1

16
17
18

19

20

CI)
ot

33
34
35
36

37

DMD WITH LOW RANK FEATURE COMPRESSION FOR VIDEO
BACKGROUND EXTRACTION *

HAOZE HE

1. Introduction. DMD, a mathematical method that was developed to under-
stand the evolution of a dynamical system without prior knowledge of their govern-
ing equations, proves to be well-suited for extracting insights from real-world data
captured as snapshots over time. Video data falls into this scheme, and therefure
DMD is a suitable method to understand video data. Additionally, another property
of DMD, wwhich we will delve into later, is the higher the dimension of the snap-
shot /observation/measurement is, the better DMD can understand or reconstruct the
underlying dynamics. Video data typically falls into this category, with each frame
representing an image residing in a high-dimensional Euclidean space. The specific
focus of this report is on background extraction in video learning tasks.

2. DMD and video background extraction.
2.1. DMD. Consider a discrete dynamical system

zZ; = T(Zifl)

where the states z;,7 = 0,1,... lie in a state space X. Consider observables (e.g.,
measurements) f € F : X — C and we define the Koopman operator, which is a key
concept of DMD, as follows:

Kf(zi) = f(T(2)) = f(zit1)-

By its definition, C is linear, and if the space of observalbes F is “nice” enough,
(e.g., F C L*(X,p)), K has a discrete spectral decomposition, and DMD is a way to
approach this spectral decomposition given only snapshot data of the dynamics.

Let S = [s1---s,] € C¥" be the snapshots, that is, s; = [fi(z;) -+ fa(2:)];
they are the measurements of the states z1,...,2,. Let X =5(1:n—-1),Y =5(2:
n), our task is to find a best fit matrix A such that [|[XTA — YT||r is as small as
possible. Mathematically, one of the optimal A can be computed by A = (Y X7
where t denotes the pseudo-inverse. However, computing the pseudo—inverse of a
rank—deficient matrix is unstable. To avoid the ill-conditioness, we apply the Schmid
DMD. Let UkEkaH be the truncated rank—k SVD of X, the Schmid DMD computes
an approximation of AT in span{U}} as

AT = Uy (U s v o, = Ultv v st

We also provide our own DMD implementation with normalization.

The above computational approach in finite dimension has its counter part in func-
tional space. It is equivalent to first restrict K to the subspace spanned by fi,..., f4
where we assume

si = [f1(ti) -+ fa(ts)]",

with fi,..., fq are not fully known but only known their evaluations at ¢y, ...,t, (we
can think of ¢; as time). After the restriction, the above DMD approach corresponds

*Joint work with Nian Shao.

This manuscript is for review purposes only.

60

61
62
63

64
65
66
67
68
69

-~

U W N =

b I A N B BN R B |

o

to the following least square problem
[17a-kspasy

where dn is the discrete measure, f = [f1 -+ f4] is a quasi-matrix in the sense of [5].
From this discussion, we can expect that our computed A’s eigenvalues approximate
the true eigenvalues of K better and better with more snapshots (i.e., more time steps
so that the discrete measure approximates the underlying measure of the sample
space) and more observables (i.e., larger subspaces so that the restricted map approx-
imates the original map). Then the eigenvalue of A is the approximated eigenvalues
of K with Rayleigh-ritz procedure to restrict to span{ fi,---, fa}.

Let A = QAQ ! be the corresponding eigenvalue decomposition of A. From the
minimization process, we know that

Kf=~fA,
thus,
KfQ =~ fQA,
and we know that ¢ = [¢1 - - - d4] = fQ are the approximated eigenfunctions of K. But
they are only known to us at the given snapshots, i.e., we only know ¢ (1), ..., ¢(tn).

Then we can express the partially known observables f in terms of ¢,
=@ QT = Q" = s

where z; is the ith columns of Q~7. Then it follows straightforwardly to obtain the
so-called koopman mode decomposition

KEfT (s1) m) zidha(s1)AY.

The vector z;¢;(s1) has key information of our dynamical system, especially for the
task of video background extraction, which will be discussed in the following subsec-
tion.

2.2. Video background extraction. Consider the vector z;, each entry of z;,
zi(j), is the component that how much of f; belongs to the eigenfunction ¢;, if we
collect all of these component into one vector z; € C%, it extracts the component that
how our snapshot f = [f1 -+ fq] belongs to the ith eigenfunction ¢;. Note that this
vector z; will envolve with respect to time in the same way as the eigenfunction ¢;
envolve with respect to the koopman operator K by the formula

KE T (s1) » Z zigi(s1)AF.

That is, we decompose the whole dynamical system in terms of the individual envo-
lution of the components corresponding to each eigenfuction ¢;.

Consider our data now as video and each snapshot is an image, the z; vector is
also an image. It captures how much each frame can be decomposed into different
eigenfuntcion ¢;. But we can have physical interpretation for z; in terms of video.
Imagine one extreme case that ¢; has eigenvalue 1, then the component that corre-
sponding to ¢1, z1, will not change with respect to time, i.e., z; capture the unmoved
component in the video, which by definition, is the background. For the component

2

This manuscript is for review purposes only.

79
80
81
82
83
84
85
86
87

88

89

90
91
92
93
94

109
110
111

vector z; that corresponds to an eigenvalue of I with a large negative real part, it will
decay rapidly and therefore corresponding to the object that disappear quickly in the
video. For example, when a car go pass by a section of the highway, we can expect
that the components that corresponding to the car, if we express them in koopman
modes, shall correspond to eigenvalues with large negative real parts. On the other
hand, the components that corresponding to the road should close to 1. These key
observation provide us with a criteria to select koopman modes as background or
foreground; we can look at the quantity |log(A;)[, if this quantity is small, meaning
that the corresponding koopman mode has approximated eigenvalue close to 1, which
is more likely to correspond to the background.

3. Our approach.

3.1. Low rank image patches. For video data, one major challenge is that
each frame is a image with a very high dimension, e.g., 1920 x 1080. To efficiently
perform DMD even in real time, we should compress our video data. In [1-3], random-
ized SVD (RSVD) are proposed to replace the original SVD in the DMD computation
to reduce the complexity. However, they all consider the standard vectorization of
images, which might destroy the connection between nearby pixels within one frame
. This problem is addressed in [4] by dictionary learning, where images are divided
into small patches, and for each small patch, a dictionary is learnt from the whole
video, and in each frame, we only extract the coefficients of the corresponding com-
ponents in the dictionary, this reduces the dimension and keep the local coherence of
the pixels. However, in [4], the process of the dictionary learning is solved by very
expensive iterative optimization method, which is much more expensive than the full
DMD directly to frames.

In this report, we propose Low Rank Image Patch. It is based on the observation
that if we vectorize each patch, stack each vectorized patch at different frames in the
video into a short and fat matrix, this matrix is expected to be low rank, as for each
patch, it is very unlikely to change dramatically with respect to time, (e.g., consider
a car passing by a section of a road), and therefore we can use only a few basis vector
to approach the range. This procedure is summarized as follows

Algorithm 3.1 Low Rank Patch Extraction (LRPE)

Input: A video V € R™>*"*T 4 of patches N, rank r,
Output: r basis vectors of each patch, in total » x N vectors.
1: fori=1to N
2: extract patch 4, p;(k) for V(i1 k), k=1,...,T,
3 A=[pi(1),....pi(T)]
4: compute top r left singular vectors of A and keep them for output
5: end for

After finding the basis vectors, we only need to run DMD on the coefficient of
each patch with respect to the corresponding basis vectors. That is, we perform usual
DMD on the vectorization of the coefficients of each patch.

3

This manuscript is for review purposes only.

112
113
114
115
116
117
118

119

125
126
127
128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

Algorithm 3.2 LRPE DMD

Input: A video V € R™*"*T basis vectors of N patches Q1,...,Qn
1: fori=1to N
2. extract patch 4, p;(k) for V(i1 k), k=1,...,T,Ci(k) = Q¥ p;(k)
3: end for
4: Run DMD on [[Cy(1)---Cn(D)]T -+ [C1(T) - - - On(T)]T].

3.2. Iterative refinement. It is possible to refine the result by iteratively run-
ning DMD on the residual after extracting the background, to capture more part of
moving background in the resulting foreground, as suggested in [].

However, we find out that if we do not do truncation in solving the least square
problem in DMD, we should expect identical result among different refinement itera-
tion. If we have

A=YX!

and obtain the first background as
B=1[v - vyl

Divide B into
By=[v1 -+ vp_1], Ba=[va --- v, =AB

and substract them from the original snapshots we get
X'=X-B), Y =Y-AB,.

We will have
Y/ X' = A.

However, if we truncate the SVD when we solve the least square problem in
DMD, which corresponds to throwing away information we do not trust, we can
expect improvement from the.

4. Numerical results. All numerical experiments in this section are imple-
mented in Matlab 2022b and executed with an AMD Ryzen 9 6900HX Processor (8
cores, 3.3-4.9 GHz) and 32 GB of RAM. We apply our novel DMD background ex-
traction method to two real videos, one is of small size (90 x 72 resolution) and the
other is of large size (852 x 480 resolution). We also compared our implementation
with the original implementation of dictionary learning [] on the small size video,
while on the large-size video, the original algorithm is too slow to produce an output
within a reasonable time.

For the small-size video, we use their video as Figure 4.1. Compared with their
algorithm (using their public codes), we can achieve a 484 speed—up, i.e., from 141.7
seconds to 0.2927 seconds. The background and foreground reconstructed are given
in Figures 4.2 and 4.3. Compared with their results, our method can recover a better
foreground, i.e., two people are walking around.

Now we would like to discuss possible reasons for the superiority of low-rank
approximation (our method) than dictionary learning (their method). Dictionary
learning and sparse approximation are effective methods in signal processing. How-
ever, compared with signal, the video is much more complex and noiseless. In our
setting, for each batch, there is no need to use a very large size of dictionary. More-
over, in our problem, we do not to predict the further video, which means we have all

4

This manuscript is for review purposes only.

149
150
151
152
153
154
155

156
157
158
159
160
161

data in hand. In such a situation, truncated SVD is the best low-rank approximation,
especially when the video admits a low-rank structure. Thus, it is not surprise that
low—rank approximation will outperform dictionary learning.

For the large-size video (Figure 4.4), their method does not work; it does not
produce the result within a reasonable time. We sucessfully extract the backgound
keyboard of this instrument, as shown in Figure 4.5. We only show one image because
this does not change with respect to frames in this example.

(a) Background

(b) Foreground

Fig. 4.2: Background and foreground recovered by our method.

5. Conclusion. In this report we present a novel DMD algorithm for video back-
ground extraction, and we demonstrate the intuition why low rank patch compression
can help improve both the accuracy and efficiency. We demonstrate our advantage
over the original improvement on real videos.

During the low rank patch compression phase, the current compression method
is standard SVD, but in this situation, the target rank is known to us, and therefore

5

This manuscript is for review purposes only.

162
163
164
165
166
167
168

(a) Background

(b) Foreground

Fig. 4.3: Background and foreground recovered by their method.

Fig. 4.4: Slice of small size video.

we expect Randomized SVD (RSVD) can significantly improve the efficiency without
too much loss of accuracy.

We also would like to extend our current algorithm into streaming setting to

capture the change of the background with respect to time, and this we need more
efficient implementation of compression (again, RSVD is suitable) and seek for SVD
or QR update to allow for streaming data.

We also expect that our work can be extended to video frames prediction.

6

This manuscript is for review purposes only.

169

170
171
172
173

Fig. 4.5: Background of the large video

REFERENCES

[1] N. B. Erichson, S. L. Brunton, and J. N. Kutz. Compressed dynamic mode decomposition for
background modeling. Journal of Real-Time Image Processing, 16(5):1479-1492, 2019.

[2] N. B. Erichson and C. Donovan. Randomized low-rank dynamic mode decomposition for motion
detection. Computer Vision and Image Understanding, 146:40-50, 2016.

7

This manuscript is for review purposes only.

[3] J. Grosek and J. N. Kutz. Dynamic mode decomposition for real-time background/foreground
separation in video. arXiv preprint arXiv:1404.7592, 2014.

[4] 1. U. Haq, K. Fujii, and Y. Kawahara. Dynamic mode decomposition via dictionary learning for
foreground modeling in videos. Computer Vision and Image Understanding, 199:103022,
2020.

[5] L. N. Trefethen. Householder triangularization of a quasimatrix. IMA J. Numer. Anal.,
30(4):887-897, 2010.

This manuscript is for review purposes only.

	Introduction
	DMD and video background extraction
	DMD
	Video background extraction

	Our approach
	Low rank image patches
	Iterative refinement

	Numerical results
	Conclusion
	References

