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1 Introduction slide 2

1.1 Background slide 3
Starting point
[0 We start with a concrete question, e.g.,
— Does the Higgs boson exist?
— Is fraud taking place at this factory?
— Are these two satellites likely to collide soon?
— Do lockdowns reduce Covid transmission?
O We aim
— to use data
— to provide evidence bearing on the question,
— to draw a conclusion or reach a decision to guide future actions.
0 Here we mostly discuss how to express the evidence, but the choice and quality of the data, and
how they were obtained, affect the evidence and the clarity of any decision.
O The data typically display both structure and haphazard variation, so any conclusion reached is
uncertain, i.e., is an inference.
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Data
O Theoretical discussion generally takes observed data as given, but
— to get the data we may need to plan an investigation, perhaps design an experiment
largely controlled by the investigator — not considered here but often crucial to obtaining
strong data and hence secure conclusions; or
— to use data from an observational study (the investigator has little or no control over data
collection).
OO In both cases the data used may be selected from those available, and especially if we have ‘found
data’ we must ask
— why am | seeing these data?
— what exactly was measured, and how?
— can the observations actually shed light on the problem?
— will using a function of the available data give more insight?
0 For now we suppose these questions have satisfactory answers . ..
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Some statistical activities

O Conventionally divided into

— design of investigations — how do we get reliable data to answer a question efficiently and
securely?

— descriptive statistics/exploratory data analysis — how can we get insight into a specific
dataset?

— inference — what can we learn about the properties of a ‘population’ underlying the data?

— decision analysis — what is the optimal decision in a given situation?

to which we nowadays add

— machine learning — algorithms, generally complex and computationally demanding, often
used for prediction/decision-making.
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Descriptive statistics

O In principle concerns only the data available, mainly involving
— graphical summaries — histograms, boxplots, scatterplots, ...
— numerical summaries — averages, variances, medians, ...
[0 Some summaries presuppose the existence of ‘population’ quantities (e.g., a density).

[0 We use probability models to analyse the properties of these summaries (e.g., formulation of a
boxplot, ‘is that difference significant?’, ...).

O Even when we have ‘all the data’ (e.g., loyalty card transactions) we may want to ask ‘what if?’
questions, and these require further assumptions (e.g., temporal stability, future and current
customers are similar, ...).
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Statistical inference

[0 Use observed data to draw conclusions about a ‘population’ from which the data are assumed to
be drawn, or about future data.

O The ‘population’ and observed data are linked by concepts of probability.

0 Two distinct roles of probability in statistical analysis:

— as a description of variation in data (‘aleatory probability’, ‘chance’), treating the observed
data y as an outcome of a random process/probability model, perhaps

> suggested by the context, or
> imposed by the investigator (via some sampling procedure);

— to formulate uncertainty (‘epistemic probability’) about the reality modelled in terms of the
random experiment, based on y.

0 Most of the course concerns the formulation and expression of uncertainty.

0 We first revise some concepts from probability and basic statistics.
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1.2 Probability Revision slide 9

Probability spaces

0 Ordered triples (€2, F,P) consisting of
— aset Q of elementary outcomes w corresponding to distinct potential outcomes of a random
experiment;
— an event space F of subsets of  that satisfy (a) Q € F, (b) if A € F, then A° € F, and (c)
if A, Ag,... € F, then |JA; € F;
— a probability measure P : F — [0, 1] that satisfies (i) if A € F, then 0 < P(A) <1, (ii)
P(Q) =1, (iii) if A1, Ag,... € F satisfy A; N A, =0 for j # k, then P(UA;) = > P(A)).
O We call (2, F) a measure space and any A € F an event (measurable set).
0 From these we deduce
— the inclusion-exclusion formulae, and
— computation of probabilities in simple problems using combinatorial formulae.
O If P(B) > 0 we define conditional probabilities P(A | B) = P(A N B)/P(B), and derive
— a new conditional probability distribution Pp(A) = P(A | B) for A € F,
— the law of total probability,
— Bayes’ theorem, and
— the notion of independent events, for which P(A N B) = P(A)P(B).
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Random variables

O Let (2, F,P) be a probability space and (X', G) a measurable space. A random function X from

Q) into X has the property that X~1(C) = {w: X(w) €C} € F forany C € G, so
P(X €C) =P{X1(C)} is well-defined. Such a function is called measurable.

O If X =R or R" we call X arandom variable and there exists a cumulative distribution
function (CDF) F such that P{X € (—o0,21] X - -+ X (—00,x,]} = F(x1,...,2y).
O A CDF increases from 0 when any of its arguments increases from —oo to +oo.
O F can be written as a sum of (sub-)distributions F,c + Fuis + Fsing, Where
— F,. is absolutely continuous, i.e., there exists a non-negative probability density function
(PDF) fac(z) = dFuc(x)/dx,
—  Fyis is discrete, i.e., its probability mass function (PMF) fgis(z) is positive only on a finite
or countable set S, and
—  Fiing is singular, and can be ignored (look up ‘Cantor distribution’ if interested).
0 We call X continuous or discrete respectively if Fy; or Fy. is absent.
(0 If necessary we use Lebesgue—Stieltjes integration, whereby
PXe0)= [dF@) = [ ful@)dot Y fulo)
¢ ¢ zeCNS
the notation ff is unwise because it doesn't distinguish C = [a, b] from C = (a, b).
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New distributions and new random variables

0 We define the conditional distribution of X given an event B € F by
P(X e A|B)=P({X € A} nB)/P(B).
O IfY =g(X) €Y and we write g~ (B) = {z : g(z) € B} for B C ), then
P(Y € B) = P{y(X) € B} =P{X € g '(B)}.
O If X is continuous and Y = g(X) with g a smooth bijection, then (in obvious notation)

_ g1
el = It [ 2.
Y
where the last term is the Jacobian of the transformation.

O If X = (X1,X2) is continuous, we obtain marginal and conditional densities

fX17X2 (1‘1, w2)

Ixy(x2) = /le,XQ(xlyx2)dx1, Ixixa (71 | 2) = ey (@a)

with corresponding formulae in the discrete and mixed cases.
O X and X3 are independent (X 1L X») iff fx, x,(x1,22) = fx,(z1) fx,(x2), Y21, 22.
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Exchangeability

0 Exchangeability is weaker than independence, often used to model variables that are
indistinguishable in probabilistic terms, even if not independent.

O  de Finetti proved that such variables must be constructed as Uy, ..., U, | 0 id Fy, where 0 ~ G
for distributions Fy and G. The simplest theorem to this effect is the one below.

Definition 1 Random variables Uy, ..., U, are finitely exchangeable if their density satisfies

f(ul, e ,un) = f (u§(1), e ,u§(n))

for any permutation & of the set {1,...,n}. An infinite sequence Uy,Us, ..., is called infinitely
exchangeable if every finite subset of it is finitely exchangeable.

Theorem 2 (de Finetti) If Uy, Us, ..., is an infinitely exchangeable sequence of binary variables
taking values in {0,1}, then for any n there is a distribution G such that

1 n
Flug, .. up) = /O 119%‘(1 — )% G(d9) (1)
i

where

G0) = lim P{m ™ (U1 + - +Up) <0}, 6= lim m (U1 + - +Upn).

m—o0 m—o0
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Terminology and notation

0 PDFs and PMFs are not the same but we henceforth use the term density for both.

O Xi,....X, i f means that the X are independent and all have density f, and we then call the
X; a random sample (of size n) from f.

O Xi,....Xn, nd fi,..., fn, means that the X; are independent and X; ~ f;.

O Xi,....X, ind (11, 0%) means that the X; are independent with mean 1 and variance o2 (with

0 < 02 < 00). The X; need not be normal or have the same distribution.

0 Xp,.... X, (111, s Hn, 0%, ..., 02) means that the X; are independent with means 1; and
2

variances o5 (where 0 < sz < 00).

O The p quantile of the distribution F' of a scalar random variable X is
zp =inf{z: F(z) >p}, 0<p<L

Usually z, = F~1(p) for continuous X, but not for discrete (or mixed) X.
O A standard normal variable Z ~ N(0,1) has PDF and CDF

1 ey [
o(z) = \/ﬂe 2, O(z) = /_OO d(u)du, zeR.

and p quantile z, = ®71(p), so X = pu+ 0Z ~ N(u,0?) has p quantile p + o2,
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Order statistics
0 The order statistics of X1,...,X, i f are the ordered values
X1y £ X)) < < Xy < Xy

O In particular, the minimum is X(l), the maximum is X(n), and the median is

X(erl) (TL =2m+1, Odd), %(X(m) + X(erl)) (n = 2m, even).

The median is the central value of X7,..., X,,.
O If f is continuous then the X; must be distinct, and for » = 1,...,n we have
n
P <a) = 3 (M) rwr- Fay
j=r N
nl

o) = o) T @ - Py

0 Joint densities can be obtained using the argument that gives X (x), and in particular
fX(l),...,X(n) ('rla cee ,xn) — n'f(fﬂl) T f('rn), Ty < - < Iy

Example 3 Find the joint density of X(3), ..., X(,—1) given that X1y = z1 and X () = zy,.
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Note: Densities of order statistics

[0 The event X,y < x occurs iff at least 7 of the independent variables X1, ..., X,, are less than or
equal to x, and each of them does this with probability F'(x). Hence the probability of the event is
given by a binomial probability, and a little thought shows that this is the stated formula.

[0 The density can be obtained by differentiation of P(X(,) < x), whereupon one finds that almost
all the terms cancel, giving the stated density. A more easily generalised argument is as follows: for
the event X,y € [z,2 + dx), we need to split the sample into three groups of respective sizes
r—1, 1 and n — r and ‘probabilities’ F'(x), f(z)dx, and 1 — F'(x). The corresponding
multinomial ‘probability’ is

n!
F(x)} ' x f(z)de x {1 — F(z)}*"
T P @ (1= Py
and dropping the dx gives the density function of X,.).

OO For the joint density we divide the sample into n parts, each with one observation, and apply a

version of the multinomial argument just given.
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0

Note to Example 3

The joint density of X(;) and X, is given by splitting the total n observations into three parts,
with respective ‘probabilities” f(x1)dxy, F(x,) — F(z1) and f(z,)dz, and sizes 1, n — 2 and 1,
giving

n!

T gy e x P ) = F@ Y™ x flea)dan, 1 < o

fX<1)7X<n) (21, zp)dz1da, =

We drop the dzidz, to get the joint density.
Hence the conditional density of X(5),..., X(,_1) given that X(;) = x1 and X(,,y =z, is

nlf(21) - f(zn) o TT S @)
n1Jn = 2% Je) (F(ea) — Py 2 H F(zn) = F(a1)’

where 11 < 9 < -+ < 1 < Z,. This is the joint density of the order statistics of a random
sample of size n — 2 from the truncated distribution f(x)/{F(x,) — F(x1)}, where 1 < x < .
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Moments

O The expectation E{g(X)} of g(X) is defined if E{|g(X)|} < oo as

B(9(X)) = | g(a)dF (o)
O  For scalar X we define moments E(X"), mean p = E(X) and variance
var(X) = E[{X — E(X)}?] = E(X?) - E(X)? = E{X(X — 1)} + E(X) — E(X)?%

O wvar(X) = 0iff X is constant with probability one.

00  For vector X we define the mean vector and (co)variance matrix
n = E(X), COV(X17X2) = E(Xng) — E(Xl)E(XQ)T,

and write var(X) = cov(X, X) = E{(X — pu)(X —u)"}.
[0 The correlation, corr(Xy, Xy) = cov(Xy, Xo)/{var(X;)var(X5)}'/?, is a measure of dependence
between variables that does not depend on their units of measurement.

O Expectation E(-) is a linear operator, so it is easy to check that

E(a+ BX)=a+ BE(X), cov(a+ BX,c+ DX) = Bvar(X)D".
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Conditional moments

0 The conditional expectation of g(X,Y) given X =z is

Blo(X,Y) | X =2} = [ o(e)dF(y | 2)
which in the continuous and discrete cases equals

/y o ) x| D) dy, S gl frix(y | o),

yey

and other conditional moments are defined likewise.
O This is a function of z, so it defines a random variable g(X) = E{g(X,Y) | X}.
O The law of total expectation (tower property) gives
E{g(X,Y)} = Ex[E{g(X,Y)|X = a}],
var {g(X,Y)} = Ex [var{g(X,Y) | X = }] + vary [E{g(X,Y) | X = a}],
where Ex denotes expectation with respect to the marginal distribution of X, etc., with a similar
expression (which you should give) for cov{g(X,Y),h(X,Y)}.

0 We ignore mathematical issues arising from conditioning on events of probability zero — look up
‘Borel-Kolmogorov paradox’ if interested.

stat.epfl.ch Autumn 2024 — slide 17
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Multivariate normal distribution

A random variable X, «1 with real components has the multivariate normal distribution,
X ~ Np(1, ), if a™ X ~ N (a™ i, a™Qa) for every constant vector a, 1, and then

O My (t) = exp(t"u + $t™Qt) and the mean vector and covariance matrix of X are
E(X) = lunX17 Va‘r(X) - Qanv

where ) is symmetric semi-positive definite with real components;

0 for any constants a,;,x1 and Bixn,
a+ BX ~ N, (a+ Bu, BQB");
O a-+ BX and ¢+ DX are independent iff BQDT = 0;
O X has a density on R™ iff 2 is positive definite (i.e., has rank n), and then

1

e P (i@ - @ - ), T e R @)

flz;p,Q) = o

O if X" = (X{,X7), where X; is m x 1, and p and 2 are partitioned correspondingly, then the
marginal and conditional distributions of X7 are also multivariate normal:

X1~ N1, 1), X1 | Xo = 29 ~ Ny {1 + Q12905 (22 — p12), Q1 — Q12055 Qo1 }
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MGFs and KGFs

O The moment-generating function (MGF) and cumulant-generating function (KGF) of a
scalar random variable X are

Mx(t) =E (), Kx(t)=logMx(t), teN ={t: Mx(t) < oo}.

O A is non-empty, because My (0) = 1, but the MGF and KGF are non-trivial only if N contains an
open neighbourhood of the origin, since then

X " =t
Mx(t) =E Z e Z EE(XT), Kx(t) = Z micd
r=0 r=0 r=1

and one can obtain the moments E(X") and cumulants &, by differentiation.
O In the vector case we define

My (t) =B (e"Y), Kx(t) = log Mx(#),

and differentiation with respect to the elements of t = (¢1,...,t,)" gives the mean vector and
covariance matrix of X.

[0 There is a 1-1 mapping between distributions and MGFs/KGFs (if the latter are non-trivial).
[0 KGFs for linear combinations are computed as K,ypx(t) = a™t + Kx(B™t).
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Note: Moments and cumulants

0 We consider scalar X, as the calculations for vector X are analogous.
O First note that Mx () = 1 when ¢t = 0, since E(e!X) = E(1) = 1; thus 0 € NV for any X.

O If N contains an open set (—a,a) for some a > 0, and p, = E(X") denotes the rth moment of
X, then if |t| < q,

[eS) 4 . [eS) 4 .
Kx(t) =) — =log Mx(t) = log (Z I ) —log(1+b) = b— /24 b*/3 4,
r=1 ’ r=0 ’

where b = tpy + 219 /2! + t3u3 /3! + - - - . If we expand and compare coefficients of ¢,2,¢3,... in
the two expansions we get

Ki1=pn, Ko =pg— i, Ks=p3—3papn 205, k4= pa—Apap +6uopui —3pt, ..,

so 1 = E(X), ko = var(X), k3 = E{(X — )3}, ...
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Exponential tilting

O A baseline density fy with a non-trivial MGF can be used to construct a family of densities by
exponential tilting, i.e.,

fie) = foly)exp{e s(y) —k(e)}, yeEV,pEN,
where
N ={p: k(p) < oo}
and individual members of the family are determined by the value of .

O Héolder's inequality gives
M{apr + (1 - a)pa} < M(1)*M(p2)' ™" <00, 0<a<l,

for any ¢1,p2 € N, so the set A and the function k are both convex.
O This implies that f(y; ) is log-concave in ¢, which is very useful for statistics.

O This construction leads to an elegant general theory putting many well-known distributions
(Poisson, binomial, normal, ...) under the same roof.

Example 4 Investigate exponential tilting when fo(y) is uniform on (0, 27] with
s(y) = (cosy,siny)".
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Note to Example 4
Here ) = (0, 27] is finite, and s(y) has dimension 2 and is bounded, so with (1, p2) € R2,

1 [ )
/fo(y) exp{e's(y)} dy = o /s exp (1 cosy + pasiny) dy
1 21

= 5 exp{fs cos(y — 61)} dy = I(62),
T Jo

where 0 = (o3 + ¢3)'/2 >0, 0; = tan~ (g2 /1) € (0,27], and Iy(f2) is a modified Bessel function
of the first kind and order 0. Hence w1 = 05 cos#y and 9 = 05 sinfq, and

k(o) = log I{(p} + ¢3)'/2}, @ eN =R~

This is the von Mises—Fisher distribution on the circle, which concentrates around 61, with the degree
of concentration determined by #3 > 0; 3 = 0 gives the uniform density.
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Exponential family models

O If§ € ©cCRY where dim© = d, and there exists a d x 1 function s = s(y) of data y and a
parametrisation (i.e., a 1-1 function) ¢ = () such that

f(y;0) = m(y)exp{s v — k(p)} = m(y)exp [sTp(0) — k{p(0)}], 0€O,y€),

then this is an (d, d) exponential family of distributions, with
— canonical statistic S = s(Y),
— canonical parameter ¢,
— cumulant generator k, which is convex on N' = {¢ : k(¢) < oo}, and
— mean parameter u = p(p) = E(S;¢) = VEk(p), where V- =9 - /0.
0 We suppose that there is no vector a # 0 such that a™S is constant, and call the model a
minimal representation if there is no vector a # 0 such that a"¢ is constant.

0 The cumulant-generating function for S is
Ks(t) = log Ms(t) = k(p + ) — k(p), teN' CR?,
where 0 € N. On writing V?- = 0% - /00", one can check that

E(S) = Vk(p), var(S) = V2k(p).
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Note: Cumulant-generating functions

(0 The MGF for the canonical statistic S of an exponential family is
Ms(t) = E{exp(t7S)} = [ mly)exp {57t + 575 — k(¢)) dy.

and since this must equal unity when ¢ = 0 we see that
[ mwesp (57} dy = expli(e)).
and therefore that if it is defined,
Ms(t) = /m(y) exp {s"(t + @) — k(p)} dy = exp{k(p + 1) — k(p)},

which yields Kg(t) = k(¢ +t) — k().
O Now Mg(0) =1, Kg(0) =0, 0Kg(t)/ot = Vk(p +t) and 9*Kgs(t)/0tot* = V2k(p + 1), so

B(S) = OMs(t)/0t],_ = de's® /at(tio = OKs(t)/0te V| = Vik(y).

A similar calculation for the variance gives

E(SST) = 9*>Mg(t)/0tot™ V2k(p) + VE(p)V(p)T,

|t:0 -

and thus

var(S) = E(SS") — E(S)E(S)" = V2k(p) + VE(9)VE(0)" = VE(9)VE(9)" = VZk(p).
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Examples
Example 5 (Poisson sample) /fYy,....Y, ig Poiss (), find the corresponding exponential family.

Example 6 (Satellite conjunction) A simple model for the position Y of a satellite in R? relative to

the origin is
1 cos A it oo
Y NQ{(@Z)sin)\ o 4yt

where dy,dy > 0 are known and 1) > 0, 0 < \ < 2w. Write the corresponding density

(d1d2)1/2

5. OXP (=2 {di(y1 — ¥ cosN)? +da(y2 — ¥sin N2}, y1, 92 €R,

f(y1>y2;¢a )‘) =

as an exponential family.

O NB: avoid confusion — exponential family # exponential distribution! The exponential
distribution is just one example of an exponential family.

stat.epfl.ch Autumn 2024 — slide 22
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Note to Example 5

Independent Poisson Y7, ..., Y, have joint density
fy(y;0) = Hf(yj;ﬁ) = Fe = m(y) exp(slogf — nb),
=1 j=177

where m(y) = ([Ty;)~!. Thisis a (1,1) exponential family with
00 canonical statistic s = s(y) = > yj,

[0 canonical parameter logf = p € N =R,

O cumulant generator k(¢) = nf = ne? and

O  mean parameter pn = VEk(p) = ne¥ = nf = E(9).

Two standard parametrizations use the real parameter ¢ or the mean = ne” € R,.
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Note to Example 6

O The multivariate normal density is

1
[y, Q) = Wexp{—%@—ﬂfﬁfl@—#)}a y € R"

= 2m) " Pexp{—3y—pw QO (y—p) — 3log|Qf},
and if € is known then the exponent can be written as

—31og{(2m)" |0} — 35"y + ¥ QO — Q7 = logm(y) + s(y) " — (),

where s(y) = Q7 1y, ¢ = p and k(p) = 20™Q L. It is easy to check that
VEk(p) = Q71 = E(S) and V2k(p) = Q71 = var(S).
O In the satellite example n = d = 2, Q = D~ ! is diagonal, and with 7 = (1, ) we have

¢ = (p1,92) = (beos A, ¥sinA), s(Y)" = (di1Y1,d2Y2), k(p) = dip}/2 + do3/2.

The 6 parametrisation gives the polar coordinates of the mean ¢, but these are clearly equivalent
because of the 1-1 mapping between them.
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15



Exponential family models 1l

0 When dims = d > dim 6 = d the model is called a (d',d) curved exponential family, and the
d' x 1 vector ¢(6) gives a d-dimensional sub-manifold of RY .

0 Exponential families are closed under sampling: the joint density of independent observations

Y1,...,Y, from an exponential family with the same s(Y;)"p = ST ¢ is
n n n n T n
11 F@wsi0) = [T my) exp {sTe — k() } = [[m)exp S | Dosi| o=D k(o) ¢
Jj=1 Jj=1 j=1 j=1 j=1
so with kg(¢) = >_, kj(p), the density of S =3"..5; =3 . s(Y;) is
f(s;0) = m*(s)esTW*kS(“’), with  m*(s) = / H m(y;) dy.
{y:Ej S(yj)=3} j=1

This is an exponential family, with canonical statistic S, canonical parameter ¢ and cumulant
generator kg(p).

Example 7 (Satellite conjunction) Show that taking 1) known in Example 6 gives a (2,1)
exponential family.
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Note to Example 7

We previously had

P" = (p1.02) = (Weos A ysind),  s(Y) = (Y1, d2Ya), k(o) = dipl/2 + da3 /2,
but with ) known we can write

p" = (p1,92) = (cos A sin ), s(Y) = (pdiY1,9d2Ya),  k(p) = 92 (digp] + da3) /2,

where A is the only unknown parameter. This is a (2,1) exponential family because it cannot be
written in terms of a scalar ¢; the mean traces a curve (a circle) as A varies.

stat.epfl.ch Autumn 2024 — note 1 of slide 23
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Inequalities

O A real-valued convex function g defined on a vector space V has the property that for any
z,y €V,
g{tz + (1 = t)y} <tg(z) + (1 —t)g(y), 0<t<1

Equivalently, for all y € V, there exists a vector b(y) such that
g9(x) 2 g(y) +b(y)" (x — y)

for all x. If g(z) is differentiable, then we can take b(y) = ¢'(v).
O If X is a random variable, a > 0 a constant, h a non-negative function and g a convex function,

then
P{h(X) >a} < E{h(X)}/a, (basic inequality)
P(|X| >a) < E(|X|)/a, (Markov's inequality)
P(|X|>a) < E(X?)/a®>, (Chebyshov’s inequality)
E{g(X)} > ¢{E(X)}. (Jensen’s inequality)

O On replacing X by X — E(X), Chebyshov's inequality gives

P{|X - E(X)| > a} < var(X)/a*.
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Note: Inequalities

(a) Let Y = h(X). If y > 0, then for any a > 0, y > yI(y > a) > al(y > a). Therefore
E{h(X)} =E(Y)>E{YI(Y > a)} > E{al(Y > a)} = aP(Y > a) = aP{h(X) > a},

and division by a > 0 gives the result.

(b) Note that h(z) = |z| is a non-negative function on R, and apply (a).

(c) Note that h(x) = 22 is a non-negative function on R, and that P(X? > a?) = P(|X| > a).

(d) A convex function has the property that, for all y, there exists a value b(y) such that

g(x) > g(y) + b(y)(z — y) for all z. If g(x) is differentiable, then we can take b(y) = ¢'(y). (Draw a
graph if need be.) To prove this result, we take y = E(X), and then have

9(X) = g{E(X)} + b{E(X)H{X — E(X)},

and taking expectations of this gives E{g(X)} > ¢{E(X)}.

stat.epfl.ch Autumn 2024 — note 1 of slide 24
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Modes of convergence

O Let X, X4, Xo,... have CDFs F, Fy, F5, ... and let € > 0 be arbitrary. Then
- X, converges to X almost surely, X,, =% X, if P(limy, 00 X, = X) =1,
- X, converges to X in probability, X,, L, X, if lim, 0o P(| X, — X[ >¢) =0;
— X, converges to X in distribution, X, L, X, if limy, o F,,(z) = F(x) at each point
where F'(z) is continuous.
— A sequence X1, Xo,... of estimators of a parameter 6 is strongly consistent if X,, — 6 and

(weakly) consistent if X, 0.

O 2% and 52 , but not L, , require joint distributions of (X,,, X) for every n.

O Let xg,yo be constants, X,Y,{X,},{Y,,} be random variables and g(-) and h(-,-) continuous
functions. Then

X, X = X, X = X, 2 X,
Xnihro = Xn—>560,
Xo 25X = g(Xn) =2 g(X),

X, 2 XandY, 2y = h(XaY,) -5 h(X,y).

. . . . P
The last two lines are called the continuous mapping theorem (usually used with — ) and
Slutsky’s theorem.
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Limit theorems

iid

Theorem 8 (Weak law of large numbers, WLLN) /If X, X1, Xo,... ~ F and E(X) is finite, then

X=nY X1+ + X, = B(X).
iid

Theorem 9 (Strong law of large numbers, SLLN) /f X, X, X,,... ~ F and E(X) is finite, then

X=n'X;+ -+ X,) 2 EX).
Theorem 10 (Central limit theorem, CLT) If X1, Xs,... o (u,02) and 0 < 02 < oo, then

1/2(% _
2, =" Z0) DS A0.1), no .
g
Theorem 11 (‘Delta method’) /f a, (X, — ) 2y, an, it € R, ap = 00 asn — oo, and g is

continuously differentiable at ;1 with ¢'(p) # 0, then an{g(Xn) — g(p)} N J(n)Y.

[0 The CLT provides the finite-sample approximation X ~ N(u,0%/n), where ~ means ‘is
approximately distributed as'.

(0 Many more general laws of large numbers and versions of the CLT exist.
O The delta method also applies with X,,, Z € RP, g(z) : RP — R? continuously differentiable and
g' (1) replaced by Jy(n) = dg(n)/On™.
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1.3 Statistics Revision slide 27

I I B A B O

Statistical activities

This course covers some aspects of those activities in red above.
Many inferential tasks can be formulated in decision-theoretic terms, but we shall mostly avoid this.

Planning of investigations

Obtaining reliable data

Exploratory data analysis/visualisation

Model formulation

Point estimation of a population parameter

Interval estimation for a population parameter

Hypothesis testing to assess whether observed data support a particular model
Prediction of a future or unobserved random variable

Decision analysis to choose an action based on data and the costs of potential actions
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Statistical models

[0 Use observed data to draw conclusions about a ‘population’, i.e., a model from which the data are
assumed to be drawn, or about future data.
O A statistical model is a family of probability distributions for data y in a sample space ).
O A parametric model (family of models) f = f(y;0) or equivalently F' = f(y;6) is determined
by parameters § € © C R?, for fixed finite d.
O If no such @ exists, F' is nonparametric, and then the parameter is often determined by F’
through a statistical functional 6§ = t(F), e.g.,
2
p=t(F) =/de(y), o? = ty(F) =/y2dF(y)— {/de(y)} :
OO0 Parameters have different roles (which can change during an investigation):
— interest parameters represent targets of inference (e.g., the mean of a population, the slope
of a line, a baseline blood pressure) with direct substantive interpretations;
— nuisance parameters are needed to complete a model specification, but are not themselves of
main concern.
O A parametric model should have a 1-1 map from 6 to f(+;0), so parameters identify models.
stat.epfl.ch Autumn 2024 — slide 29
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Model formulation

0 Two broad types of statistical model:

— substantive — based on fundamental subject-matter theory (e.g., quantum theory, Mendelian
genetics, Navier—Stokes equations);

— empirical — a convenient, adequately realistic, representation of data variation;

— and of course a broad spectrum between them.

O We aim that

— primary questions/issues are encapsulated in interest parameters;
— secondary aspects can be accounted for, often via nuisance parameters;
— variation in the data is modelled well enough to give realistic assessments of uncertainty;
— any special feature of the data or data collection process is represented;
— different approaches to analysis can if necessary be compared.
0 Such models are always provisional and should if possible be checked against data.
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Some notation

[0 Vectors are always column vectors, with row vectors denoted using the transpose ™.

O By convention we (try to) use
— letters like ¢,d, ... for (known) constants,

— Roman letters for random variables X,Y ... and their realisations z,y, .. .,
—  Greek letters u, v, 1, A\, 2, A, ... for unknown parameters, and
— « is mostly reserved for significance levels.

[J  We distinguish the data actually observed, y°, from other possible values y, and likewise for
estimators 6°, probabilities p° = P(Y > y°), ..., based on y°.

O We write V- = - /0y and V2 = 9% /0pdp™ for differentiation with respect to a parameter, and
V, etc., for other derivatives. Hence if g(¢) is a scalar function of a d x 1 parameter ¢, then
Vg(p) is a d x 1 vector and V2g(y) is a d x d matrix, and if h(y) is a n x 1 vector function of ¢,
then VAT () is a d x n matrix and VTh(yp) is an n x d matrix.

O In general discussion we often suppose that data Y come from some unknown ‘true’ density g, but
we fit a candidate density f(y;6) that may be different from g.
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Point estimation
[0 An estimator of a parameter 0 € © based on data Y is a random variable 6 = A(Y) taking values
in ©. A specific value is an estimate 6(y).
O  An M(aximisation)-estimator is computed using a function p(y; ) as
- 1 <&
0= — 5 0).
gy £ 0(v;:0)
7=1
Often 6 also solves
1 n
= Vp(Yj30) =0
n “
7j=1
and is then called a Z(ero)-estimator.
O Equivalently we could minimise the loss function —p with respect to 6.
O If the true underlying model is g, then 6 is replaced by 64, where
6y = argmaxy / p(y;0)g(y) dy, / Vo(y;04)9(y) dy = 0.
Clearly if g(y) = f(y;0), then we want 6, = 6, uniquely.
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Examples
[0 Some examples (for a d-dimensional parameter 6):

O There are many (many!) other approaches to estimation.

— maximum likelihood estimation has p(y;0) = log f(y;0);
- method of moments estimation has h(y) = (y,v%,...,y9)7, u() = E{h(Y)}, and

—p(y;0) = {h(y) — w(0)} {h(y) — u(6)};

— generalized method of moments estimation (widely used in econometrics) also has a
symmetric positive definite d x d matrix w(#) and

—p(y;0) = {h(y) — p(0)} w(@){h(y) — n(0)};

- least squares estimation is method of moments estimation with h(y;) = y; and
i (0) = B(Y;) = 270,

— score-matching estimation (unfortunate misnomer) with Y ~ g has

—p(y;0) = ||V log f(y;0) — Vylog g(v)|]3-
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Examples

Example 12 Discuss maximum likelihood estimation of the parameters of the normal distribution.
Example 13 Discuss moment estimation of the parameters of the Weibull distribution.

Example 14 Show that under mild (but not entirely trivial) conditions on the density g, the
population version of the score-matching estimator is

argming [{Vy log f(Y;0)}* + 2V§ log f(Y; 9)] ,

and give the sample version.
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Note to Example 12

[0 The density function of a normal random variable with mean p and variance o2 is

(2m0?) 12 exp{—(y — 11)?/(20%)}, so here By1 = (1,02)T € R x R, and the likelihood for a

random sample y1,...,y, equals
n n
1 (y; —p)°
L) = f(y;0) = | | fy;:0) = eXp{—J
Therefore the log likelihood is
o U)_—EIO(27T)—EIO JQ—Ln( )2 €ER, 0% >0
o) =75 008 9 %8 2g2j:1yﬂ n o HER :
Its first derivatives are
o G ol n 1 < )
a =0 jzl(yg — W) 902 ——ﬁ+@jzl(yg — 1),
and its second derivatives, which give the Hessian matrix, are
0% n %0 n %0 n 1 & 9
a—MQ =T W = —;(y—ﬂ)a B0 204 EZ(‘% SOK

0 To obtain the MLEs, we solve simultaneously the equations

a? - n
%ﬁ) _ < o2 Zj:l(yj - :U’) > = <0>
) —507 + 37 L1 (U — ) a

Rl
Now " n n
al(7i, 52) 1 ~
=05 (y— W) =0=nfi=) yi=f=n") y=7
H j=1 j=1 j=1
and
(7, 52) n 1 < o e e _ e _
g =0 g = o Y A = =T Yy ) =0 Y ()
j=1 Jj=1 J=1

The first of these has the sole solution i = 7 for all values of o2, and therefore ¢(fi, 0?) is
unimodal with maximum at 6% = n=1 3" (y; — 7)%. At the point (fi,52), the Hessian matrix is
diagonal with elements diag{—n/52, —n/(25*)}, and so is negative definite. Hence 71 = % and
52 =n~13"(y; —7)? are the sole solutions to the likelihood equation, and therefore are the

maximum likelihood estimates.
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Note to Example 13
O A Weibull variable X has CDF F(z) =1 — e~ "% for z > 0 and \,a > 0, and is exponential

when o = 1. Note that W = (AX)“ ~ exp(1), so

E(X") = E{(WY*/\)"} = \TE(W'/®) = )\T/ W™ dw = A\T"T(1 +r/a),
0
where T'(+) is the gamma function. Hence with § = (A, &) the moment estimators solve
Y =m0 =A"T1+1/a), Y2=pu(0)=A"2T1+2/a), \a>0,
ie., L B
Y2/(Y) =T(1+2/a)/T(1+1/a)*, A=T(1+1/a)/Y.
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O

0

Note to Example 14

Score-matching can be useful when log f(y;6) = h(y;0) — k(0) with k(0) intractable. It is a
misnomer because the standard use of the term ‘score’ in theoretical statistics is for the derivative
of the log likelihood with respect to 6 (not y).

On writing log f(y; 0) = ¢(0) for brevity and supposing that y is scalar, we can write
IV, log f(y;0) — Vylog g(y)[13 = {V,£(0)}* — 2V, £(0)V, log g(y) + {V, log g(y)}*,

and see that the population version of the estimator is

0y = argming / {Vy0(0)} g(y) dy — 2 / {VyL(0)V,logg(y)} 9(y) dy,

because 6 does not appear in the third term of the square. Now g is unknown, so the second
integral here appears intractable, but as g(y)V,log g(y) = Vyg(y), we have

/ Vyl(0)Vylog g(y)g(y) dy = / Vyl(0)Vyg(y) dy
and integration by parts gives
[ 90V ay = 19,6000 - [ V20190 ay
= —E{Vilog f(Y;0)},
when (if!) the first integration term is identically zero. Hence

0, = argmingE [{V, log f(V:6)}> + 2V2log [(V30)] .

whose sample version,
0 = argming Y [{V,log [(¥5;0)} + 2V3log f(¥;:0)] .
j=1

can be computed from the sample.

Weighted versions can be used to kill the first term of the integral, when it is non-zero (exercise).
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Comparison of point estimators

[0 There are two generic bases for comparing point estimators:
— asymptotic — what happens when n — oo?
— finite-sample — what happens for sample sizes met in practice?

[0 Consistency is a key asymptotic criterion: does § approach 04 when n — 00?

Definition 15 An estimator 6 of 0, is (weakly) consistent if § i 0y as n — oo.
(0 Consistency is necessary but not sufficient for an estimator to be good, because
[N 0y = 6* = 6+ 10°/+/loglogn -, 0y, n — 00,

but * is (probably) useless: consistency can be considered a 'safety net'.

[0 Obviously we would like 6 to be ‘suitably close’ to 64, by minimising
MSE@% 0y) =E {(é . 99)2} ) MAD(& Oy) = E (‘é - 99‘) )

or other measures of distance (loss functions), asymptotically or in finite samples.
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Bias-variance and other tradeoffs

[ Using the bias b(0;0,) = E(f) — ,, the mean square error can be expressed as
MSE(8;6,) = b(0;0,)* + var(0),

so we must balance (‘trade off') the bias and the variance when choosing 6.
O In simple problems we could insist that the estimator is unbiased, i.e., b(é; 4) = 0, but this is
usually artificial because
— many good estimators are biased, and some unbiased estimators are useless;
— it may be impossible to find an unbiased estimator; and
— other properties may be more desirable (e.g., robustness).

An exception is meta-analysis, which involves combining different estimators with possibly very
varied sample sizes, in which case we want them to estimate the same thing!

Example 16 The method of moments estimator of a scalar § based on a random sample
Vi, Y 5y, o2) with sample average Y solves the equation () =Y. Show that if ju(-) has two
smooth derivatives and is 1-1, then the estimator is consistent and asymptotically normal, with bias

and variance both of order n=1.
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Note to Example 16

O As the function pu(-) is smooth and 1-1, it has a differentiable inverse, and thus by the continuous

mapping theorem, 6 = = 1(Y) -2 1~1{u(6)} = 6, i.e., § is consistent. For simplicity of notation
write g(z) = p~(z) and p = p(#) below.

O NowY = p+on~ 22, where Z, = (Y — u)/(c%/n)'/? ANy AN N(0,1), and we have

v -1 _n

o(7) = 1)+ 9 (on 22, + T/ o224 22,
where = p(0) and Z! € (0, 7,), ie.,
0=0+n""20¢ (1) Z, +n" Ay,
say, where A,, is a random variable of order 1. Taking expectations gives
b(6;0) =E(f) — 0 =n"'E(A,) =0(n 1),

under mild further conditions on ¢”.

[0 Now .
n'2(0 - 0)/{ogd (W)} = Z, +n 24 L5 7,

using this (or the delta method), so in large samples we have
0 ~ N{0,0°g (1)* /n}.
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Efficiency and the Cramér—Rao lower bound

E)efinition 17 If 6, and 05 are estimators of scalar 8, then the relative efficiency of ; compared to
05 can be defined as R

MSE(62;0)

MSE(6;;6)

In large samples the squared bias is often negligible compared to the variance, and we define the
asymptotic relative efficiency as var(0y)/var(6y). Similar expressions apply if the parameter has
dimension d.

[0 Under mild conditions on the underlying model, a scalar estimator 6 based on Y ~ f(y; ) satisfies
the Cramér—Rao lower bound,

~ {1+ Vb(6;0))
var(0) > ) ,

where ¢(6) is defined on the next slide. This bound applies for any sample size n. Moreover

— as n — oo the lower bound — 1/4(#), the asymptotic variance of the maximum likelihood
estimator, which hence is most efficient in large samples; and

— a similar result applies for vector 6.
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Bartlett identities

O For data Y ~ f(y;60) we define the log likelihood function ¢(0) = log f(Y;0) and d x 1 score
vector U(0) = V{(6).
O If we can differentiate with respect to 6 under the integral sign, we get the Bartlett identities:
0 = /Vlogf(y;H) x f(y;0)dy,
0 = /VQlogf(y;H) x f(y;0) dy+/V10gf(y;9) V¥log f(y;0) x f(y;0)dy,
0 = .-
giving the moments of U(#), viz
E{U(0)} =0, var{U(0)} = E{VEO)V'((9)} = E{-V2((6)}
where var{U(0)} = 1(0) is the d x d Fisher (or expected) information matrix.
O We write 21(0) for the Fisher information for a single observation of a random sample Y7,...,Y,,
and then that in the sample is ¢(0) = nu;(0).
[ Later we shall see that in large samples, the maximum likelihood estimator @ satisfies
6~ Ny {6,20)7'}.
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Note: Bartlett identities
[

For any 6 we have 1 = [ f(y;0)dy, so provided we can exchange the order of integration and
differentiation we have

y; 0)
y; 0)

The second stems from a second differentiation and applying the chain rule to the terms in the
final integral here; likewise for the third and higher-order ones, which give higher-order moments of
U(o).

For independent data Y1,...,Y,, we have U(0) = > %_, U;(0), where the U; = Vlog f(Y};0) are
independent, so using the Bartlett identities for the individual densities f;(y;;6) we have

OZV/f(y;H)dyz/Vf(y;H)dyz/Vf(y;H)ﬁ dy:/Vlogf(y;H)f(y;H)dy-

var{U(0)} = ) var{U;(6)} = ZE{Uj(G)Uf(G)} = —E{V'U;(0)} = ~E{V'U®)}

j=1 j=1

and this equals E {—V2((9)} = 1(0), and this in turn equals ne;(6).
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Note: CRLB
O We have

B0) = [ 01 (s0)dy = 0+ b(6:0),

and differentiation with respect to 6 gives (setting b'(6) = db(6; 0)/d6)

L+b(6) = / Oy)df(y;6)/d9 dy = / O(y) VL) f (y; 0) dy = E{OU (0)} = cov{0, U (0)},
because U(#) has mean zero. Hence the definition of correlation gives
cov{f,U(0)}% = {1+ V'(0)}? < var(f)var{U(6)} = var(h)(6),

which gives the result.

O If the bias is of order ™!, so too is its derivative, so in large samples we obtain

var(f) > +(0) ! = var(f).
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Pivots

O Point estimation does not express uncertainty — we need to assess how well the observed data y°
support different possible values of a parameter.

[0 We aim to find subsets of the parameter space that contain the ‘true’ parameter with a specified
probability — when the parameter of interest is scalar, these subsets are usually intervals.

0 Pivots are useful in finding such subsets.

Definition 18 IfY has density f(y;0), then a pivot (or pivotal quantity) Q = ¢(Y,0) is a function
of Y and 0 that has a known distribution (i.e., one that does not depend on 6).

Example 19 /f M = max(Y1,...,Y,), where Y1,...,Y, ig U(0,0), show that Q1 = M /0 is a pivot
and find a pivot based on'Y .
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Note to Example 19
O @, is a function of the data and the parameter, and
PM<z)=Fy(z)"=(z/0)", 0<z<8,
o)
P(Q1<q) =P(M/0 <q) =P(M <0q) =(0g/0)" =q", 0<g<1.
which is known and does not depend on 6. Hence ()1 is a pivot.

O fY ~U(0,6), then E(Y) = 6/2 and var(Y) = 62/12. Hence Y has mean /2 and variance

62/(12n), and for large n, Y ~ N{0/2,6%/(12n)} using the central limit theorem. Therefore
Y —6/2 1/9 rems :
= —— L% — (3n)/2(2Y /0 — 1) ~ N(0,1).
Q2= s = )T /0 - 1) < N(O.)
Thus Q2 depends on both data and 6, and has an (approximately) known distribution: hence Q3 is
an (approximate) pivot.

O AsY/6~U(0,1), we see that we could use simulation to compute the exact distribution of Q2,
and thus obtain an exact pivot (apart from simulation error). This is called a bootstrap
calculation, about which more later.
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Confidence intervals

Definition 20 Let Y = (Y1,...,Y,,) be data from a parametric statistical model with scalar
parameter 0. A confidence interval (Cl) (L,U) for 6 with lower confidence bound L and upper
confidence bound U is a random interval that contains 6 with a specified probability, called the
(confidence) level of the interval.

O L=1IUIY)and U=u(Y) are computed from the data. They do not depend on 6.
O In a continuous setting (so < gives the same probabilities as <), and if we write the probabilities

that € lies below and above the interval as

PO<L)=an PU<0) =ay,
then (L,U) has confidence level
P(L<O<U)=1-P@O<L)—-PU <0 =1-a,—ay.

O Often we seek an interval with equal probabilities of not containing 6 at each end, with

ar = ay = /2, giving an equi-tailed (1 — «) x 100% confidence interval.
O We often take standard values of «a, such that 1 — o = 0.9,0.95,0.99, ...
O A weaker requirement is P (L < 6 < U) > 1 — a, giving confidence level at least 1 — «.
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Construction of a Cl

0 We use pivots to construct Cls:
— we find a pivot @ = ¢(Y,0) involving 6;
— we obtain the quantiles ¢, g1—o, of Q;

— then we transform the equation

P{QaU < Q(Y>9) < q1faL} = (1 - OéL) —ay
into the form
P(LSHSU):l—aL—O&U,
where the bounds L = [(Y;ar,ar), U = u(Y; ar,ay) do not depend on 6;
— then we replace Y by its observed value y° to get a realisation of the CI.

O Going from quantiles of ) to L, U is known as inverting the pivot — it is convenient if @ is
monotone in # for each Y.

0 Often we have an approximate pivot (@— 0)/V1/2 < N(0,1), where V estimates var(a) and V'1/2
is called a standard error. The resulting (approximate) 95% interval is 6 + 1.96V /2,

Example 21 In Example 19, find Cls based on Q1 and on Q.
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Note to Example 21
O The p quantile of Q1 = M /0 is given by p =P(Q1 < qp) = qg, SO qp = pl/". Thus
Plag/" < M/ < (1—ap)/"}=1-ar —ay,
and a little algebra gives that
P{M/(1 —ap)'/" <0< M/allj/n} =1—a—ay,

SO

L=M/(1—ap)/", U=M/a/"
O For Q2 = (3n)Y/2(2Y /0 — 1) ~ N(0,1), the quantiles are z;_,, and z,,,, S0
P{za, < (3n)1/2(2?/0 —1)<z_4,}=1—ar—ay,
and hence we obtain
_ 2Y U— 2Y '
1+ 210, /(3n)/2’ 1+ 24, /(30)1/2’

note that for large n these are L ~ 2V {1 — z1_,, /(3n)"/?} and U ~ 2Y {1 — 2,,,/(3n)"/?}.
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Interpretation of a ClI
O (L,U) is a random interval that contains 6 with probability 1 — «.
O We imagine an infinity of possible datasets from the experiment that resulted in (L, U).
(0 Our Cl based on y° is regarded as randomly chosen from the resulting infinity of Cls.
O  Although we do not know if 8 € (I(y°; ar, ), u(y®; ar, ar)), the event § € (L,U) has
probability 1 — « across these datasets.
O In the figure below, the parameter 6 (green line) is contained (or not) in realisations of the 95% ClI
(red). The black points show the corresponding estimates.
57 e
%:7
gg— R —
§3, ii?*i
_| L e
> 0 2 i 6 s 1o 2
Parameter
stat.epfl.ch Autumn 2024 — slide 42

More about Cls

O Almost invariably Cls are two-sided and equi-tailed, i.e., o, = ay = «, but one-sided Cls of
form (—oo0,U) or (L, 00) are sometimes required:

— compute a two-sided interval with a;, = ay = «, then replace the unwanted limit by +oo (or
another value if required in the context).

O For a two-sided Cl we define the lower- and upper-tail errors
PO <L), PU<®H)

and if these equal the required value for each possible ay,, ay, then the empirical coverage of the
Cl exactly equals the desired value:

— this occurs when the distribution of the corresponding pivot is known, but in practice this
distribution is usually approximate, and then we use simulation to assess if and when Cls are
adequate;

— it's better to consider the two errors separately, as their sum may be OK even when they are
individually incorrect;

— these errors are properties of the Cl procedure, not of individual intervals!
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Prediction

O Prediction refers to ‘estimation’ of unobserved (future, latent, ...) random variables Y, .

O In parametric cases we often base prediction (or tolerance) intervals on existing data Y by
finding a pivot that depends on both Y, and Y, and predicting Y, using this pivot, e.g., using its
mean or median.

Example 22 IfYy,...,Y,, Y, id N (u,0?), give prediction limits and a predictor for Y based on the
other variables.

Example 23 (Conformal prediction) Suppose we seek a prediction interval for the outcome of an
ML algorithm. In the simplest case, with Y1,...,Y,, Y, real-valued and exchangeable, 8 € (0,1),
m = [(n+ 1)F] and qg equal to the mth order statistic of Y1,...,Y,, show that

P(Y} <qp) > B,

and deduce that P(q, < Y4 < q1-0) > 1 —2a.
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Note to Example 22

O Standard results give Y ~ A (u, 02 /n) independent of (n —1)5?/0? ~ x2_;, both independent of
Yy ~N(p,02),s0 Y, =Y ~ N(0,06% + 0%/n), independent of S?, leading to
Y, -Y

= ~ tnfb

{(1+1/n)52}1/?

leading to two-sided equi-tailed (1 — 2«) prediction interval
Y + (141/n)/25t, 1(1 —a).

Note that even as n — oo this interval does not vanish, rather it approaches yu + 0z1_4.
[J The Y; are replaced by y; to give the realisation of the interval.
[0 One obvious scalar predictor XAGF is given by taking the median for @, i.e., solving

Y, -Y
{(1+1/m)s2}1 %

q0.5 =

where in this case gg.5 = 0, giving }AGF =Y and realised value 7°.
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Note to Example 23

O Let qg denote the mth order statistic of V; = {Y1,...,Y,, Y}, and note that under

exchangeability Y, equals any of the order statistics of ), with probability 1/(n + 1). Therefore
P(Yy <gf)=m/(n+1)=[(n+1)8]/(n+1) > (n+1)8/(n+1) = 5.

O Now suppose that m =2 and Y < qg, so using an obvious notation ) can be represented as
e<f+<e<--- o +<e<e< ...
In both cases gz > qg, so Y, < qg implies that Y < g3, and conversely. This holds for any m, so
P(Y; <q3) =P(Yy <q5) > 8

Finally
Plga <Yy <qi_a)=PY: <qi_o) - PY T <q)>1-a—a=1-2aq,

as required.

0 For this argument to be practical we must have 1 < m < n, so if 3 is too small or too large, then
we must replace the corresponding limit by d-oo, which does not usually give a useful interval.

O In applications the data are of form (X,Y’) and we train a prediction algorithm fusing a training
subset of ¥ = {(X1,Y1),...,(Xy,Yn)}, giving residuals Y; — f(X) for a test subset of ) disjoint
from the training set, and then apply the argument above to these residuals and Y — f(X).
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Hypothesis testing

A statistical hypothesis is an assertion about the population underlying some data, or
equivalently a restriction on possible models for the data, such as:

— the population has mean py;

— the population is N (pg,032), with both parameters specified;

— the population is N'(11, o?), with the parameters unspecified;

— the data are sampled from the discrete uniform distribution on {1,...,9};

— the population density is symmetric about some y;

— the population mean u(x) increases when a covariate x increases.

These are assertions about populations, not about data, but they have implications for data.
Sometimes the distribution is fully specified, but not always.

Some, but not all, hypotheses concern parameters.

A hypothesis test uses a stochastic ‘argument by contradiction’ to make an inference about a
statistical hypothesis: we assume that the hypothesis is true, and attempt to use our data to
disprove it.
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Elements of a test

O A null hypothesis Hj to be tested.
0 A test statistic T, large values of which suggest that H is false, and with observed value .
O A P-value
Pobs = Po(T > tobs),
where the null distribution Py(-) denotes a probability computed under Hy.
[0 The smaller pyys is, the more we doubt that Hy is true.

[0 Tests on parameters are often based on pivots: if § = 6y, then T' = |¢(Y’;0y)| has a known
distribution Gy, say, and observing a value tos = |q(y°; 00)| that is unusual relative to Gy
‘contradicts’ Hj.

[0 In other cases we choose a test statistic that seems plausible, such as Pearson’s statistic,
K

T =Y (O — Ey)?/Ey,
k=1

used to check whether observed counts Oy, in K categories agree with their expectations
Ej = E(Oy) computed under Hy.

O In any case we need to know (or be able to approximate) the distribution of T under Hy.

stat.epfl.ch Autumn 2024 — slide 46

1.4 Bases for Uncertainty slide 47

Uncertainty

[0 Essentially three bases for statements of uncertainty:

— a frequentist (sampling theory) inference compares y with a set S C ) of other data that
might have been observed in a hypothetical sampling experiment;

— a Bayesian (inverse probability) inference expresses uncertainty via a prior probability
density and uses Bayes' theorem to update this in light of the data;

— in a designed experiment, clinical trial, sample survey or similar the investigator uses
randomisation to generate a distribution against which y is compared.

O There are many variants of the first two approaches.

O A frequentist should choose the reference set (aka recognisable subset) S of the sample space
Y thoughtfully.

Example 24 (Measuring machines) A physical quantity 6 can be measured with two machines,
both giving normal observations Y ~ N(6,02,). A measurement from machine 1 has variance o3 = 1,
and one from machine 2 has variance o3 = 100. A machine is chosen by tossing a fair coin, giving

M = 1,2 with equal probabilities. ThusY = {(y,m):y € R,m € {1,2}}.

If we observe (y,m) = (0, 1), then clearly we can ignore the fact that we might have observed m = 2,
i.e., we should take S§1 = {(y,1) : y € R} rather than Sy = {(y,2) :y € R} or S = ).
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Comments on sampling theory inference
0 We assume that y° is just one of many possible datasets y € S that might have been generated
from f(y; ), and the probability calculations are performed with respect to S.

[0 We choose S to ensure that the probability calculation is relevant to the data actually observed.
For example, if y° has n observations, we usually insist that every element of S also has n
observations.

O The repeated sampling principle ensures that (if we use an exact pivot) inferences are calibrated,
for example, a (1 — «) confidence interval (L, U) satisfies

P(L<O<U)=1-aq,

for every § € © and every a € (0,1). Hence if such intervals are used infinitely often, then
— although any particular interval either does or does not contain 6,
— it was drawn from a population of intervals with error probability exactly a.

[0 Bayesians object that inferences should only be based on the dataset 4° actually observed, so the
reference set S is irrelevant.

Example 25 What would the confidence intervals look like in Example 247 How would the image on
slide 42 change? What hypothetical repetitions form the reference sets?
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Bayesian inference

0 Our observed data y° are assumed to be a realisation from a density f(y | ).

O If we can summarise information about 6, separately from y°, in a prior density f(), then we
base all our uncertainty statements on the posterior density given by Bayes' theorem,

R 10)F6)
[ 71 0)f(0)db

O For example, if 6, satisfies P(§ < 6, | y°) = p for any p € (0,1), we could give a (1 — 2«)
posterior credible interval Z;_5, = (04, 61_4) such that

f01y°)

POeZi_o|y°) =1—-2a

here 0 is regarded as random and y° as fixed.

O A point estimate é(yo) of 6 is obtained by minimising a posterior expected loss, i.e.,
0(y°) = argmingE {L(G, 9) | yo} = argmin(;/L(G, 0)f(6 | y°)de,

where the loss function L(6,0) > 0 measures the loss when 6 is estimated by 6.

Example 26 Perform Bayesian inference based on Y1,...,Y, | 0 id U(0,0) with a Pareto(a,b) prior

for 6.
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Note to Example 26

O In situations like this, where the support of the density depends on a parameter, it is useful to
include an indicator function when writing down the density, viz

fly|)=60"'T10<y<0), yeR,0>0.

As a function of y for fixed 6, its support is the set (0,6), but as a function of 6 for fixed vy, its
support is (y,00). Sketch these to appreciate the difference.

[0 The prior density is f(0) = ab®/0°T11(0 > b) for a,b > 0, and the joint density of the data is

F10)=fly, .y | 0) =] fw 16) = H (0<y; <O)0~" =610 <m <9).
J=1 j=1
where m = max(y1,...,Yn), so the posterior density is proportional to

a

FO1y) x Fyi, .. yn | 0)f(0) =010 <m < 6) ab 1(0 > b) x 6~ ATV > B),

9a+1

where A =a+n and B = max(m,b). There are two possibilities here: the prior gives a lower
bound b for 6, and if m < b then there is no reason to update this lower bound, but if m > b then
clearly # > m > b, so the bound must be increased at least to m.

O The posterior density has support on (B, c0) and is proportional to 6~ (A+D) 5o it is
Pareto(A = a + n, B = max(y1,...,Yn,b)). The p quantile of this distribution satisfies
p=1—(B/0,)", ie., 6, = B(1—p)~'/4, which depends on the data and prior; of course
0<p<l

0 To get a point estimate we might take loss function
L6,0)=10—-0=0-0)I0>0)+0-0)I6>0),

and a standard computation shows that this is minimised at = b2 = B21/4,

stat.epfl.ch Autumn 2024 — note 1 of slide 50

36



O

Comments on Bayesian inference

Often Bayesian models are formulated using a judgement that some variables/observations are
exchangeable, as de Finetti theorems then imply that we can write

iid
Vi Yo [0~ fy:0), 0~ f(0).

In general, Bayesian inference
— requires the specification of a prior distribution on unknowns, separate from the data;

— implies that we regard prior information as equivalent to data, putting uncertainty and
variation on the same footing;

— reduces inference to computation of probabilities, so in principle is simple and direct.

Objectively specifying prior ‘ignorance’ is problematic and can lead to paradoxes, especially in high
dimensions.

(Approximate) Bayesian computation can be performed using

conjugate prior distributions (exact computations in simple cases),

integral approximations (e.g., Laplace’'s method),

deterministic methods (e.g., variational approximation),

simulation, especially Markov chain Monte Carlo.
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0

Randomisation

To compare how treatments affect a response, they are randomised to experimental units:
— treatments are clearly-defined procedures, one of which is applied to each unit;

— a unit is the smallest division of the raw material such that two different units might receive
two different treatments;

— the response is a well-defined variable measured for each unit-treatment combination.
Examples are agricultural trials, industrial experiments, clinical trials, ...

The experiment is ‘under the control’ of the investigator, making strong inferences possible.
Main goals of randomisation:

— avoidance of systematic error (eliminating bias);

estimation of baseline variation (e.g., by use of replication and/or blocking);

realistic statement of uncertainty of final conclusions;

providing a basis for exact inferences using the randomisation distribution.
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Example: Shoe data

O Shoe wear in an paired comparison experiment in which materials A (expensive) and B (cheaper)
were randomly assigned to the soles of the left (L) or right (R) shoe of each of m = 10 boys.

0 The m = 10 differences dy, . .., d,, have average d = 0.41.

Boy Material Difference
A B d
1 13 2(L) 140(R) 08
2 2 (L) 8.8(R) 0.6
3 10 9(R) 112 (L) 0.3
4 143 (L) 142(R)  -01
5 10 7(R) 118 (L) 1.1
6 66() 64(R)  -02
7 5(L) 9.8(R) 0.3
8 10 8(L) 113(R) 05
9 88(R) 9.3(L) 0.5

—
(@)

133 (L) 13.6 (R) 03

stat.epfl.ch

Example: Shoe data Il

O A unit is a foot, a treatment is the type of sole, and the response is the amount of wear.

0 This is paired comparison experiment, as there are blocks of two similar units, each of which is
given one treatment at random, according to the scheme

Treatment for boy j Left foot Right foot
A lj ’I“j
B 0 + lj 0 + Tj

[0 We observe either (6 + 1;,7;) or (I;,r; + 6) so the difference D; of B and A for boy j is
0 +1; —rjorf+r;—1;. These are equally likely, so we can write D; = 6 + I;c;, where

— 6 is the unknown (extra wear) effect of B compared to A,
— I; = 1 if the left shoe of boy j has material B and otherwise equals —1, and

— ¢j = lj —r; is the unobserved baseline difference in wear between the left and right feet of boy

J.
O If we observe (0 + 1;,r;) for boy j, then we cannot observe (l;,6 + r;), which is said to be
counterfactual.
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Example: Shoe data Il

0 There are 2™ equally-likely treatment allocations, and the observed d is a realisation of the random

variable . . .
1 1 1
D = R;Dj - R;wrljcj :9+R;I]—cj,

where I; = £1 with equal probabilities, so
E(l;) =0, var(f;) =1.

O Hence E(D) = 6 and var(D) = m~* )", 3, which is unknown because the c; are unknown, is
estimated by (exercise)
1 - —
m(m _ 1) ]Zl( J )
O D and S? can be computed from the observed data, so the standardized quantity Z = (D — 6)/S
is an approximate pivot.
O If there was no difference between B and A (i.e., # = 0), then T = D/S would be symmetrically
distributed, as positive and negative values of D would be equally likely.
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Example: Shoe data IV

Randomization distribution of T'= D/S for the shoes data, i.e., setting § = 0, together with a tg
distribution. Left: histogram and rug for the values of T', with the tg density overlaid; the observed
value is given by the vertical dotted line. Right: probability plot of the randomization distribution
against tg quantiles.
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Comments

0 Systematic error is reduced by randomisation,

— but if material A had by chance been allocated to all the left feet, then we might have
re-randomised;
— we could have used a design in which A appeared on left feet exactly 5 times.

0 Baseline variation was reduced by blocking, i.e., using two treatments for each boy, and is
estimated by S2, based only on the observed values Dy, ..., D,,.

O S? also allows a statement of uncertainty for D and hence for estimates of 6.

[0 If # =0, then the observed value of D is highly unlikely: just 3 values of D exceed d = 0.41, so if
f = 0 then exact calculation gives

P(D > d) = 7/2'° = 0.007,
which seems unlikely enough to suggest that 8 > 0.

[0 Normal distribution theory suggests that Z ~ tg, and the QQ-plot shows that this would work well
even here. The symmetry induced by randomisation justifies the widespread use of normal errors in
designed experiments.
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Big picture summary

[0 Statistical inference involves (a family of) probability models from which observed data are
assumed to be drawn.
[0 These models express variation inherent in the data, but we also wish to express our uncertainty
about the underlying situation.
(0 Uncertainty is formulated using
— a repeated sampling (frequentist) approach, which invokes hypothetical repetitions of the
data-generating mechanism, or
— a Bayesian approach, which requires that ‘prior information” on unknown quantities be
expressed as a probability distribution, or
— a randomisation approach, in which the model and hypothetical repetitions are controlled by
the investigator.
O The last is the strongest approach, but it is not always applicable.
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2 Some Basic Concepts slide 59

2.1 Likelihood slide 60

Likelihood

0 We now suppose that the data are provisionally believed to come from a parametric model
fy (y;0) for which @ lies in © C R

[0 Given observed data y, the likelihood and the log likelihood are

L(0) = fy(y;0), £(0)=log fy(y;0), 0¢€6;

we regard these as functions of @ for fixed y. The log likelihood is often more convenient to work
with because if i consists of independent observations y1, ..., y,, then

0(0) =1log fy (y;0) =log [ [ f(ys:0) = _log f(y;;6), 6 €0,
=1 =1

so laws of large numbers and other limiting results apply directly to n=14(6).
O Comments:
— the posterior density based on data y and prior f(#) is proportional to L(6) x f(6);

— the formula for ¢(0) is readily extended — for example, if y1,...,y, are in time order, then

00) = "log f(y; | Y1 - yj—150) + log f(y1;6).

=2
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Likelihood quantities

O The maximum likelihood estimate (MLE) 0 satisfies

~ ~

0(0) > £(0) or equivalently L(0) > L(6), 0 € 0.
[ Often 6 is unique and satisfies the score (or likelihood) equation

VI(9) = ag_%m —0,

interpreted as a d x 1 vector equation if 8 is a d x 1 vector.

O The observed information and expected (Fisher) information are defined as

2(9)
9006

2(0) = =V*(0) = u0) =E{5(0)};

these are d x d matrices if § has dimension d and otherwise are scalars.

O To evaluate ¢(f) we replace y by the random variable Y and take expectations.

Example 27 (Exponential family) Find the likelihood quantities when Y1, ...,Y,, is a random
sample from a (d, d) exponential family.
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Note to Example 27

0 The density for a single observation is

f(y;0) =m(y)exp{s'¢ — k(p)} = m(y)exp [s'p(0) — k{p(0)}], 0€O,yec),

where s = s(y), so the corresponding log likelihood based on y1,...,y, is

Zlogf yj;0) = Z To(0) — nk{p(0)} = s"p(0) — nk{p(6)}, €O,
7j=1
where s = zj y; and = means that we have dropped additive constants from the log likelihood.

O If V denotes gradient with respect to 6 and k, and k., denote the gradient and Hessian matrix of
k with respect to ¢, then the score equation is

Vp(0)'s —nVp(0) ko{p(0)} =0,

so if the d x d matrix ¢(0)" is invertible (which is the case for a smooth 1 — 1 transformation),
then the MLE ¢ satisfies k() =5 = s/n (note that E(S/n) = k,(¢), so @ is also a moments
estimate), and therefore § = ¢~ 1().
0 To compute the observed information we write the likelihood derivatives as
Doy i Ok ()

— =1,...,d
39,»(% naer 3tpt ) r ) s &y

using the Einstein summation convention that implies summation over repeated indices (here t),
and then differentiate with respect to 6, to obtain

2 2 2
Opr (o, O OK(p) | 00Oy k()

00 =500, * " 00,00, Dy " 00, 90, dpidp, T

., d.

Note that

— if ¢(f) =0, i.e., the exponential family is in canonical form, then V() = I; and the second
derivatives are zero, so this entire expression reduces to nVQk:(go), which is non-random;

- E(S:) = nok(p)/0¢:, so in any case
U8) = nV(0) kop{0(0)} {V(0)"} 5
— the MLE satisfies the score equation, so the observed information at the MLE is
~ N T
§0) = nVe(0) ko (@)} { Ve O) }
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Invariance

0 We prefer inferences to be invariant to (smooth) 1-1 transformations of data and/or parameter.

O If Z=2(Y) is a 1-1 function of a continuous variable Y and the transformation does not depend
on 0, then f7(z;0) = fy{y~"(2);0}|dy/dz|, so

0(0;2) = log fz(2;0) = £(0;y) = log fy (y; 0),

where = means that an additive constant not depending on 6 has been dropped — hence
likelihood inference is the same whether we use Y or Z.

O Likewise a smooth 1-1 transformation from 6 to () will give

Fluse) = Hys0(0)} = f(y:0),
where the tilde denotes the density expressed using ¢. Clearly

Fw:8) = o) = Fw:d), 20 = 250022

00" | o= @) ,

~

so the maximum likelihood estimates satisfy ¢ = ¢(#). This implies that we can optimise £ in a
numerically convenient parametrisation, ¢, say, and then transform to 6.
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Interest and nuisance parameters

O In most cases 6 = (¢, ), where the
—  (low-dimensional, often scalar) interest parameters 1) represent targets of inference with
direct substantive interpretations;

— (maybe high-dimensional) nuisance parameters \ are needed to complete a model
specification, but are not themselves of main concern.

O Ideally inference on 1 should be invariant to interest-respecting (or interest-preserving)
transformations

VA = =n),¢ = (¥, ).
O For example, if X ~ N (i,0?) then the log-normal variable Y = exp(X) has mean
Y = exp(p + 02/2), and
— confidence intervals for 1) should be the same whether the nuisance parameter \ is chosen as p
oro?oru—o?/2o0r...;
— if (L,U) is a confidence interval for 1, then a confidence interval for log ¢ should be
(log L,logU).
O Later we will try to construct likelihoods that depend only on the interest parameters.
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2.2 Complications slide 65

Overview

O In theoretical discussion we glibly write something like
“Let Va,...,Y, 2 f(y;0)..."
but in applications this cannot be taken for granted.

O Ideally we can ensure random sampling and full measurement of observations from a well-specified
population, but if not, possible complications include:

selection of observations based on their values;

censoring;

dependence;

missing data.
O We now briefly discuss these . ..
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Selection

O If the available data were selected from a population using a mechanism expressible in probabilistic
terms, then the likelihood is
PY =y|S;0),
where S is the selection event. If S is unknown or not probabilistic, only sensitivity analysis is
possible (at best).
00 A common example is truncation of independent data, where S; = {Y; € Z;} for some set Z;,
giving likelihood

1 £ | y; € Z;50).
j=1

Example 28 In certain demographic databases on very old persons, an individual born on
calendar date x is included only if they die aged ug + t, where ug is a high threshold (e.g., 100
years) and t > 0, between two calendar dates c¢; and cy. The likelihood contribution for this
person is then of form

f(t)

m, a<t<hb, [a,b] = [max(0,c; — x),co — x],

where x is the calendar date at which they reach age ug. See the next page.
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Selection in a Lexis diagram

excess lifetime above 1

/4

calendar time

over ug are shown.

excess lifetime above 1

rC—Xc

’tA
FCl—Xa

rC1—Xc

’tB
rC2—Xp

Lexis diagrams showing age on the vertical axis and calendar time on the horizontal axis. Only ages

Left: only the individuals with solid lines appear in the sample.
Right: explanation of the intervals for which different individuals are observed.

Lo

calendar time
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Length-biased sampling

50
40

30

Lower left: histogram of all the intervals
Lower right: histogram of the selected intervals.

20 = <, . - =
10 = i. >
. . - o 4 . -
0 . -
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0.100
0.20
0.075
’?0.15 2
2010 £ 0.050
o’ a
0.05 0.025
0.00 0.000
0 10 20 30 40 10 20 30 40
y y
Top: we select the intervals that contain time y = 10.
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Biased sampling

O Arises when the probability of selecting (sampling) an observation depends on its value.

O If p(y) =P(S|Y = y) denotes the probability that an observation of size y is selected, then the
density of a selected observation is

PSE|Y =y)fly) __ r@)f)
P(S) JpW)f(y)dy’

O A common example, length-biased sampling, occurs when p(y) x y, giving

yfly)  _ yf)
Jaf@)de  p 7

say, and the mean length for the selected observations is not E(Y) = i but

fsty)=flylS)=

fs(y) = y >0,

B [8) = [ufs)dy = [ vFw)/udy =+ 0 n,
where 02 = var(Y') is the population variance.

O Many other types of biased sampling arise in medical and epidemiological studies, in sampling
networks, and in other contexts.
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Censoring
[0 Selection and truncation determine which observations appear in a sample, whereas censoring
reduces the information available.

0 Censoring is very common in lifetime data and leads to the precise values of certain observations
being unknown:

— right-censoring results in (7' = min(Y,b), D = I(Y < b)) for some b;
— left-censoring results in (T’ = max(Y,a),D = I(Y > a)) for some a;

— interval-censoring results in (Y, I(a <Y <)), (a,I(Y <a)) or (b,I(Y > b)), or it is known
only which of certain intervals 71, ..., Zx contains Y.

0 Here the interval limits may be random, for simplicity are often taken to be independent of Y.

O In each case we lose information when Y lies within some (possibly random) interval Z, often with
the assumption that Y Il 7.

O Rounding is a form of interval censoring, and we have already seen (exercises) that little
information is lost if the rounding is not too coarse.

O Likelihood contributions based on right- and left-censored observations are

frH1-Fr @}, O E ()}

0 Truncation and censoring can arise together; see the Lexis diagram.
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Dependent data

O If the joint density of Y = (Y7,...,Y},) is known, then the prediction decomposition
n
F@0)=fr -y 0) = f0) [ £l v, yi-1:0)
7j=2

gives the density (and hence the likelihood).

O This is most useful if the data arise in time order and satisfy the Markov property, that given the
‘present’ Y;_y, the ‘future’, Y;,Y,1,..., is independent of the ‘past’, ... ,Y;_3,Y;_», so

filys,- o yi-130) = f(yy | yj-150)
and the product above simplifies to

n
f(y;0) = f(y1;0 H y] | Yj— 1;0
7j=2

O Many variants of this are possible.

Example 29 (Poisson birth process) Find the likelihood when Yy ~ Poiss(#) and Yy, ..., Y, are
such that Yj 1 | Yo = yo,...,Y; = y; ~ Poiss(0y;).
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Note to Example 29

Here

Qry.: \Vit1
o) —exp(=0y;), Y =01, >0

Wi 1y;:0) = —
Yj+1:

If Yy is Poisson with mean 6, the joint density of data yg,...,yn is

so the likelihood is .

Hyj! exp (solog 6 — s16), 0 >0,
=0

where so = >_"_y; and 51 =1+ Zj "o Yj- Thisis a (2,1) exponential family.
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Missing data

O Missing data are common in applications, especially those involving living subjects.
0 Central problems are:
— uncertainty increases due to missingness;
— assumptions about missingness cannot be checked directly, so inferences are fragile.

0 Suppose the ideal is inference on 6 based on n independent pairs (X,Y’), but some Y are missing,
indicated by a variable I, so we observe either (x,y,1) or (z,7,0).

O The likelihood contributions from individuals with complete data and with y missing are
respectively

P(I=1|2.9)f(y | z:6)(x:6). / P(I =0 2.9)f(y | 2:0)(x:6)dy,

and there are three possibilities:

— data are missing completely at random, P(I =0 | z,y) = P({ = 0);

— data are missing at random, P(I =0 | z,y) =P(I =0 z); and

— non-ignorable non-response, P(I =0 | z,y) depends on y and maybe on z.

The first two are sometimes called ignorable non-response, as then I has no information about 6
and can (mostly) be ignored.
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Example

Missing data in straight-line regression. Clockwise from top left: original data, data with values missing
completely at random, data with values missing at random — missingness depends on x but not on y,
and data with non-ignorable non-response — missingness depends on both = and y. Missing values are
represented by a small dot. The dotted line is the fit from the full data, the solid lines those from the
non-missing data.
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Example
Truth Average estimate (average standard error)
Full MCAR MAR NIN
Bo 120 120 (2.79) 120 (4.02) 120 (4.73) 132 (3.67)
f1 050 0.49 (0.19) 0.48 (0.28) 0.50 (0.32) 0.20 (0.25)

[0 Average estimates and standard errors for missing value simulation, for full dataset, with data
missing completely at random (MCAR), missing at random (MAR) and with non-ignorable
non-response (NIN) and non-response mechanisms

0.5,
P(I=0|z,y) =4 ®{0.05(z —7)},
©[0.05(x =) + {y — Bo — Az — )} /o];
In each case roughly one-half of the observations are missing.

[0 Data loss increases the variability of the estimates but their means are unaffected when the

non-response is ignorable; otherwise they become entirely unreliable.
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Discussion

O Truncation, censoring and other forms of data coarsening are widely observed in time-to-event
data and there is a huge literature on them, especially in terms of non- and semi-parametric
estimation.

O Selection (especially self-selection!) can totally undermine analysis if ignored or if it can't be
modelled.

O The Markov property plays a key simplifying role in inference based on time series, and
generalisations are important in spatial and other types of complex data.

O Missingness is usually the most annoying of the complications above:

— it is quite common in applications, often for ill-specified reasons;

— when there is NIN and a non-negligible proportion of the data is missing, correct inference
requires us to specify the missingness mechanism correctly;

— in practice it is hard to tell whether missingness is ignorable, so fully reliable inference is largely
out of reach;

— sensitivity analysis and or bounds to assess how heavily the conclusions depend on plausible
mechanisms for non-response is then useful.
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2.3 Data Reduction slide 77

Sufficiency

[0 When can a lot of data be reduced to a few relevant quantities without loss of information?

O A statistic S = s(Y') is sufficient (for 6) under a model fy(y;0) if the conditional density
fyis(y | s;0) is independent of 6 for any 6 and s.

O This implies that
fy(y;0) = fs(s:0) fyis(y | 5),  €(0;8) = £(0;y),
so we can regard s as containing all the sample information about 6: if we consider Y to be
generated in two steps,
— first generate S from fs(s;#), and
— then generate Y from fy5(y | 5),
and if the model holds, then the second step gives no information about 6, so we could stop after
the first step.
[0 The conditional distribution fys(y | s) allows assessment of the model without reference to ©.

Example 30 (Uniform model) /fY;,....Y, Y U(8), find a sufficient statistic for § and say how to

use f(y | s) to assess model fit.
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Note to Example 30

O The density is f(y;60) = 6~11(0 < y < ), so since the observations are independent, the
likelihood is

LO)=T[0710<y; <0)=0"T0<y1,....yn <0) =010 <m <), 0>0,
j=1

where m = max(y1, . ..,y,); note that [, I(0 <y; <6) =I(0 <m <0). Clearly the likelihood
depends on the data only through n and m, and as n is taken to be fixed, a sufficient statistic is
M = maxy;.

O We have P(M < m) = (m/0)" for 0 < m < 6, so M has density nm™~1/0" for 0 < m < 6, but
to compute the conditional density of the observations given M it is easiest to first compute that
of the order statistics, i.e.,

flyry oy yp—1,m) =nl0™", 0<y; < -+ <yp_1<m<H,
so the joint density of Y{y),...,Y{,_1) given M =m is

n!o™"  (n—1)!
nmn—1/67 I 0<y1 < <yYp1<m,

which is the density of the order statistics of a random sample of size n — 1 from the U (0, m)
density. Tests of fit will be based on this density, which does not depend on 6.
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Minimal sufficiency

O If S =s(Y) is sufficient and "= ¢t(Y') is any other function of Y, then (S,T") contains at least as
much information as S, and is also sufficient. Hence S is not unique.

0 To deal with this we define a minimal sufficient statistic to be a function of any other sufficient
statistic. This gives a ‘maximal data reduction’ and is unique up to 1-1 maps.

O To formalise this, note that
— any statistic 7' = ¢(Y") taking values ¢ € T partitions the sample space ) into equivalence
classes C; = {y/ € YV : t(y) = t};
— the partition C; corresponding to T is sufficient if and only if the distribution of Y within each
C; does not depend on 6; and

— a minimal sufficient statistic gives the coarsest possible sufficient partition.

0 We use the following results to identify (minimal) sufficient statistics.

Theorem 31 (Factorisation) A statistic S = s(Y) is sufficient for 6 in a model f(y;0) if and only if
there exist functions g and h such that f(y;0) = g{s(y); 0} x h(y).

Theorem 32 IfY ~ f(y;60) and S = s(Y') is such that log f(z;0) — log f(y;0) is free of 8 if and
only if s(z) = s(y), then S is minimal sufficient for 6.
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Note to Theorem 31

0 The result is ‘if and only if', so we need to argue in both directions.

O If S is sufficient, then the factorisation
f(y;0) = f{s(y); 0} < f(y | s) = g{s(y); 0} x h(y)

holds.

[0 To prove the converse, suppose for simplicity of notation that Y is discrete and that there is a
factorisation. Then S has density

0= > g{s@W)0hy) =g(s:0) > (),

y'eY:s(y')=s y' eY:s(y')=s
where the sum is in fact over ¢’ € Cs. Thus the conditional density of Y given S = s = s(y) is

o) = 9UsW:Oiy) _ h(y)
f(y | ,9) = 9(8;0) Zy’ecs h(y’) - Zy’ecs h(y’)’

which does not depend on 6. Hence S is sufficient.

[0 The continuous case is similar, but the presence of a Jacobian makes the argument a bit messier.
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Note to Theorem 32

0 We must show that that S is sufficient and that it is minimal.

(0 To show sufficiency, note that every y € Y lies in an element of the partition C; generated by the
possible values of S, and choose a representative dataset 3, € Cs for each s. For any y, y;(y) is in

the same equivalence set as y, so the ratio f(y; 9)/f(y;(y); 6) does not depend on 6, by the
premise of the theorem. Hence

F@:0) = f(yy):0) x = g{s(y); 0} x h(y),

because y;(y) is a function of s(y). This factorisation shows that S = s(Y') is sufficient.

O  To show minimality, if "= ¢(Y) is any other sufficient statistic the factorisation theorem gives

f(y;0) = g'{t(y); O} (y)
for some ¢’ and I'. If two datasets y and z are such that ¢(y) = ¢(z), then

f(z;6) _ g {t(2);0}1 (2) _ B (z)
fy:0) g {t(y); 030/ (y) W (y)

does not depend on 6, and hence s(y) = s(z). This implies that

{ze):ilz) =ty c{zeV:s(z) =y},

i.e., the partition generated by the values of S is coarser than that generated by the values of T,
and therefore it must be minimal.
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Examples
Example 33 (Uniform model) Discuss minimal sufficiency when Y1, ...,Y, Y U(0,0).

Example 34 (Location model) /fYy,...,Y, Y g(y — 0), with g a known continuous density, find a

sufficient statistic.
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Note to Example 33

O We already saw in Example 30 that M = max(Y7,...,Y,) is sufficient, so if U = min(Yy,...,Y,)
then clearly S = (U, M) is also sufficient. The partitions of the sample space ) = (0,0)"
corresponding to the statistics U, M and (U, M) have elements C, = {y € YV : u(y) = u},
Cm={y€Y:m(y) =m} and

Cu,m:{yey:u(y):u7m(y):m}7 0<u<m<é,

where for brevity we write y = (y1,...,yn); Cy contains all the samples that have minimum w, for
example. Notice that the same partition C,, would arise if we replaced u by a 1-1 function g(u).

[0 Sketch the partitions on the board!

0 We already saw that the density of (Y7,...,Y},) given that M = m, i.e., the conditional density of
Y =y inside C,,, is the density of n — 1 independent U (0, m) variables, which does not depend on
6, so the partition {C,, : 0 < m < 0} is sufficient. Obviously this is also true of
{Cum : 0 <u<m< 0}

O The density of U is given by differentiation of P(U < u)=1— (1 —u/0)", for 0 <u <8, i.e.,
n0~1(1 —u/0)"! for 0 < u < 0, so the conditional density of Y7,...,Y,, given U is

0~"I(0 <m < 0) 1

n0(1—u/0) 10 <u<0) n(d—unr! 0<u<m<b),

which depends on 6. Hence the partition {C, : 0 < u < 6} is not sufficient.

O In the calculation below we set 0/0 = 1. To show that M is minimal sufficient, note that if we
have two samples y1,...,y, and z1,..., 2z, then (in an obvious notation)
f(z:0)  07"I(0<m, <)
fy;0)  07"I(0<my<8)’

which is independent of ¢ iff n = n’ and m, = m., i.e., the samples have the same size and the
same maxima. Since we usually take the size as non-random (for reasons seen later), the sample
maximum is minimal sufficient for 6.
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Note to Example 34

00 The density g is continuous, so all the y; are distinct with probability one. The joint density is

therefore
n n
F0) =] —0) =n'T]9ws) —0), vy < <yw),

j=1 j=1
where s = (y(1),---,Y(n)) are the sample order statistics. The labels on the original data are
simply a permutation of the n labels on the order statistics, but the values are the same, so

fy:0) 1
79 = = € )
where )s is the set of permutations of (y1,...,y,) with order statistics s; clearly |V | = n!,
because there are no ties.
O To show minimality, take another sample z1,..., z, and note that

f(z0) _ H?:l 9(z — 0)
fy:0)  Ilj=19(y; —0)

which (for general g) is free of 0 only if the y; are a permutation of the z;, and this occurs only if
the order statistics of the samples are the same.

00 Here |s| = n in general. In special cases (e.g., the normal density) there is a minimal sufficient
statistic of lower dimension.
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Using sufficiency: Rao—Blackwell theorem

Theorem 35 (Rao-Blackwell) /f@ is an unbiased estimator of a parameter 0 of a statistical model
f(y;0) and if S = s(Y) is sufficient for 6, then T =E(6 | S) is also unbiased, and var(T') < var(6).

Example 36 (Exponential family) Find a minimal sufficient statistic for @ based on a random
sample Y1,...,Y, from a (d,d) exponential family. If d =1 and s(Y') =Y, find a better unbiased
estimator of u = E(Y1) than Y.

0 The Rao—Blackwell theorem is non-asymptotic: it holds for any n.

[0 The process of getting a better estimator, Rao—Blackwellization, is useful in many contexts
(e.g., as a variance reduction technique in MCMC estimation).
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Note to Theorem 35

[0 We must show that that 7T is a statistic, that it is unbiased, and that it has smaller variance than .
O We have

~ Rl 9) = / 6y)f(y | 5)dy,

which does not depend on 6 by sufficiency of S, so T is indeed a statistic.

/{/0 fly|s) dy}f(s&ds—/@ y;0)dy =0,
by unbiasedness of 6.

O Finally we write §# —9 =0 — T +T — 0 = A+ B, say, and note that E(4 | S) = E(B) =0, so

O Moreover

cov(4, B) = EsEy|s(AB) = Eg { BEy|5(A4 | S)} = Es(B0) =0,
and thus
var(f) = var(A + B) = var(A) + var(B) = var(f — T) 4 var(T) > var(T),

with equality iff E{(T' — 0)2} = 0, i.e., T and 6 are equal almost everywhere.
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Note to Example 36

O The log joint density is

n

> log f(y;:6) = Y [logm(y;) + s]o(8) — nk{p(6)}] = s"p(6) — nk{e(9)}, 6€0,
j=1

=1

so s =y s(y;) is sufficient. It is also minimal, because

Zlog f(z5:60) — Zlogf(yﬁ@)
p j=1

does not depend on 6 iff >~ s(y;) = > " s(z;) (and n =m).
O To find the unbiased estimator we argue by symmetry: clearly E(Y; | S) =--- = E(Y,, | S)
because S is symmetric in the Y; and the latter were IID. Hence

Yl\S—n_leY\S (121/5) E(S|S) =

7=1

and clearly var(S) = var(Y1)/n.
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Complete statistics

O

0

Example 37 Show that the maximum of a uniform sample is complete, and hence find the unique
minimum variance unbiased estimator of 6.

Theorem 38 (No proof) The minimal sufficient statistic in a (d,d) exponential family (i.e., one for
which the parameter space contains an open d-dimensional set) is complete.

If we have numerous unbiased estimators, all of which could be improved, then we would like to
find the best.

To force uniqueness we introduce completeness: a statistic S (or its density) is complete if for
any function h,

E{h(S)} =0 forall § = h(s) =0,
and S is boundedly complete if this is true provided h is bounded.

If S is complete, then two unbiased estimators based on S satisfy

E{01(S) — 02(S)} =0 forall 0,

so by completeness 0, (S) = 65(S) is unique.
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Note to Example 37

0

The density of M is of the form
f(m;0) =a(m)b(0)I(0<m <h), 0<m<¥b, 6>0,

where a(m) = nm™ ! and b(f) = §~™, so suppose for a contradiction that there exists a function
h for which h(m) # 0 but

0 0
0=E{h(M)} = /0 a(m)b(@)h(m) dm /0 a(m)h(m)dm, 6> 0.

The integral here equals zero for all # so its derivative a(0)h(60) with respect to # must be zero.
However, a(m) # 0, so h(#) = 0 for all § > 0, which is a contradiction. Hence M is complete.

For the unbiased estimator, we note that E(M) = nf/(n + 1), so § = (n + 1)M/n is unbiased
and must therefore be the unique minimum variance unbiased estimator of 6.
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Using sufficiency: Eliminating nuisance parameters

Sometimes the removal of nuisance parameters can be based on the following results.

Lemma 39 In a statistical model f(y; 1, \) let Wy, be (minimal) sufficient for X when 1) is regarded
as fixed. Then the conditional density f(y | wy;) depends only on 1. This holds in particular if W,
does not depend on 1.

Lemma 40 /n a (d,d) exponential family in which p(6) = (¢, \) and s = (t,w) is partitioned
conformally with o, the conditional density of T' given W = w®° is an exponential family that depends
only on .

Example 41 (2 x 2 table) Apply Lemma 40 to the 2 x 2 table

Success Failure Total
Treated Ry m1 — Ry mi
Control Ry mgy — Rg mo

Total Ri+Ry mg+mi—Ri— Ry mi+mg

where Ry ~ B(mg,m,) and Ry ~ B(my,m) are taken to be independent.
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Note to Lemma 39
If 1) is regarded as fixed, then we can write
Fys, A) = flwyi, A) x fy | wg; ),
where the rightmost term is free of A, with logarithm
log f(y; ¥, A) — log f(wy; ¥, A).
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Note to Lemma 40

In the discrete case, let > denote the sum over the set {y : w = w°} and note that
F@®s, ) = > m*(y) exp{t"y +w” A — k(p)}

= exp{w'A—k(p }Zm y) exp (t" )

SO

m*(y) exp {t"Y + w*" A — k(p)}
exp {woTA — k(p)} >, m*(y) exp(tT)

= m*( )exp{ lome exp tT )}
= m*(y) exp {tTY — k(¢;w°)},

say, where the cumulant generator for the conditional density depends on w®. This is the announced
exponential family.

fltlwep) =
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Note to Example 41

[0 A 2 x 2 table arises when m; individuals are allocated to a treatment and my are allocated to a
control. Responses from all individuals are independent and are binary with values 0/1, so the
total number of successes for the control group Ry ~ B(myg,m) is independent of those for the
treatment group, Ry ~ B(mq, 7). Thus mg and my are considered to be fixed, and Ry and R;
as random.

OO A number of parameters might be of interest, but most commonly v is taken to be the difference
in log odds of success and X the log odds of success in the control group, i.e.,

7T1(1 — 7T0)
7T0(1 — 7T1)

4 = log{m /(1 — m)} — log{mo/(1 — m)} = log { } L A= log{mo/(1 — o)},

giving

B e B et

T 1ty T Iy
The joint density of the data reduces to

Y+(ro+r1)A
mo\ _ro mo—r mi\ o my my e’
1 _ 0 0 1 _ 1 1 —
<r0>m (1 —mo) X <T1>7T1 (1—m) <r0><r1>(1+e>‘)m0(1+6)‘+¢)m1’

which is a (2,2) exponential family with ¢ = (¢, A), s = (r1,r70 + 1), and

m*(y) = <m°> <m1> k() = —mplog (1 + e>‘) — my log (1 + e>‘+w) .

To T

0 v, A eR.

0 Lemma 40 implies that conditioning on W = Ry + Ry will eliminate A. Now

T+ rip+wi
P(W:w):2<m0><m1> L
= \w—r)\r ) (1+er)mo(l+ertv)m
where r_ = max(0, w — mg), 7+ = min(w, m1), so the conditional density of 7' = R; given
W = Ry + Ry = w is the non-central hypergeometric density
() ()
P(T=t|W=w;¢) = Wt L , ted{r_, ... r }h
2t () (e
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Ancillary statistics

[0 Sometimes we can write a minimal sufficient statistic as S = (7', A) where A =a(Y") is an
ancillary statistic, defined as a function of the minimal sufficient statistic whose distribution does
not depend on the parameter. Then

Iy 0) = fyis(y | 8)fs(s:0) = fys(y | 8) x fra(t | a;0) x fa(a),

and inference on 6 is based on the second term only, with A considered as fixing the reference set
S used in repeated sampling inference.

[0 A distribution-constant statistic is one whose distribution does not depend on the parameter.

O An ancillary statistic is distribution-constant, but the converse may not be true.

Example 42 (Sample size) IfYi,...,Yy S f(y;8), with the sample size N stemming from a
random mechanism, then clearly the most general sufficient statistic is (Y1,...,Yn, N). If the

distribution of N that does not depend on 6, however,

fly,n;0) = fy | n;0)f H F(y;30) x f(n),

so N is ancillary for 6, and we should use the reference set consisting of vectors y1,. .., Yy, of length n.
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Ancillary statistics Il

Example 43 (Regression) In a regression setting a response vector Yy,»1 depends on a matrix X, x,
of covariates. If their joint density factorises as f(y | x;1)f(x), so that the interest parameters 1) only
appear in the first term, then we should treat the X matrix as fixed, even if (Y, X) are actually
sampled from some distribution.

Example 44 (Location model) Show that writing
T:Yv(l)a A:(07YV(2)_Yv(l)a"wyv(n)—yv(l)%
leads to inference based on the conditional density

[Ij—19(t — 6 +a))
J = 9w+ aj) du’

flt|a;0)=

Theorem 45 (Basu) A complete minimal sufficient statistic is independent of any
distribution-constant statistic.
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Note to Example 44

O Write yg = yy;) for simplicity of notation, and note that
yi=t Y=yt —y)=t+a, j=2,...,n,

so the Jacobian for the transformation is

111 1

0 1 0
OWhotn) g g 0] =1
a(t,ag,...,an) ’

000 -~ 1

and thus (setting a; = 0 for simplicity) the density of the configuration A is

fA(a):/Hg(t+aj—H)dt:/Hg(u+aj)du,
j=1 j=1

where we put © =t — 6 in the second integral. We see that Q =T — 0 is a pivot, because

T, g(u + a;) du
P(ng’A:a):P(T_Héq’A:a):ffl_H[g11;(;:aj']))du’

and using the quantiles g,/2(a) and q;_q/2(a) will give conditional confidence limits.

O Assessment of model fit (i.e., of g) can be based on QQ plots of the values of a. We are familiar
with this in regression problems.
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Note to Theorem 45

(0 In the discrete case, note that for any ¢ and 6, the marginal density of C' may be written using the
sufficient statistic S as

fole) = feyslel s)fs(s:0),

so for all 8 we have

> {fele) = feys(e | $)}fs(s;0) =0,

and completeness of S implies that fo(c) = fes(c| s) for every c and s, ie., C 1L S.

[0 The argument in the continuous case is analogous.
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2.4 Inference slide 86

‘Ideal’ frequentist inference

[0 Frequentist recipe for inference on an interest parameter 1:
— find the likelihood function for the data Y;
— find a sufficient statistic S = s(Y") of the same dimension as 6;
— eliminate any nuisance parameters \;
— find a function T of S whose distribution depends only on 1);
— use the distribution of T' (conditioned on any ancillary statistics) for inference (confidence
limits/tests) for 1;
—  (use the conditional distribution of Y given S to assess model adequacy).

(0 For inference note that if T is continuous with distribution F', observed value t° and the true value
of v is 1), then
F(T;49) ~U(0,1) is a pivot,

so confidence limits for v are given by inverting it, i.e., solving F(t°;1,) = « for appropriate
values of a.
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Note: Why is F(T';19) uniform?
O  Write Fy(t) = P(T < t;1y), and note if T' ~ Fy, then

P{Fy(T) <u} =P{T < F; ' (u)} = Fo{Fy '(w)} =u, O0<u<l,

i.e., Fy(T) ~U(0,1) is a pivot, because it depends on the data (through T), the parameter 1y,
and has a known distribution.

O  This argument holds for any continuous 7', but is only approximate if 7" is discrete (e.g., has a
Poisson distribution). In such cases Fy(T') can only take a finite or countable number of values
that give the achievable confidence levels.
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Significance functions

O It is useful to plot the P-value (or significance) function
p() = P(T > 1) = 1 — F(t%0)  against .
O As Fyo(T) ~ U(0,1) when 1 = 1), we regard values of ) for which p(v)) is too extreme as
incompatible with ¢°, leading to the (two-sided) (1 — «) confidence set
{Y:a/2<p(¢) <1-a/2},

or to using p(1g) as the P-value for a test of Hy : ¢ = 1)y against Hy : 1 > 1)g.
0 Equivalent functions include

— the confidence function 1 — p(v);

— the modified confidence function max{p(¢),1 — p(¥)}; and

— a pivot function showing how a (standard normal) pivot varies with 1.
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Significance and related functions

Confidence function

Pobs
00 02 04 06 08 10

Modified confidence function

bs
|

Po
05 06 07 08 09 1.0

Pobs
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Significance function

T T T
10 20 50
v

Modified likelihood root

10 20 50
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Examples

random sample with known variance.

sample.

Example 46 (Normal sample) Apply the recipe above to inference for the mean of a normal

Example 47 (Uniform sample) Apply the recipe above to inference for the upper limit of a uniform

Example 48 (2 x 2 table) Apply the recipe above to the 2 x 2 table.

stat.epfl.ch
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Note to Example 46

O Here the significance function is

[0 Suppose that Yi,....Y, id N (1, 1). Thisis a (1,1) exponential Emily, SO tﬁe minimal sufficient
statisticis S =Y ~ N (¢,1/n), and clearly we should take ' =Y, so v/n(Y — ¢) ~ N(0,1).

p(¥) = P(T > %) = 1 = {n"*(F° — v)} = o{n' (¥ - 7°)},

and solving this for p(¢y) = « gives nl/Q(q/)a
familiar (1 — «) confidence interval (L, U) with observed value

—T°) = za, i€, o = T° +n"122,, leading to the

(yo + nil/zza/% yo + nil/Qzlfaﬂ)'

[0 For the model assessment step we could note that as S = Y is a complete minimal sufficient
statistic, the distribution-constant statistic C' = (Y1 —Y,...,Y,, — Y) is independent of Y (by
Basu's theorem), and therefore plots and tests of the suitability of the model would be based on C'.

stat.epfl.ch
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Note to Example 47

We have already seen that M is minimal sufficient and that its distribution P(M < z) = (x/0)", for
0 < z < 0, depends only on 6. Hence the corresponding significance function based on an observed m°

would be
p(#) =1—(m°/0)" 6 >m°,

from which we read off the limits using the equation o = 1 — (m°/6,)", i.e., 6o = m°(1 — a)~ /",
stat.epfl.ch Autumn 2024 — note 2 of slide 90
Note to Example 48
O In this case
L
P(T<t|W=w;vy) = R , ted{r_,. .y}
2 S (e
and we can vary 9 to (numerically) solve
P(T<t|W =w;9,) =,
thus giving limits for confidence intervals (approximate because the model is discrete).
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Comments

[0 The essence of the recipe on slide 87 is to base an exact pivot @ = ¢(Y’;) on a minimal sufficient
statistic and use the significance (or p-value) function

P{q(Y;9¢) < g}, pe€(0,1)

to invert () and thus make inference on v using the quantiles g, of Q.
(0 The difficulties are that:

— finding the sufficient statistic and a function of it that depend exactly only on 1) are typically
possible only in simple models;

— finding the exact distribution of the pivot may be difficult; and
— assessment of model fit using the conditional distribution is difficult in general.

OO Nevertheless the recipe suggests how to proceed in more general settings, by basing approximate
pivots on likelihood-based statistics, which will automatically depend on the minimal sufficient
statistic.
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3 Likelihood Theory slide 92

3.1 Basic Results slide 93
Motivation
O Likelihood
— provides a general paradigm for inference on parametric models, with many generalisations and
variants;

— uses only minimal sufficient statistics;
— is a central concept in both frequentist and Bayesian statistics;
— has a simple, general and widely-applicable ‘large-sample’ theory; but
— is not a panacea!
O Plan below:
give (fairly) general setup;

prove main results for scalar parameter;

discussion of inference;

vector parameter, nuisance parameters, ...
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Basic setup
O LetY,Yy,...,Y, id g, and define the Kullback—Leibler divergence from the data-generating
model g to a candidate density f,

KL(g, f) = Eg{log g(Y') —log f(Y)} = E, [— log {%H 20,

where the inequality holds because — log x is convex and is strict unless f = g (Jensen).

O In a parametric setting f belongs to a parametric family 7 = {fy : 6 € ©}, so minimising
KL(g, f) over f is equivalent to maximising E,log f(Y’;6), which is estimated by

00y =n"" log f(Y;;0) — Eglog f(Y30), n — oo.
j=1

O 6, = argmaxyEg log f(Y'; 0) gives the optimal large-sample fit of fy to g.
O Inanideal case g € F, so g = fg,, but the theory does not require this (yet).
00 The natural estimator of 6, is the maximum likelihood estimator

6= argmax, £(6),

" = ~ P ~ as,
but we need conditions on  to ensure that § — 6, or (better) § = 6, as n — oco.
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Regular models

Notation: VA(6) = Oh(6)/060 and V2h(0) = VVTh(0) = 0>h(6)/0000".

The asymptotic properties of the MLE rely on regularity conditions:

(C1) 6, is unique and interior to © C R? for some finite d, and © is compact;
(C2) the densities fy defined by any two different values of § € © are distinct;

(C3) there is a neighbourhood N of 6, within which the first three derivatives of the log
likelihood with respect to # exist almost surely, and for r,s,t = 1,...,d satisfy
|03 log f(Y;0)/06,00,00;| < m(Y) with E;{m(Y)} < oo; and

(C4) within NV, the d x d matrices
u(f) =By {~V?log f(Y;0)}, hi(8) =Eg{Vlog f(Y;0)V"log f(Y;0)},

are finite and positive definite. When g = fj_ we shall see that /;(0,) = 21(6,).
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Regularity conditions

[ (C1) ensures that § can be ‘on all sides’ of 6, in the limit — if it fails, then any limiting
distribution cannot be normal;

O (C2) is essential for consistency, otherwise ) might not converge — it often fails in mixture
models, for which care is needed;

00 (C3) is needed to bound terms of a Taylor series — can be replaced by other conditions, see van
der Vaart (1998, Asymptotic Statistics, Chapter 5); and

O (C4) ensures that the asymptotic variance of 0 is positive definite.
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Consistency of the MLE

Lemma 49 /fY;,...,Y, ~ g and n — oo, then under (C1) and (C2) a sequence of maximum
likelihood estimators § exists such that § —— 0.

This result:
O does not require fy to be smooth, so it is quite general;
[0 guarantees that a consistent sequence exists, but not that we can find it;
O  but if the log likelihood is concave (as in exponential families, for example), then there is (at most)
one maximum for any n, and if it exists this must converge to 6;
O can be generalized to vector 6, but the argument is more delicate.
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Note to Lemma 49

O We prove this for 6 scalar.
00 As the s correspond to different densities, precisely one 6, minimises KL(g, f5).

O Takeany e >0 and let 6,0 =6, £ ¢, write D,,(9) = £(0,) — €(6), so D,,(6,) = 0, and note
that as n — oo,

Dy(0+) - KL(g, fo,)~KL(g, fo,) = a4 >0, Dn(0-) == KL(g, fo_)~KL(g, f5,) = a > 0.
O If A, and B,, denote the events D, (1) > 0 and D,,(6_) > 0, Boole's inequality gives
P(A,NB,) =1-P(ASUB) >1—-P(AS) — P(B;).
Now
P(A7) = P{Dn(0+) < 0} = Play — Dn(04) > ay} < P{[Dn(04) —ay| 2 ar} =0, n— oo,

and likewise P(BS) — 0. Hence P(4, N B,) — 1

[0 Hence there is a local minimum of D,,(6), or equivalently a local maximum of £(), inside the
interval (0, — €,0, + €) with probability one as n — oo, and as this is true for arbitrary ¢, the

corresponding sequence of maximisers 6 satisfies P(|f — 4] > €) — 0 and therefore is consistent.
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Asymptotic normality of the MLE

Theorem 50 /fYy,...,Y, Y g, then under (C1)—(C4) the consistent sequence of maximum
likelihood estimators 6 satisfies

w36~ 85) = Na{0.07 (B (B)rs ' (6,)}, m = o,
where for a single observation Y we define
u(0) =B, {~=V?1og f(Y;0)}, hi(0) =E,{Vlog f(Y;0)V"log f(Y;0)}.
O This implies that for large n we can use the approximation
6~ Nd{emZil(gg)h(eg)fl(eg)}v

where 2(6) = n1;(0) and h(0) = nhy(0) correspond to a random sample of size n.

[0 This provides tests and confidence intervals based on the approximate pivots
v 20, —0,,) ~ N(0,1), r=1,...,d,

where v, are the diagonal elements of an estimate of 171 (6,)A(6,)1~1(6,).
O When g = fp,, 11(84) = h1(0,) and the variance (matrix) becomes 1(6,)*.
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Note to Theorem 50: A (fairly) simple argument
OO Write

— o~

1
0= VI0) =VI0,) + / V{0, +t(0 — 0,)} dt (6 — 6,),
0
and note that U, = n'/2V(0,) -2 U ~ Ny{0, h1(6,)}, so writing Z, = n'/2(6 — 6,) we have
1
1(05) " U, = 11(0,) 7! {—/ V20(0, +tn~?2,) dt } Zn=u(0y) T Z,,
0

say, and as n — oo, Ji = — [ V2(4,) dt L5 11(6,) and thus 11 (6,) "1 -5 I;. Hence

21(99)_1JZZn = Z1(99)_1Un £> Z1(99)_1(] ~ Na{0,1 (99)_1h1(99)21(99)_1}-

00 For a more careful treatment of the integral, we need a uniform law of large numbers (ULLN),
which requires that J,,(6) = —V?2/(0) is measurable and continuous in @ within a compact subset
N of N, for almost all y, and that there exists a function d(Y) whose expectation is finite and for
which [|J,(0)|| < d(Y) for all § € N7, where || - || is a matrix norm. Then E{.J,(0)} = 11(0) is
continuous in 6 and

sup ||Jn(0) — 11 (8)|| =50, n— oo
oeN”’

O Let § > 0 be small enough that Bs = {6 : |6 — 6,| <6} C N” and let A,, = {|n"'/2Z,| < §} and
Cn =||J5y —11(0g)||. Then for € > 0 we have

P(C, > ¢) = P({C, > e} N Ap) + P({Ch > e} N AS) < P({Cp > e} N Ay) + P(AS),

where the last term tends to zero because n='/27, = 8 — 0, L. 0. Now if A4, holds, then
04 + tn~127, € Bs when 0 <t <1, so

1
Cn = H/ {Jn(eg + tnil/QZn) - Zl(ag + tn71/2Zn) + Z1(99 + tnil/zzn) - 21(99)} dt“
0

/01( dt+/01

< sup [ Jn(0) —u(0)]| + sup [|ua(6) —21(6,)]]
9635 96B5

= D, + FE,,
say. If C,, > ¢ then at least one of D,, and E,, must exceed /2, so

P{C, >} NA,) P({{D, >¢/2} U{E, >¢/2}} N A,)
P{D, >¢/2}NA,) +P{E, >¢c/2}NA,)
P(D,, >¢/2)+P(E, > ¢/2).
Now D, 0 using the ULLN, and the continuity of 21(#) at 6, implies that £,, can be made
smaller than /2 by a suitable choice of § > 0, in which case

P(C, >¢e) < PHC,>e}nA,)+P(A4))

< P(D,>¢e/2)+P(E,>c¢c/2)+P(A)

— 0, n— o0,

IN

Jn(Og +tn"Y22,) —01(8, + tnV22,)

1 (0, +tnY22,) — zl(eg)H dt

VARRVARNVAN

which implies that J il 11(0,) and therefore that 11 (6,) " L5 1, as required.
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Note to Theorem 50: Another approach

[0 We first note that under the given conditions, 6, gives a stationary point of KL(g, fy), and
therefore

g(y) dy,

0= VKL(g, folly—g, =~ ¥ [ log f(si8)g(s) dy
0=06,

— - [ Vs s0)

0=0,

so E,{Vlog f(Y;0)} = 0.
O As 0 gives a local maximum of the differentiable function 00)=n""t > i1 log f(Y5;0),
0=V =n"")_ Viog f(¥;0).
j=1
and (supposing now that 6 is scalar, to simplify the expressions), Taylor series expansion gives
0= VE(8,) + (0 — 0,) V() + 30 — 0,)>V3E(67),
where 6* lies between 6, and 9 (so 6* il 6,). Hence

n'/2ve(0,)
~V20(0,) — R,/2’

n'/2 —0,) = R, = (0 —0,)V3(6%). (3)

O Now

W) = 1Y Vo (V56,)
j=1

has mean (vector) zero and variance (matrix)

var {n1/2 Z Vlog f(Y5; Hg)} =n! ZEg{Vlog F(Y};04)V'1og f(Y};04)} = hi(by).
P =1

so the numerator of (3) converges in distribution to N'{0, 71 (6,)}, using the CLT.

O Moreover the weak law of large numbers gives

_ 1 <&
_VQE(HQ) - Th ZVQ log f(Yj;0g) o u(fy).
j=1

O Lemma 51 shows that R,, — 0, so the denominator of (3) tends in probability to ¢1(6).
[0 Putting the pieces together, we find that

n'2(0 = 0,) 25 Ng{0,01(64) "1 (65)01(6) '}, n — o0,

where the variance formula is also valid when 27 and A; are d X d matrices.

O The information quantities based on a random sample of size n are +(6,) = nt;(6,) and
h(fy) = nhi(0y), giving
0~ Nd(em2(99)7171(99)2(99)71}7

in which the variance is of the usual order 1/n.
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Note: A useful lemma

Lemma 51 Under the conditions of Theorem 50, R, = (5— 0,)V30(6%) L0 asn — o

Fore >0, B, = {|Ry| > ¢}, A, ={|6 — 64| > 0} and 0 > 0 small enough that N contains a ball
of radius 4 around 6, we have

P(|R,| >¢) =P(B,NA,)+P(B,NA) <P(4,) +P(B,NAY),
where the first term tends to zero because the sequence 9 is consistent.
If |0 —6,] < 0, then (C3) implies that
Ral < 500> 0% log £(¥336)/06%] < 6073 m(Y;) = 67,
=1 j=1
say, and clearly M, £, M, say. Therefore
P(B, NAS) = P(B, N0 — 0, > 6) < P(B,N|R,| < 6M,)
and for > 0 this equals
P(B,N|R,| <dM,NM, <M+n)+P(B,N|R,| <M, NM, > M +n),
which is bounded by

P{|Ry| > e N |Ry| < 6(M +n)} +P(IM — M| > n).

The last term here tends to zero, because M,, £, M, and the first can be made equal to zero by
choosing § such that §(M + n) < €. This proves the lemma.
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Classical asymptotics

[0 The true model is supposed to lie in the candidate family, i.e., g € F, so 6, € ©.

[0  We saw on slide 38 that the moments of the d x 1 score vector U(f) = V{(0) are given under
mild conditions by the Bartlett identities, i.e.,

E(UO)} =0, var{U(0)} = E{VE0)V"0(0)} = E{-V2(0)},

O Hence 1(6) = h(0), and 1(6) = n11(0) = nhy(6) when Yi,..., Y, % fy .

O Mathematically speaking the assumption that g € F is always false, but
— the asymptotic results are supposed to provide guidelines on what to expect when fitting

models — checking the regularity conditions in practice would require knowledge of g, in which
case there's no need for inferencel!
— this is largely irrelevant if model-checking suggests that fgq is ‘close enough’ to g.

OO Crucially, the interest parameter 1) should have a stable interpretation for candidates likely to be
close to g (i.e., within n=1/2) | so F is ‘robustly specified’ — if the model is not quite right, then
the interpretation of the crucial parameters will be unchanged.
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Note: Stable interpretation of a parameter

O To put some mathematical flesh on the discussion, suppose that g(y) = f(y;0,~) and the
assumed model is f(y;6,0). Then for small v, 6, = 6, satisfies

0 = /Velogf(y;Hw,O)f(y;H,w)dy

= / {Volog f(y:0,7) + Vilog f(y;0,7)(0 — 0) + VIVglog f(y;0,7)(0 —7) + -~ } f(y;6,y) dy
= 0—190(0,7)(6y — ) +10,(0,7)7y + 0o(7),
which implies that the effect of incorrectly assuming that v = 0 is that gconverges to
0y = 0+ 155 (0,7)10,(0,7)7 + 0(7):

O It is also easy to check that figg(6,0) = 199(6,0) + O(7), so the two matrices become equal if
v — 0, in which case 11 (6,7) " h1(8,7)11(0,7) "t — 21(0,) !, which implies that for small v we
have

n!/2(0 = 0) = n'/2(0 — 0,) + 0?0, — 0) ~ Ng{0,21(0,7) "'} +n'/2(0, — 0).
O Now if v =n"%§ for some a > 0, then
n26, —0) = nl/Q_“ze_el (0,7)10(0, ),

which will tend to infinity if a < 1/2 (should be obvious asymptotically), to zero if a > 1/2 (can
be ignored asymptotically) and to a constant if a = 1/2. Hence there is an asymptotic bias for 6 if
there is misspecification, § # 0, unless 23, (6,7) = 0, i.e., the information matrix covariance for the
scores for 6 and v is zero. This is known as orthogonality of 6 and ~; see later.

stat.epfl.ch Autumn 2024 — note 1 of slide 100

70



In practice ...

[0 We usually assume classical asymptotics and replace the sandwich matrix +(6,) "' h(6,):(6,) " by
the inverse of the observed information matrix

3\: —VQE(é\)a

which

— can be computed numerically without (possibly awkward) expectations,

will (helpfully!) misbehave if the maximisation is questionable,

has been found to give generally good results in applications,

has the heuristic justification that (5,3) are approximately sufficient for 6, as

~ ~

€(0g) = £(0) — 3(0 = 05)"7(0 — 0).

N[

[0 Standard errors for @ are the square roots of the diagonal elements of 771

O If we must make the sandwich we can replace «(6,) by 7 and 1(6,) by (e.g.)

h=>"Vlog f(Y;;0)V" log f(V;:0),

Jj=1

though 727! can be unstable because / misbehaves.
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Related statistics

¥ Wy
T W,

1(6)

We

0 0, 0—»

Figure 6.2. Three asymptotically equivalent ways, all based on the log likelihood
function of testing null hypothesis 6 = 6y: Wg, horizontal distance; Wy, vertical
distance; Wy slope at null point.

From Cox (2006, Principles of Statistical Inference)
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Related statistics

O Classical asymptotics support inference for scalar 6 based on any of the (approximate) pivots

T =t(0,) =720 — 0,) ~ N(0,1), Wald statistic,
S =s(0,) =7 Y2U(6,) ~ N(0,1), score statistic,
W =w(fy) = 2{0(9) — 00,)} ~ X3, likelihood ratio statistic,
R=r(0y) = sign(d — 0,)w(6y)? ~ N(0,1), likelihood root.

The likelihood root has other names (e.g., directed likelihood ratio statistic).
[0 The distribution of W follows from the expansion on the previous slide.

O If 8° and 7(8°) have been obtained for observed data 3°, then the approximation
Po{T(0y) < 1°(64)} = {t°(6y)}
leads to (1 — &) Wald confidence interval g° ij(é")*lﬂzl,aﬂ based on T, while that based on
W is
{0:W°(0) < xE(1—a)} ={0:£2(0) > £°(6°) — xi(1 — @)},

where 2, and x2(p) are respectively the p quantiles of the N(0,1) and x?2 distributions.
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Comparative comments
O Confidence intervals based on T' are symmetric, but those based on W or R take the shape of /¢
into account and are parametrisation-invariant;

(0 in small samples the distributional approximations for W and R are better than that for 7', and
that for W can be improved by Bartlett correction, using Wi = W/(1 + b/n);

O confidence sets based on W may not be connected (and if so T or R are unreliable);

(0 the main use of S is for testing in situations where maximisation of ¢ is awkward, and then 7'is
often replaced by (6,);

O a variant of R, the modified likelihood root

log ;
7°(99)

often gives almost perfect inferences even in small samples (more later ... ).

Example 52 Compute the above statistics when i1, ..., yn id exp(f) and compare the resulting
inferences with those from an exact pivot.
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Note to Example 52

(0.058,4.403) and (0.042,4.782) respectively.

O The log likelihood is £(8) = n(log 8 — 67y), for § > 0, which is clearly unimodal with 6= 1/y and

9(0) =n/62%
0 Hence
to) = n'?(1-97y),
s(0) = n'*{1/(07) -1},
w(®) = 2n{07—log(07) — 1},
r(0) = sign(1-07)[2n {07 —log(07) — 1}]"/*.

O The exact pivot is 6 ) Y; whose distribution is gamma with unit scale and shape parameter n.

O Consider an exponential sample with n =1 and 5 = 1; then 7= 1. The log likelihood ¢(#), shown
in the left-hand panel of the figure, is unimodal but strikingly asymmetric, suggesting that
confidence intervals based on an approximating normal distribution for 9 will be poor. The
right-hand panel is a chi-squared probability plot in which the ordered values of simulated w(#) are
graphed against quantiles of the x? distribution—if the simulations lay along the diagonal line
x = g, then this distribution would be a perfect fit. The simulations do follow a straight line rather
closely, but with slope (1 + b/n)x?, where b = 0.1544. This indicates that the distribution of the
Bartlett-adjusted likelihood ratio statistic w(6)/(1 + b/n) would be essentially x3. The 95%
confidence intervals for § based on the unadjusted and adjusted likelihood ratio statistics are
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Exponential example

Log likelihood

-12 -10 -8
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0 3 4 5 6 0 2 4 6 8 10
<] Quantiles of chi-squared distribution

Likelihood inference for exponential sample of size n = 1. Left: log likelihood #(#). Intersection of the
function with the two horizontal lines gives two 95% confidence intervals for #: the upper line is based
on the x? approximation to the distribution of w(#), and the lower line is based on the
Bartlett-corrected statistic. Right: comparison of simulated values of likelihood ratio statistic w(#)
with x? quantiles. The x3 approximation is shown by the line of unit slope, while the (1 + b/n)x?
approximation is shown by the upper straight line.
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Exponential example

0.8 1.0
|

0.6
|

Significance function
0.4

0.2

0.0
|

Approximate pivots and P-values based on an exponential sample of size n = 1. Left: likelihood root
7(0) (solid), score pivot s(6) (dots), Wald pivot () (dashes), modified likelihood root r*(6) (heavy),
and exact pivot 6 ) y; (dot-dash). The modified likelihood root is indistinguishable from the exact
pivot. The horizontal lines are at 0, +1.96. Right: corresponding confidence functions, with horizontal
lines at 0.025 and 0.975.
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Non-regular models

O The regularity conditions (C1)—(C4) apply in many settings met in practice, but not universally.
The most common failures arise when

some of the parameters are discrete (e.g., change point problems),

— the model is not identifiable (distinct 6 values give the same model),

— 6 is on the boundary of the parameter space (e.g., testing for a zero variance),
- d = dim(0) grows (too fast) with n, or

— the support of f(y;0) depends on 6 (so the Bartlett identities fail).

[0 Even when the conditions are satisfied there can be datasets for which maximum likelihood
estimation fails, e.g.,

— there is no unique maximum to the likelihood, or
— the maximum is on the edge of the parameter space,

and then penalisation (equivalent to using a prior) is often used.

Example 53 IfYy,...,Y, g U(0,0), show that the limit distribution of n(6 — 5)/0 when n — oo is

exp(1l). Discuss.
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Note to Example 53
O Inthiscase 1 = [ f(y;6)dy = foe 6~ ! dy, and differentiation with respect to 6 gives

0=1/0+ /9(—92) dy,
0

so the first Bartlett identity is not satisfied (because the support depends on 6, and f(6;6) # 0.
0 Owing to the independence,

LO) =[] fv(ws;:0) = [[ {607 1(0 <y; < 0)} = 0 "I(maxy; <0), 0 >0,
j=1 j=1
and therefore § = M = max Y;, whose distribution is
PM<z)=(x/0)", 0<z<8.
Now
p {n(& —0)/6 < x} =P@>0—20/n)=1—{(0—20/n)/0}" = 1 — exp(—x),

as required. Note that:

— the scaling needed to get a limiting distribution is much faster here than in the regular case
(we have to multiply by n to get a non-degenerate limit);

— the limit is not normal.
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Uniform example

Comparison of the distributions of 8 in a regular case (panels above, with standard deviation oc n~1/2)
and in a nonregular case (Example 53, panels below, with standard deviation oc n™1). In other
nonregular cases it might happen that the distribution is nasty (unlike here) and/or that the
convergence is slower than in regular cases.

n=16, regular n=64, regular n=256, regular
> @ > > ©
S Tr—r 1 T 1 S T 1 11 e s
0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0
MLE MLE MLE
n=16, non-regular n=64, non-regular n=256, non-regular
> © > >
@ ‘0 n ‘0 o
3 - ﬂgﬁdﬂﬂ 3 % J 2 . % J
S e I | S o I e | ° o I e |
10 14 18 10 14 18 10 14 18
MLE MLE MLE
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3.2 Vector Parameter slide 109

Vector case

O When 6 is a vector and under classical asymptotics we base inference on the distributional
approximations

0% Nal,, 770, w(0g) =2{0@) —£0,)} ~x3, s(05) =720 (8,) ~ Na(0, 1),

with

— the first very commonly used for inferences on parameters;

— the second used to test whether § = 6,;

— the third much less used than the others, generally in the form s(6,)"s(6,) ~ x2.

0 If @ divides into a p x 1 interest parameter 1 and a ¢ X 1 nuisance parameter ), then

-~ ~ ~ —1
) {0 2
A PR\ N ) " \Dw T ’

where for brevity we now write X¢ = max £(, \), 6 = §w = (¢, Xw)

0¢(0) . ~ 020(0) ~ 020(0)
by = —— ) = —lypy = — , Ly = , etc.
P B oo, Ty a0 MOYT 0—i a0 MOYT o—i
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Inference on v
O Under classical asymptotics and setting 7% = (G — jw)j/\_)\ljw)_l we have
N N, <1/Jg,f7\ww) maximum likelihood estimator,
s(g) = gjlwgw ~ XIQ) score statistic,
wp(1)g) = 2 {EP(QZ) - Epwg)} ~ XIQ) (generalized) likelihood ratio statistic,

where we defined wy, using the profile log likelihood /() = e(zp,Xw) = max) {(¢, \).
O If ¢ is scalar (p = 1, the usual situation), the likelihood root is defined as

r(uty) = sign (& — 1y ) \Jw(tsy) ~ N(0,1).

— inferences using w(1),) and 7(1),) are invariant to interest-respecting reparametrisation, so are
preferable but more computationally burdensome;

[0 Properties:

—  5(1pg) is mainly used for tests, since only A must be estimated (as ¢ = 9, is known).

O A (1 — «) confidence set based on wy(14) (or equivalently on ¢,(z))) is

{0 wp@) <301 - )} = {6, R) 2 6B, %) - 1d(1 - a)}
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Note: Large-sample distribution of the likelihood ratio statistic w, (1)

[0 We write R R R R
wp(Yg) = 2{€(0) — £(0y)} = 2{€(0) — £(6y)} — 2{€(0y) — £(6,)}
and use Taylor series to approximate both terms by quadratic forms in o — 6, and Xw —Ag.

[0 To lighten the notation we let ¢, ¢ and ¢ denote L(thg, Ag), e(ng,X%) and £(¢), \), and likewise
with derivatives such as £y = 90(0)/00g—g,, lry = 0*(0)/ONIYP™ |9—g,. We shall also replace
matrices such as fyy by large-sample approximations such as —ugy; this can be justified by dividing

both sides by n and noting that —lgg(6,) — 11(6,).

O We shall need to express £y, £ and Xw — Ag in terms of 0 — f4. Taylor expansion gives
0="0g= Lo+ Log(0 —0g) + - = Lo —199(6 — 0,) + -,

where - - - denotes terms of smaller order containing third derivatives of £. The A\ component of
this equation is R R
O:g)\—l)\d,(’l/J—’l/Jg)—Z)\)\()\—)\g)—l---- .
Likewise . R R
OZE)\ZE)\—i-g)\)\()\w—)\g)—i---- Zﬁ)\—z)\)\()\d,—)\g)—i—--- .

Equating the expressions for £, from the last two displays gives

O = 1 (= tg) + (A = Ag) = 1Ay — Ag),
so
lo=100(0 —0g), x =100y —Ag)y  Ap—Ag =X — Mg + 1000 (¥ — 1),
[0 To obtain the quadratic forms we write
00) = 00g)+ (0 —05)" o+ 38— 05)"Coo(8 — 0y) + -
= U(0g) + (0 — 0g)"100(0 — 05) — 50 — 0,)200(6 — 0,),

resulting in

-~

200) =0} = @0 w@-0,) A A A
= (- %)Tzww(w - wy) +2(¢ — wg)TZW\()‘ - )‘g) + (A — )‘g)TZM()‘ - )\9)7
and likewise

2{0(0) — £05)} = (g = A) iy — Ay)
= {0 -2+ i@ = v} oa {A=29) + ine(@ - )}

= (W = dg) i (¥ = ¥) + 20 — d) Tra(h = Ag) + (= M) "o (A -
Subtracting the two quadratic forms gives
wp(y) = 2{E(0) — £(6,)} — 2{0(By) — £(6y)}
= (1) — g) " (s — toatyytag) (¥ — ),
and as ¢ ~ N{tg, (tpp — tpatiniag) "}, we see that wy(1hg) ~ X2, as claimed.

~

[0 Here we are under classical asymptotics, whereby the dimensions of 1) and \ are fixed and n — oo,
and arguments along the lines of Theorem 50 show that the terms - - - all tend in probability to
zero, and thus do not affect the limiting distribution.

stat.epfl.ch Autumn 2024 — note 1 of slide 111

7



Example: Human lifespan

Example 54 Profile log likelihoods for the endpoint v of a generalized Pareto model fitted to data on
lifetimes of persons aged over 105 from different databases, with thresholds at 105, 108, 110 years.
Here X is scalar, so p = q = 1, and the horizontal line at —%)&(0.95) = —1.92 indicates 95%
confidence regions.

Bo 10 150 160
lifespan (years)

From Belzile et al. (2022, Annual Review of Statistics and its Application).
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Model selection
O The fact that

KL(g, f) = Eg{log g(Y') —log f(Y)} = E4 {— log {%H >0

is minimised when f = g suggested comparing competing models F1, ..., Fjs by their maximised
log likelihoods log fi, (y; 0m) = .-

O But Zm should be penalized, because
- Zm > log fim(y; 0m) even if F, is the true model class, and

— enlarging 6, will increase ¢,,, even if further parameters are unnecessary.

~

O Akaike proposed minimising 2E,E/ [— log{f(Y+;0)/g(Y+)}], where Y,V % g are
independent datasets. The idea is that if h= §(Y) is estimated separately from YT, there will be
a penalty due to ‘missing 6," which will grow with dim(6) (picture ...)

0 This leads to choosing m to minimise the Akaike or the network information criteria

~

AIC,, = 2 (dm _ Zm) . NIC,, =2 {tr(hmjngl) - Zm} :

where the first takes tr(ﬁmjn_ll) ~ dy, = dim(6,,).
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Note: Derivation of AIC/NIC
O As R R
2B E [— log{f(Y™; 0)/9(Y+)}] = 2B {logg(Y ")} — 2E,E; {log Yy 0)} :

we can ignore the first term in the minimisation over f. An unbiased estimator of the second term
would be —2¢%(6), where £+ is the log likelihood based on Y and gi is based on Y, but the
estimator we have available is —26(9), in which the log likelihood and @ are both based on Y.
Clearly ¢(0) is upwardly biased, but by how much?

O To find out we consider the Taylor expansion

2H(0) = 21O +20 -0 O) + (0 — 01,010 —0") +
— 2T() —tr {(é— 07 ) 299(0,)(0 — §+)} +
— 2t (@) —tr {(5— 65) (0 — §+)Tz@9(eg)} T

where §* maximises ¢t (6), & maximises £(), we have replaced —¢, () by its large-sample limit
199(64) and neglected terms that are 0,(1). Recall that 6, is the large-sample limit of # when data
are sampled from g.

[0 Now 8% and 8 are independent and approximately Nu(0,, V), where V' = 15, (0,)7(0,)25, (6,), so
0+ — 6 <~ Ny(0,2V), giving

—2E,E} {ﬁ(ﬁ)} = 9B} {z(é)} +tr {2V99(0,)} + o(1)
- [tr {h(0y)150 (0,)} — B B {e(@)H +o(1).

O If 2(6y) = 10(0y), then this final expression can be estimated by AIC = 2{d — ((A)}, where
d = dim(#), or by the network information criterion NIC = 2{tr(h7~!) — £()}.

O Neither AIC or NIC gives consistent selection of the true model, which would require the penalty
to grow with n.

O The calculations above use generic large-sample likelihood approximations, and can be improved in
specific cases (e.g., with normal errors).
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3.3 Nuisance Parameters slide 114

0

0

Effect of nuisance parameters

Example 55 (Neyman—Scott) Find the profile log likelihood for o when (y;1,y;2) by N(pj,02),
forj=1,...,n. Comment.

Profiling over many nuisance parameters can lead to completely wrong inferences, as the previous
example shows.

Even when the number of nuisance parameters is o(n) we may run into trouble: in general
Bias (1);4) = O(d® /n),

so for the bias to tend to zero in large samples we require d = o(n'/3) for consistency of J Hence
bias increases with dim(\), at least in general.

How can we rescue ‘ordinary’ likelihood inference when there are many nuisance parameters?
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Note to Example 55
O The overall log likelihood is

00”1, s pin) = —5 | (2n) log o +—3 Z{yﬂ—ﬂa + (g2 — 1j)°}|

and differentiation with respect to ; gives that fi; = (y;1 + yj2)/2, so as

{a—(a+0)/2}* +{b—(a+1)/2}* = (a —1)?/2,
we obtain

1 n
gp(0,2) = —nlog o2 — E Z(yﬂ — ng)z, o? > 0.
j=1
O This is maximised at G, = (4n) ' 37 (yj1 — y;2)°, but as Yj1 — Yjo X A(0,202), we see that
0% N 02/2 as n — oo; this is a completely inconsistent estimator. Hence the profile log
likelihood has its asymptotic maximum in completely the wrong place.

O In this example there are d = n + 1 parameters of which n are nuisance parameters.
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Dealing with nuisance parameters

O Approaches to dealing with high-dimensional X include:

— basing inference on a marginal likelihood or a conditional likelihood,

f, X)) = flwi) x fly | wi,X) = fy | wysh) x flwy; i, N),

where w,, may not depend on 1) (recall Lemmas 39 and 40) — OK for any configuration of As,
but may lose information on ;

— constructing a partial likelihood (like the above, but harder to build);

— higher-order inference, via, e.g., a modified profile likelihood or a modified likelihood
root, which can approximate both conditional and marginal likelihoods;

— using orthogonal parameters, i.e., mapping A — ((A, 1) which is orthogonal to 1;
— using a composite likelihood in which )\ does not appear; or

— taking A ~ h(-) and using the integrated likelihood [ f(y;4, A\)h(\) A\ — depends on h,
like Bayesian inference.

0 We have already seen examples of marginal and conditional likelihoods.

0 Below we sketch some of the other approaches.
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Modified profile likelihood
O Replace profile log likelihood ¢,(¢)) by the modified profile log likelihood
lnp (V) = 6p(¥) + m(¥),

with m(1)) chosen to make ¢;, closer to a marginal or conditional log likelihood.

O Taking
m(e) = 5 log |1 (¥, 3)| +log | 25

does this in some generality.
O The

— first term of m()) can be obtained numerically if need be, but

— the second term, a Jacobian needed to make /., invariant to interest-preserving

reparametrisation, is hard to compute in general.
O Simpler to base a likelihood on the normal distribution of the modified likelihood root 7*(¢) (next).
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0

Higher-order inference . ..

Classical theory gives first-order accuracy, i.e., with 1) scalar
P {r(v) < r°(4g)} = 2{ro(W)} + O(n~1/?),
so tests and one-sided confidence sets

{v:r°(¢) < 2120}

based on the observed data y° have error n=1/2.

If we replace (1)) by the modified likelihood root,

)t g [0
=)+ e ion{ T

where ¢(1)) depends on the model, then for continuous responses the error drops to O(n3/2), so
P {1 () < 7*°(4g)} = 2{r*° ()} + O(n=*?),

so a one-sided confidence set

{¢:17°(¢) <2120}

has error of order n3/2; often this almost exact even for tiny n (recall Example 52).
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. with nuisance parameters

O With nuisance parameters, r(1)) = sign(iz— )/ wp (), and

~ ~ ~ 1/2
_ [#(0) = (6y) ©a(6y) | 7]
) 000 | {|m< >|}

where ¢ is the d x 1 canonical parameter of a local exponential family approximation to the
model at the observed data y°, with () = 0p(6)/00", etc

O In a general exponential family ¢(0) is the canonical parameter, and in a linear exponential family,

1/2
W) = (@ — ) {Ll),} |

|72 (0

O In general for independent continuous observations we write

oL(6; y) + Olog f(y;39, A)
P(0)ax1 = Viyy —5— ;
( ) x1 dx 8y - Z J ay] -
where the 1 x d vectors V; = 0y; /00" are evaluated at y° and 6°.
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Properties of higher order approximations

Invariant to interest-respecting reparameterization.
Computation almost as easy as first order versions.
Error O(n=3/2) in continuous response models, O(n~') in discrete response models.

Relative (not absolute) error, so highly accurate in tails.

Oo0ooDoaod

Bayesian version is also available (and easier to derive).

Example 56 (Location-scale model) Compute ¢(0) for a location-scale model, in which
independent observations Y; have density T~ *h{(y —n)/7}. What about the normal density?
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Note to Example 56
O In this case the overall log likelihood is
n
((n,7) = —nlog + > logh{(y; —n)/7},
j=1
so the vector 9¢(n, T)/dy has components 7~ (log h)'{(y; — n)/7}, evaluated at the parameters n
and 7 and observed data vector yY, ..., y;.

00 To compute the V; we use the structural expression y = n + 7¢, where € ~ h. This represents y as
a function of 7 = (n,7), and yields 0y;/06" = (1,¢;). This has to be evaluated at the observed
data point 3°, and at that point the parameters are replaced by their maximum likelihood
estimates, giving V' = (1, (yj — n°)/7°).

O This yields

ZT (log h)'{(y§ — n)/T}(1,e9)",
where we have set £} = (y] — 7] )/T
O If his normal, then log h(u) = —u?/2, so (log h)'{(y$ —n)/7} = —(y5 —n)/7 leading to
n n
p0)" =D =N/ =)/ xe; | = (/7% 1)),

j=1 j=1
because it turns out that inferences are invariant under non-singular affine transformations of ()
(exercise).
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Orthogonal parameters

O If the expected information matrix is block diagonal, with 2, x(#) = 0 for all 6, then U is
asymptotically independent of A, and we can hope that the effect on ¢ of estimating A will be
limited. If so, we say that ) and X are orthogonal.

0 To see the effect of this, we expand the equation defining Xd, around 9, giving

oL(By)  o0(B)  92@) ~
= = 0. —0) + -
! ox  on < anagr v O
9200) ~ ~  9%(6) ~
= Ay — A —
= Py = A) + (W — ) +
which implies that R R R
Ap = A+ s (¥ — ) +

00 Hence if we can arrange the model so that 7, = 0, for example by parametrising it so that
1y (0) = 0, then Ay, will depend only weakly on 1), and we can ignore the Jacobian term in the
modified profile likelihood.

O This suggests mapping an original parametrisation (¢,7) to (1, A), where A = A(¢,7) is
orthogonal to .
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Orthogonalisation

O  Writing v = (¥, ) gives
W, A) = C{Y,v(¥, A}

and differentiation with respect to ¢ and ) leads to

92 9t B T P 9y | 9T o
XD ON 000 | DN DO T O 9N Dy

O For orthogonality this must have expectation zero, so

ot O Oy

0="3x" Tt ax gy

where zf{w and 2., are components of the expected information matrix in the non-orthogonal

parametrization, so A solves the system of ¢ PDEs

oy

oy

O In fact an explicit expression for A in terms of ¢ and + is not needed to compute £y, in the new
parametrisation.

_Z:kygl (1/}7 ’Y)Zf/w (1/}7 7)
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Orthogonal parametrisation

O A solution (possibly numerical) always exists when dim(¢)) = 1, but need not exist when v is
vector, because then we must simultaneously solve

a *— * a *— *
8—12/1 - _Zvvl(wv'}’)zwwl (1/}77)7 8—12/2 - _1771(¢’7)Z’Y¢2 (w’fY)’

for all v, 1 and 19, but the compatibility condition

827 B 0%y
010 OOy

may fail.

Example 57 (Linear exponential family) What parameter is orthogonal to 1 in the linear
exponential family with log likelihood

Consider normal and Poisson likelihoods in particular.
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Note to Example 57
O The parameters A = A(¢),~) orthogonal to 1) are determined by

Oy
oPT

If we reparametrize in terms of ¢ and A\ = k- (v, ) = 0k(2),7)/0v, then in this new
parametrization, «y is a function of ¥ and A, and

ooy,
op O
so A = k(1,7) is a solution to (4). That is, the parameter orthogonal to ® is the so-called
complementary mean parameter A(¢,v) = E(S2;1,7). By symmetry, E(S1;%,7) is orthogonal to
7.

[0 The normal distribution with mean u and variance o2 has canonical parameter (11/02, —1/(20?)).
The canonical statistic (Y, Y ?) has expectation (u, 1% + 02), so p is orthogonal to —1/(2¢%), and
hence to o2, while 11/0? is orthogonal to u? + o2.

0 77(7/1,7) + kjlﬁ’y(qﬁa’y)’

O Independent Poisson variables Y7 and Y5 with means exp() and exp(y + ) have log likelihood
C (7)) = (Y1 +y2)y +y2vp — e — T
The discussion above suggests that
A=E(Y1+Y2) = exp(y) + exp(y + ) = €7 (1 +¢¥)
is orthogonal to v, so v = log A — log(1 + e¥) and
0¥, 2) =yt = (1 + y2) log(1 + ) + (1 + y2) log A — X

The separation of 1) and X implies that the profile and modified profile likelihoods for ¢ are
proportional. They correspond to the conditional likelihood obtained from the density of Y5 given
Y1 +Ya.
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Composite likelihood
[0 Used when full likelihood can’'t be computed but densities for distinct subsets of the observations,
YSys- - -1 YSe, are available, can use a composite (log) likelihood
c
le(9) =) log f(ys.:0)-
=1
[0 The choice of subsets Sy, ...,Sc determines what parameters can be estimated.
O Special cases:
- independence likelihood takes S; = {y;} and treats (possibly dependent) y; as independent;
— pairwise likelihood uses subsets of distinct pairs {y;,y;/}.
O May be useful with spatial data, and then contributions from distant pairs may be downweighted
or dropped entirely.
[ £c(0) satisfies the first Bartlett identity, so can give consistent estimators 0, but requires a
sandwich variance matrix (or some other approach) to estimate var(9).
O Model comparisons use the composite likelihood information criterion
CLIC = 2 [tr{h(é) 2071 — ()] .
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Comments
OO0 Other likelihoods and/or likelihood-like functions are widely used, especially
— partial likelihood, used to eliminate nuisance functions for inference (survival data),
— quasi-likelihood, used to model over-dispersion in exponential family models,
— pseudo-likelihood, treats data as Gaussian even when they are not (econometrics), and
— empirical likelihood, an extension of nonparametric modelling (econometrics).
(0 Strengths of likelihood approach:
— heuristic as plausibility of a model as explanation of data;
— we 'just’ have to write down the density of the observed data;
— invariance to data and parameter transformations;
— general (and ‘optimal’) approximate theory for inference in regular models;
— close links to Bayesian inference.
0 Weaknesses of likelihood approach:
— requires ‘parametric’ model for data;
— can fail in high-dimensional settings;
— not all models are regular.
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4 Hypothesis Testing

4.1 Pure Significance Tests

slide 126

slide 127

Discovery of the top quark (Abe et al., 1995, PRL)

Here are two extracts from the article announcing the discovery:

TABLE I.  Number of lepton + jet events in the 67 pb~' data
sample along with the numbers of SVX tags observed and the
estimated background. Based on the excess number of tags in
events with =3 jets, we expect an additional 0.5 and 5 tags
from 17 decay in the 1- and 2-jet bins, respectively.

Observed Observed Background

Nia events SVX tags tags expected
1 6578 40 50 + 12
2 1026 34 21.2 £ 65
3 164 17 52+ 1.7
=4 39 10 1.5 £ 04

The numbers of SVX tags in the l-jet and 2-jet
samples are consistent with the expected background plus
a small 7 contribution (Table I and Fig. 1). However,
for the W+ =3-jet signal region, 27 tags are observed
compared to a predicted background of 6.7 * 2.1 tags
[8]. The probability of the background fluctuating to
=27 is calculated to be 2 X 107° (see Table II) using
the procedure outlined in Ref. [1] (see [9]). The 27
tagged jets are in 21 events; the six events with two
tagged jets can be compared with four expected for
the top + background hypothesis and =1 for background
alone. Figure 1 also shows the decay lifetime distribution
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Performing a test

[0 There's a null hypothesis to be tested:
Hy: the top quark does not exist.

opposite — ‘proof by (stochastic) contradiction’.

OO We obtain data, yons = 27 events on the 3-jet, 4-jet, . ..channels.
O We compare yons With its distribution Py supposing that Hy is true.
O Here Py is Poiss(A\g = 6.7) and represents the baseline noise under H.
O We compute the P-value
Y
Pobs = Po(Y > yobs) = D y—?e‘“ =3x1077,
Y=Yobs

so
— either Hy is true but a (very) rare event has occurred,

— or Hj is false and the top quark exists.

decided that H could not (yet) be rejected, and not published their work.

This seems counter-intuitive, but as one cannot prove a hypothesis, we attempt to refute its

0 Abe et al. announced a discovery, but if they had found pons = 0.001, maybe they would have

stat.epfl.ch
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Industrial fraud?

DETAIL WEIGHT NOTE

ez l=lalsleln]esmlw =

T3 208 [Ro 28y 303 |Res [Beo st | | 10 [T
oo Qo (3as DRt (268 |24 |05 (26 ;,.Jéﬂ

3 2 13 0T pa) 350 [Rpp 1308 (e 30

41361261 o) Ro2 a2 |rqq 2ol 1o | [ a0

5 2891800 3o Yllew [7a0 (285 |03 [s4) L3550 P11

s psilierRog 6] 120 | Vleo

7 611302 |20 L2o |04 [2e €08 70 it

4 0d 294|209 [8e 1 [R02 I3 Ze3 80 Ll

K 1254 125G [301 20340k |2 2% I Y |

10130 RoL [7on 17 " 316 1ol

TOTAL CYAr. Jis3 B | 2[24 113}

ceouénons” 7 eRos{Tm{ / ‘ ‘“f/ R

O n = 92 weighings of sacks on the ‘delivery’ (or not?) of a commaodity:

261 289 291 265 281 291 285 283 280 261 263 281 291 289 280
292 291 282 280 281 291 282 280 286 291 283 282 291 293 291
300 302 285 281 289 281 282 261 282 291 291 282 280 261 283
291 281 246 249 252 253 241 281 282 280 261 265 281 283 280
242 260 281 261 281 282 280 241 249 251 281 273 281 261 281
282 260 281 282 241 245 253 260 261 281 280 261 265 281 241
260 241

OO Their last digits are

0 1 2 3 4 5 6 7 8 9
14 4214 9 0 6 2 0 O 5

0 How can we tell if fraud has taken place?
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Pearson’s statistic

Definition 58 If Oy,...,Ok are the numbers of observations from a random sample of size n falling
in categories 1,...,K, where E(Oy) = E, >0 fork=1,...,K and Zszl E}, = n, then Pearson’s
statistic (aka the ‘x statistic’) is

T i (Or — Ek
k=1

] (Ol, R ,OK) ~ Mult{n, (p1 = El/n,. ., PK = EK/TL)},

then T' ~ X% _, (approximation OK if average Ey > 5), giving a test of whether data Oy,..., Ok
agree with specified probabilities pq, ..., pk.
O Here Benford's law suggests all p;, = 1/10, so take Ej = 92/10 = 9.2.

O For the original dataset we found t.,s = 158.2 and hence
Pobs = PO(T > tobs) = P(XS > 1582) = 0,

which is essentially impossible for uniformly distributed digits.

O Massive evidence for non-uniformity (and for industrial fraud?)
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Elements of a test

O A null hypothesis Hy to be tested.

0 A test statistic T', large values of which will suggest that Hj is false, and with observed value tg}s.

O A P-value

Pobs = PO(T > ZL/obs)v
where the null distribution Py(-) denotes a probability computed under Hy.
O The smaller pyys is, the more we doubt that Hy is true.
O pobs is a realisation of a P-variable P, which is U(0, 1) under Hy (if 7' is continuous), so
PO(P < pobs) = Pobs-

O If | decide that Hy is false, when in fact it is true, then | make an error whose probability under Hy
is exactly pops — so my uncertainty is quantified, because | know the probability of declaring a
“false positive".
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Note: Why is a P-value uniform?

O Let T be a test statistic whose distribution is Fy(¢) when the null hypothesis is true. Then the
corresponding P-value is
PO(T > 7fobs) =1- FO(tobs)a
and if the value of ¢, is a realisation of Ti,s (because the null hypothesis is true), then we can
write the random value of p,s seen in repetitions of the experiment as
Pobs =1- FO(Tobs),
or equivalently T = Fgl(l — P,ps). Hence for x € [0, 1],
Po(Pobs <) = Po{l — Fo(Tons) <z}
= Py {1 —x < FO(Tobs)}
= PQ {Tobs Z Fo_l(l — 1’)}
= 1-R{F'1-2)}
= 1‘7
which shows that Pypg ~ U(0,1).

0 The above proof works for any continuous Typs, but is only approximate if Tops is discrete (e.g.,
has a Poisson distribution). In such cases Py}, can only take a finite or countable number of values
known as the achievable significance levels.
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Exact and inexact tests

O P ~U(0,1) under Hy, exactly in continuous cases and approximately in discrete cases.
[0 If the null distribution of the test statistic is estimated, we have P ~ U(0,1) only.
O  For example, if the true parameter is 6 = (19, A\g) and Hy : ¢ = 1y, then the P-value is

Pobs = PO(T > ZL'obs) = P(T > ZL'obs; ¢07 )‘0)7

which we estimate by
Bobs = P(T" > tobs; 10, Ao),
where XO is the estimate of A under Hy,.
O Exact tests, with P ~ U(0, 1), can sometimes be obtained by using a pivot whose distribution is

invariant to A, or by removing A by conditioning or marginalisation.

Example 59 /f X;,.... X, Y N (u,0?), show that the distribution of T = (Y — p)/+/S%/n is

invariant to o2.

Example 60 Find an exact test on a canonical parameter in a logistic regression model.
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Note to Example 61

O Y and S? are minimal sufficient and independent, with Y ~ N (u, 02 /n) and
(n—1)S?/0? ~ x2_,, and we can write Y’ D p+on"'27 and 2 = D o?V/(n — 1), where
Z ~ N(0,1) and V ~ x2_| are independent. Hence
Y-u o pw+oZ/n"V?2 -y D Z
VS o2V {n(n = DY VYN =T

is pivotal and thus allows tests on 1 without reference to o2.

[0 For a test on o without regard to 1, we use the marginal distribution of 52, as
V =(n—-1)8%/0? ~ x2_, is a pivot.
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Note to Example 60
O In a logistic regression model we have independent binary variables Y7,...,Y,, each with density
, 18 \Y 1 1—y; Vi) B
P(Y) = y;8) =)’ (1 —mj)' ™% = ( > = ——,
T ! ’ 145 0P 14e%5 7 1450
for y; € {0,1}, known covariate vectors X; € R? and parameter 3 € R,
O The corresponding log likelihood is
n T " T
(B => {W}ﬁ —log (1 + e B)} =y"X8 - log (1 + €% B) , BeR
j=1 j=1
This is a (d, d) exponential family with canonical statistic S = Xy, canonical parameter ¢ = f3,
and cumulant generator k(p) = > 7, log (1 + e:”JT“’).

[0 Hence Lemma 40 implies that if ¢ = (¢, A) and S = (T, W) = (X{y, XJy), where X; isn x 1

and Xy is n X (d — 1), an exact test on 1) is obtained from the conditional distribution
P(T=t|W =u° i
= t = Ww ; = ——Q7 >
( ‘ w) zy,GSO exify/w
where S° = {(v},...,y),) : X5y = w°}, with w® = XJy° and y° respectively the observed value
of W and the observed data.

O Calculation of this conditional density in applications may be awkward, but excellent

approximations are available.
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Comments

O If we say that a hypothesis is true, we mean it is reasonable to proceed as if the hypothesis was
true’ — any model is an idealisation, so a hypothesis cannot be exactly ‘true’.

0 If we have a discrete test statistic, p,ns has at most a countable number of ‘achievable
significance levels’. This is only problematic when comparing tests, though randomisation has
(unfortunately) sometimes been proposed to overcome it.

0 We may consider a two-sided test, with both unusually large and unusually small values of T' of
interest. We can then define

b+ = PO(T > 750bs)a b—- = PO(T < tobs), Pobs = 2min(1)ﬂp+)a
s0 p— + py = 1+ Po(T = tops), which equals 1 unless T is discrete;
O We can avoid minor problems due to discreteness by computing ‘continuity-corrected’ P-values
P+ = Z PQ(T = t) + %Po(T = tObS)v o Z Po(T = t) + %Po(T = tobs)-
t>tobs t<tobs

[0 So far we have described pure significance tests, where the situation if Hy is false is not

explicitly considered. We look at the effect of alternatives now.
stat.epfl.ch Autumn 2024 — slide 134

91



4.2 Neyman—Pearson Approach slide 135

Testing as decision-making

0 Fisher regarded a P-value as a measure of the evidence against Hj.

O Neyman and Pearson formulated testing as making a decision between two hypotheses:
— the null hypothesis Hj, which represents a baseline situation;
— the alternative hypothesis H{, which represents what happens if Hy is false.

0 We choose H; and ‘reject’ Hy if pops is lower than some a € (0, 1).

0 For given o we partition the sample space ) into

YVo={y €Y :pows(y) >a}, V1 ={y € :pos(y) <a},

where the notation pps(y) indicates that the P-value depends on the data, or equivalently

Vo={yed:tly) <tical, N={yed tly) >ti_a}

where ¢, denotes the p quantile of the test statistic 7" = ¢(Y") under Hy.

O We call Y; the size « critical region of the test, and we reject Hy in favour of Hy if Y € )4, or
equivalently if the test statistic exceeds the size « critical point ¢1_,.

O  Critical regions of different sizes for the same test should be nested, i.e., (in an obvious notation) if

o' > a, then
!
yfé C yfl and  ti_q > ti_o-
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Link to confidence sets

0 In a test on a parameter 6, with hypothesis Hy : 8 = 6y and corresponding size « critical region
Vi(60p), we reject Hy at level av if

Pobs(y;to) <a =y & Vi(bo).

O A (1 — «) confidence set C;_,, for the ‘true value' of 6, i.e., the value that generated the data, is
the set of all values of 8y for which Hj is not rejected at significance level ¢, i.e.,

Ciea =1{0 :pobs(y;0) > a} ={0:y € V1(0)}.

O This links hypothesis testing and confidence intervals, and enables construction of the latter in
general settings, by this process of test inversion.
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False positives and negatives

Decision
Accept Hy Reject Hy
State of Nature Hj true Correct choice (True negative)  Type | Error (False positive)
H, true  Type Il Error (False negative)  Correct choice (True positive)

0 We can make two sorts of wrong decision:
Type | error (false positive): Hy is true, but we wrongly reject it (and choose H;);
Type |l error (false negative): Hj is true, but we wrongly choose Hj.
[0 Statistics books and papers call
— the Type | error/false positive probability the size a = Po(Y € ));), and
— the true positive probability the power g =P1(Y € ).

O Note that losses due to wrong decisions are not taken into account.

Example 61 /fYy,...,Y, i N (i, 0?), with a® known, Hy : o = pg and Hy : = p1, find the Type
Il error as a function of the Type | error.
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Note to Example 61

[0 The minimal sufficient statistic for the normal model with both parameters unknown is (Y, 52),
and it is easy to check that if o2 is known the minimal sufficient statistic reduces to Y, which has
a N(po, 0% /n) distribution under Hy. Hence we take the test statistic 7' to be Y, and ) = R™.

O If ug > po, then clearly we will take
Vo={y:7<tia}, V1={y: 72>t al;
this can be justified using the Neyman—Pearson lemma (below). Now

Po(Y € Vo) =Po(Y < ti_a) = Po{v/n(Y —po) /o < V/n(ti—a—po)/o} = @ {V/n(ti—a — po)/0}

because Z = \/n(Y — pg)/o ~ N(0,1) under Hy, and for this probability to equal 1 — o we must
take t1_o = po + on~Y2z,_,; this gives Type | error a.
O Although the form of ) is determined by H1, the value of t1_,, is given by calculations under Hj.
O Z=+vn(Y —u)/o ~N(0,1) under Hy, so the Type Il error is
Pi(Y €y = Pi(Y <ti_a)
= Py(Y <po+ont?2_,)
= PU{V(Y —m)/o < V(o +on 20— m)/o}
= P(z1_q —9),
where § = n'/2(ju; — p1o)/o. Hence the Type Il error equals 1 — a when ju; = 19 and decreases as

a function of §. We would expect this, because as 1 increases, the distribution of Y under H;
shifts to the right and we are less likely to make a false negative error.
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True and false positives: Example

O It is traditional to fix « and choose T' (or equivalently };) to maximise /3, but usually more
informative to consider Po(7 > t) and P1(T > t) as functions of t.

O In Example 61 we would
— reject Hy incorrectly (false positive) with probability

at) = Po(T > t) = 1 = &{n"/?(t — o)/},
— reject Hy correctly ( ) with probability

B(t) =Py(T >1t) =1—®{n"%(t — py)/o — 6}.

Ho False positive probability a(t)

|

True positive probability B(t)
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ROC curve

Definition 62 The receiver operating characteristic (ROC) curve of a test plots 3(t) against a(t)
as t varies, i.e., it shows the graph (z,y) = (Po(T > t),P1(T > t)), when t € R.

0 As p increases, it becomes easier to detect when Hj is false, because the densities under Hy and
Hy become more separated, and the ROC curve moves ‘further north-west’.

O When Hy and H; are the same then the curve lies on the diagonal, and the hypotheses cannot be
distinguished.
0 One summary measure of the overall quality of a test is the area under the curve,

1
AUC:/ B(a) dey,
0

which ranges between 0.5 for a useless test and 1.0 for a perfect test.
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Example
O In Example 61 a(t) = 1 — ®{n'/2(t — po)/o} and B(t) = 1 — ®{n'/2(t — pg)/o — 6}, so
equivalently we graph
B(t) =1—P(—21-4 — 0) = P(0 + 24) = B(«) against a € (0,1).
O Here is the ROC curve with 6 = 2 (in red). Also shown are curves for § = 0,0.4, 3,6. Which is
which?
0.70.‘0 0‘.2 | 0‘4 [?g| ()08 l.‘O
False positive probability ot
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Neyman—Pearson lemma

Definition 63 A simple hypothesis entirely fixes the distribution of the data Y, whereas a
composite hypothesis does not fix the distribution of Y.

Definition 64 The critical region of a hypothesis test is the subset )); of the sample space ) for
which' Y € Y, implies that the null hypothesis is rejected.

We aim to choose ), to maximise the power of the test for a given size, i.e., such that P1(Y € )4) is
as large as possible provided Po(Y € 1) < a (with equality in continuous problems).

Lemma 65 (Neyman—Pearson) Let fy(y), fi(y) be the densities of Y under simple null and
alternative hypotheses. Then if it exists, the set

Vi={yelV: ily)/foly) >t}

such that Po(Y € Y1) = a maximises P1(Y € Y1) amongst all )| for which Po(Y € V]) < a. Thus
the test of size o with maximal power rejects Hy when'Y € ).

Example 66 Construct an optimal test for testing Hy : v = g against Hy : ¢ = @1 based on a
random sample from a canonical exponential family.
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Note to Lemma 65

Suppose that a region V; such that Po(Y € );) = « exists and Iet Y] be any other critical region of
size cv or less. Note that Yy U Y, = YU Y] = V. If we write F(C fc y) dy for any density f
with corresponding distribution F', then we aim to show that F} (yl) > F(yl) Now

f)dy— | fly)dy = F(Qn) - F(y) (5)
V1 Vi

equals
FNY)+FQinYy) — FNd) — FYinY) = F(VnYy) — FI N ). (6)
If F = F,, then (5) is non-negative, because a = F()1) > Fy()}), so (6) is also non-negative, giving
tEy(V1 NY)) > tFy (Y1 N ), t>0.
But fi(y) > tfo(y) for y € V1, and tfo(y) > fi(y) for y € Iy, so
F(VinYy) > tFy(VinYpy) > tFy (VN o) > Fi(Vi N ).

On adding F1 (V1 N Y}) to both sides we see that Fy()) > F(Y)), as required.
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Note to Example 66
O The likelihood ratio is

;;E ; Ez; Egng; - Z:Ei;ﬁ = exp{(¢1 — v0)s(y) + nk(po) — nk(e1)},

say, where s(y) = Y7, 5(y;), 5o
Vi =1y fiw)/foly) > t} = {y: (p1 = 0)s(y) + nk(po) — nk(e1) > logt},
and if o1 > g then
V1= {y:s(y) > [logt +nk(p1) — nk(po)l/(p1 — wo)} = {y : s(y) > 53},

say. This gives the form of ); and we should choose t so that Po(Y € );) = «, or equivalently s
so that (in the continuous case)

o(8* > s1) / f(s;p0)ds = a.

Example 61 shows an example for normal data with o1 = p1 /0% > g = po/0? and known o2.

O If o1 < o, then division by ¢1 — ¢ < 0 leads to (say),

Vi ={y:s(y) <[logt+nk(p1) — nk(wo)l/(p1 — o)} ={y:s(y) <sy}

[0 The Neyman—Pearson lemma tell us that )] gives a most powerful test, but as it does not depend
on the value of ¢, this test is uniformly most powerful for all ¢ > ¢g, and likewise Yy is
uniformly most powerful for 1 < .
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Power

0 The NP lemma applies to simple hypotheses, but sometimes (e.g., Example 66) gives uniformly
most powerful (UMP) tests against composite alternatives, i.e., a single critical region ) is
most powerful against 8 = 6, for all 6; > 6, or for all 8, < 6.

(0 If there is no UMP region, we might compare tests of Hy : § = 0y against Hy : 6 = 61 by
— comparing them at some (arbitrary) ‘typical’ alternative;
— averaging power over some suitable set of alternatives; or
— looking at local alternatives, i.e., when 61 = 0y + § for small 4.

0 For local alternatives, note that with scalar 8 and mild regularity of the log likelihood,

f(y; 00+ 9)
log{ f(y;0o)

O Hence the locally most powerful critical region for § > 0 is obtained from large values of the
score statistic, and conversely for § < 0.
O When 6 = (v, \) and we test the composite hypothesis Hy : 1) = 1)y against Hy : ¢ > g, without

constraints on A, the optimal local test for each A will be based on the score £,,(6) = 0¢(v, X) /0
evaluated at (3o, A), which unless A can somehow be eliminated is often replaced in practice by

(rlzz)(]a )\wo)
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d¢(6o)
de

} = (0 +6) — L(By) = 6 +0(0) = dlg (o) + 0(9).

Aside: Score testing

[0 Score tests can be useful when maximising a full likelihood is difficult or not worthwhile.

[0 Suppose we want to test Hy : @ = 6 for scalar §. Under Hy and classical asymptotics,

lo(0o) ~ N(0,2(60)} = Lo(60)/v/2(6o) ~ N(0,1),

which gives a basis for the test.
O When 0 = (¢, \) and Hy : 1 = 1), then

~

Ls(B0) ~ N0, (Bo) '} = u(B0)"1*" (B0)0s(00) ~ X3im
where é\o = (wo,/)\\wo) and
P(0) 7 = 1 () — 10 (0)a0(0) M ory (6).

If 4 is scalar, then £,(60){2%% (80)}1/2 ~ N(0,1).
O In both cases
— any maximisation is needed only on Hy, and

— if the expected information is difficult to compute, it can be replaced by the corresponding
observed information (if this is positive).
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Discussion: Interpretation of P-values
0 Be careful about interpretation:
—  Dobs IS @ one-number summary of whether data are consistent with Hy;
— it is NOT the probability that Hy is true;
— even a tiny pops can support Hy better than an alternative H; (consider t,,s = 3 when
T ~ N(p, 1) with pup =0, puy = 10);
— the power depends on analogues of § = n'/2(ju; — jug) /o, where n is the sample size, p1 — po
is the effect size, and ¢ is the precision, so
> even a tiny (practically irrelevant) effect size can be detected with very large n;
> conversely a practically important effect might be undetectable if n is small;
> i.e., 'statistical significance’ # 'subject-matter importance'!

O A confidence interval, or estimate and its standard error, is often more informative.

0 Hypothesis testing is often applied by rote — in some medical journals no statement is complete
without an accompanying ‘(P < 0.05)" — and is sometimes regarded as controversial, with certain
journals now refusing to publish tests and P-values.

0 The ‘replication crisis' is partly due to abuse of hypothesis testing, e.g., by not correcting for
multiple tests, by formulating hypotheses in light of the data, ...
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0

Discussion: Contexts of testing

Example 67 The generalized Pareto distribution, with survival function

simplifies if £ = 0, and has finite upper support point x4 = —o /§ when £ < 0 but x4 = oo when
€ > 0. Here Hy : £ = 0 is both a simplitying and a dividing hypothesis, of interest (for example) when
the distribution is fitted to data on supercentenarians (finite or infinite limit to human life?).

It is unwise to be too categorical about testing, because of its different uses:

— testing a clear hypothesis of scientific interest (e.g., top quark);

— goodness of fit of a model (e.g., industrial fraud);

— decision-making with a clearly-specified alternative (e.g., covid testing);

— model simplification if null hypothesis true (e.g., score test for gamma shape);

— ‘dividing hypothesis' used to partition the parameter space into subsets with sharply different
interpretations;

— as a technical device for generating confidence intervals;
— to flag which of many similar null hypotheses might be false.

Hence arguing that testing should be abolished is unreasonable (as well as unrealistic).

(1+&x/0); S, €40,

P> 2) = {exp<—m/a>, -0,
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4.3 Multiple Testing slide 147

Motivation

[0 Often require tests of several, even very many, hypotheses:

comparison of responses for several treatment groups with the same control group;
checking for a change in a series of observations;

screening genomic data for effects of many genes on a response.
O There are null hypotheses Hy, ..., H,,, of which

— my are true, indexed by an unknown set Z,
- mp =m — my are false, and

— the global null hypothesis is Hy= HiN---N H,,

O We apply some testing procedure and declare R hypotheses to be significant, of which FP are
false positives and TP are true positives. Only R and m are known.
Non-significant ~ Significant
True nulls TN FP mo
False nulls FN TP m — my
R m
O In the cartoon on the next slide we have m = 20 hypotheses individually tested with o = 0.05. We
observe R =1, but E(FP) = ma = 1, so this is not a surprise.
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The perils of multiple testing
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Graphical approach

[0 Graphs can be helpful in suggesting which hypotheses are most suspect, and can highlight the
corresponding (i.e., smallest) P-values.

O P~U(0,1) implies Z = —logo P ~ exp(A) with A = In 10.

O With this transformation small P; become large Z;; note that Z; > a iff P; < 107°.

OO0 If Hy is true and the tests are independent, then Z1,..., 27, id exp(A) and the Rényi
representation

D " E; iid
D1 J _ iid
Z(T) = A ;m, T—l,...,m, El,...,Em exp(l),
applies to their order statistics. Then
— a plot of the ordered empirical Z; against their expectations should be straight;
— outliers, very large Z; (i.e., very small P;), cast doubt on the corresponding Hj.
— For very small P; (i.e., large Z;) the uniformity may fail even under Hy, because the null
distributions give poor tail approximations; then some form of model-fitting may be needed.
— Similar ideas apply to z statistics (e.g., in regression): use a normal QQ-plot (excluding the
intercept etc.) as a basis for discussion of significant effects.
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GWAS, |

O A genome-wide association study (GWAS) tests the association between SNPs (‘single
nucleotide polymorphisms') and a phenotype such as the expression of a protein. The null
hypotheses are

Hy,j : no association between the expression of the protein and SNP;, j=1,...,m.

O In a simple model we construct statistics Y; such that Y; ~ N (;,1), where 6; = 0 under H j,
and we take T); = |Y}|, which is likely to be far from zero if ; > 0 orf; < 0.

O If tons,; denotes the observed value of T, then the P-value for association j is

Pobs,j = PO(TIJ > tobs,j) =1- PO(—tobs,j < Y} < tobs,j) = 2(1)(—tobs,j)a

where the approximation comes from the fact that Y; ~ A(0,1) under Hy ;.

[0 Here it is reasonable to expect that the effects are sparse, i.e., most of the §; = 0, and we seek a
needle in a haystack.

OO With many tests it is essential to ensure that the true positives are not drowned in the mass of
false positives.
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GWAS, II

O Left: a histogram of the P-values for tests of the association between m = 275297 SNPs and the
expression of the protein CFAB.

(0 The P-values for SNPs not associated with CFAB are uniformly distributed. Is there an excess of
small P-values?

00 Right: exponential Q-Q plot of the Z; = —log P;. What do you make of it?
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Control

O With several tests Type | error generalises to the familywise error rate (FWER), i.e., the
probability of at least one false positive when the individual hypotheses are tested,

FWER =P(FP > 1) =1 — P(accept all H;,j € 1),

and we aim to control this by ensuring that FWER < a.
O Control of the error rate:
— weak control guarantees FWER < « only under Hy, i.e., mg = m;

— strong control guarantees FWER < « for any configuration of null and alternative
hypotheses.

O If all the tests are independent with individual levels all equal to «, then
FWER=1-PFP=0)=1-(1—-)™ =1, my— oo.
0 If conversely we fix FWER and the tests are independent we need
a=1-(1—FWER)Y™o,

so with mg = 20 and FWER = 0.05 we need o = 0.0026 — the power for individual tests will be
tiny (recall ROC curves).
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Bonferroni methods

O If P; is the P-value for the jth test and we reject H; if P; < o, then Boole's inequality (the
first Bonferroni inequality, aka the union bound) gives

mo mo mo
FWER=P(FP > 1) =P [ [ J{Pj<a;} | <) P(Pj<aj)=> aj
j=1 j=1 j=1

so even if the tests are dependent we have strong control of FWER if 377", a; < a.

O Usually we set aj = a/m, so } 00 aj = moa/m < a.

O The resulting Bonferroni procedure lacks power when m is large (because a/m is very small),
but its assumptions are very weak.

O An improvement is the Holm—Bonferroni procedure: for given «,
— order the P-values as F;) < --- < PF,;,) and the hypotheses as H 1), ..., H,,, then
- reject H(1)7 o 7H(S—1)v where

. (6]
S:mln{SZP(s)>m}.

This still gives strong control but is more powerful than the basic Bonferroni procedure, because it
uses higher rejection thresholds. Hence the basic procedure should not be used.
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Note: Holm—Bonferroni procedure (HB)

O Recall that there are m hypotheses, of which mg are true nulls (for which j € 7) and
my1 = m — my are false nulls.

O If we apply HB and FP > 1, we must have wrongly rejected some H; with j € Z. If H(,) is the
first such hypothesis to be rejected in the sequential procedure, then the s — 1 hypotheses rejected
before it must have been false null hypotheses, so s — 1 < m; =m —mg, i.e., mg<m+1—s.

O As H,) was rejected, the corresponding P-value satisfies

o a

(s)_m+1—3_m0

Thus if FP > 1 then the P-value for at least one of the true null hypotheses satisfies P; < a/my,
and Boole's inequality gives

mo
FWER =P(FP > 1) <P [ | J{P; < a/mo} | <D P (P < a/mo) = moa/mo = a.
JET 7j=1

0 The only assumption needed above was that the null P-values are U(0, 1) (used in Boole's
inequality), so HB strongly controls the FWER.
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False discovery rate

OO When m is large and the goal is exploratory, Bonferroni procedures are unreasonably stringent, and
it seems preferable to try and control the false discovery proportion

I(R > 0)FP/R,

where R is the number of rejected null hypotheses. The aim is to bound the proportion of false
positives among the rejections.

O Control of I(R > 0)FP/R is impossible because the set of true null hypotheses Z is unknown, so
instead we try and control the false discovery rate (FDR)

FDR = E{I(R > 0)FP/R}.

0 The Benjamini-Hochberg procedure gives strong control for independent tests: specify «, then
— order the P-values as F(;) < --- < P,y and the hypotheses as H 1), ..., H(y,,
- reject Hyyy, ..., Hgy, where
R:max{r:P(r) < %}
This guarantees that FDR < a, but does not bound the actual proportion of false positives, just
its expectation. Often « = 0.1, 0.2, ....
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Note: Derivation of the Benjamini—-Hochberg procedure
O Let the P-values for the false null hypotheses be Pj,..., P, , say, independent of the true null
iid

P-values Pi,..., Py, ~ U(0,1). Then the number of rejected hypotheses R satisfies
{R=r}n{P <ra/m}={P <ra/m}n{Ry=r—1},

where {R_1 = r — 1} is the event that there are exactly r — 1 rejections among Hs, ..., H,,. The
false discovery proportion is

3 FPI(R =) =3 I(R=r) N 1Py < ra/m),

r -
r=1 r=1 7=1

and by symmetry of the P; this has the same expectation as

m m

I(R=r) I(R.y=7r—-1)
< — < .
moz . I(P <ra/m) moz . I(P <ra/m)
r=1 r=1
Thus the false discovery rate is
m
1
FDR = -P(R.1=r—1,P <
7n0;§;7n ( 1 r 41 _.Ta/”ﬁ
m
= my Z -P(R.y=r—1| P <ra/m)P(P, <ra/m)
r=1
1 ro
= my —P(R_l =T — 1)—
r m
r=1
Mmoo m—1
= 2N PRy =)
m r=0
— w S .
m

The main steps above successively use the definition of conditional probability, the facts that P;
and R_; are independent and P, ~ U(0, 1), and the fact that R_; € {0,1,...,m — 1}.

O Hence (under the conditions above) the Benjamini-Hochberg procedure strongly controls the FDR.
O Note that
— if mg < m, then the last inequality may be very unequal, so possibly FDR <« «.

— if the P-values are dependent in such a way that
PRoi=r—1|P <ra/m)<PR_1=r—-1),

then the result also holds.
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GWAS, II

O Left: histogram of Q; = 10P; (when P; < 0.1) for tests of the association between m = 27530
SNPs and the expression of the protein CFAB, and the U(0, 1) density (red).

O Right: exponential Q-Q plot of Z; = —log;, Q;, with Bonferroni cutoff (blue) and
Benjamini-Hochberg cutoffs (red), both with o = 0.05. The grey lines are the target and
pointwise 95% confidence sets for the order statistics.

e ©—
@ _| 0 7] :::__
o =] =
© o*
= < J
>© [} >
% o] S ,
c (0]
[ £ o —
© < | 8
S 2 -
fuf
N =
o ——
o
S T T T T T 1 o T T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4 5 6
P-value Exponential plotting position
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Comments

[J The Holm-Bonferroni procedure (HB) compares F(y), P2),... to a/m,a/(m —1),..., whereas
the ordinary Bonferroni procedure (B) compares all the P; to o/m.

0 The Simes procedure (exercises) has exact FWER « for independent tests and then is preferable
to the Holm—Bonferroni procedure.

O The Benjamini-Hochberg procedure (BH) strongly controls the false discovery rate, comparing the
ordered P-values to a/m, 2ac/m, ..., .

0 HB and B also give strong control when the P-values are dependent. So does BH, taking

i) <

me(m)’

with ¢(m) = 1 when the tests are independent or positively dependent, and c(m) =37, 1/j
under arbitrary dependence.

0 Many variants exist, but these versions are simple and widely used.
0 Other classical procedures for multiple testing in regression settings are named after
— Tukey — bounds the maximum of ¢ statistics for different tests;

— Scheffé — simultaneously bounds all possible linear combinations of estimates 3;

— Dunnett — compares different treatments with the same control.
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4.4 Post-Selection Inference

Selection effects

O Contrast

— exploratory analysis, where we study data with no strong prior hypotheses, aiming to find
something ‘interesting’ for future study, and

— confirmatory analysis, where we specify an analysis protocol (hypotheses/tests/...) in
advance and stick to it.

0 Most statistical procedures assume we are doing the second, but there can be a strong temptation
to cheat and treat an exploratory analysis as confirmatory.

O In ‘the garden of forking paths’ we make a series of choices (which response? transformation?
which explanatory variables? ...) but do not then allow for them.

[0 This leads to non-reproducible results, ‘false discoveries’, bad science . ..

O If we compute a confidence interval Z for 6 following a sequence of choices summarised in a
selection event S that is based on the same data, and compute

P(@ €Z) when we should compute P(HeZ]|S),

we are effectively pretending that S did not exist.

stat.epfl.ch

Simple example

Example 68 Suppose T ~ N (6,1) and we perform a two-sided test of Hy : 6 = 0 at level « = 5%
and then construct a 95% confidence interval Lgs around the observed t.s if we reject Hy. Compare
the resulting confidence intervals when we do and do not allow for selection. What is the coverage of
Zo5 conditional on 87

45 5.0
I I

4.0

3.0
I

25

95% confidence intervals for 6 without (black) and with (red) allowance for selection on event
S ={T"> z0.975}.
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Simple example 1l

Coverage

1.0

0.8

0.6

0.4

0.2

0.0

Conditional coverage P( € Zy5 | S) of Zys as a function of 6.
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Note to Example 68

[0 Recall the basis of confidence intervals for 6 based on an estimator T satisfying T' ~ N (0,1). We

use the fact that T'— 6 ~ N(0,1) to argue that

P(T < tobs) = P(T — 0 <tops — 9) = (I)(tobs — 9)

and then set this equal to a, 1 — « to obtain the (1 — 2«) confidence interval
(tobs — Z1—as tobs — Za), Which reduces to the 95% confidence interval Zgs with limits ¢,,s + 1.96
when a = 0.025.

If we condition on the selection event Sp = {T' > 2;_3} and, compute the 95% confidence
interval for @ if this event occurs, we are effectively using the conditional distribution
P(Tﬁtobs ‘ T>21,5) = P(T—HStObS—HIT—6>21,5—9)
Dltons — 0) = B(215 — 0)
1— q)(zl—ﬂ — 9)
and the (1 — 2« interval for € has as endpoints the solutions to

P(tons —0) — P(21-5 — 0)
1—®(z1-5—0)

=ao,1—a.

If we set 8 = o = 0.025, then we get the limits shown in the graph, which shows that even having
tobs = 3 still leads to a 95% Cl that contains 0 when we allow for selection. Hence making
allowance for selection can radically change inferences, especially when Hy is only just rejected.

The second graph shows that if we ignore the selection and just use the interval Zgs after
observing the event & = {|T'| > zp.975}, then the true coverage varies from 0 when 6 = 0 to 0.95
when @ — oo, but does not pass its nominal value until 6 > 2.
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Allowing for selection
O Lots of work in last decade, in two main categories:
O methods for specific algorithms (e.g., the lasso) with a selection event S of a specified form and
for which f(Y | S) is tractable;
O more general approaches, including
— methods that allow for all possible selection procedures, and hence are hyper-conservative (e.g.,
so-called universal inference, e-values, ...);
— splitting the data into two or more groups (below);
— adding noise (less general, since strictly applicable only to certain setttings).
[0 Garcia Rasines and Young (2023, Biometrika) have a good discussion and more references.
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Sample splitting

0 Sample splitting is a standard approach to dealing with selection.

O Partition (independent) original data Y = {Y1,...,Y,} at random into subsets )y and Y, of
respective sizes ng = pn and ny = (1 — p)n, use Y for selection, and then perform inferences
using ).

O As )Y 1L Y, and S depends only on ), we have

f) = fYS)(S) = fVo, | S)F(S) = fFV)f (Do | S)F(S),

so any inference based on )); is unaffected by the selection.

OO This approach is simple and widely applicable (at least for random samples), but
— if the split is random, selections and inferences may be different for different splits;

— there is a loss of power, both for finding any effects (using Jjy) and for inference for them
(using J1);

— if the data are not a random sample (e.g., in a regression setup, (y, ), with z treated as
constant), then we should aim for similar information contents in )}y and )y (more formally,
ancillary statistics should be similar for both parts), and it may be hard to achieve this,
particularly in high dimensions.
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Randomisation

O Data (Y, X), with X (if present) treated as constant
OO Have random variable W, maybe dependent on X, and base selection on U = u(Y, W), e.g.,
setting selection variable S = s(U) equal to s.
[0 Then base inference on Y | U, which is conditionally independent of S.
O Y~ (UV)=(uY,W),v,W)), where (U, V) are jointly sufficient for model and U L V/,
then inference from Y | U is equivalent to inference from V.
O Simple example: Y ~ N, (u, 021,) with 0% known, U =Y + opW and V =Y — op~ W, where
W ~ N,(0,1,,) for some p € (0,1):
— if px0, then U = Y and the selection will be nearly the same as with the original data, but
the inference will be poor because V # Y,
— ifp~1, then V =Y and the inference will be good but U # Y so the selection may be very
different from that based on Y.
— Implies context-based trade-off between selection and inference.

O It can be shown that this beats sample splitting, at least in some special cases.

Example 69 Discuss randomisation in Example 68.
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Note to Example 69

O Here T ~ N(0,1), so we would take U = T + pW, where W ~ N(0, 1) independent of 7. Note
that if we set V. =T — W/p, then

U~N@O,1+p%), V~N@O1+1/p%), cov(U,V) =0,

so U 1L V, and we can write

U 2
p_ UtprvV
1+ p?
Hence 2
T|U=u2itrV
1+p

which is equivalent to using the normal distribution of V' for inference, as p and u are known.
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Implications

[0 Need to be aware of possibility of selection effects and to read the literature critically.
0 Must be clear if a study is exploratory or confirmatory:

— if confirmatory, need to clarify protocol for inference beforehand;

— if exploratory, need to avoid (any?) conclusions that might be due to ‘forking paths'.
0 Very active area of research, likely to keep on changing in next few years.

[0 At present it looks like randomisation is a good approach in cases with simple sufficient statistics
...and asymptotically when o2 can be estimated reasonably well.
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5 Bootstrap Inference slide 166

5.1 Basic Notions slide 167
Parameters and functionals
0 Parametric models are determined by a finite vector § € ©. Does this generalise?
O IfY ~ @G, then we can define a parameter in terms of a statistical functional, e.g.,
2
p=t(G) = /de(y), 0% = t5(G) = /deG(y) - {/de(y)} -
0 Below we always assume that such functionals are well-defined.
0 We apply the ‘plug-in principle’ and replace G by an estimator G, giving
R R R R R 2
i=0(@) = [yadw). 7 =u@ = [adw-{ [vcw} .
OO0 With a parametric model we can write G = Gy and G= Gy, but a general estimator of G based
onYy,....,Y, % G is the empirical distribution function (EDF)
1 « 0, =<0,
=-N"Hy-Y;), H)=
v - {)T5)
7j=1
where H(-) is the Heaviside function.
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Algorithmic approach
Example 70 Give general definitions of the median and the parameter obtained from a maximum
likelihood fit of a density f(y;0). What are the corresponding estimators (a) under a fitted exponential
model, and (b) a nonparametric model?
O This approach is essentially algorithmic: ¢(-) is an algorithm that
— when applied to the distribution G gives the parameter ¢(G);
— when applied to an estimator G based on data Y1,...,Y, gives the estimator t(@)
O  The algorithm ¢(-) can be (almost) arbitrarily complex.
0 This point of view suggests a sampling approach to frequentist inference:
— if we knew G, we could assess the properties of t(@) by generating many samples
G ={Y1,...,Y,} from G and looking at the corresponding values of ¢(G);
— since G is unknown, we replace it by G, generate samples G = {Y1 yo.o, Y ¥} from G, and use
the corresponding values of t(G*) to estimate the distribution of t(G)
O The samples G* = {Y},...,Y,*} are known as bootstrap samples, and the overall procedure is
known as a bootstrap, one of many possible resampling procedures.
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Note to Example 70

O The usual definition of the p quantile is
t1(G) = inf{z : G(x) > p},
for p € (0,1). For the median we set p = 1/2.
O The maximum likelihood estimator is defined as

ta(G) = argmaxyEg{log f(Y;0)} = argmaxg / log f(y;60) dG(y),

which we earlier called 0.

O Under an exponential model
t1(G) = inf{z : 1 —exp(—Az) > p} = —Alog(1 —p) = A log 2,

so if the fitted model has parameter ), then t1(G) = A llog2.
Likewise 0, is estimated by

argmax /log fy;0) Ne dy;

note that f is not necessarily exponential.
O Under the general model and with order statistics Y(l) < Y(Q) <. ... < Y(n),

t(G) = inf{z: G(@) > p} = Vi),
where m = [(n +1)/2], and as dH (u) puts a unit mass at u = 0,

() =a@mm/mm@wm@w

n

= argmaxe/logf(y;ﬂ)d TleH(y—Yj)

j=1
= argmaxyn ! Z /log f(y;0)dH (y — Y;)
j=1
= argmaxgn ' Z log f(Y};6),

j=1
i.e., the maximum likelihood estimator of 6 based on the sample.
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Example: Handedness data

genetic measure. Data due to Dr Gordon Claridge, University of Oxford.

Table 1: Data from a study of handedness; hand is an integer measure of handedness, and dnan a

dnan hand dnan hand dnan hand dnan hand

1 13 1 11 28 1 21 29 2 31 31 1
2 18 1 12 28 2 22 29 1 32 31 2
3 20 3 13 28 1 23 29 1 33 33 6
4 21 1 14 28 4 24 30 1 34 33 1
5 21 1 15 28 1 25 30 1 35 34 1
6 24 1 16 28 1 26 30 2 36 41 4
7 24 1 17 29 1 27 30 1 37 44 8
8 27 1 18 29 1 28 31 1

9 28 1 19 29 1 29 31 1

10 28 2 20 29 2 30 31 1
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Example: Handedness data

hand

o~ 2211

-1 1 2 2 15534 11
T T T T T T
15 20 25 30 35 40 45
dnan

Scatter plot of handedness data. The numbers show the multiplicities of the observations.
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Example: Handedness data

[0 How do we quantify dependence between dnan and hand for these n = 37 individuals?

0 A standard measure is the product-moment (Pearson) correlation for G(u,v), i.e.,

[{u— [udG(u,v)} {v— [vdG(u,v)} dG(u,v)

0 =1(G) = 2 2
[f {u— [uwdG(u,v)}” dG(u,v) [ {v— [vdG(u,v)}" dG(u,v)

}1/2'

O With (u,v) = (dnan, hand), the sample version is

R . " (dnan; — dnan)(hand; — hand
PR » A1

{Z?Zl(dnanj — dnan)? Z?Zl(handj — hand)2}
= 0.509.

00 Standard (bivariate normal) 95% confidence interval is (0.221, 0.715), but this is obviously
inappropriate (the data look highly non-normal).

1/2

O Try simulation approach ...
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Bootstrap simulation

(0 Whether G is parametric or non-parametric, we simulate as follows:

- Forr=1,...,R:
i~
> generate a bootstrap sample 7, ...,y ~ G,
> compute 6} using Yy, ..., Yy,

so the output is a set of bootstrap replicates,

% ¥
17---70R-

O

We then use 5{, . ,5}} to estimate properties of 0 (histogram, .. .).

O If R — oo, then get perfect match to theoretical calculation based on G (if this is available):
Monte Carlo error disappears completely.

O In practice R is finite, so some Monte Carlo error remains.

O If G is the EDF, then vl Y 19 G are sampled with replacement and equal probabilities from
Y1, .- Yn, SO f = #{y; = y;}, then (f7,..., f;) has the multinomial distribution with
denominator n and probability vector (n=!,... n=h).

O Although E*(f/) =1, y; can appear 0,1,...,n times in the bootstrap sample.
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Handedness data: Fitted bivariate normal model
Contours of bivariate normal distribution fitted to handedness data; parameter estimates are
1 = 28.5, 1o = 1.7, 01 = 5.4, 09 = 1.5, p = 0.509. The data are also shown.
10 ]
:*0.020
8 1 ]
:*0.015
61 1 —
£ 4 a o E»o.om
: —
2 2211 0005
1 1 2 2SSE5E3, 11 -
0 T T T T T T L 0.000
10 15 20 25 30 35 40 45
dnan
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Handedness data: Parametric bootstrap samples

Left: original data, with jittered vertical values. Centre and right: two samples generated from the
fitted bivariate normal distribution.

S S S
@ . . @A . @ .
Correlation 0.509 Correlation 0.753 Correlation 0.533
© A L] © - * © A
< o o .
5 g 5 .
< E< . < L4
<~ ° . < . < 4 .o
. L o, °
. %
o~ W ~ o o, . o~ ..' .~o .
* oo W Sote %
o+ o4 i o «®
T T T T T T T T 1 T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
dnan dnan dnan
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Handedness data: Correlation coefficient

0 _ o _
Ler} ™
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o o

Bootstrap distributions with R = 10000. Left: simulation from fitted bivariate normal distribution.
Right: nonparametric sampling from the EDF. The lines show the theoretical probability density
function of the correlation coefficient under sampling from a fitted bivariate normal distribution.

Correlation coefficient

T
0.5

T
0.0
Correlation coefficient
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Handedness data: Bootstrap samples

vertical values.

Left: original data, with jittered vertical values. Centre and right: two bootstrap samples, with jittered

Correlation 0.509 Correlation 0.733

hand
hand

[ O

Correlation 0.491

hand

W

® o008 'g“ —
T T T T T T T T
10 15 20 25 30 35 40 45
dnan

°* 98 S

T T T T T T
10 15 20 25 30 35 40 45
dnan

e 33
10 15 20 25 30 35 40 45
dnan
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Using the 0
[0 The bias and variance of § as an estimator of § = t(G),
~ iid ~
BG) =E@ [y1,-...yn ~ G) = H(G), v(G) =var(0 ] G),
are estimated by replacing the unknown G by its known estimate G:
= ~ iid A = = ~ iid A
B(G)=E®O|y1,....yn ~ G) —t(G), v(G)=var(0|yi,...,yn ~ G).

[0 The Monte Carlo approximations to 3(G) and v/(G) are

R 1 R -9
b=0—0=R"'>0 -0, v=——r (é:—é*).

r=1 r=1

%)|

For the handedness data, R = 10* and b = —0.046, v = 0.043 = 0.2052.

-~

*

[0 We estimate the p quantile of 6 using the p quantile of 67,...,60%, ie., 9((R+1)p).
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Handedness data

Summaries of the 6*. Left: histogram, with vertical line showing 0. Right: normal Q-Q plot of 0"

Histogram of t
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t* Quantiles of Standard Normal
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Common questions
O How big should n be? — depends on the context
0 What if the sample is unrepresentative? — this is always a potential problem in statistics, not
specific to resampling methods.
0 How big should R be? — at least 1000 for most purposes
0 Why take resamples of size n?
—  We usually want to mimic the sampling properties of samples like the original one, so take
resamples of size n,
— but sometimes we take resamples of size m < n in order to achieve validity of the
bootstrap—e.g., for extreme quantiles.
O Why resample from the EDF?
— The EDF is the nonparametric MLE of G, so is a natural choice, but
— sometimes (e.g., testing) we resample from a constrained version of G,
— sometimes it may be useful to smooth G;
— sometimes it may be useful to simulate from (several) parametric fits.
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How big should n be?
O For the average 0= 7, the number of distinct samples is
<2n - 1)
Mn = ;
n
the most probable of which has probability p,, = n!/n".
For n > 12, we have m,, > 10% and p,, < 6 x 1075,
0 Bootstrapping of smooth statistics like the average will often work OK provided n > 20.
0 For the median of a sample of size n = 2m + 1, the possible distinct values of 0" are
Yy < <Y and
N m n l r l n—r
P*(0* > = — 1——
o= () G) (-3)
r=0
so exact calculations of the variance etc. are possible.
OO However the median is very vulnerable to bad sample values, so for the median (and other
‘non-smooth’ statistics) much larger n is needed for reliable inference.
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How many bootstraps?

[0 Must estimate moments and quantiles of 9 and derived quantities. Often feasible to take
R > 1000
0 Need R > 200 to estimate bias, variance, etc.
[0 Need R > 100, preferably R > 2500 to estimate quantiles needed for 95% confidence intervals
R=199 R=999
N o o+
T B T T T T I T B T T T T
-4 -2 0 2 4 -4 -2 0 2
Theoretical Quantiles Theoretical Quantiles
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Resamples of size n?

[0 Exponential sample of size n = 1000
O Distribution of nmin(Y7,...,Y,) is exp(1)
O Resampling distribution m min (Y7, ..., Y} ) using resamples of size m = 1000, 100, 50
0 To avoid discreteness must choose m < n, but how?
m=1000 m=100 m=50
o [e)e) Vel
© 0 © @P/ © 7 PP
2 - s A’ 2o
© — © — 1 Z
5 - - P 5 W
» - » , »
3 - 3 < 3 v
@ Pid 9] @
° - ° °
O « f O« O o+
o | et o 4 o
T T T T T T T T T T T T T T T
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Exponential plotting position Exponential plotting position Exponential plotting position
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Variants of G?

O Can be useful to simulate from a smoothed EDF, given by
Y* =y +he*, £ ~N(0,1) 1L j* ~ U{L,...,n},

equivalent to simulating from a kernel density estimate. Below, with 4 = 0.1 (red) and h = 0.5
(blue).

O Since var*(Y*) = 52 + h2, may prefer a shrunk smoothed estimate, given by

(yj« — ) + he*

Y =9+ s
y+ (1+ h2/52)1/2
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When does the bootstrap work?

O ‘Work' might mean the bootstrap gives
— reliable answers when used in practice, or
— mathematically correct answers under ‘suitable’ regularity conditions.

[0 For the second of these, suppose we seek to estimate properties of a standardized quantity
Q=q(Y1,...,Y,;G), maybe Q = n'/2(Y — ). Let n — oo to get limiting results for the
distribution function

HG’,n(Q) = Pg {Q(Yh N % G) < Q} s
where subscript G indicates that Y7,...,Y,, is a random sample from G.

[0 Bootstrap estimate of this is

~

Hg,(¢) =Pg {Q(Yf, LY G) < q}

where QY. ...,V G) = n2(Y" — 7).

.. . D
0J We need conditions under which Hz ~— Hg , as n — oo,
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Regularity conditions

[ The true distribution G is surrounded by a neighbourhood N in a suitable space of distributions,
and as n — oo, G eventually falls into A/ with probability one. Also:
1. forany F € N, Hf,, converges weakly to a limit Hp o;
2. this convergence must be uniform on A; and
3. the function mapping F' to Hp o, must be continuous.

O Weak convergence of Hp), to Hp o, means that for all integrable b(-),

/b(u) dHpp(u) — /b(u) dHp o (u), n — oo.
O Under these conditions the bootstrap is consistent: for any ¢ and € > 0,

P{\H@n(q) —Hgoo(q)| >} — 0, n— oo.

O

The first condition ensures that there is a limit for H¢ ,, to converge to.
0 As n increases, G changes, so the second and third conditions are needed to ensure that H@n
approaches H¢ o, along every possible sequence of Gs.

O If any one of these conditions fails, the bootstrap can fail. For the minimum (for example) the
convergence is not uniform on suitable neighbourhoods of G.
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Summary

O Estimator is algorithm:
— applied to original data y1, ..., ¥y, gives original 0:
— applied to simulated data yj, ...,y gives 0"
— 6 can be of (almost) any complexity; but
— for more sophisticated ideas to work, f must often be smooth function of data.
[0 Sample is used to estimate G:
- G ~ G — heroic assumption
[0 Simulation replaces theoretical calculation:
— removes need for mathematical skill;
— does not remove need for thought; and in particular,
— check code very carefully — garbage in, garbage out!
O Two sources of error:
— statistical (G # G) — reduce by thought; and
— simulation (R # oo0) — reduce by taking R large (enough).
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5.2 Confidence Intervals slide 188

Bootstrap confidence Intervals: Desiderata

O A (1 — «) upper confidence limit for a scalar parameter 6 based on data Y is a random variable
0o = 0,(Y") for which

PO<6,) =a 0<a<lfecoO. (7)
OO We may seek invariance to monotone transformations ¢ = v (0), that is
P{y(0) <t¢p}=0a, 0<a<l0cO.

O In practice exact intervals are rarely available, and we seek intervals such that (7) is satisfied as
closely as possible. If Y =Y7,...,Y,, then we typically have

P(O<0,)=a+0n"Y?), 0<a<1,0¢c0,

and the corresponding two-sided interval satisfies

P, <0<6_o)=(1-20)+0(n""), 0<a<1/2,0¢cO.
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Normal confidence intervals

O 1f ~ N(0+ B,v) with known bias 8 = 3(G) and variance v = v(G), then a (1 — 2a) confidence
interval is based on the equation

0—0—3
P<2a<7§21a> :1—20[,

and has limits 8 — 8 + z,/2, where ®(z,) = .
O We replace 3, v by the bootstrap estimates
BG) = B(G)=b=0"—0,
V(@) = v(@) =v=(R-1)"> (0; -0,

I8
to get the (1 — 2a) interval with limits 0 — b+ zqv'/2.
[0 For the handedness data we have R = 10,000, b = —0.046, v = 0.205%, o = 0.025, 2z, = —1.96,
so 95% Cl is (0.147,0.963)

OO We can use the 5{, e ,g}‘% to check the quality of the normal approximation, and perhaps to
suggest transformations.
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Handedness data

Summaries of the 6*. Left: histogram, with vertical line showing 0. Right: normal Q-Q plot of 0"
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Handedness data: Transformed scale?

Plots for ¢* = Llog{(1 + 6%)/(1 — 6%)}:
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Normal confidence intervals

(0 Correlation coefficient: try Fisher's z transformation:
0" = () = 3log{(1 +67)/(1 - 6)}
with bias and variance estimates
R 1 R — 2
_ p-—1 T _ i _ " _ ne
bw—R ; r T,Z), qu —R_1;<T,ﬁr ¢)>
00 Then the (1 — 2a) confidence interval for 6 is
S G R ) WV Y

OO For handedness data, get (0.074,0.804) ...but how do we choose a transformation in general?
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Pivots
0 Assume properties of 51‘, .. ,5}‘% mimic effect of sampling from original model (plug-in principle)

— false in general, but more nearly true for pivots.

O Pivot is combination of data and parameter whose distribution is independent of underlying
model, such as t statistic -
Y —p

IO

when Y7,...,Y, . N (i, a?).
O Exact pivot generally unavailable in nonparametric case, but if we can estimate the variance of 6*
using V, we use
0—46
Z=-—"
V1/2
O If the quantiles 2z, of Z known, then

-0
P(Zagzgzla):P<Za§ V12 Szla> =1-2a«

(2o no longer denotes a normal quantile!) gives (1 — 2a) Cl (6 — V22,6 — V1/22,)

stat.epfl.ch Autumn 2024 — slide 194

123



Studentized statistic

0 Bootstrap sample gives (5*,1/*) and hence

, 0 —10
Z" = V*1/2
0 We bootstrap to get R copies of (5, V), ie,
( T?Vf)? (057‘6*)7 ) (67%7‘/11;)7

and the corresponding

~ A ~ A ~ A

Z?_@—e Z;_@—e ZE_HR—H

T x1/20 T xl/20 T o120
Vi Vy Vr

then order these to estimate quantiles of Z, with 2, estimated by Z(p(R+1))-

O Get (1 —2a) Studentized bootstrap confidence interval

~

1/2 n 1/2
0=V iy 0=V P2ra)-

O This is not invariant to transformation and needs an estimated variance V,* for each 5;*.
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Why Studentize?
O If we Studentize, then Z 2 N(0,1) as n — o0, and we can use Edgeworth series to write
Po(Z < 2) = ®(2) + n~Y2a(2)p(2) + O(n™Y),

where a(+) is an even quadratic polynomial.

[0 For example, if we use @ =Y and V = n"1S2 to compute Z for data with skewness v, then
a(r) = v(222 +1)/6 and (next slide) a/(x) = —v(z? — 1)/6.

[0 The corresponding expansion for Z* is
P4(Z" < 2) = B(2) + n~V2a(2)6(2) + Op(n ).
O Typically a(2) = a(2) + O,(n~/?), so

so the order of error is n 1.
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Why Studentize? Il

O Without Studentization, Z = n/2(8 — 8) -2 N(0,+/), and then

Pa(Z <2) =8 (om) +0 2 (55) 0 (i) + 067

and

* ? —1/2~ ( * ? -1
Pa(2" <) =@ (5i5) + 070 (555) @ (535) + Ouln ™)
O Typically 7' = v/ + O,(n~'/?), giving
PA(Z* < 2) —Pa(Z < z) = Op(n~'/?),
and the difference in the leading terms means that the overall error is of order n=1/2.

[0 Thus Studentizing reduces error from O,(n~'/2) to O,(n~1): better than using large-sample
asymptotics, for which error is usually Op(n_l/Q).

stat.epfl.ch Autumn 2024 — slide 197

Other confidence intervals

[0 Simpler approaches:
— Basic bootstrap interval: treat 0—0 as pivot, get
D*

0= O(rsna—ay — ) 0= (0 gi1a) —0)-

— Percentile interval: use empirical quantiles of 67,...,0%:

-~

Uirrvey  Olwena-ay

[0 The percentile interval is transformation-invariant, not the basic bootstrap interval.

[J Bias-corrected and accelerated (BC,) intervals replace percentile interval with
(Orsnar): Olmrna-ary: where

+ z 1 [ A Z‘:1

'—® _ WTRa _ o1 {G* _1 2=l

: {w+1—a<w+za>}’ vered) . (ze)”
=12

with G* the EDF of the 51‘, ...,0%, and l1,... 1, the empirical influence values (soon).
O If the bias w = 0, then @*(5) =150 § is at the median of the EDF of 6*

(0 If the acceleration a = 0, then the effect of the data y1,...,9, on 9is symmetric.
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Comparisons

Table 2: Empirical error rates (%) for nonparametric bootstrap confidence limits in ratio estimation:
rates for sample sizes n; = ny = 10 are given above those for sample sizes ny = no = 25. R = 999 for
all bootstrap methods. 10,000 data sets generated from Gamma distributions.

Method Nominal error rate
Lower limit Upper limit

1 25 5 10 10 5 2.5 1
Exact 1.0 28 55 105 98 48 26 1.0

1.0 23 48 99 102 49 25 1.1
Normal approximation 0.1 05 17 6.3 20.6 157 125 9.6

01 05 21 64 16.3 115 82 55
Basic bootstrap 00 00 02 138 244 210 186 16.4

0.0 01 04 30 19.2 150 125 103
Basic bootstrap, log scale 26 49 81 129 131 75 48 25

16 32 60 114 115 63 33 17
Studentized bootstrap 06 21 46 99 119 6.7 40 20

08 23 46 99 109 59 30 14
Studentized bootstrap, log scale 1.1 2.8 56 10.7 116 63 35 17
1.1 25 50 10.1 108 57 29 13

Bootstrap percentile 18 36 65 11.6 146 89 59 33
1.2 26 51 101 126 7.1 42 21
BC, 19 40 69 123 140 83 53 30
14 3.0 56 109 118 68 38 19
ABC 19 42 74 127 146 87 55 31

1.3 3.0 57 11.0 121 68 37 19
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Confidence interval lengths

Lengths of 95% confidence intervals for the first 1000 simulated samples in the numerical experiment
with Gamma data.
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Discussion
O Bootstrap confidence intervals usually under-cover (i.e., are too short).
O Normal, basic, and studentized intervals depend on scale.
[0 Percentile interval often too short but is transformation-invariant.
[0 Studentized intervals give best coverage overall, but
— they depend on scale, can be sensitive to V;
— their lengths can be very variable;
— they are best when V' is approximately constant.
O Improved percentile intervals have same asymptotic error as Studentized intervals, but often are
shorter, so give lower coverage probabilities.
(0 Caution: Edgeworth theory OK for smooth statistics, but beware rough statistics: must check
output.
OO Typically need R > 1000 for reliable estimation of quantiles.
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5.3 Nonparametric Delta Method slide 202
Nonparametric delta method
O The delta method (Theorem 11) gives variance formulae for functions of averages.
O More generally we use the nonparametric delta method, which is based on the linear functional
expansion
UF) = H(G) + [ Lu(w: G)dF(a),
where L;, the first derivative of ¢(-) at G, is defined by
t{(1 —e)G+eH,} —t(G ot{(1—¢e)G+cH
L)t HO= G+ eH} —HG) _ D11 = G+ ey}
e—0 e Oe _
e=0
with Hy(u) = H(u — y) the Heaviside function jumping from 0 to 1 at u = y.
O The influence function value L;(y; G) for the statistical functional ¢ for an observation at y
when the background distribution is G, satisfies Eq{L.(Y;G)} = 0.
O If G is based on a random sample y1, ..., yn, then the jth empirical influence value is
lj = Li(y;; G),
and Eg{Li(Y;G)} =n~" 30,1 = 0.
O The influence function also plays an important role in robust statistics.
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Nonparametric delta method Il

0 If we replace F' by the EDF G for a random sample Y7,...,Y,, then
~ ~ 1 &
HO) = 1) + /Lt(x; G)AG(x) = 1(G) + - > Lu(Y5: @),
j=1
has variance
~ 1 <&
tG)} ==Y Li(Y;G) =V,
Var{( )} nQ; t( Jo ) L,
say, which we estimate based on a sample 41, ..., vy, by v;, = n=2 Zl?

Example 71 Apply the nonparametric delta method to the average Y.

Example 72 Apply the nonparametric delta method to a statistic defined by an estimating equation,
and hence find the variance of the ratio V' /U for data pairs Y = (U, V).
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Note to Example 71
0 The population mean and its empirical version are

Hzt(G):/xdG(x), §:t(é):/xdé(x):nlf:yj:?.

j=1
O If H, puts unit mass at y, its ‘density’ is a Dirac delta function d,/(x), and
0{(1-¢)G+eH,} = /xd{(l —¢e)G +cHy}(x)
= (1- 5)/xdG(:c) + €/£CdHy(£C) =(1-¢)0(GQ) + ey
and therefore

L(y: G) = tim AL =G el =0(G) _ ) (1=€)0(G) +ey = 6(G)

e—0 € e—0 €

=y —0(G),

0 Hence the empirical influence values and variance estimate are

~

_ 1 _ n—1 _
lj = L(y;;G) = y; — 7, ULZEZ(%—?J)Q: " 's?,
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Note to Example 72

O The scalar parameter § = t(G) is determined implicitly through the estimating equation

/a(:v;@) dG(z) = /a{x;t(G)}dG(w) = 0.
We replace G by G. = (1 — ¢)G + ¢H,, and see that
0 = /a{:ﬂ;t(GE)} dGe(z)

_ (1—5)/@{95;1‘,(6{5)} dG(x)+€/a{x;t(G5)} dH, ()
— (=) [ afait(GL)} d6(a) + ca {y3t(Go))

and differentiation using the chain rule gives

ot(G ot(G
0= a{y;t(GS)}—/a{x;t(Ga)} dG(z)+eag {y; t(G:)} ((9;)4-(1—6)/0,9 {z;t(Ge)} ((%5) dG
which reduces to Q@
0= afut@} + [ (1@} aG(w) 25
e e=0
on setting € = 0. Hence
Ot(G:) a(y; 0) da(z;0)
Li(y;G) = = h ;0) = .
'y: G) O |._g —[ap(x;0)dG(z)’ where ag(a; ) 00
O In the case of the ratio and with y = (u,v), we take a(y;0) = v — Qu, so
0=0(G) = /vdG(u,v)//udG(u,v), 6 =1/q,
and ag = —u, so l; = (z; — Ou;) /4, giving
1 fu; )’
_ xj — Ou;
weby (5
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Comments

OO0 For statistics involving only averages (ratio, correlation coefficient, ...), the nonparametric delta
method retrieves the delta method.

[0 For example, the correlation coefficient may be written as a function of Zu = n=1 3" z;u;, etc.:

U —TU
{@ -7 )}
from which empirical influence values I; can be derived, giving v, = 0.029 for the handedness
data, to be compared with v = 0.043 obtained by bootstrapping.

0=

1/2°

O vy, typically underestimates var(g)!

00 The [; can also be obtained by numerical differentiation if t(@) is coded appropriately, or
approximated using a jackknife method.
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