank image patches. For video data, one major challenge is that90

each frame is a image with a very high dimension, e.g., 1920 × 1080. To efficiently91

perform DMD even in real time, we should compress our video data. In [1–3], random-92

ized SVD (RSVD) are proposed to replace the original SVD in the DMD computation93

to reduce the complexity. However, they all consider the standard vectorization of94

images, which might destroy the connection between nearby pixels within one frame95

. This problem is addressed in [4] by dictionary learning, where images are divided96

into small patches, and for each small patch, a dictionary is learnt from the whole97

video, and in each frame, we only extract the coefficients of the corresponding com-98

ponents in the dictionary, this reduces the dimension and keep the local coherence of99

the pixels. However, in [4], the process of the dictionary learning is solved by very100

expensive iterative optimization method, which is much more expensive than the full101

DMD directly to frames.102

In this report, we propose Low Rank Image Patch. It is based on the observation103

that if we vectorize each patch, stack each vectorized patch at different frames in the104

video into a short and fat matrix, this matrix is expected to be low rank, as for each105

patch, it is very unlikely to change dramatically with respect to time, (e.g., consider106

a car passing by a section of a road), and therefore we can use only a few basis vector107

to approach the range. This procedure is summarized as follows108

Algorithm 3.1 Low Rank Patch Extraction (LRPE)

Input: A video V ∈ Rm×n×T , # of patches N , rank r,
Output: r basis vectors of each patch, in total r ×N vectors.
1: for i = 1 to N
2: extract patch i, pi(k) for V (:, :, k), k = 1, . . . , T ,
3: A = [pi(1), . . . , pi(T )]
4: compute top r left singular vectors of A and keep them for output
5: end for

After finding the basis vectors, we only need to run DMD on the coefficient of109

each patch with respect to the corresponding basis vectors. That is, we perform usual110

DMD on the vectorization of the coefficients of each patch.111
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Algorithm 3.2 LRPE DMD

Input: A video V ∈ Rm×n×T , basis vectors of N patches Q1, . . . , QN

1: for i = 1 to N
2: extract patch i, pi(k) for V (:, :, k), k = 1, . . . , T ,Ci(k) = QT

i pi(k)
3: end for
4: Run DMD on [[C1(1) · · ·CN (1)]T · · · [C1(T ) · · ·CN (T )]T ].

3.2. Iterative refinement. It is possible to refine the result by iteratively run-112

ning DMD on the residual after extracting the background, to capture more part of113

moving background in the resulting foreground, as suggested in [].114

However, we find out that if we do not do truncation in solving the least square115

problem in DMD, we should expect identical result among different refinement itera-116

tion. If we have117

A = Y X†
118

and obtain the first background as119

B = [v1 · · · vn].120

Divide B into121

B1 = [v1 · · · vn−1], B2 = [v2 · · · vn] = AB1122

and substract them from the original snapshots we get123

X ′ = X −B1, Y ′ = Y −AB1.124

We will have125

Y ′X ′† = A.126

However, if we truncate the SVD when we solve the least square problem in127

DMD, which corresponds to throwing away information we do not trust, we can128

expect improvement from the.129

4. Numerical results. All numerical experiments in this section are imple-130

mented in Matlab 2022b and executed with an AMD Ryzen 9 6900HX Processor (8131

cores, 3.3–4.9 GHz) and 32 GB of RAM. We apply our novel DMD background ex-132

traction method to two real videos, one is of small size (90 × 72 resolution) and the133

other is of large size (852 × 480 resolution). We also compared our implementation134

with the original implementation of dictionary learning [] on the small size video,135

while on the large-size video, the original algorithm is too slow to produce an output136

within a reasonable time.137

For the small-size video, we use their video as Figure 4.1. Compared with their138

algorithm (using their public codes), we can achieve a 484× speed–up, i.e., from 141.7139

seconds to 0.2927 seconds. The background and foreground reconstructed are given140

in Figures 4.2 and 4.3. Compared with their results, our method can recover a better141

foreground, i.e., two people are walking around.142

Now we would like to discuss possible reasons for the superiority of low–rank143

approximation (our method) than dictionary learning (their method). Dictionary144

learning and sparse approximation are effective methods in signal processing. How-145

ever, compared with signal, the video is much more complex and noiseless. In our146

setting, for each batch, there is no need to use a very large size of dictionary. More-147

over, in our problem, we do not to predict the further video, which means we have all148
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data in hand. In such a situation, truncated SVD is the best low–rank approximation,149

especially when the video admits a low–rank structure. Thus, it is not surprise that150

low–rank approximation will outperform dictionary learning.151

For the large-size video (Figure 4.4), their method does not work; it does not152

produce the result within a reasonable time. We sucessfully extract the backgound153

keyboard of this instrument, as shown in Figure 4.5. We only show one image because154

this does not change with respect to frames in this example.155

Fig. 4.1: Slice of small size video.

(a) Background

(b) Foreground

Fig. 4.2: Background and foreground recovered by our method.

5. Conclusion. In this report we present a novel DMD algorithm for video back-156

ground extraction, and we demonstrate the intuition why low rank patch compression157

can help improve both the accuracy and efficiency. We demonstrate our advantage158

over the original improvement on real videos.159

During the low rank patch compression phase, the current compression method160

is standard SVD, but in this situation, the target rank is known to us, and therefore161
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(a) Background

(b) Foreground

Fig. 4.3: Background and foreground recovered by their method.

Fig. 4.4: Slice of small size video.

we expect Randomized SVD (RSVD) can significantly improve the efficiency without162

too much loss of accuracy.163

We also would like to extend our current algorithm into streaming setting to164

capture the change of the background with respect to time, and this we need more165

efficient implementation of compression (again, RSVD is suitable) and seek for SVD166

or QR update to allow for streaming data.167

We also expect that our work can be extended to video frames prediction.168
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Fig. 4.5: Background of the large video
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