MATH-562: Statistical Inference Anthony Davison

Solution 1

(a) We have
m(y) =m(n +7e) =n+7me), s(y)=sn+7e)=rs(e),
where € = (e1,...,¢,), sO
_m)—n _ntrmle) —n _ me) ) = s(0) fr = rs(e) fr — (e
(h(yﬂ?) - s(y) - TS(&“) - S(E) ) (y7 ) (y)/ ( )/ ( )7

so both ¢1(y,n) and g¢2(y,7) are functions of the data y and parameters that have known distri-
butions, as those of m(e)/s(e) and s(¢) are both known (at least in principle). If Q1 = qi(¢,0)
and Q2 = ¢2(g) have respective a quantiles ¢} (a,n) and ¢4(a,n), i.e., P{Q1 < ¢j(a,n)} = a and
P{Q2 < ¢4(a,n)} = « for a € (0, 1), then we can write

1-2a=P{¢(a,n) <Q1 <q1(1 —a,n)} =P {qi(a,n) < 0 <q(1- a,n)} :
and rearrangement of the inequality in the right-hand probability shows that
L=m)-sY)(1-a,n), U=m()-s¥)q(en),
are the limits of a (1 — 2«a) confidence interval for n. Likewise
1— 20 = P{gh(an) < Q2 < gb(1 — a,m)} = P {ghlan) < s(Y) /7 < b(1 - aym)}

and rearrangement of the inequality in the right-hand probability shows that

L= (S(Y)/qé(l —a,n), UZS(Y)/qé(a7n)
are the limits of a (1 — 2«) confidence interval for 7.
(b) Clearly my(y) = myi(n + 1¢) = n~* >;j(n+7ej) = n+ 72 and a similar calculation shows that
s1(y) = 7s1(g), and likewise for ma(y) and sa(y), leading to pivots.
Situation (i) corresponds to the t and x? statistics used for inference on 7 and 7 when y1, . . ., yp EYs (n,72).

Situation (ii) should give intervals that are highly robust to outliers.

(¢) As {Y; — M(Y)}/s(Y) is easily shown to be independent of the parameters, with a known distri-
bution, it can be used to make prediction intervals for Y.

Solution 2

(a) According to Bayes’ theorem

fOy1) = w oc gUrtaTl(p — gyt g <9 <1,

where the constant of proportionality ensures that the right-hand side has unit integral. Since the
beta density has unit integral for any a,b > 0, and since y; + a,n1 — y1 + b > 0, the constant of

proportionality must be obtained by replacing a and b by y; + @ and n; — y; + b, and thus must
equal I'(ny; +a+ b)/{T'(y1 + a)T'(n1 — y1 + b)}. This gives the stated posterior density.

Note that this argument avoids any need for integration, and that the constants in the densities
cancel from the numerator and denominator of the posterior.



(b) Here
F(na | 0)£(0) ox gro=1(1 — gyra—wmtol g < g <1,

and we see at once using the argument from (a) that

[(ng +a+0b)
['(y2 +a)T'(ng —y2 +b)

f(0 | ng) = gvta=l(p —gyr2—v2 -l g < < 1.

(¢) The two posterior densities will be the same, so any Bayesian inferences based on the two experi-
ments will be identical.

(d) In (a) the number of successes Y; will tend to be small if § < %, so the observed significance level
is the binomial probability

Y1
Po(Y1 < 1) Z Po(Y => (ZL/I) 27,
y=0

where Py denotes probability computed under the null hypothesis 6 = % Similarly if 8 < % then it
will take longer to attain yo successes than if 6 = %, so we compute the negative binomial probability

< (n—1
Po(Ny > ma) = 3 Po(Na=m) = 3 (" )2".
n=ns n=ns y2_1

The following R code shows the computation:

pbinom(x=3,size=12,prob=1/2)

[1] 0.07299805
nbinom(x=11,size=3,prob=1/2,lower.tail=F)
[1] 0.006469727

Unlike with (c), these suggest quite different evidence against the null hypothesis, because they
sum probabilities over two different reference sets.

Solution 3

(a) We note that E(I;) = 0 and var(I;) = 1, so E(D) = 6, and as the I; are independent,

var(D) = QZvarH—FIcJ QZC var (1 _QZC = o2

7=1

The ¢; are unknown and therefore so is o2, which must be estimated from the data Dy, ..., D,.

(b) To estimate o2, we use the problems for week 3 to write

20 _ Y Npopro— Y N p_pyeo L NN po_ o
S _m(m—l) jzl(Dj D) _2m2(m—1) j;l(Dj Dy,) _2m2(m—1) %(D] Dy)7,

and note that as D; — Dy, = Ijc; — Iyci, E({;) = 0 and var(l;) = 1, and the /; are independent,
the right-most expression has expectation

2

1
" 2m2(m—1) m_

> ciaEII,) =
ik

24



(c) To ease the notation, let m = 2n. Under this randomization scheme the number of possible
allocations is (ZL), which equals 252 when m = 10; this is appreciably lower than the number 1024
obtained before.

The expectations and variances of the I; are the same as in (a), but if j # k then by symmetry

n(n —1) n? 1
COV(Ij,Ik) = E(I]Ik) = 2P(I] = Ik) — QP(IJ 7& Ik) = 22n(2n — 1) - 22n(2n — 1) = —m 1

Under this randomisation scheme, Y72, I; = 0,50 D = O+m~t 3" Ij(cj—c). Obviously E(D) = 6
and

m?var(D) = i(cj var(I;) + Z —¢)cov(I;, I;)

J=1 i#]
m 3 1 m 3 3
= Z(C] -’ - m_1 Z(Cj - ) Z(Cz -0
J=1 J=1 i#]
m 3 1 m 3
— Z(Cj — 0)2 + m Z(Cj — 0)2
j=1 j=1

where the step from the second to third lines used the fact that > /" ,(¢; — ¢) = 0 implies that
> izj(ci =€) = —(c; —©). Hence

ar_:il mc~—62:7'2
Vi (D) m(m_l);(] ) ’

say; note that subtracting ¢ from the ¢; will mean that it is very likely that 72 < o2.

To find an estimator of the unknown 72 we write €; = Ijc; and note that
m m m m 1 m
2 2 2
S0 DR =Y -2t = Y=Y B - L S L
=1 =1 =1 =1 ij=

has expected value

1
m m 1 m 1 n
Z 3_—{Zc +chcjcov I;, I; } Z j2 E{Zc?—mzcj(mﬁ—cj)}

J=1 i)

which equals

ui 1 & 1 > m— 2
=2 _ =2
Z:(Cj— _EZ mZ(%‘—C) _HZ(%_C)'
7j=1 = 7j=1 7j=1
Hence 72 is estimated by
1 Ui —
D;j — D)?
m(m — 2) Z( J )
7j=1
which can be computed from the observed differences D1, ..., D,,.



