
Dynamic Mode Decomposition
for Wave Propagation

Fabio Matti

April 30, 2024

Abstract

Dynamic mode decomposition (DMD) is a computational method for
extracting the relevant components in the evolution of a non-linear dynami-
cal system. In this project we apply DMD to wave-like phenomena varying
from the propagation of electromagnetic waves in non-linear media to trac-
tion tests for the study of material property. We propose multiple implemen-
tation techniques for these systems which help the DMD algorithms DMD
perform better and at scale. Among other things, we exploit the Khatri-Rao
product structure of the observations to develop a tensor-based DMD and
propose a more stable and efficient approach to updating DMDs from a
data stream. Further, we investigate the suitability of DMD for observa-
tions stemming from problems governed by the wave equation, and make
a conclusive recommendation for the suitability of DMD in this scenario.

1 Introduction

The Koopman formalism introduces an infinite dimensional operator which
linearlizes the time evolution of a non-linear dynamical system [8]. Making use
of an invariant subspace of this linear operator alows us to express the dynamics
in a compact formula whose constituents can be further analyzed to identify
dominant structures and reduce the order of the model. Even when the state of
a system evolves non-linearly, we can construct observations in such a way that
they – at least locally – approximately exhibit a linear evolution. To extract the
dominant components making up these observations, we can use a wide variety
of tools, which were originally applied to fluid flows, but can be applied in more
general settings. These methods are often termed dynamic mode decomposition
(DMD) [14, 2, 3, 15].

The goal of this project is to adapt the DMD to the numerical solution of
certain time-dependent partial differential equations governing wave type phe-
nomena and to investigate their suitability for this particular family of problems.
The prototypical example of such problems is the wave equation. Let Ω ⊂ Rd

1

be an open connected domain with Lipschitz boundary and let I = [0, T] be the
time domain with T > 0 denoting the final time. We look for u : Ω× [0, T]→ R
such that

(1.1)



ü−∇ · (c2∇u) = f in Ω× (0, T],
u = gD on ∂ΩD × (0, T],
c2∇u · n = gN on ∂ΩN × (0, T],
u = u0 in Ω,
u̇ = v0 in Ω,

where u0 and v0 are two initial conditions, gD and gN are Dirichlet and Neumann
boundary conditions, respectively, and ∂ΩD and ∂ΩN form a disjoint partition
of the boundary (i.e. ∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD ∩ ∂ΩN = ∅). The positive
valued function c represents the wave velocity. Similar looking PDEs arise in
structural dynamics, where the unknown is a vector valued displacement field
and the differential operator is the divergence of a stress tensor. A Galerkin
discretization of the spatial variables leads to solving the semi-discrete problem

Mü(t) + Su(t) = f(t) for t ∈ [0, T]
u(0) = u0

u̇(0) = v0

(1.2)

where the stiffness matrix S ∈ Rn×n is symmetric and the mass matrix M ∈
Rn×n is symmetric positive definite and u(t) ∈ Rn is the solution vector which
contains the approximation of the solution in a finite dimensional subspace [11].
Our task is to determine a low-dimensional representation of the solutions ui =
u(ti) which result from solving (1.2) for discrete and uniformly spaced time
steps t1, t2, . . . , tm.

1.1 Related work
The DMD for dimensionality reduction of observations derived from a non-
linear fluid flows has already been popularized by [14]. Since then, a number
of improvements to the standard DMD procedure have been proposed On one
hand, refining the DMD eigenvalues and modes to even better reflect the spec-
tral properties of the linear relation between the observations was proposed [2].
On the other, an alternative and more robust algorithm for reconstructing the
snapshots from a set of DMD eigenvalues and modes was developed [3].

The DMD has been successfully applied to a wide set of problems outside
the domain of fluid dynamics. Partial differential equations of a similar nature
to our problem have already been studied in multiple cases [12]. Also, related
problems in structural mechanics have already been discussed in [16]. To our
knowledge, we are the first to exploit the approximate Khatri-Rao structure for
these types of problems.

2

1.2 Notation
We try to keep the notation as consistent throughout the report as possible. In
particular,

• we exclusively work with objects over the real numbers R or the complex
numbers C and non-zero integers N;

• scalar are represented by lower case Greek or Latin letters (s, ε, . . .), vec-
tors are additionally printed in bold (v, µ, . . .), matrices are additionally
underlined (A, Ω, . . .), and tensors are printed caligraphically (A, Y, . . .);

• the components of a vector v ∈ Cn are vi ∈ C, i = 1, . . . ,n, and the elements
of a matrix A ∈ Cn×n are aij ∈ C, i, j = 1, . . . ,n;

• the diagonal of a matrix A ∈ Cn×n is the vector diag(A) = [a11,a22, . . . ,ann]
⊤

while for a vector v ∈ Cn the matrix diag(v) is a diagonal matrix with the
components of v on its diagonal. Similarly, the diagonal of a d-th order
tensor A ∈ Cn×n×···×n is diag(A) = [a11...1,a22...2, . . . ,ann...n]

⊤;

• the identity matrix In = diag(1, . . . , 1) ∈ Cn×n carries ones on its diagonal
and zeros everywhere else. The zero matrix 0n×m ∈ Cn×m consists of only
zero entries;

• the eigenvalues of a square matrix A ∈ Cn×n are all scalars λ which, to-
gether with some non-zero vectors v, satisfy the condition Av = λv. We
denote them as λ1 ⩾ · · · ⩾ λn;

• the transpose of a matrix A is denoted with A⊤, while the Hermitian con-
jugate is defined as A∗ = A

⊤
;

• all matrices A ∈ Cn×m with n ⩾ m allow a spectral decomposition A =
UΣV∗ with Σ = [diag(σ1, . . . ,σn), 0n×(n−m)] ∈ Cn×m, U ∈ Cn×n such that
U∗U = In, and V ∈ Cm×m such that V∗V = Im. The computation of this
decomposition is denoted with [U,Σ,V] = svd(A);

• all matrices A ∈ Cn×m with n ⩾ m allow a factorization A = QR Q ∈
Cn×m such that Q∗Q = In, and upper triangular matrix R ∈ Cm×m. The
computation of this decomposition is denoted with [Q,R] = qr(A);

• most rectangular matrices we work with allow a spectral decomposition
A = WΛW∗ with Λ = diag(λ1, . . . , λn) ∈ Rn×n and W ∈ Cn×n such
that W∗W = In. The computation of this decomposition is denoted with
[W,Λ] = eig(A);

• norms are denoted with ∥·∥. In particular, the 2-norm of a vector x ∈ Cn is
defined as ∥x∥2 =

(∑n
i=1 x

2
i

)1/2;

3

• the pseudoinverse of a matrix is denoted with A†. It satisfies A† = (A⊤A)†A⊤,
and if A has linearly independent columns, it acts as a left inverse in the
sense that A†A = In;

• the Kronecker product of two matrices A ∈ Cn×m and B ∈ Cp×q is defined
as

(1.3) A⊗ B =

a11B . . . a1mB
...

...
an1B . . . anmB,

 ;

• the Khatri-Rao product of A = [a1,a2, . . . ,am] ∈ Cn×m with B = [b1,b2, . . . ,bm] ∈
Cp×m is defined as A⊙ B = [a1 ⊗ b1,a2 ⊗ b2, . . . ,am ⊗ bm]

• the Hadamard product of of A,B ∈ Cn×m is (A ∗ B)ij = aijbij;

• the outer product of d vectors ai ∈ Cni is the n1 × n2 × · · · × nd tensor A
with elements ai1i2...id = (a1)i1(a2)i2 · · · (ad)id ;

• the inner product of two d-th order tensors the X,Y ∈ Cn1×n2×···×nd is

(1.4) ⟨X,Y⟩
n1∑
i1

n2∑
i2

· · ·
nd∑
id

xi1i2...idyi1i2...id ;

• the canonical polyadic (CP) format of a tensor X ∈ Cn1×n2×···×nd is denoted
with

(1.5) X = [[λ;A1, . . . ,Ad]] =

r∑
j=1

λj(a
(1)
j ◦ a

(2)
j ◦ · · · ◦ a

(d)
j)

where Ai = [a
(i)
1 ,a(i)

2 . . . a(i)
r] ∈ Cni×r and λ ∈ Cr. Numerically approxi-

mating a d-th order tensor with the CP-rank r is denoted with [A1,A2, . . . ,Ad] =
cp(X, r);

• The µ-mode multiplication of a tensor X ∈ Cn1×n2×dots×nd with a matrix
A ∈ Rnµ×m is a n1 ×n2 × · · · ×nµ−1 ×m×nµ+1 × · · · ×nd tensor defined
as

(1.6) (X ◦µ A)i1i2...id =

nµ∑
k=1

xi1i2...iµ−1kiµ+1...idakiµ ;

• the vectorization of a matrix A = [a1,a2, . . . ,am] ∈ Cn×m is the vector of
columns

(1.7) vec(A) =


a1

a2
...

am

 ∈ Cnm.

4

Similarly, the vetorization of a tensor is defined in reverse lexicographical
ordering;

• a matrix A ∈ Cn×n is said to be positive semi-definite if its eigenvalues are
all non-negative;

• closed interval are written as [a,b] ⊂ R and open intervals as (a,b) ⊂ R;

• and finally, we use O to describe the asymptotic lower and upper bounds
on the complexity of a computation.

1.3 Organization of the report
This paragraph concludes the introduction. We start the next section by giving
a brief summary of the Koopman formalism and how the DMD comes to use
in it. We explain the intuition behind multiple DMD algorithms. One of which
we extend to the streaming framework with a more robust method than what is
conventionally used. Section 2 is then concluded with a summary of some ways
the observations can be reconstructed from a DMD. In section 3 we fine tune
the DMD algorithms to the specific problem we study. In particular, we exploit
the approximate Khatri-Rao structure of the observations to achieve a more
favorable scaling in higher spatial dimensions and overall improved algorithmic
complexities. Section 4 contains the numerical experiments which we have run.
The report is then concluded in a short discussion.

2 From the Koopman operator to dynamic mode de-
composition

We consider dynamical systems which undergo a temporal evolution of the form

(2.1) xi+1 = F{xi}

for a nonlinear operator F : M→M which transforms the system from a state xi
into its next state xi+1. In most cases, directly studying properties of a non-linear
operator is a difficult task. Instead, we can work in an embedding of observables
ϕ : M → C of the system’s state. Then the mapping K{ϕ} = ϕ ◦ F which maps
an observable ϕ to its composition with the operator F describes the evolution
of these observables

(2.2) ϕ(xi+1) = K{ϕ(xi)}

The linear, infinite dimensional operator K and is refered to as the Koopman
operator. Due to the linearity of K, it has a set of eigenvalues and eigenfunctions

(2.3) Kφj(x) = λjφj(x), j = 1, 2,

5

In the basis of eigenfunctions we can subsequently expand any observable

(2.4) ϕ(x) =

∞∑
j=1

φj(x)zj

or in the case of vector-valued observables ϕ : M→ Cn, each component of the
observable as

(2.5) ϕ(x) =

∞∑
j=1

φj(x)zj

for some coefficient vectors zj ∈ Cn, j = 1, 2, Note that in this case, we can
express the iterates of the observables as

(2.6) ϕ(xm+1) =

∞∑
j=1

Kmφj(x1)zj =

∞∑
j=1

λm
j φj(x1)zj =

∞∑
j=1

λm
j αjzj

where {λj,φj}
∞
j=1 are the eigenvalues and eigenfunctions of the Koopman opera-

tor and {zj}
∞
j=1 the coefficient vectors of the decomposition of the observables in

the eigenbasis of K, often called the Koopman modes.
It turns out to be more convenient to interpret the expansion (2.5) as an

expansion of the observables ϕ terms of the Koopman modes zj. Our task is
now to find a finite set of Koopman eigenvalues and Koopman modes {̃λj, z̃j}

k
j=1

in which we can expand ϕ(x) as exactly as possible.
However, achieving an exact expansion is usually only possible in the case

where the observations ϕi = ϕ(xi), i = 1, 2, . . . evolve linearly

(2.7) ϕi+1 = Kϕi, i = 1, 2, . . .

for the (unknown) matrix K ∈ Cn×n representing the linear operator K.
Thus, the two basic steps of any DMD procedure should be to

1. determine observables ϕ(xi) of the system states xi which approximately
evolve as ϕi+1 = Kϕi for a constant matrix K ∈ Cn×n;

2. and approximate some eigenvalues and eigenvectors {̃λj, z̃j}
k
j=1 of the ma-

trix K based on a sequence of observables ϕ(x1),ϕ(x2), . . . ,ϕ(xm).

2.1 Approximating DMD modes and eigenvalues
We will now present a variety of techniques which approximate eigenvalues and
eigenvectors of the matrix K without explicitly forming it.

6

Krylov DMD As we increase the number of observables, the Krylov matrix

(2.8) Φ1:m = [ϕ1,ϕ2, . . . ,ϕm] = [ϕ1,Kϕ1, . . . ,Km−1ϕ1]

will capture the dominant features of the underlying physical process, which
eventually allows us to represent the observable ϕm as a linear combination of
the previous observables

(2.9) ϕm+1 = Kϕm = c1ϕ1 + c2ϕ2 + · · ·+ cmϕm + r = Φ1:mc+ r

for a residual vector r ∈ Cn and the coefficient vector c = [c1, c2, . . . , cm]⊤. Em-
ploying the matrix notation we see by combining (2.7) and (2.9) that

(2.10) KΦ1:m = Φ2:m+1 = Φ1:mH+ re⊤
m

for the upper Hessenberg matrix

(2.11) H =


0 c1

1 0 c2
.

1 0 cm−1

1 cm

 .

From the analysis of the Arnoldi method, we know that for small residuals r,
i.e. in the case where the observable ϕm+1 can be represented well in terms of
previous observables ϕ1,ϕ2, . . . ,ϕm, the eigenvalues of the upper Hessenberg
matrix H approximate some of the eigenvalues of K well, and approximate
eigenvectors of K can be derived from those of H [13]. For instance, we can
find coefficients c1, c2, . . . , cm which minimize the residual r by solving the least
squares problem

(2.12) min
c
∥ϕm+1 −Φ1:mc∥2

In practice, this method is often unstable. The main issue is that for achiev-
ing a small residual r it is often necessray to increase m to such an extent that
ϕ1,ϕ2, . . .ϕm become linearly dependent, and consequently the matrix Φ1:m
highly ill-conditioned.

Algorithm 2.1: Krylov DMD

Input: Observations ϕ1,ϕ2, . . . ,ϕm+1
Output: DMD modes, eigenvalues, and residuals {zi, λi, ri}mi=1

1: Solve minc∈Cm∥ϕm+1 −Φ1:mc∥2

2: Form the matrix H from (2.11)
3: [W,Λ] = eig(H)
4: Let zi = Φ1:mwi and λi = (Λ)ii for i = 1, 2, . . . ,m

7

5: Let ri = (W)m,i

Schmid DMD In order to counteract the shortcomings of the above introduced
Krylov method, we introduce a preprocessing step by first computing the sin-
gular value decomposition (SVD) of the matrix Φ1:m = UΣV∗. Potential rank-
deficiency of the matrix Φ1:m can then be taken account of by removing the
singular values which are zero, and removing the corresponding columns from
U and V to form the truncated SVD UkΣkV

∗
k. Inserting this expression into 2.10

and rearranging the terms we get

(2.13) H̃ = U∗
kΦ2:m+1VkΣ

−1
k

Again, the eigenvalues of H̃ approximate the eigenvalues of K, and the corre-
sponding eigenvectors are computed by left-multiplication with Uk.

Algorithm 2.2: Schmid DMD

Input: Observations ϕ1,ϕ2, . . . ,ϕm+1, tolerance ε

Output: DMD modes, eigenvalues, and residuals {zi, λi, ri}mi=1
1: [U,Σ,V] = svd(Φ1:m)
2: Let k = max{k ∈ {1, 2, . . . ,m}|σk ⩾ ε}

3: Truncate Uk, Σk, and Vk

4: Compute H̃ = U∗
kΦ2:m+1VkΣ

−1
k

5: [W,Λ] = eig(H̃)
6: Let zi = Ukwi and λi = (Λ)ii for i = 1, 2, . . . ,m
7: Let ri = ∥Φ2:m+1Σ

−1W −ΛZ∥2

QR-compressed DMD When working with high-dimensional observations,
it can be useful to find an orthogonal basis in which the observations are then
represented more compactly which makes it faster and easier to compute a DMD.
In short, we first compute a decomposition Φ1:m = QR1:m for an orthogonal
matrix Q ∈ Cn×m and a small matrix R1:m ∈ Cm×m. The DMD can then be
computed on R1:m and the resulting eigenvectors recovered by left-multiplying
them with Q.

Algorithm 2.3: QR-compressed DMD

Input: Observations ϕ1,ϕ2, . . . ,ϕm+1, tolerance ε

Output: DMD modes, eigenvalues, and residuals {zi, λi, ri}mi=1
1: [Q,R1:m] = Φ1:m
2: Run algorithm 2.2 on R1:m to obtain DMD modes, eigenvalues, and resid-

uals {z̃i, λi, ri}mi=1
3: Let zi = Qz̃i for i = 1, 2, . . . ,m

8

This compressed representation also has the advantage that we can find ef-
ficient algorithms for updating it with new observations or “forgetting” past
observations from the representation. The idea behind these streaming techniques
can be seen in figure 2.1.

A Anew Qnew Rnew

F I G U R E 2 . 1 – The structure of a QR-factorization. The first part of the upper
triangular matrix R remains invariant under extension of the snapshot matrix
with new observations.

As opposed to the Gram-Schmidt orthogonalization procedure used in [1]
we decide to use the Householder QR factorization procedure [6]. In doing so,
the orthogonal matrix Q will only need to be formed when when we want to
extract DMD eigenvalues and modes, and the formation of Q will not be subject
to accumulated round-off errors. However, the way in which the Householder
QR algorithm is often presented is not suitable for the streaming setting [17].
Therefore, we need to rewrite the algorithm in such a way that the outermost
loop we iterate over the newly added observations. This can be realized by
keeping track of previously computed Householder reflectors, which can then
effectively be applied to each incoming observation. Compared to re-computing
the QR factorization each time we add mnew new columns, we can reduce the
complexity from O(n2(m+mnew)) to O(nmnew(m+mnew)).

Algorithm 2.4: Sequential Householder QR

Input: Matrix Anew ∈ Cn×mnew where n > mnew

Optional input: Matrices E ∈ Cn×m, V ∈ Cn×m, Q ∈ Cn×m, and R ∈
Cm×m from previous executions of the algorithm on parts of the matrix A
Output: Q

new
∈ Cn×m+mnew and Rnew ∈ Cm+mnew×m+mnew such that

Q
new

Rnew = [A,Anew]
1: Add mnew columns to Q and V, and mnew columns and rows to R
2: Extend E with mnew orthogonal columns
3: for k = m+ 1,m+ 2, . . . ,m+mnew do
4: a = A(:,k−m)
5: for j = 1, 2, . . . , k− 1 do ▷ Apply reflectors from previous iterations
6: a← a− 2V(:, j)(V(:, j)∗a)
7: R(j,k) = E(:, j)∗a

9

8: a = a− R(j,k)E(:, j)
9: R(k,k)← ∥a∥2

10: α← E(:,k)∗a
11: if α ̸= 0 then
12: E(:,k)← E(:,k)(−α/|α|)

13: V(:,k)← R(k,k)E(:,k) − a
14: V(:,k)← V(:,k) − E(:, 1 : k− 1)(E(:, 1 : k− 1)∗V(:,k)) ▷ Execute twice

to reorthogonalize
15: σ← ∥V(:,k)∥2

16: if σ ̸= 0 then
17: V(:,k)← V(:,k)/σ
18: else
19: V(:,k)← E(:,k)
20: for j = k,k− 1, . . . , 1 do ▷ Apply reflections to Q
21: Q(:,k) = Q(:,k) − 2V(:, j)(V(:, j)∗Q(:,k))

In a similar way, Householder reflectors can be employed to efficiently up-
date an existing QR-factorization when removing certain columns from the orig-
inal matrix A. Since this procedure is quite standard, we do not go into further
detail.

Refined Rayleigh-Ritz DMD The eigenvector approximations we get from
computing the Schmid DMD are not optimal in the span Zk = span{z1, z2, . . . , zk}

of all eigenvectors [2]. We can improve them by determining the minimizer

(2.14) min
z∈Zk,∥z∥2=1

∥Kz−λz∥2 = min
w∈Cn,∥w∥2=1

∥KZkw−λZkw∥2 = σmin(KZk−λZk)

for each eigenvalue λ. What results are “refined” DMD modes and eigenvalues.

Algorithm 2.5: Refined Rayleigh-Ritz DMD

Input: Observations ϕ1,ϕ2, . . . ,ϕm+1, tolerance ε

Output: DMD modes, eigenvalues, and residuals {zi, λi, ri}mi=1
1: [U,Σ,V] = svd(Φ1:m)
2: Let k = max{k ∈ {1, 2, . . . ,m}|σk ⩾ ε}

3: Truncate Uk, Σk, and Vk

4: Bk = Φ2:m+1(VkΣ
−1
k)

5: [Q,R] = qr([Uk,Bk])
6: H = diag(diag(R))R(1 : k,k+ 1 : 2k)
7: Λ̃ = eig(H)
8: for i = 1, 2, . . . , k do

10

9: Compute smallest singular value σi and right singular vector wi of[
R(1 : k,k+ 1 : 2k) − λ̃iR(1 : k, 1 : k)

R(k+ 1 : 2k,k+ 1 : 2k)

]
10: Compute λi = w∗

iHwi

11: Let zi = Ukwi

Randomized SVD The most costly operation in Schmid’s DMD algorithm
is the computation of the SVD of the n × m snapshot-matrix Φ1:m. In most
applications of the DMD, we know that the rank of this matrix is known to be
significantly lower than the number of observations m. We can make use of the
randomized SVD (RSVD) to significantly speed up this procedure at almost no
loss of accuracy [5].

Algorithm 2.6: Randomized singular value decomposition

Input: Matrix A ∈ Cn×m where n > m and target rank r

Output: U ∈ Cn×r,Σ ∈ Cr×r,V ∈ Cr×m such that A ≈ UΣV∗

1: Generate Gaussian random matrix Ω ∈ Rm×r

2: Create a range sketch Y = AΩ
3: Orthogonalize the range sketch Q = qr(Y)

4: Compute the economic SVD [Ũ,Σ,V] = svd(Q∗Y)

5: Form U = QŨ

Using this approach we reduce the complexity of this step in Schmid’s DMD
algorithm from O(nm2) to O(nmr). In table 2.1 we compare runtimes and re-
construction errors for the RSVD with the classical SVD approach on a standard
problem for various choices of the target rank.

TA B L E 2 . 1 – Median runtimes and mean absolute reconstruction errors for the
DMD algorithm with SVD and RSVD for different target ranks r.

method r runtime (s) reconstruction error

SVD - 6.414 1.327× 10−5

RSVD 50 0.468 1.556× 10−2

RSVD 100 1.654 1.346× 10−4

RSVD 200 2.557 1.333× 10−5

11

2.2 Reconstruction
Based on the observation in (2.6), we can try to approximate the observations
with the help of the approximate DMD modes and eigenvalues, determined with
one of the procedures mentioned in the previous section, with the formula

(2.15) ϕm+1 ≈
k∑

j=1

λm
j αjzj.

Based on (2.6) we know that the coefficients α1,α2, . . . ,αk represent ϕ1 in the
span of {z1, z2, . . . , zk}. We can simply determine these coefficients by solving the
linear system x1 = [z1, z2, . . . , zk]α.

However, in general, particularly when the linear recurrence (2.7) does not
hold exactly, the coefficients αj ∈ C, j = 1, 2, . . . – determined solely based on
the first observation ϕ1 – will not be acceptable for the remaining trajectory (see
figure 2.2). One approach to finding coefficients which better match the whole
trajectory is by determining αj, j = 1, 2, . . . such that the reconstruction error
along the whole trajectory is at a minimum, i.e.

(2.16) min
α∈Ck

m∑
i=1

∥ϕi −

k∑
j=1

λi−1
j αjzj∥2

2

t t

ϕ ϕ

α

α∗

F I G U R E 2 . 2 – For observations which do not evolve exactly linearly, the stan-
dard coefficients α in the reconstruction formula often lead to a drift away from
the observed observations. Finding coefficients α∗ such that the reconstruction
error is at its minimum along the whole trajectory can help circumvent this issue.

In [3] it is shown that this problem can be solved with the following algo-
rithm:

Algorithm 2.7: Reconstruction from normal equations

Input: Observables Φ1:m, DMD eigenvalues and modes {λj, zj}
k
j=1

Output: Coefficients α1,α2, . . . ,αk

1: [Q,R] = qr([z1, z2, . . . , zk])

12

2: G = Q∗Φ1:m

3: Assemble the matrix V with vij = λj
i, i = 1, 2, . . . , k, j = 0, 1, . . . ,m

4: C = (R∗R) ∗VV∗

5: b = V ∗ (R∗G)1
6: Solve least squares problem minα∈Ck∥Cα− b∥2

Alternatively, a stability analysis of the normal equations shows that an even
better procedure is given by the following algorithm:

Algorithm 2.8: Reconstruction from seminormal equations

Input: Observables Φ1:m, DMD eigenvalues and modes {λj, zj}
k
j=1

Output: Coefficients α1,α2, . . . ,αk

1: [Q,R] = qr([z1, z2, . . . , zk])

2: Assemble the matrix V with vij = λj
i, i = 1, 2, . . . , k, j = 0, 1, . . . ,m

3: Compute triangular factor RS of the QR-factorization of S = V⊤ ⊙ R
4: gS = (V ∗ (R∗G))1
5: α = R−1

S (R−∗
S gS)

6: r□ = G− Rdiag(α)V
7: rS = (V ∗ (Rr□))1
8: α = α+ R−1

S (R−∗rS)

3 Wave propagation
Applying a time-stepping scheme to (1.2), we can generate a sequence approx-
imations of the solution of (1.1) in a finite-dimensional subspace, which can be
represented by the vectors

(3.1) ui+1 = F(ui)

where ui ∈ Rn, i = 1, 2, . . . for a fixed n ∈ N and an operator F which depend
on the way the original problem was discretized.

3.1 Linearization of observables
Clearly, the evolution of the system in time described by (1.2) is in general not
linear; there is little hope to get high quality approximations from the DMD of
the solution vectors. In these cases, it is often advised to augment the feature
space with polynomial extensions or kernel methods [9]. But because these
methods would ruin the structure which the observations already exhibit, we
avoid using these techniques.

Fortunately, in some cases we can construct observables which evolve linearly
in time. For example, it can be checked that for constant f(t) = f that

(3.2) ϕ(t) =

[
u(t)
u̇(t)

]
−

[
−M

S

]−1 [
f
0

]
13

evolves linearly with (1.2), i.e. it holds

(3.3) ϕ̇(t) = Kϕ(t)

for some matrix K. However, such a representation cannot be found for a gen-
eral f(t). As a compromise, we “partially” linearize the system by forming the
observables

(3.4) ϕ(t) =

[
u(t)
u̇(t)

]
.

It turns out that this choice of observables already significantly helps improve
the quality of the DMD over merely using u(t) for this purpose.

3.2 Khatri-Rao structure of the physical problem
In d ⩾ 2 dimensions, the factorized nature of the finite element basis functions
allows us to approximately express solutions in terms of Kronecker products
[7]. Therefore, the vector of observations can roughly be viewed as a Khatri-Rao
product A1 ⊙A2 ⊙ · · · ⊙Ad or as a sum of q Khatri-Rao products.

To exploit this structure, we now describe a procedure for approximating
a given matrix A ∈ Cn1n2...nd×m by a sum of q Khatri-Rao products; i.e. A ≈∑q

k=1 A
(k)
1 ⊙ A

(k)
2 ⊙ · · · ⊙ A

(k)
d . We consider the minimization problem in the

Frobenius norm
(3.5)

min

∥∥∥∥∥A−

q∑
k=1

A
(k)
1 ⊙A

(k)
2 ⊙ · · · ⊙A

(k)
d

∥∥∥∥∥
2

F

= min
m∑
j=1

∥∥∥∥∥aj −

q∑
k=1

a
(k)
1j ⊗ a

(k)
2j ⊗ · · · ⊗ a

(k)
dj

∥∥∥∥∥
2

2

where aj and a
(k)
ij denote the jth column of A and A

(k)
i , respectively. Thus, the

columns of A(k)
i are computed by solving m independent minimization prob-

lems for each column of A. Moreover,

(3.6)

∥∥∥∥∥aj −

q∑
k=1

a
(k)
1j ⊗ a

(k)
2j ⊗ · · · ⊗ a

(k)
dj

∥∥∥∥∥
2

2

=

∥∥∥∥∥Aj −

q∑
k=1

a
(k)
1j ◦ a

(k)
2j ◦ · · · ◦ a

(k)
dj

∥∥∥∥∥
2

F

where ◦ denotes the outer product and Aj ∈ Cn1×n2×···×nd is obtained by re-
shaping (and permuting) aj into a d-th order tensor. Finally, the vectors a(k)

ij for
i = 1, 2, . . . ,d are obtained by computing a CP rank q approximation of Aj. This
last problem is rather standard in tensor calculus and several software packages
are available for this purpose; e.g. the Tensor Toolbox1.

1https://www.tensortoolbox.org/

14

https://www.tensortoolbox.org/

Algorithm 3.1: Khatri-Rao rank q approximation

Input: Matrix M ∈ Rn1n2...nd×m, partitioned as M = [m1, . . . ,mm], rank
q.
Output: Tensors Ai ∈ Rni×m×q for i = 1, . . . ,d.

1: Initialize Ai for i = 1, 2, . . . ,d.
2: for j = 1, 2, . . . ,m do
3: Mj ← reshape(mj, (nd,nd−1, . . . ,n1))
4: Mj ← permute(Mj, (d,d− 1, . . . , 1))
5: [A1(:, j, :), . . . ,Ad(:, j :)] = cp(Mj, rank = q)

This structure may be exploited within the DMD framework. For large scale
problems, the matrix of observations cannot be formed explicitly due to the
prohibitive storage requirements, as shown in figure 3.1.

10 20 30 40 50 60 70 80 90 100

Number of degrees of freedom in each direction

104

105

106

107

108

109

N
u

m
b

er
of

n
on

ze
ro

en
tr

ie
s

Storage requirements

Full
KR, q = 1
KR, q = 2
KR, q = 3
KR, q = 4
KR, q = 5

F I G U R E 3 . 1 – Comparison of the full storage of the snapshot matrix and its
structured Khatri-Rao (KR) approximation for d = 3, m = 1000 and various
values of q.

Therefore, we generally cannot afford computing its full SVD and we must
seek alternatives. The Golub-Kahan Lanczos bidiagonalization method is a well
established method for computing a few dominant singular values and vectors.
It is summarized below.

Algorithm 3.2: Golub-Kahan Lanczos bidiagonalization

Input: Matrix A ∈ Rn×m, unit norm starting vector p1 ∈ Rm.
Output: Approximate truncated SVD A ≈ UsΣsV

⊤
s .

1: Set P1 = p1, q1 = Ap1, α1 = ∥q1∥, q1 = q1/α1, Q
1
= q1.

2: for j = 1, . . . , s do

15

3: rj = A⊤qj − αjpj

4: rj = rj − PjP
⊤
j rj ▷ Full reorthogonalization

5: βj = ∥rj∥2

6: pj+1 = rj/βj

7: Pj+1 = [Pj pj+1]
8: qj+1 = Apj+1 − βjqj

9: qj+1 = qj+1 −Q
j
Q⊤

j
qj+1 ▷ Full reorthogonalization

10: αj+1 = ∥qj+1∥2

11: qj+1 = qj+1/αj+1

12: Q
j+1

= [Q
j
qj+1]

13: Set α = (α1, . . . ,αs)
14: Set β = (β1, . . . ,βs−1)
15: Set Bs = diag(α, 0) + diag(β, 1) ▷ Upper bidiagonal matrix
16: Bs = FsΣsGs ▷ SVD of Bs

17: Set Us = Q
s
Fs

18: Set Vs = PsGs

The method requires computing matrix-vector products with A and A⊤.
However, as we have seen in figure 3.1, forming these matrices explicitly is
often not possible due to memory restrictions. The following proposition gives
us a formula for computing matrix-vector products of matrices in the Khatri-Rao
format to circumvent this issue.

Proposition 3.3: Matrix-vector multiplication in Khatri-Rao format

Let Ai ∈ Rni×m for i = 1, . . . ,d, x ∈ Rm, Y ∈ Rnd×···×n1 and y = vec(Y). Then,

1. (A1 ⊙ · · · ⊙Ad)x = vec([[x;Ad, . . . ,A1]]),

2. (A1 ⊙ · · · ⊙Ad)
⊤y = diag(Y ◦1 Ad · · · ◦d A1).

Proof. We prove each property below

1. Using the definition of the CP-format and standard manipulations on ten-
sor products we obtain

vec([[x;Ad, . . . ,A1]]) = vec(
m∑
j=1

xj(a
(d)
j ◦ · · · ◦ a(1)

j))

=

m∑
j=1

xj(a
(1)
j ⊗ · · · ⊗ a

(d)
j)

= (A1 ⊙ · · · ⊙Ad)x.(3.7)

16

2. Using index notation we obtain

(Y ◦1 Ad · · · ◦d A1)jj...j =

n1∑
i1=1

· · ·
nd∑

id=1

yi1...ina
(d)
i1j

. . .a(1)
idj

= ⟨Y,a(d)
j ◦ · · · ◦ a(1)

j ⟩

= ⟨vec(Y), vec(a(d)
j ◦ · · · ◦ a(1)

j)⟩

= ⟨y,a(1)
j ⊗ · · · ⊗ a

(d)
j ⟩

= ((A1 ⊙ · · · ⊙Ad)
⊤y)j.(3.8)

This proves the second assertion component-wise.

3.3 Downsampling
It can happen that observations ϕ1,ϕ2 . . . ,ϕm are available at a significantly
higher sample rate than the rate of change of the relevant dynamics of a system.
For example, when using an explicit method to solve (1.2), the size of the steps in
time may be limited by stability considerations. In this case, the DMD algorithms
may be able to model the dynamics of a system from just a subset of these
observations ϕs,ϕ2s . . . ,ϕks where s ∈ N represents the sampling step and k

is such that ks ⩽ m. This downsampling reduces the number of observations
the algorithm has to treat by a factor of s, which is usually equivalent to a speed-
up of the algorithms by a factor of s. The downsampling also helps draw the
attention of the algorithm on the global evolution rather than local oscillations
which usually result from noise.

In the setting of wave propagation, we can observe that the algorithms be-
have differently when we downsample the observations (see figure 3.2). The
DMD algorithms which are based on Schmid’s approximation of the Rayleigh
quotient work just as well when only every 7-th observation is considered in
the computation, compared to when every observation is used. On the other
hand, both the companion matrix based algorithm and the DMD on the QR
factorization do not react as favorably to a reduce sampling rate.

17

F I G U R E 3 . 2 – Effect of downsampling by a factor s on the reconstruction error
of the observations from the problem described in section 4.1.3.

18

4 Numerical results

4.1 Single-patch geometries
4.1.1 2D standing wave

The first example is the academic example of a standing wave on a unit square,
described by u(x,y, t) = sin(2πx) sin(2πy) sin(2πt) for t ∈ [0, 1]. The initial and
boundary conditions of the PDE are computed accordingly. Two observations
of the discretized solution are shown in figure 4.1. The snapshot matrix in this
example is 1089 × 201 but we will consider throughout this section different
levels of refinement in space and time to illustrate different properties of the
method.

F I G U R E 4 . 1 – Standing wave of the unit square, discretized with cubic B-splines
and 30 subdivisions in each direction (section 4.1.1).

4.1.2 3D standing wave

The second example is simply the 3D counterpart of the first one and provides
a simple and yet conclusive example of the “curse of dimensionality”; i.e. the
prohibitive (exponential) growth of memory and operations with the dimension.
The exact solution is u(x,y, z, t) = sin(2πx) sin(2πy) sin(2πz) sin(2πt) for t ∈
[0, 1]. Two observations of the discretized solution, shown along slices of the
unit cube, are displayed in figure 4.2. The snapshot matrix for this problem is
35937× 201; i.e. 33 times larger than its 2D counterpart.

4.1.3 2D Laplace Fraschini

Our third example, inspired from [4], is more realistic and models the acoustic
wave equation (1.1) in a non-homogeneous medium. The wave speed of the
medium is c(x,y) = 1 + y. We consider homogeneous Neumann boundary

19

F I G U R E 4 . 2 – Standing wave of the unit cube, discretized with cubic B-splines
and 30 subdivisions in each direction (section 4.1.2).

conditions over the entire boundary and initial conditions u0(x,y) = e−124x2 and
v0(x,y) = 0. The Gaussian pulse travels from left to right in the medium before
hitting the right boundary and rebounding. figure 4.3 shows a few observations
of the solution. The snapshot matrix has size 62025 × 1001. The geometry is
discretized with quintic spline of C4 smoothness.

F I G U R E 4 . 3 – Observations for the wave propagation in a medium with a non-
homogeneous index of refraction (section 4.1.3).

20

n m q

4.1.1 I 1089 201 1
4.1.1 II 41209 1501 1
4.1.2 I 79507 201 1
4.1.2 II 79507 1001 1
4.1.3 65025 1001 40

TA B L E 4 . 1 – Summary of the single-patch examples with the corresponding
problem sizes. n is the size of each observation, while m is the number of obser-
vations. q represents the number of summands in the approximation.

SVD Lanczos SVD Randomized SVD
Explicit Implicit Explicit Implicit

4.1.1 I 1.27× 10−2 6.81× 10−4 9.36× 10−4 1.02× 10−3 2.93× 10−3

4.1.1 II 5.71× 100 3.85× 10−2 2.11× 10−2 5.13× 10−2 2.71× 10−2

4.1.2 I 4.01× 10−1 1.70× 10−2 1.73× 10−1 1.98× 10−2 1.52× 10−1

4.1.2 II 5.37× 100 4.61× 10−2 8.22× 10−1 6.40× 10−2 7.29× 10−1

4.1.3 4.80× 100 1.77× 100 1.44× 101 4.98× 10−1 1.44× 101

TA B L E 4 . 2 – Timings (in seconds) for Schmid’s DMD for the observations u.
Green and red cells identify the smallest and largest timings, respectively, for
each example.

SVD Lanczos SVD Randomized SVD
Explicit Implicit Explicit Implicit

4.1.1 I 2.12× 10−2 2.10× 10−3 1.50× 10−1 2.13× 10−3 3.58× 10−2

4.1.1 II 1.09× 101 9.27× 10−2 2.48× 100 9.65× 10−2 1.80× 100

4.1.2 I 7.01× 10−1 8.50× 10−2 1.10× 100 3.85× 10−2 2.97× 10−1

4.1.2 II 9.83× 100 2.99× 10−1 5.47× 100 1.18× 10−1 1.55× 100

4.1.3 9.03× 100 5.51× 100 3.80× 102 1.09× 100 1.32× 101

TA B L E 4 . 3 – Timings (in seconds) for Schmid’s DMD for the augmented ob-
servations [u, u̇]. Green and red cells identify the smallest and largest timings,
respectively, for each example.

21

Schmid QR Krylov RRR RSVD Lanczos

4.1.1 I 6.46× 10−5 6.46× 10−5 8.54× 10−5 2.18× 10−1 6.46× 10−5 6.46× 10−5

4.1.1 II 1.32× 10−6 1.32× 10−6 3.15× 10−6 2.50× 10−1 1.32× 10−6 1.32× 10−6

4.1.2 I 9.23× 10−2 9.02× 10−2 1.47× 10−1 2.05× 10−1 9.23× 10−2 9.23× 10−2

4.1.2 II 9.34× 10−2 9.29× 10−2 1.85× 10−1 2.06× 10−1 9.34× 10−2 9.34× 10−2

4.1.3 1.20× 10−2 6.36× 10−3 6.88× 10−11 2.53× 100 9.58× 10−2 1.38× 10−1

TA B L E 4 . 4 – Reconstruction errors for each example. Red cells identify the
largest reconstruction errors.

F I G U R E 4 . 4 – Reconstruction comparison for section 4.1.3.

0 20 40 60 80 100 120 140
10!4

10!3

10!2

10!1

100
Residuals

Schmid
RRR

F I G U R E 4 . 5 – Residuals comparison for section 4.1.3.

22

4.2 Multi-patch geometries
4.2.1 Square with hole

Our first example is a slight variation of section 4.1.3, where a small cavity is
added in the middle of the square. The homogeneous Dirichlet boundary con-
ditions prescribed over its boundary create multiple reflections, which further
complicate the dynamics. The initial conditions are u0(x,y) = e−302(x+0.6)2 and
v0(x,y) = 0. The wave velocity is constant (c = 1) and all other data are set to
zero. observations of the solution are shown in 4.6. The snapshot matrix for this
problem has size 62000× 1001.

F I G U R E 4 . 6 – Solution observations.

4.2.2 Rod

Our second example is simpler and models a traction test, commonly employed
in material science for measuring the resistance of rods. Non-homogeneous
Dirichlet boundary conditions are imposed at both ends of the rod and in the
initial phase of the test, the slowly varying displacement field follows a linear
elastic model. Figure 4.7 shows the horizontal displacement field at different
times. The snapshot matrix for this problem has size 3096× 1501.

F I G U R E 4 . 7 – Observations of the displacement field in the traction test on a
rod (section 4.2.2).

The size of the snapshot matrix for both examples is recalled in table 4.5.

23

n m

4.2.1 62000 1001
4.2.2 3096 1501

TA B L E 4 . 5 – Summary of the multi-patch examples with the corresponding
problem sizes. n is the size of each observation, while m is the number of obser-
vations.

SVD Lanczos SVD Randomized SVD

4.2.1 8.63× 100 3.25× 100 1.01× 100

4.2.2 2.55× 100 3.05× 10−1 1.13× 10−1

TA B L E 4 . 6 – Timings (in seconds) for Schmid’s DMD for the augmented ob-
servations [u, u̇]. Green and red cells identify the smallest and largest timings,
respectively, for each example.

Schmid QR Krylov RRR RSVD Lanczos

4.2.1 4.27× 10−4 4.28× 10−4 1.16× 100 9.20× 100 2.53× 10−1 1.87× 10−1

4.2.2 1.71× 10−3 1.69× 10−3 5.66× 10−3 3.55× 10−1 1.74× 10−2 1.55× 10−2

TA B L E 4 . 7 – Reconstruction errors for each example. Red cells identify the
largest reconstruction errors.

F I G U R E 4 . 8 – Reconstruction comparison for section 4.2.1.

24

0 50 100 150 200
10!4

10!3

10!2

10!1

100

101
Residuals

Schmid
RRR

F I G U R E 4 . 9 – Residuals comparison for section 4.2.1.

25

4.3 Streaming
In our last numerical experiment we employ the QR-compressed DMD algo-
rithm which is based on the sequential Householder QR factorization which we
have developed in section 2.1. We use it to see how the reconstruction error
changes as we increase the number of observations used as inputs to the algo-
rithm. We do this for the example from section 4.1.3. This allows us to judge for
how long the extracted DMD modes can represent the system well until the first
and last observation are too different from each other.

10 20 30 40 50 60 70 80 90 100

Number of snapshots

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

R
e

c
o

n
s
tr

u
c
ti
o

n
 e

rr
o

r

Standard QR

Streaming QR

F I G U R E 4 . 1 0 – Evolution of reconstruction when sequentially adding new
snapshots to the QR-compressed DMD algorithm. We compare our streaming
QR compression based on Householder reflectors to the full QR factorization
every time an observation is added.

26

5 Discussion

In our project we have extended the DMD algorithms for problems governed by
the wave equation. In particular, we have proposed multiple ways which allow
faster and more scalable computations of the DMD eigenvalues and modes of
certain observations. We have verified our developments on various examples.

Overall, we see that our adaptions of the DMD algorithms to wave-like prob-
lems are capable of modeling our test cases reasonably well. We are able to show
that by using alternative methods for the computation of the SVD which exploit
the structure of the observations, we can speed up the procedure considerably.
Further, exploiting the approximate Khatri-Rao structure of the observations
yields a scalable and efficient algorithm for computing DMD eigenvalues and
modes in this setting.

During our project we have observed that treating the DMD algorithms as
“black-box” tools can often lead to unexpected results, especially in the case
where the observations evolve highly non-linearly. We have come to the conclu-
sion that the most important part of any DMD is the construction of observations
which evolve linearly; either through hand-picked augmentations or informed
by the underlying physical system. However, despite having constructed observ-
ables which evolve almost linearly in time, we see for example in figure 4.10 that
the reconstruction error can only be kept acceptably for observations which span
only a small time window. That is, we are only able to model the evolution of the
system locally, but not globally. Furthermore, there is an inherent inability of the
SVD to capture translational invariances and correlations between observations,
which are crucial in many of our examples [10].

We observe that the refinement of the DMD modes on one hand improves
the residual significantly, but on the other gives us significantly worse recon-
structions of the observations based on the DMD eigenvalues and modes. This
could be due to many causes, but we think that the non-linear nature of the evo-
lution of the observations causes the refined DMD modes to span a space which
– despite very small residuals – is no longer representative of the dynamics.

In the future it might be interesting to also try to convert the augmented
observations to a format which can be approximated by Khatri-Rao products.
The tensor product structure might also be exploited with a structured sketch in
the RSVD computation.

27

References
[1] Zlatko Drmač. A LAPACK Implementation of the Dynamic Mode Decom-

position. ACM Transactions on Mathematical Software, 50(1):1:1–1:32, 2024.
DOI: 10.1145/3640012.

[2] Zlatko Drmač, Igor Mezić, and Ryan Mohr. Data Driven Modal Decompo-
sitions: Analysis and Enhancements. SIAM Journal on Scientific Computing,
40(4):A2253–A2285, 2018. DOI: 10.1137/17M1144155.

[3] Zlatko Drmač, Igor Mezić, and Ryan Mohr. On Least Squares Problems
with Certain Vandermonde–Khatri–Rao Structure with Applications to
DMD. SIAM Journal on Scientific Computing, 42(5):A3250–A3284, 2020. DOI:
10.1137/19M1288474.

[4] Sara Fraschini, Gabriele Loli, Andrea Moiola, and Giancarlo Sangalli. An un-
conditionally stable space-time isogeometric method for the acoustic wave
equation, 2024.

[5] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding Struc-
ture with Randomness: Probabilistic Algorithms for Constructing Approx-
imate Matrix Decompositions. SIAM Review, 53(2):217–288, 2011. DOI:
10.1137/090771806.

[6] Nicholas J. Higham. 19. QR Factorization. In Accuracy and Stability of Numer-
ical Algorithms, Other Titles in Applied Mathematics, pages 353–380. Society
for Industrial and Applied Mathematics, 2002. ISBN 978-0-89871-521-7.
DOI: 10.1137/1.9780898718027.ch19.

[7] Boris N. Khoromskij and Christoph Schwab. Tensor-Structured Galerkin
Approximation of Parametric and Stochastic Elliptic PDEs. SIAM Journal on
Scientific Computing, 33(1):364–385, 2011. DOI: 10.1137/100785715.

[8] B. O. Koopman. Hamiltonian Systems and Transformation in Hilbert Space.
Proceedings of the National Academy of Sciences, 17(5):315–318, 1931. DOI:
10.1073/pnas.17.5.315.

[9] J. Nathan Kutz, Steven L. Brunton, Bingni W. Brunton, and Joshua L. Proc-
tor. Chapter 10: DMD on Nonlinear Observables. In Dynamic Mode Decom-
position, Other Titles in Applied Mathematics, pages 159–176. Society for
Industrial and Applied Mathematics, 2016. ISBN 978-1-61197-449-2. DOI:
10.1137/1.9781611974508.ch10.

[10] J. Nathan Kutz, Steven L. Brunton, Bingni W. Brunton, and Joshua L. Proctor.
Chapter 1: Dynamic Mode Decomposition: An Introduction. In Dynamic
Mode Decomposition, Other Titles in Applied Mathematics, pages 1–24. Soci-
ety for Industrial and Applied Mathematics, 2016. ISBN 978-1-61197-449-2.
DOI: 10.1137/1.9781611974508.ch1.

28

https://doi.org/10.1145/3640012
https://doi.org/10.1137/17M1144155
https://doi.org/10.1137/19M1288474
https://doi.org/10.1137/090771806
https://doi.org/10.1137/1.9780898718027.ch19
https://doi.org/10.1137/100785715
https://doi.org/10.1073/pnas.17.5.315
https://doi.org/10.1137/1.9781611974508.ch10
https://doi.org/10.1137/1.9781611974508.ch1

[11] Alfio Quarteroni. Numerical Models for Differential Problems, volume 16 of
MS&A. Springer International Publishing, Cham, 2017. ISBN 978-3-319-
49315-2 978-3-319-49316-9. DOI: 10.1007/978-3-319-49316-9.

[12] Miha Rot, Martin Horvat, and Gregor Kosec. Dynamic mode decomposition
as an analysis tool for time-dependent partial differential equations. In 2022
7th International Conference on Smart and Sustainable Technologies (SpliTech),
pages 1–6, 2022. DOI: 10.23919/SpliTech55088.2022.9854243.

[13] Yousef Saad. 6. Krylov Subspace Methods. In Numerical Methods for Large
Eigenvalue Problems, Classics in Applied Mathematics, pages 125–162. Soci-
ety for Industrial and Applied Mathematics, 2011. ISBN 978-1-61197-072-2.
DOI: 10.1137/1.9781611970739.ch6.

[14] Peter J. Schmid. Dynamic mode decomposition of numerical and ex-
perimental data. Journal of Fluid Mechanics, 656:5–28, 2010. DOI:
10.1017/S0022112010001217.

[15] Peter J. Schmid. Dynamic Mode Decomposition and Its Variants. Annual
Review of Fluid Mechanics, 54(1):225–254, 2022. DOI: 10.1146/annurev-fluid-
030121-015835.

[16] C. Hari Manoj Simha and Mohammad Biglarbegian. A note on the use of
Dynamic Mode Decomposition in mechanics. Mechanics Research Communi-
cations, 120:103848, 2022. DOI: 10.1016/j.mechrescom.2022.103848.

[17] Lloyd N. Trefethen. Householder triangularization of a quasima-
trix. IMA Journal of Numerical Analysis, 30(4):887–897, 2010. DOI:
10.1093/imanum/drp018.

29

https://doi.org/10.1007/978-3-319-49316-9
https://doi.org/10.23919/SpliTech55088.2022.9854243
https://doi.org/10.1137/1.9781611970739.ch6
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1146/annurev-fluid-030121-015835
https://doi.org/10.1146/annurev-fluid-030121-015835
https://doi.org/10.1016/j.mechrescom.2022.103848
https://doi.org/10.1093/imanum/drp018

	Introduction
	Related work
	Notation
	Organization of the report

	From the Koopman operator to dynamic mode decomposition
	Approximating DMD modes and eigenvalues
	Reconstruction

	Wave propagation
	Linearization of observables
	Khatri-Rao structure of the physical problem
	Downsampling

	Numerical results
	Single-patch geometries
	2D standing wave
	3D standing wave
	2D Laplace Fraschini

	Multi-patch geometries
	Square with hole
	Rod

	Streaming

	Discussion

