
MATH-562: Statistical Inference Anthony Davison

Solution 1

(a) In this case θ is the population variance and the standard calculation (check it if unsure)
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θ = θ − θ/n,

so γ = −1/n. Note that the only assumptions about the Yj are they are independent with mean µ
and variance θ.

Now T ∗ = n−1∑(Y ∗

j − Y ∗)2, where the Y ∗

j
iid
∼ {y1, . . . , yn} with probabilities 1/n, and this distri-

bution has mean y and variance

1

n

∑
y2
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We can apply the computation above to see that T ∗ is also downwardly-biased as an estimate of
its population variance t, with mean

E∗(T ∗) =
(n − 1)

n
t,

so C = E∗(T ∗)/t − 1 = −1/n = γ, as stated.

(b) The estimator of C would be C∗ = R−1∑R
r=1 T ∗

r /t−1, which has variance R−1var∗(T ∗)/t2, because
each of the T ∗

r has variance var∗(T ∗) and they are independent.

Solution 2

(a) By definition, the median of Y ∗

1 , . . . , Y ∗

n when n = 2m + 1 is Y ∗

(m+1). Hence

T ∗ > y(l) ⇐⇒ Y ∗

(m+1) > y(l) ⇐⇒ Y ∗

(n), . . . , Y ∗

(m+1) > y(l),

which is true if and only at most m of the Y ∗ are less than or equal to y(l). The probability that
a single Y ∗ is less than or equal to y(l) is p = l/n, and as the Y ∗ are independent, this gives the
stated binomial probability, because if we let Ij be the indicator of the event Y ∗

j ≤ y(l), then

P∗(T ∗ > y(l)) = P∗




n∑

j=1

Ij ≤ m


 =

m∑

j=0

(
n

j

)
pj(1 − p)n−j,

as required.

(b) It is easy to check that P∗(T ∗ > y(8))
.
= 1 − P∗(T ∗ > y(3))

.
= 0.05, so P∗(y(4) ≤ T ∗ ≤ y(8))

.
= 0.9.

For the bootstrap confidence interval, note that

0.9
.
= P∗(y(4) ≤ T ∗ ≤ y(8)) = P∗(y(4) − t ≤ T ∗ − t ≤ y(8) − t),

where t is the observed median y(6), so the basic bootstrap argument gives (approximate) 90%
confidence interval (2y(6) − y(8), 2y(6) − y(4)).
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Solution 3

(a) We have

0 =

∫
a {x; t(Gε)} dGε(x)

= (1 − ε)
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∫
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= (1 − ε)

∫
a {x; t(Gε)} dG(x) + εa {y; t(Gε)} ,

and differentiation using the chain rule gives

0 = a {y; t(Gε)}−

∫
a {x; t(Gε)} dG(x)+εaθ {y; t(Gε)}

∂t(Gε)

∂ε
+(1−ε)

∫
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∂ε
dG(x),

which reduces to

0 = a {y; t(G)} +

∫
aθ {x; t(G)} dG(x)

∂t(G)

∂ε

∣∣∣∣
ε=0

on setting ε = 0. This yields the specified formula for the influence function, even if a(y; θ) is a
d × 1 vector.

(b) In the case of a random sample y1, . . . , yn, the EDF Ĝ puts masses 1/n on each of the yj and

θ̂ = t(Ĝ), so the empirical influence function reduces to the given formula.

(c) The formula a(x; θ) = x − θ leads to θ =
∫

x dG(x), i.e., θ is the population mean, and we saw in
the lectures that lj = yj − y.

To apply the formulation here, note that
∫

a(x; θ) dĜ(x) = 0 implies that θ̂ = y, and aθ(x; θ) = −1,
so we again find

lj = Lt(yj; Ĝ) =
a(yj ; θ̂)

−n−1
∑n

k=1 ∂a(yk; θ̂)/∂θ
=

yj − y

−n−1
∑n

j=1(−1)
= yj − y.

(d) In the case of a maximum likelihood estimator of the vector θ we have

a(x; θ) =
∂ log f(x; θ)

∂θ
, aθ(x; θ) =

∂2 log f(x; θ)

∂θ∂θT
,

corresponding to the score and (minus) the observation information contributions. Hence

lj = Lt(yj; Ĝ) =

{
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n∑
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}
−1
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(
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)
−1

Sj,

as required, and therefore the covariance matrix of θ̂ is

vL =
1

n2
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T = −1



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SjS
T

j


 −1.

(e) In this case log f(y; θ) = − log θ − y/θ, so a(y; θ) = −1/θ + y/θ2 and aθ(y; θ) = 1/θ2 − 2y/θ3. One
can easily check that θ̂ = y and ̂ = nθ̂2, so the sandwich variance is

(nθ̂2)−1 ×
n∑

j=1

(−1/θ̂ + yj/θ̂2)2 × (nθ̂2)−1 =
1

n2

n∑
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1

n2

n∑
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(yj − y)2

Now if n → ∞ under the exponential model, then n−1∑n
j=1(yj − y)2 → θ2, so this expression is

roughly θ2/n for large n, and this is also true for ̂−1. But if the exponential model is not true,
then the sandwich is valid anyway, because the given formula is an (almost unbiased) estimator
for any distribution with a finite variance. The downside to using the sandwich estimator when
the exponential model is correct is that it is less efficient, in the sense that the resulting confidence
intervals will have worse properties (they are longer and more variable).
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