MATH-562: Statistical Inference Anthony Davison

Solution 1

(a) In this case # is the population variance and the standard calculation (check it if unsure)
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where p = E(Y;) gives

E(T) = E{n—l > - ?)2} = ("T_l)e =0—0/n,

so v = —1/n. Note that the only assumptions about the Y; are they are independent with mean p
and variance 6.

Now T* = n~! (Y - Y*)2, where the Y/ id {y1,...,yn} with probabilities 1/n, and this distri-
bution has mean 7 and variance
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We can apply the computation above to see that T™ is also downwardly-biased as an estimate of
its population variance t, with mean

1
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so C =E*(T*)/t —1 = —1/n = =, as stated.

(b) The estimator of C would be C* = R~ > T* /t — 1, which has variance R~ var*(T*)/t?, because
each of the T)* has variance var*(7™) and they are independent.

Solution 2
(a) By definition, the median of Y7*,...,Y,* when n =2m + 1 is Y(’;n+1)' Hence
T > Y() = Y(Tn—i—l) > Y — Y(Z)? .. 7Y(>:n+1) > Yy

which is true if and only at most m of the Y are less than or equal to y(). The probability that
a single Y* is less than or equal to yq) is p =1 /n, and as the Y* are independent, this gives the
stated binomial probability, because if we let I; be the indicator of the event Y;* < y(;), then
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as required.
(b) It is easy to check that P*(T™ > y(g)) =1 — P*(T" > y(3)) = 0.05, so P*(yuy < T* < y(g)) = 0.9.
For the bootstrap confidence interval, note that

0.9 =P (yu <T" <yp) =P (yu) —t <T" =t <yr) —t),

where ¢ is the observed median y), so the basic bootstrap argument gives (approximate) 90%
confidence interval (2y6) — ¥(s), 2U(6) — Y(4))-



Solution 3

(a)

We have
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and differentiation using the chain rule gives
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which reduces to
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on setting ¢ = 0. This yields the specified formula for the influence function, even if a(y;0) is a
d x 1 vector.

In the case of a random sample yq,...,y,, the EDF G puts masses 1/n on each of the y; and
0 = t(G), so the empirical influence function reduces to the given formula.

The formula a(z;6) = x — 0 leads to § = [xdG(x), i.e., € is the population mean, and we saw in
the lectures that I; = y; — 7.

To apply the formulation here, note that [ a(x;0) dCA?(x) = 0 implies that § = 7, and ag(z;6) = —1,
so we again find
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In the case of a maximum likelihood estimator of the vector 8 we have

Olog f(x:;0 0% log f(x; 0
aa;0) = BT gy - TLBTE0),

corresponding to the score and (minus) the observation information contributions. Hence
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as required, and therefore the covariance matrix of 0 is
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In this case log f(y;0) = —logf — y/0, so a(y;0) = —1/60 +y/6* and ag(y;0) = 1/6% — 2y/6°. One
can easily check that = yand 7= n92 so the sandwich variance is

n

REDYCIERTEE nQZ :%Zl(y]

Now if n — oo under the exponential model, then n~! ? Wy — 7)%2 — 62, so this expression is

roughly 62/n for large n, and this is also true for 77!. But if the exponential model is not true,
then the sandwich is valid anyway, because the given formula is an (almost unbiased) estimator
for any distribution with a finite variance. The downside to using the sandwich estimator when
the exponential model is correct is that it is less efficient, in the sense that the resulting confidence
intervals will have worse properties (they are longer and more variable).
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