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1 Introduction slide 2

1.1 Background slide 3
Starting point
[0 We start with a concrete question, e.g.,
— Does the Higgs boson exist?
— Is fraud taking place at this factory?
— Are these two satellites likely to collide soon?
— Do lockdowns reduce Covid transmission?
O We aim
— to use data
— to provide evidence bearing on the question,
— to draw a conclusion or reach a decision to guide future actions.
0 Here we mostly discuss how to express the evidence, but the choice and quality of the data, and
how they were obtained, affect the evidence and the clarity of any decision.
O The data typically display both structure and haphazard variation, so any conclusion reached is
uncertain, i.e., is an inference.
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Data
O Theoretical discussion generally takes observed data as given, but
— to get the data we may need to plan an investigation, perhaps design an experiment
largely controlled by the investigator — not considered here but often crucial to obtaining
strong data and hence secure conclusions; or
— to use data from an observational study (the investigator has little or no control over data
collection).
OO In both cases the data used may be selected from those available, and especially if we have ‘found
data’ we must ask
— why am | seeing these data?
— what exactly was measured, and how?
— can the observations actually shed light on the problem?
— will using a function of the available data give more insight?
0 For now we suppose these questions have satisfactory answers . ..
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Some statistical activities

O Conventionally divided into

— design of investigations — how do we get reliable data to answer a question efficiently and
securely?

— descriptive statistics/exploratory data analysis — how can we get insight into a specific
dataset?

— inference — what can we learn about the properties of a ‘population’ underlying the data?

— decision analysis — what is the optimal decision in a given situation?

to which we nowadays add

— machine learning — algorithms, generally complex and computationally demanding, often
used for prediction/decision-making.
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Descriptive statistics

O In principle concerns only the data available, mainly involving
— graphical summaries — histograms, boxplots, scatterplots, ...
— numerical summaries — averages, variances, medians, ...
[0 Some summaries presuppose the existence of ‘population’ quantities (e.g., a density).

[0 We use probability models to analyse the properties of these summaries (e.g., formulation of a
boxplot, ‘is that difference significant?’, ...).

O Even when we have ‘all the data’ (e.g., loyalty card transactions) we may want to ask ‘what if?’
questions, and these require further assumptions (e.g., temporal stability, future and current
customers are similar, ...).
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Statistical inference

[0 Use observed data to draw conclusions about a ‘population’ from which the data are assumed to
be drawn, or about future data.

O The ‘population’ and observed data are linked by concepts of probability.

0 Two distinct roles of probability in statistical analysis:

— as a description of variation in data (‘aleatory probability’, ‘chance’), treating the observed
data y as an outcome of a random process/probability model, perhaps

> suggested by the context, or
> imposed by the investigator (via some sampling procedure);

— to formulate uncertainty (‘epistemic probability’) about the reality modelled in terms of the
random experiment, based on y.

0 Most of the course concerns the formulation and expression of uncertainty.

0 We first revise some concepts from probability and basic statistics.

stat.epfl.ch Autumn 2023 — slide 8



1.2 Probability Revision slide 9

Probability spaces

0 Ordered triples (€2, F,P) consisting of
— aset Q of elementary outcomes w corresponding to distinct potential outcomes of a random
experiment;
— an event space F of subsets of  that satisfy (a) Q € F, (b) if A € F, then A° € F, and (c)
if A, Ag,... € F, then |JA; € F;
— a probability measure P : F — [0, 1] that satisfies (i) if A € F, then 0 < P(A) <1, (ii)
P(Q) =1, (iii) if A1, Ag,... € F satisfy A; N A, =0 for j # k, then P(UA;) = > P(A)).
O We call (2, F) a measure space and any A € F an event (measurable set).
0 From these we deduce
— the inclusion-exclusion formulae, and
— computation of probabilities in simple problems using combinatorial formulae.
O If P(B) > 0 we define conditional probabilities P(A | B) = P(A N B)/P(B), and derive
— a new conditional probability distribution Pp(A) = P(A | B) for A € F,
— the law of total probability,
— Bayes’ theorem, and
— the notion of independent events, for which P(A N B) = P(A)P(B).
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Random variables

O Let (2, F,P) be a probability space and (X', G) a measurable space. A random function X from

Q) into X has the property that X~1(C) = {w: X(w) €C} € F forany C € G, so
P(X €C) =P{X1(C)} is well-defined. Such a function is called measurable.

O If X =R or R" we call X arandom variable and there exists a cumulative distribution
function (CDF) F such that P{X € (—o0,21] X - -+ X (—00,x,]} = F(x1,...,2y).
O A CDF increases from 0 when any of its arguments increases from —oo to +oo.
O F can be written as a sum of (sub-)distributions F,c + Fuis + Fsing, Where
— F,. is absolutely continuous, i.e., there exists a non-negative probability density function
(PDF) fac(z) = dFuc(x)/dx,
—  Fyis is discrete, i.e., its probability mass function (PMF) fgis(z) is positive only on a finite
or countable set S, and
—  Fiing is singular, and can be ignored (look up ‘Cantor distribution’ if interested).
0 We call X continuous or discrete respectively if Fy; or Fy. is absent.
(0 If necessary we use Lebesgue—Stieltjes integration, whereby
PXe0)= [dF@) = [ ful@)dot Y fulo)
¢ ¢ zeCNS
the notation ff is unwise because it doesn't distinguish C = [a, b] from C = (a, b).
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New distributions and random variables

0 We define the conditional distribution of X given an event B € F by
P(X e A|B)=P({X € A} nB)/P(B).
O IfY =g(X) €Y and we write g~ (B) = {z : g(z) € B} for B C ), then
P(Y € B) = P{y(X) € B} =P{X € g '(B)}.
O If X is continuous and Y = g(X) with g a smooth bijection, then (in obvious notation)

_ g1
el = It [ 2.
Y
where the last term is the Jacobian of the transformation.

O If X = (X1,X2) is continuous, we obtain marginal and conditional densities

fX17X2 (1‘1, w2)

Ixy(x2) = /le,XQ(xlyx2)dx1, Ixixa (71 | 2) = ey (@a)

with corresponding formulae in the discrete and mixed cases.
O X; and X3 are independent (X 1L Xy) iff fx, x,(z1,22) = fx,(x1) fx,(22), V&1, 22.
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Moments

O The expectation E{g(X)} of g(X) is defined if E{|g(X)|} < o0 as

B(9(X)) = | g(a)dF (o)
O  For scalar X we define moments E(X"), mean p = E(X) and variance
var(X) = E[{X — E(X)}?] = E(X?) - E(X)? = E{X(X — 1)} + E(X) — E(X)?%

O wvar(X) = 0 iff X is constant with probability one.

00  For vector X we define the mean vector and (co)variance matrix
p=E(X), cov(Xy, Xz) = E(X1X5) — E(X1)E(Xy)",

and write var(X) = cov(X, X) = E{(X — pu)(X —u)"}.
[0 The correlation, corr(X7, X3) = cov(X1, Xo)/{var(X;)var(X5)}'/2, is a measure of dependence
between variables that does not depend on their units of measurement.

O Expectation E(-) is a linear operator, so it is easy to check that

E(a+ BX) =a+ BE(X), cov(a+ BX,c+ DX) = Bvar(X)D".
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Conditional moments

O The conditional expectation of g(X,Y) given X =z is

B(9(X.Y) | X =2} = [ gla)dF(y| ),
y
which in the continuous and discrete cases equals

[ sl ods, Y g nfrixly] o).
Y yey
and other conditional moments are defined likewise.
O This is a function of z, so it defines a random variable g(X) = E{g(X,Y) | X}.
O The law of total expectation (tower property) gives
E{9(X,Y)} = Ex[E{g(X,Y)|X =a}],
var {g(X,Y)} = Ex[var{g(X,Y)|X =z}] + varx [E{g(X,Y) | X = z}],

where Ex denotes expectation with respect to the marginal distribution of X, etc., with a similar
expression (which you should give) for cov{g(X,Y"),h(X,Y)}.

0 We ignore mathematical issues arising from conditioning on events of probability zero — look up
‘Borel-Kolmogorov paradox’ if interested.
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Terminology and notation

[0 PDFs and PMFs are not the same but we henceforth use the term density for both.

O Xi,....Xa, g f means that the X are independent and all have density f, and we then call the
X, a random sample of size n from f.
ind

O Xi,...,X, ~ fi,..., fn means that the X; are independent and X; ~ f;.
O Xi,....X, d (11,0?) means that the X; are independent with mean g and variance o2 (with

0 < 0% < 00). The X, need not be normal or have the same distribution.

ind . .
O Xi1,.., X0 ™~ (1, fin,0%,...,02) means that the X are independent with means p; and
2

variances o (where 0 < 0]2» < 00).

O The p quantile of the distribution F' of a scalar random variable X is
zp =inf{z : F(z) >p}, 0<p<L

Usually z, = F~1(p) for continuous X, but not for discrete (or mixed) X.
OO0 A standard normal variable Z ~ N(0,1) has PDF and CDF

_ 1 fz2/2 _ N
o(z) = me , P(2) = /OO d(u)du, zeR.

and p quantile z, = ®71(p), so X =+ 0Z ~ N(u,0?%) has p quantile pu + oz,
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Inequalities

O A real-valued convex function g defined on a vector space V has the property that for any
z,y €V,
g{tz + (1 = t)y} <tg(z) + (1 —t)g(y), 0<t<1

Equivalently, for all y € V, there exists a vector b(y) such that
g9(x) 2 g(y) +b(y)" (x — y)

for all x. If g(z) is differentiable, then we can take b(y) = ¢'(v).
O If X is a random variable, a > 0 a constant, h a non-negative function and g a convex function,

then
P{h(X) >a} < E{h(X)}/a, (basic inequality)
P(|X| >a) < E(|X|)/a, (Markov's inequality)
P(|X|>a) < E(X?)/a®>, (Chebyshov’s inequality)
E{g(X)} > ¢{E(X)}. (Jensen’s inequality)

O On replacing X by X — E(X), Chebyshov's inequality gives

P{|X - E(X)| > a} < var(X)/a*.
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Note: Inequalities

(a) Let Y = h(X). If y > 0, then for any a > 0, y > yI(y > a) > al(y > a). Therefore
E{h(X)} =E(Y)>E{YI(Y > a)} > E{al(Y > a)} = aP(Y > a) = aP{h(X) > a},

and division by a > 0 gives the result.

(b) Note that h(z) = |z| is a non-negative function on R, and apply (a).

(c) Note that h(x) = 22 is a non-negative function on R, and that P(X? > a?) = P(|X| > a).

(d) A convex function has the property that, for all y, there exists a value b(y) such that

g(x) > g(y) + b(y)(z — y) for all z. If g(x) is differentiable, then we can take b(y) = ¢'(y). (Draw a
graph if need be.) To prove this result, we take y = E(X), and then have

9(X) = g{E(X)} + b{E(X)H{X — E(X)},

and taking expectations of this gives E{g(X)} > ¢{E(X)}.
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MGFs and KGFs

O The moment-generating function (MGF) and cumulant-generating function (KGF) of a
scalar random variable X are
Mx(t)=E(e*), Kx(t) =logMx(t), teN ={t:Mx(t) < oo}.
O A is non-empty, because My (0) = 1, but the MGF and KGF are non-trivial only if N contains an
open neighbourhood of the origin, since then
X " =t
— — T —
Mx(t)=E (> = > SB(XT), Kx(t) = Zﬁnr,
r=0 r=0 r=1
and one can obtain the moments E(X") and cumulants &, by differentiation.
O In the vector case we define
My (t) =B (%), Kx(t) = log Mx(t),
and differentiation with respect to the elements of t = (¢1,...,t,)" gives the mean vector and
covariance matrix of X.
O There is a 1-1 mapping between MGFs/KGFs and distributions.
00 KGFs for linear combinations are computed as K,ypx(t) = a™t + Kx(B™t).
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Note: Moments and cumulants

0 We consider scalar X, as the calculations for vector X are analogous.
O First note that Mx () = 1 when ¢t = 0, since E(e!X) = E(1) = 1; thus 0 € NV for any X.
O If N contains an open set (—a,a) for some a > 0, and p, = E(X") denotes the rth moment of
X, then if |t| < q,
Tk =t
JE— r —_— —_— T f— f— [e— 2 3 ...
Kx(t)=>" - = log Mx(t) =log (Z - ) =log(1+b)=b—0%/24b%/3+ -,
r=1 r=0
where b = tpy + 219 /2! + t3u3 /3! + - - - . If we expand and compare coefficients of ¢,2,¢3,. .. in
the two expansions we get
K1 =1, Ko =fg— [, K3 =ps— a1 + 243, Ka = pa — Az + Opopi — 3ut, ...,
so 1 = E(X), ko = var(X), k3 = E{(X — )3}, ...
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Exponential tilting

[0 A baseline density fy with a non-trivial MGF can be used to construct a family of densities by
exponential tilting, i.e.,

f(z;t) = fo(x)exp{t"a — Kx(t)}, teN,

where
N ={t: Kx(t) < oo}
and individual members of the family are determined by the value of ¢.

O Holder's inequality gives
Mx{at; + (1 — a)ty} < Mx(t1)*Mx(t2)' ™ <00, 0<a <1,

for any t1,t2 € N, so the set A/ and the function Kx(¢) are both convex.
O This implies that f(z;t) is log-concave in t, which is very useful for statistics.

O Slightly generalized, this construction leads to an elegant general theory that puts many
well-known distributions (Poisson, binomial, normal, ...) under the same roof.
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Exponential family models

O 1f 9 € © C RY where dim © = d, and there exists a d x 1 function s = s(y) of data y and a
parametrisation (i.e., a 1-1 function) ¢ = () such that

f(y;0) = m(y)exp {s" v — k(p)} = m(y) exp[sTp(0) — k{p(0)}], 6€O,yc),

then this is an (d, d) exponential family of distributions, with
— canonical statistic S = s(Y),
— canonical parameter o,
— cumulant generator k, which is convex on N = {¢ : k(p) < oo}, and
— mean parameter u = p(p) = E(S;¢) = VEk(p), where V- =9 - /0.
[0 We suppose that there is no vector a such that a™S is constant, and call the model a minimal
representation if there is no vector a such that a™¢ is constant.

(0 The cumulant-generating function for S is
Ks(t) =log Ms(t) = k(p +t) — k(p), teN CRY
where 0 € . On writing V2. = 92 - /00", one can check that

E(S) = Vk(p), var(S) = VZk(p).
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Note: Cumulant-generating functions

(0 The MGF for the canonical statistic S of an exponential family is
Ms(t) = E{exp(t7S)} = [ mly)exp {57t + 575 — k(¢)) dy.
and since this must equal unity when ¢ = 0 we see that
[ mwesp (57} dy = expli(e)).
and therefore that if it is defined,
Ms(t) = /m(y) exp {s"(t +¢) — k(p)} dy = exp{k(p +1) — k(¥)},

which yields Kg(t) = k(¢ +t) — k().
O Now Mg(0) =1, Kg(0) =0, 0Kg(t)/ot = Vk(p +t) and 9*Kgs(t)/0tot* = V2k(p + 1), so

B(S) = OMs(t)/0t],_ = de's® /at(tio = OKs(t)/0te V| = Vik(y).

A similar calculation for the variance gives

E(SST) = 9*>Mg(t)/0tot™ V2k(p) + VE(p)V(p)T,

|t:0 -

and thus

var(S) = E(SS") — E(S)E(S)" = V2k(p) + VE(9)VE(0)" = VE(9)VE(9)" = VZk(p).
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Examples
Example 1 (Poisson sample) /fYy,....Y, id Poiss (), find the corresponding exponential family.

Example 2 (Satellite conjunction) A simple model for the position Y of a satellite in R? relative to

the origin is
1 cos A it oo
Y NQ{(@Z)sin)\ o 4yt

where dy,dy > 0 are known and 1) > 0, 0 < \ < 2w. Write the corresponding density

(d1d2)1/2

5. OXP (=2 {di(y1 — ¥ cosN)? +da(y2 — ¥sin N2}, y1, 92 €R,

f(y1>y2;¢a )‘) =

as an exponential family.

O NB: avoid confusion — exponential family # exponential distribution!

0 The exponential distribution is just one example of an exponential family.

stat.epfl.ch Autumn 2023 — slide 20
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Note to Example 1

Independent Poisson Y7, ..., Y, have joint density
fy(y;0) = Hf(yj;ﬁ) = Fe = m(y) exp(slogf — nb),
=1 j=177

where m(y) = ([Ty;)~!. Thisis a (1,1) exponential family with
00 canonical statistic s = s(y) = > yj,

[0 canonical parameter logf = p € N =R,

O cumulant generator k(¢) = nf = ne? and

O  mean parameter pn = VEk(p) = ne¥ = nf = E(9).

Two standard parametrizations use the real parameter ¢ or the mean = ne” € R,.
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Note to Example 2

O The multivariate normal density is

1
[y, Q) = Wexp{—%@—ﬂfﬁfl@—#)}a y € R"

= 2m) " Pexp{—3y—pw QO (y—p) — 3log|Qf},
and if € is known then the exponent can be written as

—31og{(2m)" |0} — 35"y + ¥ QO — Q7 = logm(y) + s(y) " — (),

where s(y) = Q7 1y, ¢ = p and k(p) = 20™Q L. It is easy to check that
VEk(p) = Q71 = E(S) and V2k(p) = Q71 = var(S).
O In the satellite example d = 2, Q = D~! is diagonal, and with 7 = (1, ) we have

SOT = (8017%02) = (1/} COs Avain )‘)7 S(Y) = (d1Y17d2Y2)7 k(@) = d1g0%/2 + dQSO%/z

The 6 parametrisation gives the polar coordinates of the mean ¢, but these are clearly equivalent
because there is a 1-1 mapping between them.
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Multivariate normal distribution

A random variable X, «1 with real components has the multivariate normal distribution,
X ~ Np(1, ), if a™ X ~ N (a™ i, a™Qa) for every constant vector a, 1, and then

O My (t) = exp(t"u + $t™Qt) and the mean vector and covariance matrix of X are
E(X) = lunX17 Va‘r(X) - Qanv

where ) is symmetric semi-positive definite with real components;

0 for any constants a,;,x1 and Bixn,
a+ BX ~ N, (a+ Bu, BQB");
O a-+ BX and ¢+ DX are independent iff BQDT = 0;
O X has a density on R™ iff 2 is positive definite (i.e., has rank n), and then

1

e P (i@ - @ - ), T e R (1

flz;p,Q) = o

O if X" = (X{,X7), where X; is m x 1, and p and 2 are partitioned correspondingly, then the
marginal and conditional distributions of X7 are also multivariate normal:

X1~ N1, 1), X1 | Xo = 29 ~ Ny {1 + Q12905 (22 — p12), Q1 — Q12055 Qo1 }
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Exponential family models 1l

0 When dims = d > dim 6 = d the model is called a (d',d) curved exponential family, and the
d' x 1 vector p(6) gives a d-dimensional sub-manifold of R? .

0 Exponential families are closed under sampling: the joint density of independent observations
Y1,..., Y, from an exponential family with the same s(Y;)"¢ = ST¢ is

T

T1 £ @ws:0) = T] m(u) exp {sTeo — k() } = [] m(y;) exp sil o= kile) g,
Jj=1 Jj=1 j=1 j=1 j=1
so with kg(¢) = >_, kj(p), the density of S =3"..5; =3 s(Y;) is
F(530) = m(s)e" 249, with '(s) = [ m(y;) dy.
{y:Zj S(yj)is} j=1

This is an exponential family, with canonical statistic S, canonical parameter ¢ and cumulant
generator kg(p).

Example 3 (Satellite conjunction) Show that taking 1 known in Example 2 gives a (2,1)
exponential family.
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Note to Example 3
We previously had

¢" = (p1,92) = (Yeos A, Psin X)), s(Y) = (1Y1,d2Y2),  k(p) = dip?/2 + a3 /2,
but with 1) known we can write

p" = (p1,02) = (cos Asin ), s(Y) = (Wdi Y1, 9daY2),  k(p) = ¥ (digf + dagd) /2,

where A is the only unknown parameter. This is a (2,1) exponential family because it cannot be
written in terms of a scalar ¢; the mean traces a curve (a circle) as A varies.
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Order statistics

[0 The order statistics of X1,..., X, id f are the ordered values
Xy < Xy < < Xppop) < Xy
O In particular, the minimum is Xy, the maximum is X(,, and the median is

X(m+1) (n =2m +1, odd), %(X(m) + X(m-i—l)) (n = 2m, even).

The median is the central value of X1,...,X,.
O If fis continuous then the X; must be distinct, and for r = 1,...,n we have
n
P(Xy<a) = 3 (’7>F<x>ﬂ‘{1 - F(@)}",
: J
j=r

n!

fX(r) (1‘) = (7“ — 1)! 11 (n — T)'F(m)r_lf(m){l - F(x)}n—r.

0 Joint densities can be obtained using the argument that gives Ixe (x), and in particular

fX(l),...,X(n) (:Ula v >xn) = n'f(xl) o f(:Cn), Ty < < Ty

Example 4 Find the joint density of X(g),..., X(,—1) given that X(;y = z1 and X(,) = zp.

stat.epfl.ch Autumn 2023 — slide 23

Note: densities of order statistics

[0 The event X,y < x occurs iff at least 7 of the independent variables X1, ..., X, are less than or
equal to x, and each of them does this with probability F'(x). Hence the probability of the event is
given by a binomial probability, and a little thought shows that this is the stated formula.

[0 The density can be obtained by differentiation of P(X(,) < x), whereupon one finds that almost
all the terms cancel, giving the stated density. A nicer argument is as follows: for the event
X() € [7,2 + dz), we need to split the sample into three groups of respective sizes » — 1, 1 and
n — 1 (hence the multinomial coefficient) and probabilities F'(z), f(x)dz, and 1 — F(z). An
application of the multinomial distribution gives the required formula.

[0 For the joint density we divide the sample into n parts, each with one observation, and apply a
version of the multinomial argument just given.

stat.epfl.ch Autumn 2023 — note 1 of slide 23
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Note to Example 4

[ The joint density of X (1) and X, is given by splitting the sample into three parts, with respective
probabilities f(z1)dzy, F(x,) — F(z1) and f(x,)dz,, and noting that we want to have 1, n — 2
and 1 of the total n observations in the three parts, giving

|
fxy X (@1, 20) = ﬁf@l){f’(ﬂ?n) — F(z)}"*f(zy), 21 < n,

where we have dropped the dz1dx,,.

[J Hence the conditional density of X(3),..., X(,—1) given that X(y) = 1 and X(,,) =z, is

nlf (1) - f () o TT @)
W= 2 % ) {F ) — Fe P27 ) E F(wn) = F(x1)’

where 71 < 29 < -+- < T,_1 < T,. This is the joint density of the order statistics of a random
sample of size n — 2 from the truncated distribution f(z)/{F(x,) — F(x1)}, where 21 < x < x,.
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Modes of convergence

O Let X, Xy, Xo,... be random variables with cumulative distribution functions F, Fy, F5,.... Then
- X, converges to X in probability, X, LX) lim,, 00 P(| X, — X| > ) =0 for all e > 0;

- X, converges to X in distribution, X, L, X, if lim,,—, o F,(x) = F(x) at each point z
where F'(z) is continuous.
— A sequence X7, Xs,... of estimators of a parameter 6 is (weakly) consistent if X, Ny}

O Let z,yo be constants, X, Y, {X,},{Y,} random variables and ¢(-) and h(-,-) continuous
functions. Then

X, 5 x = x, 2 x,
Xniwo = Xniwo,

P P
Xpn — X = g(Xn) — g(X),

X, 2 XandY, 2y = h(XaY) -5 h(X,y).

The last two lines are called the continuous mapping theorem and Slutsky’s theorem.
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Limit theorems

Theorem 5 (Weak law of large numbers, WLLN) /f X, X1, Xo,...
X =nYX;+ -+ X,) = E(X).

N F and E(X) is finite, then

Theorem 6 (Central limit theorem, CLT) /f X1, Xs,... S (u,02) and 0 < 02 < o, then

1/2(% _
7, =X b Z ~N(0,1), n— oc.
g
Theorem 7 (‘Delta method’) /fa, (X, — u) 2y, an, it € R, ap = 00 asn — oo, and g is

continuously differentiable at j1 with ¢'(u) # 0, then a,{g(X,) — g(p)} EN J (Y.

[0 The CLT provides the finite-sample approximation Z,, ~ N (i1, 0%/n), where ~ means ‘is
approximately distributed as'.

0 Many more general laws of large numbers and versions of the CLT exist.

[0 The delta method also applies with X,,, Z € RP, g(x) : RP — R? continuously differentiable and
9' (1) replaced by Jy(p) = Og(p)/Op™.
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1.3 Statistics Revision slide 26

Statistical activities

Planning of investigations

Obtaining reliable data

Exploratory data analysis/visualisation

Model formulation

Point estimation of a population parameter

Interval estimation for a population parameter

Hypothesis testing to assess whether observed data support a particular model

Prediction of a future or unobserved random variable

Oo0O00odoooano

Decision analysis to choose an action based on data and the costs of potential actions

This course covers some aspects of those activities in red above.
Many inferential tasks can be formulated in decision-theoretic terms, but we shall mostly avoid this.
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Statistical models

[0 Use observed data to draw conclusions about a ‘population’, i.e., a model from which the data are
assumed to be drawn, or about future data.

O A statistical model is a family of probability distributions for data y in a sample space ).

O A parametric model (family of models) f = f(y;0) or equivalently F' = f(y;6) is determined
by parameters § € © C R, for fixed finite d.

O If no such @ exists, F' is nonparametric, and then the parameter is often determined by F’
through a statistical functional § = ¢(F), e.g.,

p=t(F) = [yar@). o =6F) = [Pdr) - {/de<y>}2.

OO0 Parameters have different roles (which can change during an investigation):

— interest parameters represent targets of inference (e.g., the mean of a population, the slope
of a line, a baseline blood pressure) with direct substantive interpretations;

— nuisance parameters are needed to complete a model specification, but are not themselves of
main concern.

O A parametric model should have a 1-1 map from 6 to f(-;0), so parameters identify models.
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Model formulation

0 Two broad types of statistical model:

— substantive — based on fundamental subject-matter theory (e.g., quantum theory, Mendelian
genetics, Navier-Stokes equations);

— empirical — a convenient, adequately realistic, representation of data variation;
— and of course a broad spectrum between them.
O We aim that
— primary questions/issues are encapsulated in the interest parameter;
— secondary aspects can be accounted for, often via nuisance parameters;
— variation in the data is realistically modelled, leading to reasonable statements of uncertainty;
— any special feature of the data or data collection process is represented;
— different approaches to analysis can if necessary be compared.

[0 Such models are always provisional and should if possible be checked against data.
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Some notation

O By convention we (try to) use
— letters like ¢, d, . .. for (known) constants,
— Roman letters for random variables X,Y ... and their realisations z,y, .. .,

—  Greek letters p,v, 1, N\, Q, A, ... for unknown parameters.

O We distinguish the data actually observed, y°, from other possible values y, and likewise for
estimators 6°, probabilities p° = P(Y > ¢°), ..., based on y°.

O We write V- = 0- /0p and V2. = 0% - /0p0¢™ for differentiation with respect to a parameter, and
V, etc., for other derivatives.

O In general discussion we often suppose that data Y come from some unknown ‘true’ density g, but
we fit a candidate density f(y;6) that may be different from g.
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Point estimation

O An estimator of a parameter 6 € © based on data Y is a random variable 6 = 6(Y) taking values
in ©. A specific value is an estimate 6(y).

0  An M(aximisation)-estimator is computed using a function p(y;¢’) as

- 1 &
0 = argmaxg " Z p(Y;:6).
j=1

Under certain conditions @ also solves
1 n
= Vp(Y;36') =0
n
j=1

and is then called a Z(ero)-estimator.

O If the true underlying model is g, then 6 is replaced by 64, where

6, = argmay [ plu:0)gw)dy. [ Voluib,)aly) dy = 0.

Clearly if g(y) = f(y;0), then we want 6, = 6, uniquely.
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Examples

(0 Equivalently we could minimise the loss function —p with respect to 6.
[0 Some examples (for a d-dimensional parameter 0):
— maximum likelihood estimation has p(y;0') = log f(y;6');
— method of moments estimation has h(y) = (y, %, ...,y9)7, w(@) = E{h(Y)}, and

—p(y:0") = {h(y) — ()} {h(y) — n(®)};

— generalized method of moments estimation (widely used in econometrics) also has a
symmetric positive definite d x d matrix w(#’) and

—p(y; 0') = {h(y) — (@)} w(®){h(y) — n(6")};
- least squares estimation is method of moments estimation with h(y;) = y; and
u(0) = E(Y)) = 276
— score-matching estimation (unfortunate misnomer) with Y ~ g has

—p(y;0") = {V,log f(y;0) — V,log g(y)}* .

O There are many (many!) other approaches to estimation.
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Examples

Example 8 Discuss maximum likelihood estimation of the parameters of the normal distribution.
Example 9 Discuss moment estimation of the parameters of the Weibull distribution.

Example 10 Show that under mild (but not entirely trivial) conditions on the density g, the
population version of the score-matching estimator is

argmingE [{Vy log f(Y;0)}* + 2V§ log f(Y; 9)] ,

and give the sample version.
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Note to Example 8
[0 The density function of a normal random variable with mean p and variance o2 is
(2m0?) 12 exp{—(y — 11)?/(20%)}, so here By1 = (1,02)T € R x R, and the likelihood for a
random sample y1,...,y, equals
n n
1 (y; —p)°
L6 0 5 0) = —
=10 =1T10:0 =1 e {1
Therefore the log likelihood is
1 n
((p,0) = —=log(27) — = logo? — 252 (yj —)?, peR,o*>0.
j=1
Its first derivatives are
o G ol n 1 < )
o =0 Z(yj—:u)> @——ﬁ+@ ‘ (i — 17
7=1 Jj=1
and its (negative) second derivatives are
0*( n o4 n ol n 1< 9
2T T3 342 —4(y—ﬂ)a N2 5.4 6 (yj — )"
o o oudo d(0?) 204 o st
0 To obtain the MLEs, we solve simultaneously the equations
00,02 _
T (LR )= ().
% 307 T 204 Z] 155 = 1) 0
Now
01, 5°%) -
o Azz p)=0=np= Z%iﬂ—nlzy =Y
and
94(1,5%) 52l - 2 -
902 U7 232: A4Z =nT ) (=)=t (-
j=1 7=1
The first of these has the sole solution 7i = ¥ for all values of o2, and therefore ¢(ji, 0?) is
unimodal with maximum at % = n=1 3" (y; — )% At the point (7i,5?2), the hessian matrix is
diagonal with elements diag{n/5%,n/(26*)}, and so is positive definite. Hence i =¥ and
52 =n"1> (y; —Y)? are the sole solutions to the likelihood equation, and therefore are the
maximum likelihood estimates.
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Note to Example 9

O A Weibull variable X has CDF F(z) =1 — e~ "% for z > 0 and \,a > 0, and is exponential
when o = 1. Note that W = (AX)“ ~ exp(1), so

E(X") = E{(WYe/\)"} = A"TE(W™/®) = A" /oo w/e™ dw = A1 + r/a),
0

where T'(+) is the gamma function. Hence with § = (A, &) the moment estimators solve

Y =m0 =A"T1+1/a), Y2=pu(0)=A"2T1+2/a), \a>0,

Y2/(Y)?=T(1+2/a)/T(1+1/a)? X=T(1+1/a)/Y.
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Note to Example 10

O This approach to estimation can be useful when log f(y;0) = h(y;0) — k(0) with k(0) intractable.
It is a misnomer because the standard use of the term ‘score’ is for the derivative of the log
likelihood with respect to 6 (not y).

O On writing
{Vylog f(y;0) — Vylog g(y)}* = {Vy log f(y;0)}* ~2V, log f(y;0)V, log g(y)+{V, log g(y)}*,
we see that the population version of the estimator is
04 = argmin / {Vylog f(y;0)} gly) dy — 2 / {Vylog f(y;0)Vylog g(y)} 9(y) dy,

because 6 does not appear in the third term of the square. Now g(y)V, logg(y) = V,g(y), so

/ Vylog f(y;0)Vylog g(y)g(y) dy = / Vylog f(y;0)Vyg(y)dy

and integration by parts implies that if the first term here is identically zero, this equals

¥, log f(y: 0)g(y)] — / V2 log £(4;0)9(y) dy = —E {V2log f(V:6)}

Hence
0, = argminyE [{vy log f(Y;6)}2 +2V2log f (Y 9)} ,

whose sample version is
0 = argming Y [{V,log [(¥;;0)} + 2V3log £(¥;:0)] .
j=1

which can be computed from the sample.

[0 Weighted versions can be used to kill the first term of the integration, if necessary.
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Comparison of point estimators

[0 There are two generic bases for comparing point estimators:
— asymptotic — what happens when n — oo?
— finite-sample — what happens for sample sizes met in practice?

[0 Consistency is a key asymptotic criterion: does § approach 6 when n — 0o?

Definition 11 An estimator  of § is consistent if § —— 0 as n — co.

(0 Consistency is necessary but not sufficient for an estimator to be good, because
050 = §+106/\/mi>9, n — 0o,

but the second estimator here is useless: consistency can be considered a ‘safety net’.

[0 Obviously we would like 6 to be ‘suitably close’ to 6, by minimising
MSE(6;60) = E {(é - 9)2} , MAD((;0) = E (\é - e\) ,

or other similar measures of distance (loss functions), asymptotically or in finite samples.
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Bias-variance and other tradeoffs

[0 Using the bias b(#;0) = E(d) — 6, the mean square error can be expressed as
MSE(6; 0) = b(6;0)? + var(h),

so we must balance (‘trade off’) the bias and the variance when choosing 6.
[0 In simple problems we could insist that the estimator is unbiased, i.e., b(6; 0) =0, but this is
usually artificial because
— many good estimators are biased, and some unbiased estimators are useless;
— it may be impossible to find an unbiased estimator; and
— other properties may be more desirable (e.g., robustness).

An exception is meta-analysis, which involves combining different estimators with possibly very
varied sample sizes.

Example 12 The method of moments estimator of a scalar 0 based on a random sample
Vi, Y 5y, 02) with sample average Y solves the equation () =Y. Show that if ju(-) has two
smooth derivatives and is 1-1, then the estimator is consistent and asymptotically normal, with bias

and variance both of order n!.
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Note to Example 12

O As the function pu(-) is smooth and 1-1, it has a differentiable inverse, and thus by the continuous
mapping theorem, 6 = = 1(Y) -2 1~1{u(6)} = 6, i.e., § is consistent. For simplicity of notation
write g(z) = p~'(z) below.

O NowY =p+on122Z,, where Z, = (Y — p)/(c?/n)'/? Lz~ N(0,1), and Taylor expansion
gives
2
R _ g _
9(V) = g(u) + g (Won™ 22, + 079" (2,) 23,
where Z! € (0,7,), i.e., )
0=0+ nil/zgg/(u)zn + nilAm

say, where A,, is a random variable of order 1. Taking expectations gives
b(0;0) =E@) — 0 =n"'E(4,) = O(n™1),

under mild further conditions on ¢”.

[J Now R
n'2(0 - 0)/{od (1)} = Zn+n" 124l s 7,

using this (or the delta method), so in large samples we have

6~ N{0,0% () /n}.
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Efficiency and the Cramér—Rao lower bound

Definition 13 If 6, and 0y are estimators of scalar 0, then the relative efficiency of 6, compared to
0 can be defined as R

MSE(62;0)

MSE(6;;6)

In large samples the squared bias is often negligible compared to the variance, and we define the
asymptotic relative efficiency as var(6s)/var(61). Similar expressions apply if the parameter has
dimension d.

[0 Under mild conditions on the underlying model, a scalar estimator 6 based on Y ~ f(y;0) satisfies
the Cramér—Rao lower bound,

~ {1+ Vb(0;0)}
var(0) > (0 ,

where 1, (0) is the Fisher information. This applies for any sample size n, but

— as n — oo the lower bound — 1/4,,(6), the asymptotic variance of the maximum likelihood
estimator, which hence is most efficient in large samples; and

— a similar result applies for vector 6.
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Bartlett identities

O For data Y ~ f(y;60) we define the log likelihood function ¢(0) = log f(Y;0) and d x 1 score
vector U(0) = V{(6).
O If we can differentiate with respect to 6 under the integral sign, we get the Bartlett identities:
1 = /f(y;G) dy,
0 = /Vlogf(y;H) x f(y;0)dy,
0 = /Vzlogf(y;H) x f(y;0) dy+/V10gf(y;9) V¥log f(y;0) x f(y;0) dy,
0 = .-
giving the moments of U(#), viz
E{U(0)} =0, var{U(8)} = E{VE(0)VL(6)} = E {-V£(0)}
where var{U(0)} = 1,,(9) is called the Fisher (or expected) information.
O Later we shall see that in large samples, the maximum likelihood estimator 0 satisfies
6~ Ny {6,2,(0)"'}.
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O

Note: Bartlett identities

The first is true for any 6, and provided we can exchange the order of integration and
differentiation we have

H)
y: 0)

The second stems from a second differentiation and applying the chain rule to the terms in the
final integral here; likewise for the third and higher-order ones, which give higher-order moments of
U(o).

For independent data Y1,..., Y, we have U(0) = > "_, U;(0), where the U; = Vlog f(Y;;0) are
independent, so using the Bartlett identities for the individual densities f;(y;;6) we have

OZV/f(y;H)dyz/Vf(y;H)dyz/Vf(y;H)jZE dy:/Vlogf(y;H)f(y;H)dy-

var(U(0)) = > var(U;(0)} = S E(U OV} 0)} = Y ~E(V'U;(0)} = ~E{VU©)}

and this equals E {—V2{(#)} = I(6), and this in turn equals nIy(6).
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Note: CRLB
O We have

B0) = [ 01 (s0)dy = 0+ b(6:0),

and differentiation with respect to 6 gives (setting b'(6) = db(6; 0)/d6)

L+b(6) = / Oy)df(y;6)/d9 dy = / O(y) VL) f (y; 0) dy = E{OU (0)} = cov{0, U (0)},
because U(#) has mean zero. Hence the definition of correlation gives
cov{f,U(0)}% = {1 +V(0)}> < var(f)var{U ()} = var(9)I(6),

which gives the result.

O If the bias is of order n™!, so too is its derivative, so in large samples we obtain

var(f) > I(0)~t = var().
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Interval estimation

0 Point estimation does not express uncertainty — we would like to say whether the observed data
y° are consistent with different possible values of a parameter.

0 We assess the plausibility of different values of 6 by asking how well they explain 1°, often using a
pivot.

Definition 14 IfY has density f(y;0), then a pivot (or pivotal quantity) @ = ¢q(Y,0) is a function
of Y and 6 that has a known distribution (i.e., does not depend on ). Often it is convenient if Q) is
monotone in 0 for each Y .

Example 15 /f M = max(Yy,...,Y,), where Y1,...,Y, iy U(0,0), show that Q1 = M /0 is a pivot
and find a pivot based on'Y .
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Note to Example 15
O @, is a function of the data and the parameter, and
PM<z)=Fy(z)"=(z/0)", 0<z<8,
o)
P(Q1<q) =P(M/0 <q) =P(M <0q) =(0g/0)" =q", 0<g<1.
which is known and does not depend on 6. Hence ()1 is a pivot.

O fY ~U(0,6), then E(Y) = 6/2 and var(Y) = 62/12. Hence Y has mean /2 and variance

62/(12n), and for large n, Y ~ N{0/2,6%/(12n)} using the central limit theorem. Therefore
Y —6/2 1/9 rems :
=—— 12— 3p)Y2(2Y /0 — 1) ~ N(0,1).
Q2= s = )T /0 - 1) < N(O.)
Thus Q2 depends on both data and 6, and has an (approximately) known distribution: hence Q3 is
an (approximate) pivot.

O AsY/6~U(0,1), we see that we could use simulation to compute the exact distribution of Q2,
and thus obtain an exact pivot (apart from simulation error). This is called a bootstrap
calculation, about which more later.
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Confidence intervals

Definition 16 Let Y = (Y1,...,Y,,) be data from a parametric statistical model with scalar
parameter 0. A confidence interval (Cl) (L,U) for 6 with lower confidence bound L and upper
confidence bound U is a random interval that contains 6 with a specified probability, called the
(confidence) level of the interval.

O L=1IUY)and U=u(Y) are statistics that can be computed from the data. They do not depend
on 6.
O In a continuous setting (so < gives the same probabilities as <), and if we write the probabilities
that @ lies below and above the interval as
P(Q<L)ZO¢L, P(U<9)ZO[U,
then (L, U) has confidence level
P(LL<O<U)=1-PO<L)-PU<6O)=1-ar—ay.
[0 Often we seek an interval with equal probabilities of not containing # at each end, with
ar, = ay = /2, giving an equi-tailed (1 — «) x 100% confidence interval.
O We often take standard values of a, such that 1 — a = 0.9,0.95,0.99, ...
stat.epfl.ch Autumn 2023 — slide 39
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Construction of a Cl

0 We use pivots to construct Cls:
— we find a pivot @ = ¢(Y,0) involving 6;
— we obtain the quantiles ¢, g1—o, of Q;

— then we transform the equation

P{QaU < Q(Yaa) < q1faL} = (1 - OéL) —ay
into the form
P(LSHSU):l—aL—O&U,
where the bounds L = [(Y;ar,ar), U = u(Y; ar,ay) do not depend on 6;
— then we replace Y by its observed value y° to get a realisation of the CI.
O Going from quantiles of Q) to L, U is known as inverting the pivot.

[ Often we use an approximate pivot of form (6 — 6)/V1/2 < N(0,1), where V estimates var(f)
and V1/2 is called a standard error. The resulting (approximate) 95% interval is 6 + 1.96V1/2.

Example 17 In Example 15, find Cls based on Q1 and on Q5.
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Note to Example 17
[ The p quantile of Q1 = M /0 is given by p=P(Q1 < ¢,) =g}, s0 ¢ = pl/™. Thus
Plag/" < M/§ < (1—az)/"} =1—az —ap,
and a little algebra gives that
P{M/(1 —ap)'/* <0< M/a)/"} =1—ar, — ap,

SO
L=M/1-a)’", U=Mal"

O For Qo = (3n)Y/2(2Y /0 — 1) ~ N(0,1), the quantiles are z;_,, and z,,,, S0
P{za, < 3n)Y22Y /0 —1) < 210, } =1 —ar — ay,
and hence we obtain
_ 2Y U 2Y '
1+ z1_q, /(3n)1/2 1+ 24, /(30)1/2’

note that for large n these are L ~ 2Y {1 — z;_o, /(3n)"/?} and U ~ 2Y {1 — 24,,/(3n)"/?}.
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Interpretation of a ClI
O (L,U) is a random interval that contains 6 with probability 1 — «.
O We imagine an infinity of possible datasets from the experiment that resulted in (L, U).
(0 Our Cl based on y° is regarded as randomly chosen from the resulting infinity of Cls.
O  Although we do not know if 8 € (I(y°; ar, ), u(y®; ar, ar)), the event § € (L,U) has
probability 1 — « across these datasets.
O In the figure below, the parameter 6 (green line) is contained (or not) in realisations of the 95% ClI
(red). The black points show the corresponding estimates.
57 e
%:7
gg— R —
§3, ii?*i
===
> 0 2 i 6 s 1o 2
Parameter
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More about Cls

O Almost invariably Cls are two-sided and equi-tailed, i.e., o, = ay = «, but one-sided Cls of
form (—oo0,U) or (L, 00) are sometimes required:

— compute a two-sided interval with a;, = ay = «, then replace the unwanted limit by +oo (or
another value if required in the context).

O For a two-sided Cl we define the lower- and upper-tail errors
PO <L), PU<®H)

and if these equal the required value for each possible ay,, ay, then the empirical coverage of the

Cl exactly equals the desired value:

— this occurs when the distribution of the corresponding pivot is known, but in practice this
distribution is usually approximate, and then we use simulation to assess if and when Cls are
adequate;

— it's better to consider the two errors separately, as their sum may be OK even when they are
individually incorrect;

— lower- and upper-tail errors are properties of the Cl procedure, not of individual intervals!
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0

Prediction

Example 18 /fYy,...,Y,, Y, ~
other variables.

Prediction refers to ‘estimation’ of unobserved (future, latent, ...) random variables Y., say.

Often require prediction (or tolerance) intervals based on existing data Y, by finding a pivot
that depends on both Y and Y, and predict Y, using this pivot, e.g., using its mean or median.

Here's a very simple example . ..

NN (u, 02), give prediction limits and a predictor for Y. based on the
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Note to Example 18
O Standard results give Y ~ A (i, 02 /n) independent of (n — 1)S?/0? ~ x2_;, both independent of
Yy ~ N(p,02),s0 Y, =Y ~ N(0,0% + 0%/n), independent of S2, leading to
Y, -Y .
{1+ 1/m)s2yt2
leading to two-sided equi-tailed (1 — 2«) prediction interval
Y+ (1+1/n)Y25t, 11 — a).
Note that even as n — oo this interval does not vanish, rather it approaches yu + 0z1_4.
[0 The Yj are replaced by yj to give the realisation of the interval.
[0 One obvious scalar predictor XAGF is given by taking the median for @, i.e., solving
vy
qo.5 = )
{(1+1/m)52}1/2
where in this case gp.5 = 0, giving }AGF =Y and realised value 7°.
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Hypothesis testing

O A statistical hypothesis is an assertion about the population underlying some data, or
equivalently a restriction on possible models for the data, such as:

— the population has mean pg;

the population is A'(ug,03), with both parameters specified;

— the population is N'(u1, o?), with the parameters unspecified;

— the data are sampled from the discrete uniform distribution on {1,...,9};
— the population density is symmetric about some y;

— the population mean u(x) increases when a covariate z increases.

[0 These are assertions about populations, not about a dataset, but they have implications for
datasets.

0 In some cases the distribution is fully specified, but not always.
0 Some, but not all, hypotheses concern parameters.

0 A hypothesis test uses a stochastic ‘argument by contradiction’ to make an inference about a
statistical hypothesis: we assume that the hypothesis is true, and attempt to disprove it using data.
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Elements of a test

O A null hypothesis Hj to be tested.
0 A test statistic T', large values of which will suggest that Hj is false, and with observed value tg}s.
O A P-value
Pobs = Po(T > tobs),
where the null distribution Py(-) denotes a probability computed under Hy.
O The smaller pyys is, the more we doubt that Hy is true.

[0 Tests on parameters are often based on pivots: if § = 6y, then T = |¢(Y;0y)| has a known
distribution Gy, say, and observing a value tops = |q(y°; 6p)| that is unusual relative to Gy
‘contradicts’ Hy.

[0 In other cases we choose a test statistic that seems plausible, such as Pearson’s statistic,
K

T =" (O — E)*/E},
k=1

used for testing how the agreement of observed counts Oy, in K categories with their theoretical
expectations Fj.

O In any case we need to know (or be able to approximate) the distribution of 7" under Hy.
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1.4 Bases for Uncertainty Statements slide 46

U
U

Uncertainty

[0 Essentially three bases for statements of uncertainty:

Example 19 (Measuring machines) A physical quantity 6 can be measured with two machines,
both giving normal observations Y such that E(Y') = . A measurement from machine 1 has variance
1, and one from machine 2 has variance 100. A machine is chosen by tossing a fair coin, giving

M = 1,2 with equal probabilities.

If we observe m = 1 and y = 2, then clearly we can ignore the fact that we might have observed

m = 2, i.e., we should take S = {(y,1) : y € R} rather than S = {(y,m) : y € R,m € {1,2}}.

— a frequentist (sampling theory) inference compares y with the set S of other data that
might have been observed in a hypothetical sampling experiment;

— a Bayesian (inverse probability) inference expresses it via a prior probability density and
uses Bayes' theorem to update this in light of the data;

— in a designed experiment, clinical trial, sample survey or similar the investigator uses
randomisation to generate a distribution against which y is compared.

There are many variants of the first two approaches.

A frequentist should choose the reference set S thoughtfully.
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O

0

Comments on sampling theory inference

Example 20 What would the confidence intervals look like in Example 197 How would the image on
slide 41 change? What hypothetical repetitions form the reference set?

We assume that y° is just one of many possible datasets y € S that might have been generated
from f(y; ), and the probability calculations are with respect to S.

We choose the reference set S to ensure that the probability calculation is relevant to the data
actually observed. For example, if y° has n observations, we usually insist that every element of S
also has n observations.

The repeated sampling principle ensures that (if we use an exact pivot) inferences are calibrated,
for example, a (1 — «) confidence interval (L, U) satisfies

P(L<O<U)=1-a,

for every § € © and every « € (0,1). Hence if such an interval is used repeatedly, then the
probability it does not contain 6 is exactly «.

Calibration guarantees that the procedure, if repeated, has the stated error probability, and any
particular interval either does or does not contain 6.

Bayesians object that inferences should only be based on the dataset y° actually observed, so the
reference set S is irrelevant.
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Bayesian inference
O Our observed data y° are assumed to be a realisation from a density f(y | 6).
O If we can summarise information about 6, separately from 3°, in a prior density f(6), then we can
use Bayes' theorem to obtain the posterior density
S(y°10)f(0
F0 ) = SO 1O50)
J el 0)f(0)do
and base all our uncertainty statements on this.
O For example, if 6, satisfies P(6 < 6, | y°) = p for any p € (0,1), we could give a (1 — 2«)
posterior credible interval Z;_5, = (04, 61-4) such that
POE T oly)=1-20;
here 0 is regarded as random and y° as fixed.
O A point estimate é(yo) of 6 is obtained by minimising a posterior expected loss, i.e.,
0(y°) = argmingEl {L(Q, 9) | yo} = argminé/L(H, 0)f(0 | y°)dé,
where the loss function L(6,0) > 0 measures the loss when 6 is estimated by 6.
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0

Comments on Bayesian inference

Bayesian inference
— requires the specification of a prior distribution on unknowns, separate from the data;

— implies that we regard prior information as equivalent to data, putting uncertainty and
variation on the same footing;

— reduces inference to computation of probabilities, so in principle is simple and direct.

Specifying prior ‘ignorance’ in an objective way is problematic and can lead to paradoxes, especially
in high-dimensional settings.

(Approximate) Bayesian computation can be performed using

— conjugate prior distributions (exact computations in simple cases),

integral approximations (e.g., Laplace's method),

deterministic methods (e.g., variational approximation),

simulation, especially Markov chain Monte Carlo.

stat.epfl.ch Autumn 2023 — slide 50

32



Randomisation

0 To compare how treatments affect a response, they are randomised to experimental units:
— treatments are clearly-defined procedures, one of which is applied to each unit;

— a unit is the smallest division of the raw material such that two different units might receive
two different treatments;

— the response is a well-defined variable measured for each unit-treatment combination.
O Examples are agricultural trials, industrial experiments, clinical trials, ...
[0 The experiment is ‘under the control’ of the investigator, making strong inferences possible.
0 Main goals of randomisation:

— avoidance of systematic error (eliminating bias);

— estimation of baseline variation (e.g., by use of replication and/or blocking);

— realistic statement of uncertainty of final conclusions;

— providing a basis for exact inferences using the randomisation distribution.
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Example: Shoe data

[0 Shoe wear in an paired comparison experiment in which materials A (expensive) and B (cheaper)
were randomly assigned to the soles of the left (L) or right (R) shoe of each of m = 10 boys.

O The m = 10 differences d, ..., d,, have average d = 0.41.

Boy Material Difference
A B d

1 132(L) 140(R) 08
2 82(L) 88(R) 0.6
3 109 (R) 11.2 (L) 0.3
4 143(L) 142(R) -0.1
5 107 (R) 11.8 (L) 1.1
6 6.6 (L) 6.4 (R) -0.2
7 95(L) 98(R) 0.3
8 108(L) 113(R) 05
9 88(R) 93(L) 0.5
10 133(L) 136 (R) 03
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Example: Shoe data Il

O A unit is a foot, a treatment is the type of sole, and the response is the amount of wear.

0 This is paired comparison experiment, as there are blocks of two similar units, each of which is
given one treatment at random, according to the scheme

Treatment for boy j Left foot Right foot
A lj ’I“j
B P+ (S

00 We observe either (¢ +1;,7;) or (1,7 + 1) so the difference D; of B and A for boy j is
Y +1; —rjori+r; —1;. These are equally likely, so we can write D; = v + I;c;, where

— 1 is the unknown (extra wear) effect of B compared to A,
— I; =1 if the left shoe of boy j has material B and otherwise equals —1, and

— ¢j = lj —r; is the unobserved baseline difference in wear between the left and right feet of boy

J-
O If we observe (1) + ;,7;) for boy j, then we cannot observe (1, + r;), which is said to be
counterfactual.
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Example: Shoe data Il

0 There are 2™ equally-likely treatment allocations, and the observed d is a realisation of the random

variable . .
%Z Z%Z Y+ Iic; = T,Z)—i—%Zchj,
where I; = £1 with equal probabilities, so
E(l;) =0, var(l;) =1.

O Hence E(D) =% and var(D) = m ™2 >y c?, which is unknown because the c¢; are unknown, is

estimated by (exercise)
1 - —
S?=———— N (D; - D)?
m(m _ 1) ]Z;( J )
O D and S? can be computed from the observed data, so the standardized quantity Z = (D —v)/S
is an approximate pivot.

O If there was no difference between B and A (i.e., 1 = 0), then T = D/S would be symmetrically
distributed, as positive and negative values of D would be equally likely.
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Example: Shoe data IV

Randomization distribution of 7= D/S for the shoes data, i.e., setting 1) = 0, together with a tg
distribution. Left: histogram and rug for the values of T', with the t9 density overlaid; the observed
value is given by the vertical dotted line. Right: probability plot of the randomization distribution
against tg quantiles.

c
9o
2
s 5 <
] -
© -¢'
o s
° ©
N
E o
S 8
=
O
o = 9
c p <
2 v ¢
o IS
o [ ITINTN ) g
a
-4 -2 0 2 4 -4 -2 0 2 4
t Quantiles of t distribution
stat.epfl.ch Autumn 2023 — slide 55

Comments

0 Systematic error is reduced by randomisation,

— but if material A had by chance been allocated to all the left feet, then we might have
re-randomised;

— we could have used a design in which A appeared on left feet exactly 5 times.

0 Baseline variation was reduced by blocking, i.e., using two treatments for each boy, and is
estimated by 52, based only on the observed values D1, ..., D,,.

00 5?2 also allows a statement of uncertainty for D and hence for estimates of .

00 If ¢ = 0, then the observed value of D is highly unlikely: just 3 values of D exceed d = 0.41, so if
1 = 0 then exact calculation gives

P(D > d) = 7/2'° = 0.007,

which seems unlikely enough to suggest that ¢ > 0.

0 Normal distribution theory suggests that Z ~ tg, and the QQ-plot shows that this would work well
even here. The symmetry induced by randomisation justifies the widespread use of normal errors in
designed experiments.
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Wrapping up
00 Statistical inference involves (a family of) probability models from which observed data are
assumed to be drawn.
[0 These models express variation inherent in the data, but we also wish to express our uncertainty
about the underlying situation.
(0 Uncertainty is formulated using
— a repeated sampling (frequentist) approach, which invokes hypothetical repetitions of the
data-generating mechanism, or
— a Bayesian approach, which requires that ‘prior information’ on unknown quantities be
expressed as a probability distribution, or
— a randomisation approach, in which the model and hypothetical repetitions are controlled by
the investigator.
O The last is the strongest approach, but it is not always applicable.
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2 Some Basic Concepts slide 58

2.1 Likelihood slide 59

Likelihood

[0 We now suppose that the data are provisionally believed to come from a parametric model
fy (y;0) for which 6 € ©.

[0 Given observed data y, the likelihood and the log likelihood are

L(0) = fy(y;0), £(0)=log fy(y;0), 0¢€6;

we regard these as functions of @ for fixed y. The log likelihood is often more convenient to work
with because if i consists of independent observations y1, ..., y,, then

0(0) =1log fy (y;0) =log [ [ f(ys:0) = _log f(y;;6), 6 €0,
=1 =1

so laws of large numbers and other limiting results apply directly to n=14(6).
O Comments:
— the posterior density based on data y and prior f(#) is proportional to L(6) x f(6);

— the above formula is readily extended — for example, if y1,...,y, are in time order, then

00) = log f(yj | yr,- - yj-150) +log f(y1;6).
j=2
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Likelihood quantities

0 The maximum likelihood estimate (MLE) § satisfies

~ -~

0(0) > £(0) or equivalently L(60) > L(6), 0co.
[0 Often @ is unique and satisfies the score (or likelihood) equation

Vi) = ag_%m =0,

interpreted as a d x 1 vector equation if 6 is a d x 1 vector.

O The observed information and expected (Fisher) information are defined as

92(0)
90007

2(0) = =V2(0) = u(0) =E{(0)};

these are d x d matrices if 6 has dimension d and otherwise are scalars.

O To evaluate +(0) we replace y by the random variable Y and take expectations.

Example 21 (Exponential family) Find the likelihood quantities when Y1, ...,Y, is a random
sample from a (d,d) exponential family.
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Note to Example 21

0 The density for a single observation is

f(y;0) =m(y)exp{s'¢ — k(p)} = m(y)exp [s'p(0) — k{p(0)}], 0€O,yec),

where s = s(y), so the corresponding log likelihood based on y1,...,y, is

Zlogf yj;0) = Z To(0) — nk{p(0)} = s"p(0) — nk{p(6)}, €O,
7j=1
where s = zj y; and = means that we have dropped additive constants from the log likelihood.

O If V denotes gradient with respect to 6 and k, and k., denote the gradient and Hessian matrix of
k with respect to ¢, then the score equation is

Vp(0)'s —nVp(0) ko{p(0)} =0,

so if the d x d matrix ¢(0)" is invertible (which is the case for a smooth 1 — 1 transformation),
then the MLE ¢ satisfies k() =5 = s/n (note that E(S/n) = k,(¢), so @ is also a moments
estimate), and therefore § = ¢~ 1().
0 To compute the observed information we write the likelihood derivatives as
Doy i Ok ()

— =1,...,d
39,»(% naer 3tpt ) r ) s &y

using the Einstein summation convention that implies summation over repeated indices (here t),
and then differentiate with respect to 6, to obtain

2 2 2
Opr (o, O OK(p) | 00Oy k()

00 =500, * " 00,00, Dy " 00, 90, dpidp, T

., d.

Note that

— if ¢(f) =0, i.e., the exponential family is in canonical form, then V() = I; and the second
derivatives are zero, so this entire expression reduces to nVQk:(go), which is non-random;

- E(S:) = nok(p)/0¢:, so in any case
U8) = nV(0) kop{0(0)} {V(0)"} 5
— the MLE satisfies the score equation, so the observed information at the MLE is
~ N T
§0) = nVe(0) ko (@)} { Ve O) }
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Invariance

0 We seek invariance to (smooth) 1-1 transformations of data and/or parameter.

O If Z=2(Y)is a 1-1 function of a continuous variable Y and the transformation does not depend
on 6, then f7(z;0) = fy{y~"(2);0}|dy/dz|, so

0(0;2) = log fz(2;0) = £(0;y) = log fy (y; 0),

where = means that an additive constant not depending on 6 has been dropped — hence
likelihood inference is the same whether we use Y or Z.

O Likewise a smooth 1-1 transformation from 6 to ¢(6) will give

Fly;0) = Fly; 6(0)} = f(y;0),
where the tilde denotes the density expressed using ¢. Clearly

Fl:9) = Flu:o@) = 10, o0) = G i0)ge|

p=¢(0)

so the respective maximum likelihood estimates satisfy QAS = d)@)
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Interest and nuisance parameters

O In most cases 6§ = (¢, ), where the
— (low-dimensional, often scalar) interest parameters 1) represent targets of inference with
direct substantive interpretations;
— (maybe high-dimensional) nuisance parameters \ are needed to complete a model
specification, but are not themselves of main concern.

O Ideally inference on 1) should be invariant to interest-respecting (or interest-preserving)
transformations
YA U:U(¢),<:C(¢a)\)-
O For example, if X ~ N (u,0?) then the log-normal variable Y = exp(X) has mean
Y = exp(p + 02/2), and
— confidence intervals for 1) should be the same whether the nuisance parameter \ is chosen as p
oro?orpu—ao?/2o0r...;
— if (L,U) is a confidence interval for 1, then a confidence interval for log ¢ should be
(log L,logU).
O Later we will try to construct likelihoods that depend only on the interest parameters.

stat.epfl.ch Autumn 2023 — slide 63

39



2.2 Complications slide 64

Overview

O In theoretical discussion we glibly write something like
“Let Va,...,Y, 2 f(y;0)..."
but in applications this cannot be taken for granted — though the likelihood is readily constructed
when the data are independent.
0 Ideally we can ensure random sampling and full measurement of observations from a well-specified
population, but if not, possible complications include:

selection of observations based on their values;

censoring;

dependence;

missing data.
OO We now briefly discuss these . ..
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Selection

O If the available data were selected from a population using a mechanism expressible in probabilistic
terms, then the likelihood is
P(Y =y|S;0),
where S is the selection event. If S is unknown or not probabilistic, only sensitivity analysis is
possible (at best).
00 A common example is truncation of independent data, where S; = {Y; € Z;} for some set Z;,
giving likelihood

[1 /v €z;0).
j=1

Example 22 In certain demographic databases on very old persons, an individual born on
calendar date x is included only if they die aged ug + t, where ug is a high threshold (e.g., 100
years) and t > 0, between two calendar dates ¢y and co. The likelihood contribution for this
person is then of form

f(t)

Fla) —F() a<t<b, [a,b] = [max(0,c; — x),co — 7,

where x is the calendar date at which they reach age ug. See the next page.
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Selection in a Lexis diagram

I I
S I I S
= I I i rc2—Xc
2 I | >
Q | | _8
ﬁ | | < Fta
o I | )
g [ [ £ Fel—Xa
=} I I =]
5} Q
= 1 ! =
@ | | 2
5] | | 8 — xr
o | | 2 rC1—Xc
=
o I I b B LooriB
‘ ) D rc—xp
/ ‘ /
| I
/ . | ‘ ‘ ‘ ‘ - Lo
c1 C XA Xc C1XB Xp C2
calendar time calendar time

Lexis diagrams showing age on the vertical axis and calendar time on the horizontal axis. Only ages
over ug are shown.

Left: only the individuals with solid lines appear in the sample.

Right: explanation of the intervals for which different individuals are observed.
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Biased sampling

OO Arises when the probability of selecting (sampling) an observation depends on its value.

O If p(y) =P(S|Y = y) denotes the probability that an observation of size y is selected, then the
density of a selected observation is

PEY=y)fly) _ p)fy)
P(S) Jp)fly)dy

O A common example, length-biased sampling, occurs when p(y) o y, giving

yfly)  _ yf@)
Jxf(z)d po

say, and the mean length for the selected observations is not the population mean E(Y') = i but

fs()=fly|S) =

fs(y) = y >0,

B(Y | §) = / ufs(y) dy = / 1) udy =+ 0/,

where 02 = var(Y') is the population variance.

O Many other types of biased sampling arise in medical and epidemiological studies.
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Censoring
[0 Selection determines which observations appear in a sample, whereas censoring reduces the
information available in the sample.

0 Censoring is very common in lifetime data and leads to the precise values of certain observations
being unknown:

— right-censoring results in ("= min(Y,b), D = I[(Y <)) for some b;
— left-censoring results in (T' = max(Y,a),D = I(Y > a)) for some a;

— interval-censoring results in (Y, I(a <Y <)), (a,I(Y <a))or (b,I(Y > b)), or it is known
only which of the disjoint intervals 71, ...,Zx contains Y.

O In each case we lose information when Y lies within some (possibly random) interval Z, often with
the assumption that Y Il 7.

O Rounding is a form of interval censoring, and we have already seen (exercises) that little
information is lost if the rounding is not too coarse.

O Likelihood contributions based on right- and left-censored observations are

UL =B O OB

O Truncation and censoring can arise together; see the Lexis diagram.
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Dependent data

O If the joint density of Y = (Y7,...,Y},) is known, then the prediction decomposition
n
F@0)=fr -y 0) = f0) [ £l v, yi-1:0)
j=2

gives the density (and hence the likelihood).

O This is most useful if the data arise in time order and satisfy the Markov property, that given the
‘present’ Y;_y, the ‘future’, Y;,Y,1,..., is independent of the ‘past’, ... ,Y;_3,Y;_», so

filyn,- o yi-130) = f(yy | yj-150)
and the product above simplifies to

n
f(y;0) = f(y1;0 H y] | Yj— 1;0
j=2

O Many variants of this are possible.

Example 23 (Poisson birth process) Find the likelihood when Yy ~ Poiss(#) and Yy, ..., Y, are
such that Yj 1| Yo = yo,...,Y; = y; ~ Poiss(0y;).
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Note to Example 23

Here (6"
Y j+1
i | y30) = —"—=—exp(=0y;),  yjr1=0,1,..., 0>0.
y]+1
If Yy is Poisson with mean 6, the joint density of data yg,...,yn is
n —
gvo Qy])yj+1
y07 y ‘ Yj 17 = eXp - 0 eXp(_Hy‘)v
Lt =4 13 yin! :

so the likelihood is .

n
Hyj! exp (sglog 6 — s10), 6 >0,
=0

where so =37 _yj and 51 =1+ Z] "o Yj- Thisis a (2,1) exponential family.
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Missing data

0 Missing data are common in applications, especially those involving living subjects.
[0 Central problems are:
— uncertainty increases due to missingness;
— assumptions about missingness cannot be checked directly, so inferences are fragile.

0 Suppose the ideal is inference on 6 based on n independent pairs (X,Y’), but some Y are missing,
indicated by a variable I, so we observe either (z,y,1) or (z,7,0).

O The likelihood contributions from individuals with complete data and with y missing are
respectively

PU =12,y 5:0)1(@:0). [ PU=0|.0)f(y | 236)f(a:0) dy,

and there are three possibilities:

— data are missing completely at random, P(I =0 | z,y) = P({ = 0);

— data are missing at random, P(I =0 | z,y) = P(I =0 z); and

— non-ignorable non-response, P(I =0 | z,y) depends on y and maybe on x.

The first two are sometimes called ignorable non-response, as then I has no information about 6
and can (mostly) be ignored.
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Example

Missing data in straight-line regression. Clockwise from top left: original data, data with values missing
completely at random, data with values missing at random — missingness depends on z but not on v,
and data with non-ignorable non-response — missingness depends on both x and y. Missing values are
represented by a small dot. The dotted line is the fit from the full data, the solid lines those from the
non-missing data.
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Example

Truth Average estimate (average standard error)
Full MCAR MAR NIN
By 120 120 (2.79) 120 (4.02) 120 (4.73) 132 (3.67)
f1 050 0.49 (0.19) 0.48 (0.28) 0.50 (0.32) 0.20 (0.25)

[0 Average estimates and standard errors for missing value simulation, for full dataset, with data
missing completely at random (MCAR), missing at random (MAR) and with non-ignorable
non-response (NIN) and non-response mechanisms

0.5,
P(I=0|z,y) =4 ®{0.05(z—7)},
®[0.05(x — %)+ {y — o — fi(x — @)} /o] ;

In each case roughly one-half of the observations are missing.

[0 Data loss increases the variability of the estimates but their means are unaffected when the
non-response is ignorable; otherwise they become entirely unreliable.
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Discussion
O Truncation, censoring and other forms of data coarsening are widely observed in time-to-event
data and there is a huge literature on dealing with them, especially in terms of non- and
semi-parametric estimation.
O Selection (especially self-selection!) can totally undermine analyses if ignored or if it can't be
modelled.
O The Markov property plays a key simplifying role in inference based on time series, and
generalisations are important in spatial and other types of complex data.
O Missingness is usually the most annoying of the complications above:
— it is quite common in applications, often for ill-specified reasons;
— when there is NIN and a non-negligible proportion of the data is missing, correct inference
requires us to specify the missingness mechanism correctly;
— in practice it is hard to tell whether missingness is ignorable, so fully reliable inference is largely
out of reach;
— sensitivity analysis and or bounds to assess how heavily the conclusions depend on plausible
mechanisms for non-response is then useful.
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2.3 Data Reduction slide 75
Sufficiency
[0 When can a lot of data from a particular model be reduced to a few relevant quantities without
any loss of information?
O A statistic S = s(Y') is sufficient (for 6) under a model fy(y;0) if the conditional density
fyis(y | s;0) is independent of & for any 6 and s.
O This implies that
y(y;0) = fs(s;0) fyis(y | s), €(0;5) = L£(0;y),
so we can regard s as containing all the sample information about 6: if we consider Y to be
generated in two steps,
— first generate S from fs(s;#), and
— then generate Y from fy5(y | 5),
we see that if the model holds, then the second step gives no information about 6, so we could
stop after the first step.
[0 The conditional distribution fyg(y | s) allows assessment of the model without reference to 6.
Example 24 (Uniform model) /fY;,....Y, Y U(#), find a sufficient statistic for § and say how to
use f(y | s) to assess model fit.
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Note to Example 24

O The density is f(y;60) = 6~11(0 < y < ), so since the observations are independent, the
likelihood is

n
LO)=T[0710<y; <0)=0T"T0<y1,....yn<0)=0"I(0<m <0), 0>0,
j=1
where m = max(y1,...,yn); note that [[, I(0 < y; < 6) = I(0 <m < ¢). Clearly the likelihood
depends on the data only through n and m, and as n is taken to be fixed, a sufficient statistic is
M = maxYj.

O We have P(M < m) = (m/0)" for 0 < m < 6, so M has density nm™~1/0" for 0 < m < 6, but
noting that (Y1/M,...,Y,,/M) has a 1 somewhere unknown, we see that computing the
conditional density of the observations given M it is easiest to first compute that of the order
statistics, i.e.,

fi, o s yn—1,m) =nl07", 0<y; < - <yp_1 <m<0,
so the joint density of Y(yy,...,Y(;,_1) given M =m is
nlg=" (n—1)!
nmn_l/gn: mn_l ) O<y1<"'<yn—1<m7
which is the density of the order statistics of a random sample of size n — 1 from the U (0, m)
density. Tests of fit will be based on this density, which does not depend on 6.

O Equivalently we compute (Y1/M,...,Y, /M), throw away the 1, and treat the remaining values as

n — 1 independent U (0, 1) variables if we want to compute tests of fit of the model.
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Minimal sufficiency

Theorem 25 (Factorisation) A statistic S = s(Y') is sufficient for 6 in a model f(y;0) if and only if
there exist functions g and h such that f(y;0) = g{s(y); 0} x h(y).

Theorem 26 IfY ~ f(y;60) and S = s(Y') is such that log f(z;0) — log f(y;0) is free of 8 if and
only if s(z) = s(y), then S is minimal sufficient for 6.

If S = s(Y) is sufficient and 7' = ¢(Y) is any other function of Y, then (S,T") contains at least as
much information as .S, and is also sufficient.

To define a ‘smallest sufficient statistic’, we define a minimal sufficient statistic to be a function
of any other sufficient statistic. This is unique up to 1-1 maps.

To formalise this idea, we note that

— any statistic 7' = ¢(Y") taking values ¢ € T partitions the sample space ) into equivalence
classes C; = {y/ € YV : t(y) = t};

— the partition C; corresponding to T is sufficient if and only if the distribution of Y within each
C; does not depend on 6; and

— a minimal sufficient statistic gives the coarsest possible sufficient partition.

We use the following results to identify (minimal) sufficient statistics.
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Note to Theorem 25

O The result is ‘if and only if', so we need to argue in both directions.
O If S is sufficient, then the factorisation

f(y;0) = f{s(y); 0} x f(y | s) = g{s(y); 0} x h(y)
holds.

0 To prove the converse, suppose for simplicity that Y is discrete and that there is a factorisation.
Then S has density

fs0) = > g{s@)0hy) =g(s:0) > h(),

y'eY:s(y')=s y' eY:s(y')=s
where the sum is in fact over ¢y’ € Cs. Thus the conditional density of Y given S = s = s(y) is

9{s(y);0thly) _  h(y)
(5; 9) Zy’ecs h(y/) Zy’ecs h(y/)’

which does not depend on 6. Hence S is sufficient.

f(y|8;9)=g

[0 The continuous case is similar, but the presence of a Jacobian makes the argument a bit messier.
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Note to Theorem 26

(0 We must show that that S is sufficient and that it is minimal. For simplicity let Y be discrete.

(0 To show sufficiency, note that every y € ) lies in an element of the partition C; generated by the
possible values of S, and choose a representative dataset y/, € C; for each s. For any y, y;(y) is in

the same equivalence set as y, so the ratio f(y; 9)/f(y;(y); 6) does not depend on 6, by the
premise of the theorem. Hence

F@:0) = f(yy():0) x = g{s(y); 0} x h(y),

because y;(y) is a function of s(y). This factorisation shows that S = s(Y') is sufficient.

O To show minimality, if "= ¢(Y) is any other sufficient statistic the factorisation theorem gives

F(y:0) = g'{t(y); 031 (y)
for some ¢’ and I'. If two datasets y and z are such that ¢(y) = ¢(z), then

f(z0) _ g{t(2);0}0'(z) _ W(2)
fly;0) g {t(y); 0 0 (y)  W'(y)

does not depend on 6, and hence s(y) = s(z). This implies that

{zeV: i(z) =ty)} c{zeV:s(2) =s()},

i.e., the partition generated by the values of S is coarser than that generated by the values of T,
and therefore it must be minimal.
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Examples

Example 27 (Uniform model) Discuss minimal sufficiency when Y1, ....,Y, g U(o).

Example 28 (Location model) /fYy,...,Y, Y g(y — 0), with g a known continuous density, find a

sufficient statistic.
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Note to Example 27
O The density of Y7,...,Y, is

Fn, s 0) =[] flws0) =0 [ 10 <y; <0) =010 <m <0) x1, 6>0,
j=1 j

where m = max(y1,...,yn), so the factorisation theorem implies that M = max(Y,...,Y,) is
sufficient, as we already deduced in Example 24 .

O In the calculation below we set 0/0 = 1. To show that M is minimal sufficient, note that if we
have two samples y1,...,y, and z1,..., z,, then (in an obvious notation)

f(z:0)  07"I(0<m, <)
fly;0)  67I(0<my<80)

which is independent of 6 iff n = n’ and m, = m., i.e., the samples have the same size and the
same maxima. Since we usually take the size as non-random (for reasons seen later), the sample
maximum is minimal sufficient for 6.

O To illustrate the idea of sufficient partitions, let U = min(Y1,...,Y,), so S = (U, M) is also

sufficient. The partitions of the sample space ) = (0,6)™ corresponding to the statistics U, M
and (U, M) have elements C, = {y € YV : u(y) = u}, Cp = {y € Y : m(y) = m} and

Cu,m:{yey:u(y):u7m(y):m}7 O<u<m<67

where for brevity we write y = (y1,...,yn); C, contains all the samples that have minimum w, for
example. Notice that the same partition C,, would arise if we replaced u by 1-1 function g(u).

[0 Sketch the partitions on the board!

0 We already saw that the density of (Y7,...,Y},) given that M = m, i.e., the conditional density of
Y =y inside C,,, is the density of n — 1 independent U (0, m) variables, which does not depend on
0, so the partition {C,, : 0 < m < 6} is sufficient. Obviously the same is also true of
{Cum : 0 <u<m<0}.

O The density of U is given by differentiation of P(U < u) =1— (1 —u/0)", for 0 <u <8, i.e.,
n0~1(1 —u/0)"! for 0 < u < 0, so the conditional density of Y7,...,Y,, given U is

0~"I(0 <m < 0) 1

n9*1(1—u/9)n71[(0<u<9) n(@—u)”*l O<u<m<§),

which depends on 6. Hence the partition {C, : 0 < u < 6} is not sufficient.
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Note to Example 28

00 The density g is continuous, so all the y; are distinct with probability one. The joint density of
Y1,...,Y, is therefore

Fy;0) =] 9ty —0),
j=1

and that of the order statistics S = (Y(1),...,Y(y)) is

fs:0)=n T oty —0), w1 < <yn
j=1

o)
oy Jyd) 1
f(y’&e)_f(sﬁ)_n" Z/Gya
where ) is the set of permutations of the order of (y1,...,yy) , all of which have order statistics

s; clearly |Vs| = n!, because there are no ties.
As f(y | s) does not depend on g or 6, the set of order statistics S is sufficient for g and 6.

O To show minimality, take another sample z1,..., 2z, and note that

f(z:0) _ I} 9(z — 0)
fy:0)  Ilj=19(y; —0)

which (for general g) is free of 6 only if the y; are a permutation of the z;, and this occurs only if
the order statistics of the samples are the same.

O Here |s| = n in general. In special cases (e.g., the normal density) there is a minimal sufficient
statistic of lower dimension.
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Using sufficiency: Rao—Blackwell theorem

Theorem 29 (Rao-Blackwell) /f@ is an unbiased estimator of a parameter 0 of a statistical model
f(y;0) and if S = s(Y) is sufficient for 6, then T =E(6 | S) is also unbiased, and var(T') < var(6).

Example 30 (Exponential family) Find a minimal sufficient statistic for @ based on a random
sample Y1,...,Y, from a (d,d) exponential family. Ifd =1 and s(Y') =Y, find a better unbiased
estimator of = E(Y7) than Y;.

0 The Rao—Blackwell theorem is non-asymptotic: it holds for any n.

[0 The process of getting a better estimator, Rao—Blackwellization, is useful in many contexts
(e.g., as a variance reduction technique in MCMC estimation).
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Note to Theorem 29

[0 We must show that that 7T is a statistic, that it is unbiased, and that it has smaller variance than .
O We have

~ Rl 9) = / 6y)f(y | 5)dy,

which does not depend on 6 by sufficiency of S, so T is indeed a statistic.

/{/0 fly|s) dy}f(s&ds—/@ y;0)dy =0,
by unbiasedness of 6.

O Finally we write §# —9 =0 — T +T — 0 = A+ B, say, and note that E(4 | S) = E(B) =0, so

O Moreover

cov(4, B) = EsEy|s(AB) = Eg { BEy|5(A4 | S)} = Es(B0) =0,
and thus
var(f) = var(A + B) = var(A) + var(B) = var(f — T) 4 var(T) > var(T),

with equality iff E{(T' — 0)2} = 0, i.e., T and 6 are equal almost everywhere.
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Note to Example 30

OO The joint density is
[T ;") exp [s(y;) () — k{0(0) H x exp[s'@(0) —nk{p(0)}], 6€6,
=1 =1

so (s =) s(y;),n) is sufficient by the factorisation theorem. It is also minimal, because the log
density for samples z1,...,2, and y1, ..., Ym,

Zlogf(Zj;H) — Zlog f(y;30)
=1 j=1

does not depend on 6 iff >~ s(y;) = > s(z;) (and n =m). As usual we drop n from the minimal
sufficient statistic.

O To find the unbiased estimator we argue by symmetry: clearly E(Y; | S) =--- =E(Y,, | 5)
because S is symmetric in the Y; and the latter were IID. Hence

(Y1|S—n’12EY|S (121/5) E(S|S) =

7=1

and clearly var(S) = var(Y1)/n.
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Complete statistics

O

0

Example 31 Show that the maximum of a uniform sample is complete, and hence find the unique
minimum variance unbiased estimator of 6.

Theorem 32 (No proof) The minimal sufficient statistic in a (d,d) exponential family (i.e., one for
which the parameter space contains an open d-dimensional set) is complete.

If we have numerous unbiased estimators, all of which could be improved, then we would like to
find the best.

To force uniqueness we introduce completeness: a statistic S (or its density) is complete if for
any function h,

E{h(S)} =0 forall § = h(s) =0,
and S is boundedly complete if this is true provided h is bounded.

If S is complete, then two unbiased estimators based on S satisfy

E{01(S) — 02(S)} =0 forall 0,

so by completeness 0, (S) = 65(S) is unique.
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Note to Example 31

0

The density of M is of the form
f(m;0) =a(m)b(0)I(0<m <h), 0<m<¥b, 6>0,

where a(m) = nm™ ! and b(f) = §~™, so suppose for a contradiction that there exists a function
h for which h(m) # 0 but

0 0
0=E{h(M)} = /0 a(m)b(@)h(m) dm /0 a(m)h(m)dm, 6> 0.

The integral here equals zero for all # so its derivative a(0)h(60) with respect to # must be zero.
However, a(m) # 0, so h(#) = 0 for all § > 0, which is a contradiction. Hence M is complete.

For the unbiased estimator, we note that E(M) = nf/(n + 1), so § = (n + 1)M/n is unbiased
and must therefore be the unique minimum variance unbiased estimator of 6.
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Using sufficiency: Eliminating nuisance parameters

Sometimes the removal of nuisance parameters can be based on the following results.

Lemma 33 In a statistical model f(y; 1, \) let Wy, be (minimal) sufficient for A when 1) is regarded
as fixed. Then the conditional density f(y | wy;) depends only on 1. This holds in particular if W,
does not depend on 1.

Lemma 34 In a (d,d) exponential family in which p(6) = (¢, \) and s = (t,w) is partitioned
conformally with o, the conditional density of T' given W = w®° is an exponential family that depends
only on .

Example 35 (2 x 2 table) Apply Lemma 34 to the 2 x 2 table.

stat.epfl.ch Autumn 2023 — slide 81

Note to Lemma 33
If ¢ is regarded as fixed, then

Fys, A) = flwyi, A) x fy | wg; ),
where the rightmost term is free of A, with logarithm

log f(y; v, A) — log f(wy; ¥, A).
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Note to Lemma 34

In the discrete case, let >, and >_  denote sums over the sets {y : t(y) = t°, w(y) = w°} and
{y : w(y) = w°}, and note that

F°,ws,0) = Zm y) exp {t(y) " + w(y)"A — k(o)}
= oxp {t"TY +wTA — k()} Y m*(y)
Fw®s,N) = Z m*(y) exp {t(y)"¢ + w(y)" A — k(p)}

= exp{w®'\—k(p)} Z m*(y)e "

SO

2t ™ (y) exp (1779)
2w m*(y) exp{t(y) v}

= m™(t%w®) exp (tOTw — log [Z m*(y) eXp{t(y)Tw}D

= m™ (% w®)exp {t""Y — k(¢;w°)},

say, where the cumulant generator for the conditional density depends on w®. This is the announced
exponential family.

f° wep) =
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Note to Example 35

[0 A 2 x 2 table arises when m; individuals are allocated to a treatment and my are allocated to a
control. Responses from all individuals are independent and are binary with values 0/1, so the
total number of successes for the control group Ry ~ B(myg,m) is independent of those for the
treatment group, Ry ~ B(mq, 7). If the parameter of interest is the difference in log odds of
success. Here mg and my are considered to be fixed, and Ry and Ry as random. If we write

m1(1 — 7o)
mo(l — )

w=bdmﬂl—ﬁﬂ—bﬁmﬂl—mﬂ=k%{ } A = log{mo/(1 — 7o)},

then
e)\ €>\+w

Tixer T iy
and the joint density of the data reduces to

Y+(ro+ri)A
mo\ r mo—n my r1 mi—r mo mi e
1 _ 0 0 X 1 _ 1 1 —
<T0>7r0 (1 —mo) <r1>7T1 (1—m) <7°0> <r1>(1+e/\)m0(1+e>‘+1/’)m1’

which is a (2,2) exponential family with ¢ = (¢, \), s = (r1,79 + 1), and

m*(y) = <m°> <m1> k() = —mplog (1 + e>‘) — my log (1 + e>‘+w) .

To 1

o

P, A €R

O The result above implies that conditioning on W = Ry + Ry will eliminate A, and

POV = w) B i mo my ertwA
- w—r)\ 1 ) (1+eN)mo(l4 erv)m’

r=r—

where r_ = max(0, w — mg), 7+ = min(w, m1), and hence the conditional density of T'= R;
given W = R; + Ry = w is the non-central hypergeometric density
mo | (M1 etw
T(w_t)(t) , te{r—,...,ry}.
S () (e

r=r_ \w—r/\ r

P(T =t | W =wi) =
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Ancillary statistics

[0 Sometimes we can write a minimal sufficient statistic as S = (7', A) where A =a(Y") is an
ancillary statistic, defined as a function of the minimal sufficient statistic whose distribution does
not depend on the parameter. Then

Iy 0) = fyis(y | 8)fs(s:0) = fys(y | 8) x fra(t | a;0) x fa(a),

and inference on 6 is based on the second term only, with A considered as fixing the reference set
S used in repeated sampling inference.

[0 A distribution-constant statistic is one whose distribution does not depend on the parameter.

Example 36 (Sample size) /fYi,...,Yy i f(y;8), with the sample size N stemming from a

random mechanism, then clearly the most general sufficient statistic is (Y1,...,Yn, N). If the
distribution of N that does not depend on 6, however,

fly,n;0) = fy | n;0)f H F(y;30) x f(n),

so N is ancillary for 6, and we should use the reference set consisting of vectors y1,. .. ,y, of length n.
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Ancillary statistics Il

Example 37 (Regression) In a regression setting a response vector Y, 1 depends on a matrix X xp
of covariates. If their joint density factorises as f(y | x;1)f(x), so that the interest parameters 1) only
appear in the first term, then we should treat the X matrix as fixed, even if (Y, X) are actually
sampled from some distribution.

Example 38 (Location model) Show that writing
T:Yv(l)a A:(anv(Q)_Yv(l)a"wyv(n)—yv(l)%
leads to inference based on the conditional density

[Tj—19(t — 6 +a))

f(t]a:0) = fH] 19(u+aj)du

Theorem 39 (Basu) A complete minimal sufficient statistic is independent of any
distribution-constant statistic.
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Note to Example 38

O Write yg = yy;) for simplicity of notation, and note that
yi=t Y=yt —y)=t+a, j=2,...,n,

so the Jacobian for the transformation is

111 1

0 1 0
OWhotn) g g 0] =1
a(t,ag,...,an) ’

000 -~ 1

and thus (setting a; = 0 for simplicity) the density of the configuration A is

fA(a):/Hg(t+aj—H)dt:/Hg(u+aj)du,
j=1 j=1

where we put © =t — 6 in the second integral. We see that Q =T — 0 is a pivot, because

T, g(u + a;) du
P(ng’A:a):P(T_Héq’A:a):ffl_H[g11;(;:aj']))du’

and using the quantiles g,/2(a) and q;_q/2(a) will give conditional confidence limits.

O Assessment of model fit (i.e., of g) can be based on QQ plots of the values of a. We are familiar
with this in regression problems.
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Note to Theorem 39

(0 In the discrete case, note that for any ¢ and 6, the marginal density of C' may be written using the
sufficient statistic S as

fole) = feyslel s)fs(s:0),

so for all 8 we have

> {fele) = feys(e | $)}fs(s;0) =0,

and completeness of S implies that fo(c) = fes(c| s) for every c and s, ie., C 1L S.

[0 The argument in the continuous case is analogous.
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2.4 Inference slide 84

‘Ideal’ frequentist inference

[0 Frequentist recipe for inference on an interest parameter 1:
— find the likelihood function for the data Y;
— find a sufficient statistic S = s(Y") of the same dimension as 6;
— eliminate any nuisance parameters \;
— find a function T of S whose distribution depends only on 1);

— use the distribution of T' (conditioned on any ancillary statistics) for inference (confidence
limits/tests) for 1;
—  (use the conditional distribution of Y given S to assess model adequacy).

(0 For inference note that if T is continuous with distribution F', observed value t° and the true value
of v is 1), then
F(T;49) ~U(0,1) is a pivot,

so confidence limits for v are given by inverting it, i.e., solving F(t°;1,) = « for appropriate
values of a.
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Note: Why is a P-value uniform?

O  For simplicity write Fy(t) = P(T < t;1p), and note if T' ~ Fj, then
P{F(T) <u} =P{T < Fy'(w)} = Bo{Fy "(w)} =u, 0<u<l,

i.e., Fy(T) ~ U(0,1) is a pivot, because it depends on the data (through T), the parameter 1)y,
and has a known distribution.

O The above proof works for any continuous 7', but is only approximate if 7" is discrete (e.g., has a
Poisson distribution). In such cases Fy(T') can only take a finite or countable number of values
that give the achievable confidence levels.
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Significance functions
O It is useful to plot the P-value (or significance) function
p() = P(T > 1) = 1 — F(t%4)  against .
O As Fyo(T) ~ U(0,1) when 1 = 1), we regard values of ) for which p(v)) is too extreme as

incompatible with ¢°, leading to the (two-sided) (1 — «) confidence set

{Y:a/2<p@¥) <1-a/2},

or to using p(1g) as the P-value for a test of Hy : ¢ = 1)y against Hy : 1 > 1)g.
O Equivalent functions include

— the confidence function 1 — p(v);

— the modified confidence function max{p(¢),1 — p(¥)}; and

— a pivot function showing how a (standard normal) pivot varies with 1.
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Significance and related functions

Confidence function

Pobs
00 02 04 06 08 10

Modified confidence function

bs
|

Po
05 06 07 08 09 1.0

Pobs
00 02 04 06 08 10

Significance function

T T T
10 20 50
v

Modified likelihood root

10 20 50
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Examples

random sample with known variance.

sample.

Example 40 (Normal sample) Apply the recipe above to inference for the mean of a normal

Example 41 (Uniform sample) Apply the recipe above to inference for the upper limit of a uniform

Example 42 (2 x 2 table) Apply the recipe above to the 2 x 2 table.
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Note to Example 40

O Here the significance function is

[0 Suppose that Yi,....Y, id N (1, 1). Thisis a (1,1) exponential Emily, SO tﬁe minimal sufficient
statisticis S =Y ~ N (¢,1/n), and clearly we should take ' =Y, so v/n(Y — ¢) ~ N(0,1).

p(¥) = P(T > %) = 1 = {n"*(F° — v)} = o{n' (¥ - 7°)},

and solving this for p(¢y) = « gives nl/Q(q/)a
familiar (1 — «) confidence interval (L, U) with observed value

—T°) = za, i€, o = T° +n"122,, leading to the

(yo + nil/zza/% yo + nil/Qzlfaﬂ)'

[0 For the model assessment step we could note that as S = Y is a complete minimal sufficient
statistic, the distribution-constant statistic C' = (Y1 —Y,...,Y,, — Y) is independent of Y (by
Basu's theorem), and therefore plots and tests of the suitability of the model would be based on C'.
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Note to Example 41

We have already seen that M is minimal sufficient and that its distribution P(M < z) = (x/0)", for
0 < z < 0, depends only on 6. Hence the corresponding significance function based on an observed m°

would be
p(#) =1—(m°/0)" 6 >m°,

from which we read off the limits using the equation o = 1 — (m°/6,)", i.e., 6o = m°(1 — a)~ /",
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Note to Example 42
O In this case
L
P(T<t|W=w;vy) = R , ted{r_,. .y}
2 S (e
and we can vary 9 to (numerically) solve
P(T<t|W =w;9,) =,
thus giving limits for confidence intervals (approximate because the model is discrete).
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Comments

[0 The essence of the recipe on slide 85 is to base an exact pivot @ = ¢(Y’;) on a minimal sufficient
statistic and use the significance (or p-value) function

P{q(Y;9¢) < g}, pe€(0,1)

to invert () and thus make inference on v using the quantiles g, of Q.
(0 The difficulties are that:

— finding the sufficient statistic and a function of it that depend exactly only on 1) are typically
possible only in simple models;

— finding the exact distribution of the pivot may be difficult; and
— assessment of model fit using the conditional distribution is difficult in general.

OO Nevertheless the recipe suggests how to proceed in more general settings, by basing approximate
pivots on likelihood-based statistics, which will automatically depend on the minimal sufficient
statistic.
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3 Likelihood Theory slide 90

3.1 Basic Results slide 91
Motivation
O Likelihood
— provides a general paradigm for inference on parametric models, with many generalisations and
variants;

is a central concept in both frequentist and Bayesian statistics;

— has a simple, general and widely-applicable ‘large-sample’ theory; but
— is not a panacea!

Plan below:

— give (fairly) general setup;

— prove main results for scalar parameter;

— discussion of inference;

— vector parameter, nuisance parameters, ...
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Basic setup

O LetY,Yy,...,Y, id g, and define the Kullback—Leibler divergence from the data-generating
model g to a candidate density f,
= 1 1 = 1 1) >
KL(g, f) = Eg{ ogg(Y) —log f(Y)} = Ey |—log WY) >0,
where the inequality holds because — log z is convex and is strict unless f = g.
O In a parametric setting there is a family of models, f € F = {fp : 0 € ©}, so minimising KL(g, f)
over f is equivalent to maximising E, log f(Y’;#), which is estimated by
_ n
0(0)=n"" Zlogf(Yj;H) il Eglog f(Y;0), n— oc.
j=1
0O 6, = argmaxyEglog f(Y';0) gives the optimal theoretical fit of fy to g.
O Inan ideal case g = fy,, i.e., g € F, but the theory does not require this (yet).
00  The natural estimator of 6, is
6§ = argmax, £(0),
but we need conditions on 7 to ensure that § — 04 as n — oo.
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Regular models

0 Regularity conditions are needed ensure asymptotic consistency and normality of the MLE, such
as
(C1) 6, is interior to © C R? for some finite d, and © is compact;
(C2) the densities fy defined by any two different values of 6 € © are distinct;
(C3) there is a neighbourhood N of 6, within which the first three derivatives of the log
likelihood with respect to # exist almost surely, and for r,s,t = 1,...,d satisfy
|03 log f(Y;0)/06,00,00;| < m(Y) with E;{m(Y)} < oo; and
(C4) within NV, the d x d matrices

u(0) =By {~V?log f(Y;0)}, hi(0) =Ey{Viog f(Y;0)V"log f(Y;0)},

are finite and positive definite. When g = f_we shall see that /;(0,) = 21(0,).

O Above Vg(6) = dg(0)/00 and V2g(0) = VV " g(0) = 0g(0)/0006".
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Regularity conditions

[0 (C1) ensures that 6 can be ‘on all sides’ of 6, in the limit — if it fails, then a limiting normal
distribution cannot arise;

O (C2) is essential for consistency, otherwise ) might not converge — it often fails in mixture
models, for which care is needed;

00 (C3) is a technical condition needed to bound terms of a Taylor series — can be replaced by a
variety of other conditions, see for example van der Vaart (1998, Asymptotic Statistics, Chapter
5); and

O (C4) ensures that the asymptotic variance of 0 is positive definite.
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Consistency of the MLE

Lemma 43 /fYy,...,Y, ~ g and n — oo, then a sequence of maximum likelihood estimators )
exists such that § s 0.

This result:
O does not require fy to be smooth, so it is quite general;
[0 guarantees that a consistent sequence exists, but not that we can find it;
O but if the log likelihood is concave (as in exponential families, for example), then there is (at most)
one maximum for any n, and if it exists this must converge to 0;
O can be generalized to vector 6, but the argument is more delicate.
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Note to Lemma 43

O We prove this for 6 scalar.
00 As the s correspond to different densities, precisely one 6, minimises KL(g, f5).

O Takeany e >0 and let 6,0 =6, £ ¢, write D,,(9) = £(0,) — €(6), so D,,(6,) = 0, and note
that as n — oo,

Dy(0+) - KL(g, fo,)~KL(g, fo,) = a4 >0, Dn(0-) == KL(g, fo_)~KL(g, f5,) = a > 0.
O If A, and B,, denote the events D, (1) > 0 and D,,(6_) > 0, Boole's inequality gives
P(A,NB,) =1-P(ASUB) >1—-P(AS) — P(B;).
Now
P(A7) = P{Dn(0+) < 0} = Play — Dn(04) > ay} < P{[Dn(04) —ay| 2 ar} =0, n— oo,

and likewise P(BS) — 0. Hence P(4, N B,) — 1

[0 Hence there is a local minimum of D,,(6), or equivalently a local maximum of £(), inside the
interval (0, — €,0, + €) with probability one as n — oo, and as this is true for arbitrary ¢, the

corresponding sequence of maximisers 6 satisfies P(|f — 4] > €) — 0 and therefore is consistent.
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Asymptotic normality of the MLE

iid ) »
Theorem 44 [fYy,...,Y, ~ g, the regularity conditions hold and n — oo, then the sequence of
consistent maximum likelihood estimators 0 satisfies

n!2 (6~ 6,) =5 Nuf0.177 (05 (611 (6) ),
where for a single observation Y we define
u(0) =B, {~V?1og f(Y;0)}, hi(0) =E,{Vlog f(Y;0)V"log f(Y;0)}.
O This implies that for large n,
0 ~ Na{6y,07" (05)h(8y )1~ (65)},

where 2(0) = nu1(0), h(0) = nhy(f) correspond to a sample of size n.

[0 This provides tests and confidence intervals based on the approximate pivots
v 20, —0,,) ~ N(0,1), r=1,...,d,

where v, are the diagonal elements of an estimate of 171 (6,)A(6,)1~1(6,).
O When g = fj,, 11(64) = h1(0,) and the variance (matrix) becomes 1(6,)*.
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Note to Theorem 44

[0 We first note that under the given conditions, 6, gives a stationary point of KL(g, fy), and
therefore

g(y) dy,

0= VKL(g, folly—g, =~ ¥ [ log f(si8)g(s) dy
0=06,

— - [ Vs s0)

0=0,

so E,{Vlog f(Y;0)} = 0.
O As 0 gives a local maximum of the differentiable function 00)=n""t > i1 log f(Y5;0),
0=V =n"")_ Viog f(¥;0).
j=1
and (supposing now that 6 is scalar, to simplify the expressions), Taylor series expansion gives
0= VE(8,) + (0 — 0,) V() + 30 — 0,)>V3E(67),
where 6* lies between 6, and 9 (so 6* il 6,), and hence we can write

n'/2ve(0,)
~V20(0,) — R,/2’

n'/2 —0,) = R, = (0 —0,)V3(6%). (2)

O Now

W) = 1Y Vo (V56,)
j=1

has mean (vector) zero and variance (matrix)

var {n1/2 Z Vlog f(Y5; Hg)} =n! ZEg{Vlog F(Y};04)V'1og f(Y};04)} = hi(by).
P =1

so the numerator of (2) converges in distribution to N'{0, 71 (6,)}, using the CLT.

O Moreover the weak law of large numbers gives

_ 1 <&
_VQE(HQ) - Th ZVQ log f(Yj;0g) o u(fy).
j=1

O Lemma ?? shows that R, — 0, so the denominator of (2) tends in probability to 21(6,).
[0 Putting the pieces together, we find that

n'2(0 = 0,) 25 Ng{0,01(05) " ha (65)01(64) '}, n — o0,

where the variance formula is also valid when 27 and A; are d x d matrices.

O The information quantities based on a random sample of size n are +(6,) = nt;(6,) and
h(fy) = nhi(0y), giving
0~ Nd(em2(99)7171(99)2(99)71}7

in which the variance is of the usual order 1/n.
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Note: Secret Lemma
Under the conditions of Theorem 44, R, = (6 — 0,)V30(6%) L 0asn— co.

0 Fore >0, B, ={|Rn| >¢}, A, = {6 — 4] > 0} and 6 > 0 small enough that V' contains a ball
of radius ¢ around 6,, we have

P(|R,| >¢) =P(B,NA,) +P(B,NA4;) <P(A4,) +P(B,NA4;),

where the first term tends to zero because the sequence 9 is consistent.
O If |§— 64| < 6, then (C3) implies that

Ral < 503 16 o £(V3:0%)/00°) < on S m(Y;) = 63T,
=1 j=1
say, and clearly M, £, M, say. Therefore
P(B, NAS) = P(B, N0 — 0, > 6) < P(B,N|Ry,| < 6M,)
and for > 0 this equals
P(B,N|R,| <SM,NM, <M+mn)+P(B,N|R,| <M, N M, > M +n),
which is bounded by
P{|R,| >N |Ry| < 6(M +n)} +P(M, — M| > n).

The last term here tends to zero, because M,, £, M, and the first can be made equal to zero by
choosing ¢ such that 6(M + 1) < e. This proves the lemma.
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Note: A simpler cleaner argument

O  Write

1
0= Vi0) = VIib,) + / V{0, + (0 — 6,)}(0 — 0,) dt,
0
and note that U, = n'/2V0(0,) -2 U ~ Ny{0,h(8,)}, so writing Z, = n/%(6 — 6,) we have
1
U, = —/ V20, + tnY22Z,) dt Z,,
0

and as n — oo the integral here is approximately fol V2(6,) dt, which converges in probability to
—1(0,). Hence Z, 25 Z =1(6,)"U, i.e.,

Z, 2 Ng{0,2(0,) 1 h(0,)1(0,) "1}, n — oo
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Classical asymptotics

00  The true model is supposed to lie in the candidate family, i.e., g € F, so §, € ©.

0 We saw earlier that under mild conditions the Bartlett identities give the moments of the d x 1
score vector U(0) = V{(0), viz

B{UO)} =0, var{U(9)} = E{VLOV'U(6)) = E{-V2(6)}
O Hence +(8) = h(0), and ¢(0) = n21(0) = nhy(0) when Y7,...,Y, S g.
O Mathematically speaking the assumption that g € F is always false, but

— the asymptotic results are supposed to provide guidelines on what to expect when fitting
models — checking the regularity conditions in practice would require knowledge of g, in which
case there's no need for inference!

— this is irrelevant if model-checking suggests that F is ‘close enough’ to g.

(0  Crucially, the interest parameter 1) should have a stable interpretation for candidates likely to be
close to g (i.e., within n=1/2) | so F is ‘robustly specified’ — if the model is not quite right, then
the interpretation of the crucial parameters will be unchanged.
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In practice ...

[0 We usually assume classical asymptotics and replace the sandwich matrix +(6,) "' h(6,):(6,) " by
the inverse of the observed information matrix

~

./7\: —VQE(H),

which

— can be computed numerically without (possibly awkward) expectations,

will (helpfully!) misbehave if the maximisation is questionable,

has been found to give generally good results in applications,

has the heuristic justification that (5,3) are approximately sufficient for 6, as

~ ~

€(0g) = £(0) — 3(0 = 04)"7(0 — 0).

N[

O Standard errors for @ are the square roots of the diagonal elements of 71,

O If we must make the sandwich we can replace «(6,) by 7 and 1(6,) by (e.g.)

h=>"Vlog f(Y;;0)V" log f(Y;:0),

j=1

though 7712 7! can be unstable because / misbehaves.

stat.epfl.ch Autumn 2023 — slide 99

64



Related statistics

W
I

1(6)

5} 0, 0—»

Figure 6.2. Three asymptotically equivalent ways, all based on the log likelihood
function of testing null hypothesis & = 6p: W, horizontal distance; Wy, vertical
distance; Wy slope at null point.

From Cox (2006, Principles of Statistical Inference)
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Related statistics

O Classical asymptotics support inference for scalar 6 based on any of the (approximate) pivots

T =t(6,) =720 — 0,) ~ N(0,1), Wald statistic,
S =s(8,) =7 Y2U(4,) ~ N(0,1), score statistic,
W =w(by) = 2{0(9) — 00} ~ X3, likelihood ratio statistic,
R =r(6,) = sign(d — 0,)w(0,)"/* ~ N(0,1), likelihood root.

The likelihood root has other names (e.g., directed likelihood ratio statistic).
(0 The distribution of W follows from the expansion on the previous slide.

O If 8° and j(é\o) have been obtained for observed data y°, then the approximation
Po{T(0y) < 1°(64)} = {t°(0y)}
leads to (1 — o)) Wald confidence interval g° :l:j(go)_l/Qzl_a/Q based on T', while that based on
W is
{0:W°(0) < XL —a)} ={0:£2(0) > £°(6°) — xi(1l — )},

where z, and x2(p) are respectively the p quantiles of the N(0,1) and x?2 distributions.

stat.epfl.ch Autumn 2023 — slide 101

65



Comparative comments
[0 Confidence intervals based on T' are symmetric, but those based on W or R take the shape of ¢
into account and are parametrisation-invariant;

0 in small samples the distributional approximations for W and R are better than that for T', and
that for W can be improved by Bartlett correction, using Wy = W/(1 + b/n);

O confidence sets based on W may not be connected (and if so 7" or R are unreliable);

(0 the main use of S is for testing in situations where maximisation of ¢ is awkward, and then 7 is
often replaced by (6,);

O a variant of R, the modified likelihood root

1 o C](ag)
8 9,)’

often gives almost perfect inferences even in small samples (more later .. .).

. iid .
Example 45 Compute the above statistics when y, ..., y, ~ exp(f) and compare the resulting
inferences with those from an exact pivot.
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Note to Example 45

O The log likelihood is £(8) = n(log 8 — 67y), for > 0, which is clearly unimodal with 6= 1/y and
9(0) =n/62%

0 Hence

( ) = nl/Q(l_Hy)7
s(0) = n'?{1/(0y) -1},

(0) = 2n{0y —log(0y) — 1},

r(0) = sign(l—07)[2n {07 —log(07) — 1}]*/2.

O The exact pivot is HZY] whose distribution is gamma with unit scale and shape parameter n.

O Consider an exponential sample with n =1 and 7 = 1; then 7= 1. The log likelihood ¢(6), shown
in the left-hand panel of the figure, is unimodal but strikingly asymmetric, suggesting that
confidence intervals based on an approximating normal distribution for 6 will be poor. The
right-hand panel is a chi-squared probability plot in which the ordered values of simulated w(#) are
graphed against quantiles of the X7 distribution—if the simulations lay along the diagonal line
x = g, then this distribution would be a perfect fit. The simulations do follow a straight line rather
closely, but with slope (1 + b/n)x?, where b = 0.1544. This indicates that the distribution of the
Bartlett-adjusted likelihood ratio statistic w(6)/(1 + b/n) would be essentially x3. The 95%
confidence intervals for § based on the unadjusted and adjusted likelihood ratio statistics are
(0.058,4.403) and (0.042,4.782) respectively.
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Exponential example

o - S

o

| o 0

< 3
3] g

[
Lo R
o 7 ©
X
= 3.
= _
iy £
©

=] 4

T N

N —

| o -

T T T T T T T T T T T T T
0 1 2 3 4 5 6 0 2 4 6 8 10
0 Quantiles of chi-squared distribution

Likelihood inference for exponential sample of size n = 1. Left: log likelihood ¢(#). Intersection of the
function with the two horizontal lines gives two 95% confidence intervals for #: the upper line is based
on the x# approximation to the distribution of w(), and the lower line is based on the
Bartlett-corrected statistic. Right: comparison of simulated values of likelihood ratio statistic w(#)
with x? quantiles. The x3 approximation is shown by the line of unit slope, while the (14 b/n)x?
approximation is shown by the upper straight line.
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Exponential example

0.8 1.0
|

0.6
|

Significance function
0.4

0.2
|

0.0
|

Approximate pivots and P-values based on an exponential sample of size n = 1. Left: likelihood root
7(0) (solid), score pivot s(6) (dots), Wald pivot () (dashes), modified likelihood root r*(6) (heavy),
and exact pivot 6 ) y; (dot-dash). The modified likelihood root is indistinguishable from the exact
pivot. The horizontal lines are at 0, +1.96. Right: corresponding confidence functions, with horizontal
lines at 0.025 and 0.975.
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Non-regular models
O The regularity conditions (C1)—(C4) apply in many settings met in practice, but not universally.
The most common failures arise when
— some of the parameters are discrete (e..g, change point problems),
— the model is not identifiable (distinct 6 values give the same model),
— 6 is on the boundary of the parameter space (e.g., testing for a zero variance),
— d = dim(0) grows (too fast) with n, or
— the support of f(y;0) depends on 6 (so the Bartlettt identities fail).

0 Even when the conditions are satisfied there can be datasets for which maximum likelihood
estimation fails, e.g.,

— there is no unique maximum to the likelihood, or
— the maximum is on the edge of the parameter space,
and then penalisation (equivalent to using a prior) is often used.

iid n

Example 46 IfYy,...,Y, ~ U(0,0), show that the limit distribution of n(0 — 6)/6 when n — oo is
exp(1). Discuss.
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Note to Example 46

Owing to the independence,
L) =[] fr(ws:0) = [] {6710 <y; <)} =0 "I(maxy; <6), 6>0,
j=1 j=1

and therefore § = M = max Y}, whose distribution is
P(M<z)=(xz/6)", 0<x<8.

Now
P{n@-0)/0 <o} =P@>0-w0/n)=1-{(0—20/n)/0}" -1~ exp(~a),
as required. Note that:

OO0 the scaling needed to get a limiting distribution is much faster here than in the regular case (we
have to multiply by n to get a non-degenerate limit);

O the limit is not normal.
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Uniform example
Comparison of the distributions of 6 in a regular case (panels above, with standard deviation oc n=1/2)
and in a nonregular case (Example 46, panels below, with standard deviation oc n~!). In other
nonregular cases it might happen that the distribution is nasty (unlike here) and/or that the
convergence is slower than in regular cases.
n=16, regular n=64, regular n=256, regular
o 1T 1T T 1 o T 1T T 1 1T T 1
0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0
MLE MLE MLE
n=16, non-regular n=64, non-regular n=256, non-regular
RN I BENND IS BEN
T 1T 17 11 | I I I | | I I I
10 14 18 10 14 18 10 14 18
MLE MLE MLE
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3.2 Vector Parameter slide 107

Vector case
0 When 6 is a vector and under classical asymptotics we base inference on the distributional
approximations

0% NifOys 7). w(ty) =2{U0) — €6,)§ ~ X 5(6) =T MU 6,) ~ Na(0. L),

with
— the first very commonly used for inferences on parameters;

— the second used to test whether § = 6,;

— the third much less used than the others, generally in the form s(6,)"s(6,) ~ x2.

O If 6 divides into a p x 1 interest parameter ¥ and a ¢ X 1 nuisance parameter )\, then

i ~ —~ -1
) {0 2
h\ PR\ N ) "\ Dw T ’

where for brevity we now write Xd, = maxy L(Y, \), 6 = §w = (¢, §w)

o0(0) . ~ 20(0) ~ 20(0)
by = —= , = —Aypp = — ——= y Ay = , etc.
YT |, Ty vy 2 S i W
stat.epfl.ch Autumn 2023 — slide 108

69



Inference on v

O Under classical asymptotics and setting 7% = (G — ijj;Ale¢)_1 we have

T,/Z)\ ~ N, <¢g,jﬂ”’b) maximum likelihood estimator,
wp(Yg) = 2 {Ep({z)\) - 5p(¢g)} ~ X;Q; (generalized) likelihood ratio statistic,
s(¥g) = l@jww% ~ X;z; score statistic,

where we defined wy, using the profile log likelihood /() = e(zp,Xw) = max) {(¢, \).
O If ¢ is scalar (p = 1, the usual situation), the likelihood root

r(ay) = sign (& — 1y ) \Jw(tsy) ~ N(0,1).

— inferences using w(1)4) and 7(1)4) are invariant to interest-respecting reparametrisation, so are
preferable but more computationally burdensome;

0 Properties:

—  5(1pg) is mainly used for tests, since only A must be estimated (as ¢ = 9, is known).

O A (1 — «) confidence set based on wy(1)4) (or equivalently on ¢,(z))) is

{9 wp(@) <31 - )} = {p: 6w, 3) > 6B, %) - 11 - o)}
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Note: Large-sample distribution of the likelihood ratio statistic w, (1)
O We write R R R R
wp(tg) = 2{L(0) — £(0y)} = 2{6(0) — £(0,)} — 2{4(0) — £(6)}
and shall use Taylor series to approximate both terms by quadratic forms in 0 — 64 and Xw — Ay

O We shall need to express £y, £, and Xw — Ay in terms of o — 64. Taylor expansion gives
0="lg=Lg+Llog(0 —0) + -+ =Llog—199(0 — ) + -+,

where 1299 denotes the expected information matrix evaluated at 6, and - - - denotes terms of
smaller order containing third derivatives. Likewise

0="0x =L+ OaOy = Ag) 4+ =y — (A — Ag) + -+ .
This implies that R R R
O = (¥ — 1Y) +0a(A = Ag) = 1Ay — Ag),
so the necessary approximations are
lo=100(0 —0g), x =100y — Ng),  Ap—Ag =X — Mg+ 153000 (P — ).
[0 To obtain the quadratic forms we write
00) = U0g)+ (8 —0g) o+ 5(0— 0g)"Log(0 — 0y) + -
= 5(99) + (é\_ Hg)TZGQ(é\— 99) - %(é\_ ag)TZGG(é\_ 99),
resulting in R R R
2{€(0) — €(0g)} = (8 — 04) 209(0 — 0y),
and with a similar expression for 2{6(%) —{(6,)} we obtain
wp(y) = (0= 05)"100(0 — 05) = (g = Ag) "1aa (B = Ag)
= (Y- ¢g)lew(7p —thg) +2(¢p — T;Z)g)le)\()‘ —Ag) + (A= )‘g)TZA)\()\ —Ag)
o~ o~ T o~ o~
{2 +itnu@ =) b { =0+ 5ine@ - vy}
= (1 = 6)" (ww — wiatiz ) (0 — dy),
and as ¥ ~ N {tg, (1 — tpntiytng) "}, we see that wy (1) ~ X3, as claimed.

0 Arguments along the lines of Lemma 77 show that the terms dropped above all tend in probability
to zero, and thus do not affect the approximation.
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Example: Human lifespan

Example 47 Profile log likelihoods for the endpoint 1) of a generalized Pareto model fitted to data on
lifetimes of persons aged over 105 from different databases, with thresholds at 105, 108, 110 years.
Here X is scalar, so p = q = 1, and the horizontal line at —%)&(0.95) = —1.92 indicates 95%
confidence regions.

Bo 10 150 160
lifespan (years)

From Belzile et al. (2022, Annual Review of Statistics and its Application).
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Model selection
O The fact that

KL(g, f) = Eg{log g(Y') —log f(Y)} = E4 {— log {%H >0

is minimised when f = g suggested comparing competing models F1, ..., Fjs by their maximised
log likelihoods log fi, (y; 0m) = .-

O But Zm should be penalized, because
- Zm > log fim(y; 0m) even if F, is the true model class, and

— enlarging 6, will increase ¢,,, even if further parameters are unnecessary.

~

O Akaike proposed minimising 2E,E/ [— log{f(Y+;0)/g(Y+)}], where Y,V % g are
independent datasets. The idea is that if h= §(Y) is estimated separately from YT, there will be
a penalty due to ‘missing 6," which will grow with dim(6) (picture ...)

0 This leads to choosing m to minimise the Akaike or the network information criteria

~

AIC,, = 2 (dm _ Zm) . NIC,, =2 {tr(hmjngl) - Zm} :

where the first takes tr(ﬁmjn_ll) ~ dy, = dim(6,,).
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Note: Derivation of AIC/NIC
O  Now

2B, B |~ 1oglf(Y:0)/g(Y ")}| = 2B {log g(v )} — 2B,EF {log f(Y ;) } |

so we can ignore the first term in the minimisation over f. An unbiased estimator of the second
term would be 2/ (), where ¢ is the log likelihood based on Y+ and 6 is based on Y, but the
estimator we have available is 26(5), in which the log likelihood and 8 are both based on Y.
Clearly ¢(0) is upwardly biased, but by how much?

[0 To find out we consider the expectation over Y+ and Y of
2{6(8) - £7(0) | = 206(0) — €(0)} +2{(6,) — £ (0,)} +2{ £7(6,) — €+ (D)}, 3)
where as before 6, is the best candidate parameter value under f.

00 As 6 maximises the log likelihood, 69(5) = 0, so the first term on the right-hand side of (3) is
2000) — £0,)} = 2{6@) — £B) — to(B) (6, — B) — 1(8, — B) oo @)(0, — 0) }

= (0 —0g)"100(0,)(0 — b),
where we have neglected terms that are o,(1). The expectation of this scalar equals that of its
trace, and the large-sample normal distribution of 6 gives

By |t {8~ 05)"00(0,) 0~ 0,)}| = By [tr {(F— 0,)@ — 0,)"00(0,) }|
tr {z_l V(0 )29_91(99)199(99)}

= tr {h(0g)1y ' (0, )}

0 The second term on the right-hand side of (3) has expectation zero.

0 The third term on the right-hand side of (3) ca

can be written as
26%(8,) = 7 (0)} = 2{£7(6,) = +(6,) — 6 (9) 0 — 0,) — 30— 6,)"35(6,) (0 — 0, }

plus o, (1) terms. Now EJ {1 (6,)} = 0 and Ef {£4,(64)} = —199(6,). so

-~

2, B} {mag) - e+(§)} =R, {(9 — 0,)290(0,)(0 — 0,) } = tr {h(0y)155 (05)} .

0 Hence R
2B, B [~log f(Y+:0)| = 2B,E] [~ log £(v;8)] + 200 {(6,)15(6,)}

If h(0g) = 199(fy), then this final expression can be estimated by AIC = 2{d — 6(5)} where

d = dim(#), or by the network information criterion NIC = 2{tr(/ﬁj\*1) - E(é\)} though neither
gives consistent estimation of the true model, which would require the penalty to grow with n.

The calculations above rely on generic large-sample likelihood results, and could be improved in
specific cases (e.g., with normal errors).
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3.3 Nuisance Parameters slide 112

Effect of nuisance parameters

Example 48 (Neyman—Scott) Find the profile log likelihood for o when (y;1,y;2) id N (uj, 0?),
for j =1,...,n. Comment.

O Profiling over many nuisance parameters can lead to completely wrong inferences, as the previous
example shows.

OO Even when the number of nuisance parameters is o(n) we may run into trouble: in general
Bias (1);4) = O(d®/n),

so for the bias to tend to zero in large samples we require d = o(n'/?) for consistency of . Hence
bias increases with dim(\), at least in general.

0 How can we rescue ‘ordinary’ likelihood inference when there are many nuisance parameters?
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Note to Example 48
0 The overall log likelihood is

00”1, s pin) = —5 | (2n) log o +— Z{yﬂ—ﬂj + (g2 — 15)°}|

and differentiation with respect to 1, gives that ji; = (1 + yj2)/2, so as

{a—(a+0)/2)* +{b—(a+1b)/2}* = (a —)*/2,
we obtain
1 n
fp(az) =-n log02 - E Z(yﬂ - ng)z, o2 > 0.
j=1
O This is maximised at 52 = (4n)~! > i1y — y;2)%, but as Yj1 — Yo by N(0,202), we see that
a% £, 02/2 as n — oo; this is a completely inconsistent estimator. Hence the profile log
likelihood has its asymptotic maximum in completely the wrong place.

0 In this example there are d = n + 1 parameters of which n are nuisance parameters.
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Dealing with nuisance parameters
O Approaches to dealing with high-dimensional X include:
— basing inference on a marginal likelihood or a conditional likelihood,
flysh, N) = flwi) x fy | wi, A) = fy | wy; ) X flwy;, ),
where w,, may not depend on 1) (recall Lemmas 33 and 34) — OK for any configuration of As,
but may lose information on ;
— constructing a partial likelihood (like the above, but harder to build);
— higher-order inference, via, e.g., a modified profile likelihood or a modified likelihood
root, which can approximate both conditional and marginal likelihoods;
— using orthogonal parameters, i.e., mapping A — ((A, 1) which is orthogonal to 1;
— using a composite likelihood in which )\ does not appear; or
— taking A ~ h(-) and using the integrated likelihood [ f(y;4, A\)h(A\) A\ — depends on h,
like Bayesian inference.
[0 We have already seen examples of marginal and conditional likelihoods.
[0 Below we sketch some of the other approaches.
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Modified profile likelihood

O Replace profile log likelihood ¢,(¢)) by the modified profile log likelihood
Unp (V) = £ () + m(v),

with m(1)) chosen to make ¢;, closer to a marginal or conditional log likelihood.

O Taking
m(y) = —4log ‘J,\AW’XW‘ +log | =

does this in some generality.
O The

— first term of m(¢)) can be obtained numerically if need be, but

— the second term, a Jacobian needed to make /., invariant to interest-preserving

reparametrisation, is hard to compute in general.
O Simpler to base a likelihood on the normal distribution of the modified likelihood root 7*(¢) (next).
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Higher-order inference ...

(0 Classical theory gives first-order accuracy, i.e., with v scalar
P {r(1g) <7°(tg)} = 2{r°(¥)} + O(n~'/?),
so tests and one-sided confidence sets

{¥:r°(¢) < z1-0}

based on the observed data y° have error n=1/2,

O If we replace r(¢) by the modified likelihood root,

) i) 510y (1)
)=o)+ res{ T

where ¢(¢)) depends on the model, then for continuous responses the error drops to O(n=3/2), so

P {r*(th) < m°°(1g)} = 2{r*° ()} + O(n~*?),

so a one-sided confidence set
W) <2140}

has error of order n=3/2; often this almost exact even for tiny n (recall Example 45).
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.. with nuisance parameters

[ With nuisance parameters, (1)) = sign(¢) — 1) wp (1)), and

~ —~ ~ 1/2
1@ = ¢@s) 2001 [ 17]
) [ 0(0) | {m(é ) |}

where ¢ is the d x 1 canonical parameter of a local exponential family approximation to the
model at the observed data y°, with py(0) = 9p(6)/067, etc

O In a general exponential family ¢(6) is the canonical parameter, and in a linear exponential family,

1/2
qw):@—w){%} .

|73 (O

O In general for independent continuous observations we write

oL(6; y) + 0log f(y;;%,A)
©(0)ax1 = Viin V; ,
( ) X dx ay y_ Z ayj g0
where the 1 x d vectors V; = Qy; /00" are evaluated at y° and 6°.
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Properties of higher order approximations

Invariant to interest-respecting reparameterization.
Computation almost as easy as first order versions.
Error O(n=3/2) in continuous response models, O(n~') in discrete response models.

Relative (not absolute) error, so highly accurate in tails.

Oo0Oo0ooOoaod

Bayesian version is also available (and easier to derive).

Example 49 (Location-scale model) Compute ¢(0) for a location-scale model, in which
independent observations Y; have density T~ *h{(y —n)/7}. What about the normal density?
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Note to Example 49

O In this case the overall log likelihood is

((n,7) = —nlogr + > logh{(y; —n)/7},
j=1

so the vector 9¢(n, T)/dy has components 7! (log h)'{(y; — n)/7}, evaluated at the parameters n

and 7 and observed data vector y{,...,y5.

[0 To compute the V; we use the structural expression y = n + 7¢, where € ~ h. This represents y as
a function of 7 = (n,7), and yields 0y;/06" = (1,¢;). This has to be evaluated at the observed
data point %°, and at that point the parameters are replaced by their maximum likelihood
estimates, giving V;' = (1, (y7 — 1°)/7°).

O This yields

Zr (log h)'{(y§ —m)/7}(1,e9)",

where we have set €7 = (y7 — 7] )/T .
O If his normal, then log h(u) = —u?/2, so (log R {Ws —n)/m} = —(y§ — n)/7%, leading to

n n

pO)" =D =N/ =)/ xej | = (/77 1/77),

J=1 J=1

because it turns out that inferences are invariant under non-singular affine transformations of ()
(exercise).
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Orthogonal parameters

O If the expected information matrix is block diagonal, with 2, (0) = 0 for all 6, then J is
asymptotically independent of A, and we can hope that the effect on 1 of estimating A will be
limited. If so, we say that ¥ and X are orthogonal.

0 To see the effect of this, we expand the equation defining Xd, around 9, giving

0By ou@)  920) ~ -
0= =% ~ax taaerte 0T
9200) ~ ~  9%(6)
= Faon e TN ONYT
= 0y =N+ —¥) +
which implies that

(=) +

Ay = A+ T —¥) +
00 Hence if we can arrange the model so that 7, = 0, for example by parametrising it so that
1y (0) =0, then Ay, will depend only weakly on ¢, and we can ignore the Jacobian term in the
modified profile likelihood.

O This suggests mapping an original parametrisation (1,7) to (¢, \), where A = A(¢,7) is
orthogonal to ).
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Orthogonalisation

O  Writing v = (¥, \) gives
U, A) = H{p, v (¥, A)}

and differentiation with respect to ¢ and ) leads to

PU T P T Dy Py o
XD ON 000 | DN OO T O | 9N Dy

0 For orthogonality this must have expectation zero, so

oy*t oy, Oy

0=Fx"t ooy

where U and 1%, are components of the expected information matrix in the non-orthogonal
parametrization, so A solves the system of ¢ PDEs

0
% = (W, (7).

O In fact an explicit expression for A in terms of ¢ and ~ is not needed to compute ¢y, in the new
parametrisation.
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Orthogonal parametrisation

O A solution (possibly numerical) always exists when dim(¢)) = 1, but need not exist when v is
vector, because then we must simultaneously solve

0 *— * 0 *— *
8—12/1 - _Z771(w77)27w1 (1/}77)7 8—12/2 - _Z771(w”y)z’7¢2 (¢7'Y)7

for all v, 1 and 19, but the compatibility condition

827 B 0%y
010 OOy

may fail.

Example 50 (Linear exponential family) What parameter is orthogonal to 1 in the linear
exponential family with log likelihood

Consider normal and Poisson likelihoods in particular.
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Note to Example 50
O The parameters A = A(¢),~) orthogonal to 1) are determined by

Oy
oPT

If we reparametrize in terms of ¢ and A\ = k- (v, ) = 0k(2),7)/0v, then in this new
parametrization, «y is a function of ¥ and A, and

ooy,
op O
so A = k(1,7) is a solution to (4). That is, the parameter orthogonal to ® is the so-called
complementary mean parameter A(¢,v) = E(S2;1,7). By symmetry, E(S1;%,7) is orthogonal to
7.

[0 The normal distribution with mean u and variance o2 has canonical parameter (11/02, —1/(20?)).
The canonical statistic (Y, Y ?) has expectation (u, 1% + 02), so p is orthogonal to —1/(2¢%), and
hence to o2, while 11/0? is orthogonal to u? + o2.

0 77(7/1,7) + kjlﬁ’y(qﬁa’y)’

O Independent Poisson variables Y7 and Y5 with means exp() and exp(y + ) have log likelihood
C (7)) = (Y1 +y2)y +y2vp — e — T
The discussion above suggests that
A=E(Y1+Y2) = exp(y) + exp(y + ) = €7 (1 +¢¥)
is orthogonal to v, so v = log A — log(1 + e¥) and
0¥, 2) =yt = (1 + y2) log(1 + ) + (1 + y2) log A — X

The separation of 1) and X implies that the profile and modified profile likelihoods for ¢ are
proportional. They correspond to the conditional likelihood obtained from the density of Y5 given
Y1 +Ya.
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Composite likelihood
[0 Used when full likelihood can’'t be computed but densities for distinct subsets of the observations,
YSys- - -1 YSe, are available, can use a composite (log) likelihood
c
le(9) =) log f(ys.:0)-
=1
[0 The choice of subsets Sy, ...,Sc determines what parameters can be estimated.
O Special cases:
- independence likelihood takes S; = {y;} and treats (possibly dependent) y; as independent;
— pairwise likelihood uses subsets of distinct pairs {y;,y;/}.
O May be useful with spatial data, and then contributions from distant pairs may be downweighted
or dropped entirely.
[ £c(0) satisfies the first Bartlett identity, so can give consistent estimators 0, but requires a
sandwich variance matrix (or some other approach) to estimate var(9).
O Model comparisons use the composite likelihood information criterion
CLIC = 2 [tr{h(é) 2071 — ()] .
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Comments
OO0 Other likelihoods and/or likelihood-like functions are widely used, especially
— partial likelihood, used to eliminate nuisance functions for inference (survival data),
— quasi-likelihood, used to model over-dispersion in exponential family models,
— pseudo-likelihood, treats data as Gaussian even when they are not (econometrics), and
— empirical likelihood, an extension of nonparametric modelling (econometrics).
(0 Strengths of likelihood approach:
— heuristic as plausibility of a model as explanation of data;
— we 'just’ have to write down the density of the observed data;
— invariance to data and parameter transformations;
— general (and ‘optimal’) approximate theory for inference in regular models;
— close links to Bayesian inference (later).
0 Weaknesses of likelihood approach:
— requires ‘parametric’ model for data;
— can fail in high-dimensional settings;
— not all models are regular.
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4 Hypothesis Testing

4.1 Pure Significance Tests

slide 124

slide 125

Discovery of the top quark (Abe et al., 1995, PRL)

Here are two extracts from the article announcing the discovery:

TABLE I.  Number of lepton + jet events in the 67 pb~' data
sample along with the numbers of SVX tags observed and the
estimated background. Based on the excess number of tags in
events with =3 jets, we expect an additional 0.5 and 5 tags
from 17 decay in the 1- and 2-jet bins, respectively.

Observed Observed Background

Nia events SVX tags tags expected
1 6578 40 50 + 12
2 1026 34 21.2 £ 65
3 164 17 52+ 1.7
=4 39 10 1.5 £ 04

The numbers of SVX tags in the l-jet and 2-jet
samples are consistent with the expected background plus
a small 7 contribution (Table I and Fig. 1). However,
for the W+ =3-jet signal region, 27 tags are observed
compared to a predicted background of 6.7 * 2.1 tags
[8]. The probability of the background fluctuating to
=27 is calculated to be 2 X 107° (see Table II) using
the procedure outlined in Ref. [1] (see [9]). The 27
tagged jets are in 21 events; the six events with two
tagged jets can be compared with four expected for
the top + background hypothesis and =1 for background
alone. Figure 1 also shows the decay lifetime distribution
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Performing a test

[0 There's a null hypothesis to be tested:
Hy: the top quark does not exist.

opposite — ‘proof by (stochastic) contradiction’.

OO We obtain data, yons = 27 events on the 3-jet, 4-jet, . ..channels.
O We compare yons With its distribution Py supposing that Hy is true.
O Here Py is Poiss(A\g = 6.7) and represents the baseline noise under H.
O We compute the P-value
Y
Pobs = Po(Y > yobs) = D y—?e‘“ =3x1077,
Y=Yobs

so
— either Hy is true but a (very) rare event has occurred,

— or Hj is false and the top quark exists.

decided that H could not (yet) be rejected, and not published their work.

This seems counter-intuitive, but as one cannot prove a hypothesis, we attempt to refute its

0 Abe et al. announced a discovery, but if they had found pons = 0.001, maybe they would have

stat.epfl.ch
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Industrial fraud?

DETAIL WEIGHT NOTE

ez l=lalsleln]esmlw =

T3 208 [Ro 28y 303 |Res [Beo st | | 10 [T
oo Qo (3as DRt (268 |24 |05 (26 ;,.Jéﬂ

3 2 13 0T pa) 350 [Rpp 1308 (e 30

41361261 o) Ro2 a2 |rqq 2ol 1o | [ a0

5 2591800 3o Ullew [7g0 1249 (03 [a 4t L3550 RN

s psilierRog 6] 120 | Vleo

7 o) 1060 | 3o [ 2w 10} [26 5§ 70 I

u o9 294 1203 1R 1302 1¥ 2. 80 IREREE

K 1254 125G [301 20340k |2 2% I Y |

10130 RoL [7on 17 " 316 1ol

TOTAL CYAr. Jis3 | 2[24 113}

ceouénons” 7 eRos{Tm{ / ‘ ‘“f/ R

O n = 92 weighings of sacks on the ‘delivery’ (or not?) of a commaodity:

261 289 291 265 281 291 285 283 280 261 263 281 291 289 280
292 291 282 280 281 291 282 280 286 291 283 282 291 293 291
300 302 285 281 289 281 282 261 282 291 291 282 280 261 283
291 281 246 249 252 253 241 281 282 280 261 265 281 283 280
242 260 281 261 281 282 280 241 249 251 281 273 281 261 281
282 260 281 282 241 245 253 260 261 281 280 261 265 281 241
260 241

OO Their last digits are

0 1 2 3 4 5 6 7 8 9
14 4214 9 0 6 2 0 O 5

0 How can we tell if fraud has taken place?
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Pearson’s statistic

Definition 51 If Oq,...,Ok are the numbers of observations from a random sample of size n falling
in categories 1,...,K, where E(Oy) = Ey, >0 fork=1,...,K and Zle E}, = n, then Pearson’s
statistic (aka the ‘y? statistic’) is

- f: (O — Ek
k=1

] (O1,...,0K) ~ Mult{n, (p1 = E1/n,...,px = Ex/n)},

then T' ~ x%._, (approximation OK if average Ey > 5), giving a test of whether data Oy,..., Ok
agree with specified probabilities p1, ..., pk.
[0 Here Benford's law suggests all py, = 1/10, so take Ej = 92/10 = 9.2.

O For the original dataset we found t.,s = 158.2 and hence
Pobs = Po(T > tons) = P(x§ > 158.2) =0,

which is essentially impossible for uniformly distributed digits.

0 Very strong evidence for industrial fraud ...
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Elements of a test

O A null hypothesis Hy to be tested.

0 A test statistic T', large values of which will suggest that Hj is false, and with observed value tg}s.

O A P-value

Pobs = Po(T > tobs),
where the null distribution Py(-) denotes a probability computed under Hy.

O The smaller pyys is, the more we doubt that Hy is true.

O If T is continuous and H is true, then we can treat pos as a realisation of a uniform random
variable P ~ U(0,1), and then

Po(P < pobs) = Pobs-

O If | decide that Hy is false, when in fact it is true, then | make an error whose probability under Hy
is exactly pops — so my uncertainty is quantified, because | know the probability of declaring a
“false positive".
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Note: Why is a P-value uniform?

O Let T be a test statistic whose distribution is Fyy(¢) when the null hypothesis is true. Then the
corresponding P-value is
PO(T > 7fobs) =1- FO(tobs)a
and if the value of ¢, is a realisation of Ti,s (because the null hypothesis is true), then we can
write the random value of p,s seen in repetitions of the experiment as
Pobs =1- FO(Tobs),
or equivalently T, = Fgl(l — P,ps). Hence for x € [0, 1],
Po(Pobs <) = Po{l — Fo(Tons) <z}
= Po {1 —x < FO(Tobs)}
= Po{Tons > Fy '(1—2)}
= 1-FK{F'1-2)}
= 1‘7
which shows that Pyp,s ~ U(0,1).

0 The above proof works for any continuous Typs, but is only approximate if Tops is discrete (e.g.,
has a Poisson distribution). In such cases Py}, can only take a finite or countable number of values
known as the achievable significance levels.
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Exact and inexact tests

O Above we saw that P ~ U(0,1) under the null hypothesis, exactly in continuous cases and
approximately in discrete cases.

[0 If the null distribution of the test statistic is estimated, we have P ~ U(0,1) only.

O For example, if the true parameter is 6 = (19, A\g) and Hy : ¢ = 1)y, then the P-value is

Pobs = PO(T > ZL'obs) = P(T > ZL'obs; Qva )‘0)7

which we estimate by
Bobs = P(T" > tobs; 10, Ao),
where XO is the estimate of A under Hy,.
O Exact tests, with P ~ U(0, 1), can sometimes be obtained by using a pivot whose distribution is
invariant to A, or by removing A by conditioning or marginalisation.

Example 52 /f X;,..., X, Y N (u,0?), show that the distribution of T = (Y — p)/+/S%/n is

invariant to o2.

Example 53 Find an exact test on a canonical parameter in a logistic regression model.
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Note to Example 54

0 here Y and S? are minimal sufficient and independent, with Y ~ A (u, 02 /n) and
(n—1)S?/0? ~ x2_,, and we can write Y’ D p+on"'27 and S? = D o?V/(n — 1), where
Z ~ N(0,1) and V ~ x2_, are independent. Hence

Y-—uop p+oZ/n"V?:—p D Z

VS o2V {n(n = DY VYN =T

is pivotal and thus allows tests on z without reference to o2.

[0 For a test on o2 without regard to 1, we use the marginal distribution of §2, as
V =(n—-1)8%/0? ~ x2_, is a pivot.
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Note to Example 53
O In a logistic regression model we have independent binary variables Y7,...,Y,, each with density
, 18 \Y 1 1—y; Vi) B
P(Y; =y 8) =7 (1—m)) 7% = ( > =—,
’ ’ ! ’ 14¢% P 14578 1458
for y; € {0,1}, known covariate vectors X; € R? and parameter 3 € R,
O The corresponding log likelihood is
n T " T
1By =" {uais—tog (1+¢77)} =y"x8 -3 log (1+¢77), Fer?
j=1 j=1
This is a (d, d) exponential family with canonical statistic S = Xy, canonical parameter ¢ = f3,
and cumulant generator k(p) = > 7, log (1 + e:”JT“’).

[0 Hence Lemma 34 implies that if ¢ = (¢, A) and S = (T, W) = (X{y, XJy), where X; isn x 1

and Xy is n X (d — 1), an exact test on 1) is obtained from the conditional distribution
P(T=t|W =u° i
= t = W ; = s
( ‘ w) Zy,es ) eX;Fy/w
where Sy, = {(¥}, ..., y,) : X5y = w°}, with w® = XJ4° and y° respectively the observed data
and the observed value of W.

0 Calculation of this conditional density in applications may be awkward, but excellent

approximations are available.
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Comments

O If we say that a hypothesis is true, we mean ‘it is reasonable to proceed as if the hypothesis was
true’ — any model is an idealisation, so it cannot be exactly ‘true’.

O If we have a discrete test statistic, pops has at most a countable number of ‘achievable
significance levels’. This is only problematic when comparing tests, though randomisation has
(unfortunately) sometimes been proposed to overcome it.

O We may consider a two-sided test, with both unusually large and unusually small values of T of
interest. We can then define

b+ = PO(T > tObS)v - = PO(T < ZL'obs)7 Pobs = 2min(p_,p+),
50 p— + py = 1+ Po(T = tobs), which equals 1 unless T is discrete;

0 We sometimes avoid minor problems due to discreteness by computing ‘continuity-corrected’

P-values
pr= 3 Po(T=1)+3Po(T =tans), p-= Y Po(T =1)+ 3Po(T = tobs).
t>tobs t<tobs

[0 So far we have described pure significance tests, where the situation if Hy is false is not
explicitly considered. We look at the effect of alternatives now.
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4.2 Neyman—Pearson Approach slide 133

Testing as decision-making

Formulate testing as deciding between two hypotheses (Neyman—Pearson approach):
O the null hypothesis H(, which represents a baseline situation;

[0 the alternative hypothesis H, which represents what happens if Hy is false.

O We choose H; and ‘reject’ Hy if pops is lower than some a € (0, 1).
O

For given o we partition the sample space ) into

Yo={y €V :pows(y) >a}, Y1 ={y € :pos(y) <a},

where the notation pps(y) indicates that the P-value depends on the data, or equivalently

Vo={yed:tly) <tical, N1={yed tly)>ti_a}

where ¢, denotes the p quantile of the test statistic 7" = ¢(Y") under Hy.
O We call Y; the size « critical region of the test, and we reject Hy in favour of H; if Y € Yy, or
equivalently if the test statistic exceeds the size « critical point ¢1_,.

O  Critical regions of different sizes for the same test should be nested, i.e., (in an obvious notation) if
o > a, then
/
Vi cyy and  ti_g4 >t
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Link to confidence sets

0 In a test on a parameter 6, with hypothesis Hy : 8 = 6y and corresponding size « critical region
Vi(0p), we reject Hy at level av if

Pobs(y;to) <a =y & Vi(bo).

O A (1 — «) confidence set C;_,, for the ‘true value' of 6, i.e., the value that generated the data, is
the set of all values of 6y for which Hj is not rejected at significance level o, i.e.,

Ciea =1{0 :pobs(y;0) > a} ={0:y € V1(0)}.

O This links hypothesis testing and confidence intervals, and enables construction of the latter in
general settings, by this process of test inversion.
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False positives and negatives

Decision
Accept Hy Reject Hy
State of Nature Hj true Correct choice (True negative)  Type | Error (False positive)
H, true  Type Il Error (False negative)  Correct choice (True positive)

0 We can make two sorts of wrong decision:
Type | error (false positive): Hy is true, but we wrongly reject it (and choose H;);
Type |l error (false negative): Hj is true, but we wrongly choose Hj.
[0 Statistics books and papers call
— the Type | error/false positive probability the size a = Po(Y € ));), and
— the true positive probability the power g =P1(Y € ).

0 Note that the consequences of (e.g., losses due to) bad decisions are not taken into account.

Example 54 IfYy,...,Y, id N (u,0?), with a® known, Hy : i = pg and Hy : jp = p1, find the Type
Il error as a function of the Type | error.
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Note to Example 54

O The minimal sufficient statistic for the normal model with both parameters unknown is (Y, S?),
and it is easy to check that if o2 is known the minimal sufficient statistic reduces to Y, which has
a N(uo, 0% /n) distribution under Hy. Hence we take the test statistic 7' to be Y, and ) = R™.

O If up > po, then clearly we will take

YVo={y:y<tia}, Vi={y:7>ti_o};

this can be justified using the Neyman—Pearson lemma (below). Now

Po(Y € W) = Po(Y < t1-a) = Po{v/n(Y —po) /o < V/nlti—a—po)/o} = ® {v/n(ti—a — po)/c},

because Z = \/n(Y — ug)/o ~ N(0,1) under Hy, and for this probability to equal 1 — o we must
take t1_q = po + on~Y/2z_,; this gives Type | error c.

O Although the form of ) is determined by H1, the value of t;_,, is given by calculations under Hy.
O Z=+n(Y —u1)/o ~N(0,1) under Hy, so the Type Il error is
Pi(Y €)y) = Pi(Y <t q)
= Py(Y < po+ Jn_l/Qzl,a)
= PUVAY - u)/o < Vil +on V221 o — )/o}
= ®(z1_4 —9),
where § = n'/2(ju; — pg)/o. Hence the Type Il error equals 1 — v when p11 = jip and decreases as

a function of §. We would expect this, because as 111 increases, the distribution of Y under H;
shifts to the right and we are less likely to make a false negative error.
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True and false positives: Example

O It is traditional to fix « and choose T' (or equivalently };) to maximise /3, but usually more
informative to consider Po(7 > t) and P1(T > t) as functions of t.

O In Example 54 we would
— reject Hy incorrectly (false positive) with probability

at) = Po(T > t) = 1 = &{n"/?(t — o)/},
— reject Hy correctly ( ) with probability

B(t) =Py(T >1t) =1—®{n"%(t — py)/o — 6}.

Ho False positive probability a(t)

|

True positive probability B(t)
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ROC curve

Definition 55 The receiver operating characteristic (ROC) curve of a test plots 3(t) against a(t)
as t varies, i.e., it shows (Po(T >t),P1(T >t)), whent € R.

O As p increases, it becomes easier to detect when Hj is false, because the densities under Hy and
Hy become more separated, and the ROC curve moves ‘further north-west’.

O When Hgy and H; are the same, i.e., ;n = 0, then the curve lies on the diagonal. Then the
hypotheses cannot be distinguished.

OO A common summary measure of the overall quality of a test is the area under the curve,

1
AUC:/ B(a) dey,
0

which ranges between 0.5 for a useless test and 1.0 for a perfect test.
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Example
O In Example 54 a(t) = 1 — ®{n'/?(t — po)/o} and B(t) = 1 — ®{n'/2(t — pg)/o — 6}, so
equivalently we graph
B(t) =1—P(—21-4 — 0) = P(0 + 24) = B(«) against a € (0,1).
O Here is the ROC curve with © =2 (in red). Also shown are curves for © = 0,0.4,3,6. Which is
which?
:g;, |
False positive probability a(t)
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Neyman—Pearson lemma

Definition 56 A simple hypothesis entirely fixes the distribution of the data Y, whereas a
composite hypothesis does not fix the distribution of Y.

Definition 57 The critical region of a hypothesis test is the subset )); of the sample space ) for
which' Y € Y, implies that the null hypothesis is rejected.

We aim to choose ), to maximise the power of the test for a given size, i.e., such that P1(Y € )4) is
the largest possible such that Po(Y € )1) = a.

Lemma 58 (Neyman—Pearson) Let fo(y), fi(y) be the densities of Y under simple null and
alternative hypotheses. Then if it exists, the set

Vi={yelV: ily)/foly) >t}

such that Po(Y € Y1) = a maximises P1(Y € Y1) amongst all )| for which Po(Y € V) < a. Thus
the test of size o with maximal power rejects Hy when'Y € ).

Example 59 Construct an optimal test for testing Hy : v = g against Hy : ¢ = @1 based on a
random sample from a canonical exponential family.

stat.epfl.ch Autumn 2023 — slide 140

90



Note to Lemma 58

Suppose that a region ) such that Po(Y € )) = « exists and let V| be any other critical region of
size a or less. If we write F(C) = [, f(y) dy for any density f with corresponding distribution F', then

s f(y)dy — 3},f(y) dy = F(On) — F() (5)

equals
Fny) +FQinYy) — FnYi) — F(1 N o) = FDnYy) — F(Vi N o) (6)

where YoU Y, = YUl = ).
If F' = Fy, then (5) is non-negative, because oo = Fy(Y1) > Fy()'), so (6) is also non-negative, giving

tFo (V1 N Yg) > tFy(Yy N o), t>0.
But f1(y) > tfo(y) for y € V1, and tfo(y) > fi(y) for y € o, so
Fi(hnYy) > tFy(V NY) > tEy(Yy N o) > Fi1 (V) N ).

On adding F1 (V1 N Y}) to both sides we see that Fy()) > F(Y)), as required.
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Note to Example 59
O The likelihood ratio is

j%éz; - 28 Eiﬁiéz - Z:Ei;ﬁ = exp{(p1 — po)s* + nk(eo) — nk(e1)},

say, where s* = Z?ﬂ s(y;), so

Vi={y: L)/ foly) >t} ={y: (o1 — wo)s* + nk(po) — nk(e1) > logt},

and if o1 > g then

Vi ={y:s" > [logt+nk(p1) —nk(eo)l/(p1 — o)},

This gives the form of )y and we should choose ¢ so that Po(Y € V1) = «, or equivalently s, so
that (in the continuous case)

Po(S* > s54) = / f(s;00)ds = a.

We saw such a calculation in Example 54 for normal data with known o2 and
p1=p1/0% > o = po/o’.
O If g1 < g, then division by 1 — g < 0 leads to

Vi ={y:s" <[logt+nk(p1) — nk(wo)l/(e1 — o)}

0 The Neyman—Pearson lemma tell us that )); gives a most powerful test, but as it does not depend
on the value of ¢, this test is uniformly most powerful for all ¢ > ¢, and likewise V5 is
uniformly most powerful for p1 < .
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Discussion: Interpretation of P-values

0 Be careful about interpretation:

—  Pobs IS @ one-number summary of whether data are consistent with Hy;

— it is NOT the probability that Hy is true;

— even a tiny pops can support Hy better than an alternative H; (e.g., tons = 3 when
T ~ N (u,1) with go =0, pg = 10);

— the power depends on analogues of § = n'/2(u; — pg)/o, where n is the sample size, 1 — g
is the effect size, and o is the precision, so
> even a tiny (practically irrelevant) effect size can be detected with very large n;
> conversely a practically important effect might be undetectable if n is small;
> i.e., 'statistical significance’ # 'subject-matter importance'!

O A confidence interval, or estimate and its standard error, is often more informative.

O Hypothesis testing is often applied by rote — in some medical journals no statement is complete
without an accompanying ‘(P < 0.05)" — and is sometimes regarded as controversial, with certain
journals now refusing to publish tests and P-values.

0 The ‘replication crisis' is partly due to abuse of hypothesis testing, e.g., by not correcting for
multiple tests, by formulating hypotheses in light of the data, ...
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0

Discussion: Contexts of testing

Example 60 The generalized Pareto distribution, with survival function

simplifies if £ = 0, and has finite upper support point x4 = —o /§ when £ < 0 but x4 = oo when
€ > 0. Here Hy : £ =0 is both a simplifying and a dividing hypothesis, of interest when the
distribution is fitted to data on supercentenarians.

It is unwise to be too categorical about testing, because of its different uses:
— testing a clear hypothesis of scientific interest (e.g., top quark);

— goodness of fit of a model (e.g., industrial fraud);

— decision-making with a clearly-specified alternative (e.g., covid testing);
— model simplification if null hypothesis true;

— ‘dividing hypothesis’ used to partition the parameter space into sets with sharply different
interpretations;

— as a technical device for generating confidence intervals;

— to flag which of many null similar hypotheses might be false.

(1+¢éx/0)/5, €40,

P == {exp<—x/o>, =0,
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4.3 Multiple Testing

slide 143

Motivation
[0 Often require tests of several, even very many, hypotheses:
— comparison of responses for several treatment groups with the same control group;
— checking for a change in a series of observations;
— screening genomic data for effects of many genes on a response.
O There are null hypotheses Hy, ..., H,,, of which
— my are true, indexed by an unknown set Z,
- mp =m — my are false, and
— the global null hypothesis is Hy= HiN---N H,,
O We apply some testing procedure and declare R hypotheses to be significant, of which FP are
false positives and TP are true positives. Only R and m are known.
Non-significant ~ Significant
True nulls TN FP mo
False nulls FN TP m — my
R m
O In the cartoon we have m = 20 hypotheses individually tested with a = 0.05. We observe R =1,
but E(FP) = ma = 1, so this is not a surprise.
stat.epfl.ch
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The perils of multiple testing
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Graphical approach

[0 Graphs can be helpful in suggesting which hypotheses are most suspect, and can highlight the
corresponding (i.e., smallest) P-values.

O P~U(0,1) implies Z = —logo P ~ exp(A) with A = In 10.

O With this transformation small P; become large Z;; note that Z; > a iff P; < 107°.

OO0 If Hy is true and the tests are independent, then Z1,..., 27, id exp(A) and the Rényi
representation

D " E; iid
Zy = A1y — =1, Ei,...,B, N 1
(r) ]Zlm_’_l_ja r ) , M, 1, y Bmy eXP( )a
applies to their order statistics. Then
— a plot of the ordered empirical Z; against their expectations should be straight;
— outliers, very large Z; (i.e., very small P;), cast doubt on the corresponding Hj.
— For very small P; (i.e., large Z;) the uniformity may fail even under Hy, because the null
distributions give poor tail approximations; then some form of model-fitting may be needed.
— Similar ideas apply to z statistics (e.g., in regression): use a normal QQ-plot (excluding the
intercept etc.) as a basis for discussion of significant effects.
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GWAS, |

O A genome-wide association study (GWAS) tests the association between SNPs (‘single
nucleotide polymorphisms') and a phenotype such as the expression of a protein. The null
hypotheses are

Hy,j : no association between the expression of the protein and SNP;, j=1,...,m.

O In a simple model we construct statistics Y; such that Y; ~ N (;,1), where 6; = 0 under H j,
and we take T); = |Y}|, which is likely to be far from zero if ; > 0 orf; < 0.

O If tons,; denotes the observed value of T, then the P-value for association j is

Pobs,j = PO(TIJ > tobs,j) =1- PO(—tobs,j < Y} < tobs,j) = 2(1)(—tobs,j)a

where the approximation comes from the fact that Y; ~ A(0,1) under Hy ;.

[0 Here it is reasonable to expect that the effects are sparse, i.e., most of the §; = 0, and we seek a
needle in a haystack.

O With many tests it is essential to ensure that the true positives are not drowned in the mass of
false positives.
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GWAS, II

O Left: a histogram of the P-values for tests of the association between m = 275297 SNPs and the
expression of the protein CFAB.

(0 The P-values for SNPs not associated with CFAB are uniformly distributed. Is there an excess of
small P-values?

00 Right: exponential Q-Q plot of the Z; = —log P;. What do you make of it?

_ o cotnll 0o ncflom o onflodl oo nm n_n
- BT e e o |
7 ]
E g
zo| = s
go é
k5
Qg | 5
o 0
G 0
=
- -
T T T T T 1 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0 5 10 15
p-value Exponential plotting position
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Control

O With several tests Type | error generalises to the familywise error rate (FWER), i.e., the
probability of at least one false positive when the individual hypotheses are tested,

FWER =P(FP > 1) =1 — P(accept all H;,j € 1),

and we aim to control this by ensuring that FWER < a.
O Control of the error rate:
— weak control guarantees FWER < « only under Hy, i.e., mg = m;

— strong control guarantees FWER < « for any configuration of null and alternative
hypotheses.

O If all the tests are independent and we use individual levels «, then
FWER=1-PFP=0)=1—-(1-)™ =1, mg— oo.
[0 If conversely we fix FWER and the tests are independent we need
a=1-(1—FWER)Y™o,

so with mg = 20 and FWER = 0.05 we need o = 0.0026 — the power for individual tests will be
tiny (recall ROC curves).
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Bonferroni methods

O If P; is the P-value for the jth test and we reject H; if P; < o/m, then Boole's inequality (the
first Bonferroni inequality) gives

m

mo mo
a a a
FWER = P(FP > 1) = {-<_} < <'<_): e <
(FP>1)=P U P < _ZP Pj<—)=my— <a,
7j=1 7j=1
so we have strong control of FWER, even if the tests are dependent.
00 Note that we could replace a/m for test j by «; such that Z;n:1 a; < a.

O The resulting Bonferroni procedure lacks power when m is large (because a/m is very small),
but its assumptions are very weak.

0 An improvement is the Holm—Bonferroni procedure: for given «,
— order the P-values as F;) < --- < F,;,) and the hypotheses as H 1), ..., Hy,, then
- reject H(1)7 . 7H(S—1)v where

. (6]
S:mln{SZP(s)>m}.

This gives strong control and is more powerful than the basic Bonferroni procedure, because it
uses higher rejection thresholds.
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Note: Holm—Bonferroni procedure (HB)

O Recall that there are m hypotheses, of which mg are true nulls (for which j € 7) and
my = m — my are false nulls.

O If we apply HB and FP > 1, we must have wrongly rejected some Hj; with j € Z. If H(,) is the
first such hypothesis to be rejected in the sequential procedure, then the s — 1 hypotheses rejected
before it must have been false null hypotheses, so s — 1 < m; =m —mg, i.e., mg<m+1—s.

O As H,) was rejected, the corresponding P-value satisfies

Thus if FP > 1 then the P-value for at least one of the true null hypotheses satisfies P; < a/my,
and Boole's inequality gives

mo
FWER =P(FP > 1) <P [ | J{P; < a/mo} | <D P (P < a/mo) = moa/mg = a.
jeT j=1

0 The only assumption needed above was that the null P-values are U(0, 1) (used in Boole's
inequality), so HB strongly controls the FWER.
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False discovery rate

OO When m is large and the goal is exploratory, Bonferroni procedures are unreasonably stringent, and
it seems preferable to try and control the false discovery proportion

I(R > 0)FP/R,

where R is the number of rejected null hypotheses. The intention is to bound the proportion of
false positives among the rejections.

O Control of I(R > 0)FP/R is impossible because Z is unknown, so instead we try and control the
false discovery rate (FDR)

FDR = E{I(R > 0)FP/R}.
O Strong control is achieved by the Benjamini-Hochberg procedure: specify «, then
— order the P-values as P(;) < --- < F;,) and the hypotheses as H 1), ..., H(y,),
- reject Hyyy, ..., Hg), where
R:maX{T:P(T) < E}.
m
This guarantees that FDR < «, but does not bound the actual proportion of false positives, just
its expectation. Often = 0.1, 0.2, ....
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Note: Derivation of the Benjamini—-Hochberg procedure
O Let the P-values for the false null hypotheses be Pj,..., P, , say, independent of the true null
iid

P-values Pi,..., Py, ~ U(0,1). Then the number of rejected hypotheses R satisfies
{R=r}n{P <ra/m}={P <ra/m}n{Ry=r—1},

where {R_1 = r — 1} is the event that there are exactly r — 1 rejections among Hs, ..., H,,. The
false discovery proportion is

3 FPI(R =) =3 I(R=r) N 1Py < ra/m),

r -
r=1 r=1 7=1

and by symmetry of the P; this has the same expectation as

m m

I(R=r) I(R.y=7r—-1)
< — < .
moz . I(P <ra/m) moz . I(P <ra/m)
r=1 r=1
Thus the false discovery rate is
m
1
FDR = -P(R.1=r—1,P <
7n0;§;7n ( 1 r 41 _.Ta/”ﬁ
m
= my Z -P(R.y=r—1| P <ra/m)P(P, <ra/m)
r=1
1 ro
= my —P(R_l =T — 1)—
r m
r=1
Mmoo m—1
= 2N PRy =)
m r=0
— w S .
m

The main steps above successively use the definition of conditional probability, the facts that P;
and R_; are independent and P, ~ U(0, 1), and the fact that R_; € {0,1,...,m — 1}.

O Hence (under the conditions above) the Benjamini-Hochberg procedure strongly controls the FDR.
O Note that
— if mg < m, then the last inequality may be very unequal, so possibly FDR <« «.

— if the P-values are dependent in such a way that
PRoi=r—1|P <ra/m)<PR_1=r—-1),

then the result also holds.
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GWAS, II

O Left: a histogram of Q; = 10P; (when P; < 0.1) for tests of the association between m = 27530
SNPs and the expression of the protein CFAB. The red line shows the U(0, 1) density.

O Right: exponential Q-Q plot of Z; = —log Q;, with Bonferroni cutoff (blue) and
Benjamini-Hochberg cutoffs (red), both with o = 0.05. The grey lines are the target and
pointwise 95% confidence sets for the order statistics.
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Comments

[J The Holm-Bonferroni procedure (HB) compares F(y), P2),... to a/m,a/(m —1),..., whereas
the ordinary Bonferroni procedure (B) compares all the P; to o/m.

0 The Simes procedure (exercises) has exact FWER « for independent tests and then is preferable
to the Holm—Bonferroni procedure.

O The Benjamini-Hochberg procedure (BH) strongly controls the false discovery rate, comparing the
ordered P-values to a/m, 2ac/m, ..., .

0 HB and B also give strong control when the P-values are dependent. So does BH, taking

i) <

me(m)’

with ¢(m) = 1 when the tests are independent or positively dependent, and c(m) =37, 1/j
under arbitrary dependence.

0 Many variants exist, but these versions are simple and widely used.
0 Other classical procedures for multiple testing in regression settings are named after
— Tukey — bounds the maximum of ¢ statistics for different tests;

— Scheffé — simultaneously bounds all possible linear combinations of estimates 3;

— Dunnett — compares different treatments with the same control.
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4.4 Post-Selection Inference

Selection effects

O Contrast

— exploratory analysis, where we study data with no strong prior hypotheses, aiming to find
something ‘interesting’ for future study, and

— confirmatory analysis, where we specify an analysis protocol (hypotheses/tests/...) in
advance and stick to it.

0 Most statistical procedures assume we are doing the second, but there can be a strong temptation
to cheat and treat an exploratory analysis as confirmatory.

O In ‘the garden of forking paths’ we make a series of choices (which response? transformation?
which explanatory variables? ...) but do not then allow for them.

[0 This leads to non-reproducible results, ‘false discoveries’, bad science . ..

O If we compute a confidence interval Z for 6 following a sequence of choices summarised in a
selection event S that is based on the data, and compute

P(@ €Z) when we should compute PO eZ]S),

we are effectively pretending that S did not exist.

stat.epfl.ch

Simple example

Example 61 Suppose T ~ N (6,1) and we perform a two-sided test of Hy : 6 = 0 at level « = 5%
and then construct a 95% confidence interval around the observed t.s if we reject Hy. Compare the
resulting confidence intervals when we do and do not allow for selection.

Lo
3.5 4.0 4.5 5.0
1 1

3.0
1

25
1

-5 0 5

95% confidence intervals for 6 without (black) and with (red) allowance for selection on event
S={T > z0.975}-
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Note to Example 61

[0 Recall the basis of confidence intervals for 6 based on an estimator T satisfying T' ~ N(0,1). We
use the fact that T'— 6 ~ N(0,1) to argue that

P(T < tobs) = P(T — 0 <tops — 9) = (I)(tobs — 9)

and then set this equal to «,1 — « to obtain the (1 — 2«) confidence interval
(tobs — Z1—as tobs — 2a ), Which reduces to the 95% confidence interval tops == 1.96 when oo = 0.025.

O If we condition on the selection event that 7" > z;_g and, if this event occurs, compute the 95%
confidence interval for 6, we are effectively using the conditional distribution

P(TStObS‘T>21,5) = P(T—HStObS—HIT—6>21,5—9)
_ Otops —0) — P(z1-5—0)
1—@(21-5 —0)

and the (1 — 2a) interval for 6 has as endpoints the solutions of the equations

D(tobs — 0) — (215 — 0)
1= (215 —0)

=a,]l —a.

O If we set 8 =0.025 and o = 0.025, then we get the limits shown in the graph, which shows that
even having t.s = 3 still leads to a 95% Cl that contains 0 when we allow for selection. Hence
making allowance for selection can radically change inferences, especially when Hj is only just
rejected.
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Implications

[0 Need to be aware of possibility of selection effects and to read the literature critically.
O Must be clear if a study is exploratory or confirmatory:
— if confirmatory, need to clarify protocol for inference beforehand,
— if exploratory, need to avoid (any?) conclusions that might be due to ‘forking paths’.

[0 Active area of research, likely to change in next few years.
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5 Bayesian Statistics slide 158

5.1 Introduction slide 159

Thomas Bayes (1702-1761)

Bayes (1763/4) Essay towards solving a problem in the doctrine of chances. Philosophical Transactions
of the Royal Society of London.
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Bayesian vs frequentist inference

Observed data y° assumed to be realisation of Y ~ f(y;6) = f(y | §), where 6 € ©.
[0 Frequentist viewpoint:

— some ‘true value' of 8 generated the data;

— this ‘true value' of 0 is treated as an unknown constant;

— probability statements compare y° with outcomes in a suitable reference set S.
0 Bayesian viewpoint:

— degrees of belief should (and can) be expressed using probability distributions;

— knowledge about 6 prior to seeing y° is expressed as a prior density 7(6);

— Bayes' theorem 54| 6)
on . mO)f(y° |0
RN O D

should be used to convert m(f) into a posterior density 7(6 | y°);
— probability statements are based on 7 (6 | y°) and thus are conditioned on all observed
quantities.
0 The benefit is that statistics reduces to calculations of probabilities, at the cost of expressing all
uncertainty in distributional terms.
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Example

Example 62 (a) Find the posterior density for the success probability 6 based on a series of
independent Bernoulli trials y1, ... ,vy,, when the prior density is the Beta density

B 0“71(1 _ H)bfl

0<b<1, a,b>0,

where B(a,b) = I'(a)I'(b)/T'(a + b) is the beta function, and

is the gamma function.
(b) Show how the mean and variance of 6 are updated.
(c) Find the posterior density for predicting the result Z of the next trial.
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Example 62
[0 Suppose that conditional on 8, the data y1,...,y, are a random sample from the Bernoulli

distribution, for which P(Y; = 1) =60 and P(Y; =0) =1 — 6, where 0 < 6 < 1. The likelihood is
Loy=flylo) =[] -0) ¥ =0(1-0)""° 0<0<1,
j=1

where s = > y;.
O A natural prior here is the beta density with parameters a and b,

1
™) = Blap)

v 1(1—-60)>"1 0<6<1, ab>0, (7)

where B(a,b) is the beta function T'(a)I'(b)/T'(a + b).
[0 The posterior density of 6 conditional on the data is
95-1—(1—1(1 _ H)n_5+b_1/B(a, b)
m0y) = G —— E—
Jo 05T~ 1 (1 — §)n=s+b-1d6/B(a,b)
o Tl —g)n sl 0<h< 1. (8)

As (7) has unit integral for all positive a and b, the constant normalizing (?7) must be
B(a+ s,b+n —s). Therefore

1

0 =
@ 1y) B(a+ s,b+n—3s)

prral(1 — gyl g << 1.

O Thus the posterior density of 6 has the same form as the prior: acquiring data has the effect of
updating (a,b) to (a+ s,b+n — s). As the mean of the B(a,b) density is a/(a + b), the posterior
mean is (s +a)/(n + a + b), and this is roughly s/n in large samples. Hence the prior density
inserts information equivalent to having seen a sample of a + b observations, of which a were
successes. If we were very sure that 8 = 1/2, for example, we might take a = b very large, giving a
prior density tightly concentrated around 6 = 1/2, whereas taking smaller values of a and b would
increase the prior uncertainty.
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100 spins of a 5Fr coin

1111101111011 1101011
1111110101001 1011101
111001011111 00111111
1010110111001 1101111
10000101001001111110
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Beta prior densities
a=0.5,b=0.5 a=1,b=1 a=5,b=5
B P P
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n=10, s=9
a+s=9.5, b+n-s=1.5 a+s=10, b+n-s=2 a+s=14 ,b+n-s=6
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n =230, s=24

a+s=24.5, b+n-s=6.5
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Link to likelihood

O In large samples the prior has less influence, because
logm(0 | y) = log m(0) + £(0) —log f(y),
where the terms on the right are successively O(1), O(n) and O(n).

O Later we shall see that
or\ V2
r)= (%) 2@
J

in terms of the MLE @ and observed information 7, so
~\ 1/2 R ~N1/2
w0 y) = ") <i> ct0)-e) = 0) (L) 700212,
giving the distributional approximation
Oly~N@.7").

O Formal versions of this result, known as Bernstein—von Mises theorems, suggest that
large-sample Bayesian and likelihood-based inferences will be similar.

O Hence we need to consider situations in which the prior may be appreciable relative to the
information in the data, or in which standard likelihood approaches are unsuitable.
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Conjugate priors

O Certain combinations of data model f(y | 6) and prior 7w(6) give posterior densities of the same
form as the prior.

O Example: s ~ B(n,0) gives
0 ~ Beta(a,b) 2% 0|y ~ Beta(a+s,b+n—s).

The beta density is the conjugate prior for binomial data.
O Conjugate priors greatly simplify computation and are widely used in modelling.

O Mixtures of conjugate priors are also conjugate.
Lemma 63 An exponential family density

f(y10)=m(y)exp[s(y)p(d) — k{p@)}], yeI 00,

has conjugate prior
f(0;a,b) = h(a,b) explap(f) — bk{p(0)}], 0€O,

that depends on hyperparameters a, b.

stat.epfl.ch Autumn 2023 — slide 169

106



Two giants

Left: Harold Jeffreys (1891-1989), a geophysicist and astronomer who developed a (failed) theory of
objective inference based on noninformative prior distributions.

Right: Ronald Alymer Fisher (1890-1962), a geneticist and statistician who developed a (failed) theory
of objective inference based on the ‘fiducial’ distribution.
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‘Ilgnorance’ about what?

Definition 64

O A uniform prior satisfies m(0) < 1 for § € ©.

OO Animproper prior cannot be renormalised to have finite integral.

[0 The Jeffreys prior for a statistical model with Fisher information 1(6) is w(6) o |2(8)]"/2.

Example 65 What does a uniform prior for 6 € (0,1) imply for ¢ =log{6/(1 —0)} € R?
Lemma 66 The Jeffreys prior is invariant to smooth reparametrizations 0 = ().

[0 Jeffreys priors were introduced to give ‘objective’ expressions of ignorance, and give uniform priors
for location parameters, 1/6 for scale parameters, etc.

O Jeffreys priors for the same 6 based on different experiments might differ!

0 Many other attempts to represent ‘ignorance’ have been made (e.g., by providing priors with
minimal information), but none is seen as fully satisfactory.

O In practice ‘uninformative’ (i.e., flat but proper) priors are usually chosen and then sensitivity
analyses performed.
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Example 65

The probability of success in a Bernoulli trial lies in the interval [0, 1], so if we are completely ignorant
of its true value, the obvious prior to use is uniform on the unit interval: 7(6) =1, 0 <6 < 1. But if

we are completely ignorant of 6, we are also completely ignorant of ¢ =log{0/(1 — #)}, which takes

values in the real line. The density implied for ) by the uniform prior for 6 is

ew

do | .
w—m, —oo<¢<oo

(1) = m{(0)} x

the standard logistic density. Far from expressing ignorance about 1, this density asserts that the prior
probability of || < 3 is about 0.9.
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Lemma 66
O For a smooth reparametrization 6§ = (1)) in terms of ¢, the expected information for 1 is

0 = [FEEH] = (G < |

Consequently [2(8)[1/2d8 = |1(¢)|}/2de): the Jeffreys prior does behave consistently under
reparametrization; furthermore such priors give widely-accepted solutions in some standard
problems. When @ is vector, |2(6)] is taken to be the determinant of :(9).

2 2

_z(e)x'de

dy

0 This prior was initially proposed with the aim of giving an ‘objective’ basis for inference, but after
further paradoxes emerged its use was suggested for convenience, a matter of scientific convention
rather than as a logically unassailable expression of ignorance about the parameter.
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High dimensions

Example 67 (Stein’s paradox) LetY; d N(p;,1) forj=1,...,n, and set D = ZYJQ and
0 = u? + -+ p2. Show that if the ji; are independent a priori with flat priors, then

E(9 | y) =D+n, but Dz9+n+0p(n1/2)
for any 0, which is absurd.

0 Thus although flat priors may be sensible in low dimensions, they can lead to major problems in
high dimensions.

O If we seek an uninformative prior for a scalar parameter ¢ when nuisance parameters \q,...,\,
are orthogonal to v, we can set

(1, \) o 1,0 (1, A) x g(N),

where (1), A) is the (1, 1)) element of the Fisher information matrix and g(\) is an arbitrary
function of the nuisance parameter.
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Example 67
O Ify|u~N(p1)and m(p) < 1, then symmetry of the normal density ¢ gives

oty dp—y)
W(My)_f¢(y—u)du_f¢(u—y)dy_¢(ﬂ )

so ft |y ~ N (y,1). If this is true independently for all the y;, then

n

B0 y) =Y B ly)=> {B(u;[y)* +var(u; |y;)} =D (@ +1)=D+n,
=1 =1 =1

and its posterior variance is var(f | y) = >_7_; var(u? | y;) =2n+4D = O(n).

O  On the other hand, for large n we have D = ZYJQ ~E(D) = Z?ﬂ(l‘? +1)=6+mnand
var(D) = 2n+ 40 = O(n).

O This implies that the posterior is placing probability in the wrong place asymptotically, i.e., around

D + n instead of around D — n. Hence the posterior probability that € lies in any interval
D — n + ay/n tends to zero.
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Matching priors

Definition 68 The posterior o quantile (y) of a scalar parameter 0 satisfies
90{
Py (0 <0°(w) [v) = [ w6 ]m)ds=a, ac (.1

[0 Consider a random sample Y7, ..., Y, with joint density f(y | ), with prior 7(¢) and 6 € R?, and
let 6 be the MLE and 52/n = 71! its asymptotic variance.

0 Bayes and likelihood inferences will agree as n — oo, but is (approximate?) agreement achievable
for small n?

O If for every a € (0,1) and 6 € © we had

Py1p {0%(Y) > 0} = /I{Ho‘(y) >0} f(y|0)dy = a,

then Bayes and frequentist inference would agree perfectly, and we would have
— a Bayes/frequentist compromise;
— default priors for routine Bayesian use; and

— a basis for assessment of robustness of inference using other priors.
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Matching priors Il

[0 For scalar 6 it turns out that the Jeffreys prior m(6) o [2(8)|*/?
— is matching to order n1,
— but higher-order matching is possible only in special cases.

[0 In the vector case, inferences for an interest parameter 1) match to order n~!

— if 4 is orthogonal to the other parameters A, and

(1, \) o 1 (1, ) x g(N),

— but in general it is impossible to match for all parameters simultaneously—would need separate
(and incompatible) priors for each parameter.

O Higher order matching requires data-dependent priors.
0 Kass and Wasserman (1996, JASA) give a general discussion of reference priors.
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Edgeworth series

We use asymptotic approximations to compare the Bayesian and frequentist solutions.

Definition 69 Let X1,...,X,, be a random sample of continuous variables with cumulant-generating
function K (u) and finite cumulants k.., let p, = K,/ n;/ ? denote the rth standardized cumulant, and
let Z,, = (S, —nk1)/(nk2)'/? denote the standardized version of S,, = X1 + --- + X,,. Also let

Hi(z) = =z, Hy(z)=2%—1, H3(z) =23 — 3z, Hy(z) = 2* — 6% + 3,
Hs(z) = 2°—102% 415z, Hg(z) = 25 — 1521 +452° — 15

denote the Hermite polynomials. Then the Edgeworth series for the distribution of Z,, is

2
Fz (2) = ®(2) — ¢(2) [6753/2 Hy(z) + % {5—1[{3(2) + %Hg,(z)} + O(n_?’/Q)] 7

and Cornish—Fisher inversion yields that the « quantile of Fz, (z) equals

P3 1 [ pa 3 3 —3/2
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Matching: scalar 6

[0 We now compute Edgeworth series for the Bayesian quantity n'/2(f — 5)/8, conditional on y (so
0(y),0(y) are constants), invert it to get the corresponding Cornish—Fisher series

~

~ g

W) =0 Tzt T {2+ 2)A) + )+ O(),

and then insert this expansion into

Py (0°(Y) > 0} = / 1{0°(y) = 0} f(y | 0) dy.

O This gives
$(2a)

nl/2

1 d () d [ By (£3)

a+ Ty(m,0) + O(n=/?),

Ty(r,0) — 726“9%%‘)

where

1

O Choosing 7 to knock out 77 will ensure matching to order n™*, etc.
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5.2 Bayesian Inference slide 175

Inference

Once we have a prior, what about
point estimates?

confidence sets?

prediction?

hypothesis tests?

Oo0ooDoaodg

model comparison?

O model checking?
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Point estimation

0 Bayesian analysis yields a joint posterior distribution over the unknowns (parameters, predictands,
... ), but this can be unwieldy, and simple summaries are often needed.
0 A Bayes estimator @(y°) of an unknown w results from minimising a posterior expected loss,
u(y°) = argmingE{L(u,a) | y°} = argmina/L(u,&)ﬂ(u | y°) du,
where the loss function L(u, @) > 0 measures the loss when w is estimated by @.
O The loss functions
~ 2 ~
(u - u) ) |u - u|’
lead to the posterior mean E(u | y°) and median of w.
0 Another common estimator, the maximum a posteriori (MAP) estimator
u = argmax,7(u | y°),
is not a Bayes estimator in general. It is superficially similar to the MLE, but is not invariant to
parameter transformation because of the appearance of a Jacobian.
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Confidence sets

O All measures of uncertainty are computed from the relevant posterior density.
O Posterior confidence bound for 6 is quantile of 7(6 | y):
0%(y)
PO<ewlt= [  w0lnd=a, aco),
—00
giving (1 — 2a) posterior credible set (6%(y),0'~*(y)).
O In multiparameter case we use the marginal a quantile of ¥, ¥ = %(y) as
P f(y:
- y; ¥, A) (9, A) dAdy
ngwﬂy):f““ ) a, ac(0,1),
JI fQys 0, Mm(ah, A) dAdy
based on the marginal posterior density of ).
O A highest posterior density (HPD) credible set C;_,, satisfies P(# € C1— |y) =1 — a and
supgge, _, m(0 | y) < infoec, _, (0 | y).
O Such intervals/sets are interpreted as probability statements about the the parameter, with y fixed,
contrary to frequentist confidence intervals.
O Likewise prediction intervals are based on the posterior predictive distribution P(Z < z | y).
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Example

Mortality rates r/m from cardiac surgery in 12 hospitals, showing the numbers of deaths r out of m
operations.

A 0/47 B 18/148 C 8/119 D 46/810 E 8/211 F 13/196
G 9/148 H 31/215 I 14/207 J  8/97 K 29/256 L 24/360

Example 70 (Cardiac surgery data) A simple model for the data above treats the number of deaths
r as binomial with mortality rate 6 and denominator m. At hospital A, for example, m = 47 and

r = 0, giving maximum likelihood estimate §A = 0/47 = 0, but it seems too optimistic to suppose that
04 could be so small when the other rates are evidently larger. If we take a beta prior density with

a = b =1, the posterior density is beta with parameters a+r =1 and b+m —r = 48. The 0.95 HPD
credible interval is (0,6.05) %, while the equitailed credible interval uses the 0.025 and 0.975 quantiles
of (04 | y) and is (0.05,7.40) %.

Show that the MAP estimator can be regarded as a penalized MLE.
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Example

Cardiac surgery data. Left panel: posterior density for 6 4, showing boundaries of 0.95 highest posterior
credible interval (vertical lines) and region between posterior 0.025 and 0.975 quantiles of w(64 | y)
(shaded). Right panel: exact posterior beta density for overall mortality rate 6 (solid) and normal
approximation (dots).
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Bayes factors

O Bayes factors compare competing models/hypotheses.
O Given prior probabilities P(Hy) and P(Hy) for two hypotheses, we compute

P(y | H;)P(H;)

P = 50 TPy + Ply | mop(m) 0

O Unlike in frequentist testing,
— prior probabilities for the H; must be specified, and
— we compute the probability of each hypothesis given the data.

0 To avoid specifying the prior probabilities we write

P |y) _Ply[Hy) P(H) _ Bio x P(H,)

P(Ho|y) P(y|Ho) P(Hy) P(Hy)’

where By is the Bayes factor, and usually

P(y | Hy) = / Fly | Hiy0)m(0; | Hi)d6s, i=0,1.
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Interpretation

(0 Often 2log By is used to summarise the evidence for Hy, using a table like

By 2log B1g Evidence for Hy

1-3 0-2 Hardly worth a mention
3-20 2-6 Positive

20-150 6-10 Strong

>150 >10 Very strong

O As Bjg= Ball, the evidence for Hy is 2log By = —2log Byyp.
O Models f(y | H,0) for n observations and d x 1 parameter 6 often compared using

~

BIC = —2/(0) + dlogn,

which can be derived by approximating the model evidence P(y | H).
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Example
Changepoint analysis for data on diarrhoea-associated haemolytic uraemic syndrome (HUS). Left:
counts of cases of HUS treated in Birmingham, 1970-1989 (solid), and scaled likelihood ratio statistic
Wy (7)/10 (blobs). Right: density of W, estimated from 10,000 simulations, and x? density (solid).
22 { 2 °
E |
I 0 o
é 0 1 ;
\
1
L1
° ChA =
1970 1975 1980 1985 1990 0 5 10 15 20 25 30
Year w
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Example

Example 71 (HUS data) The graph suggests a sharp rise in incidence around 1980. Suppose the
annual counts y1, ...,y are realizations of independent Poisson variables with means \{ for
j=1,....,7 and Ay for j =7+ 1,...,n. Here the changepoint T can take values 1,...,n — 1. Under
Hy, \i = Xy = )\, that is, no change, and H allows change after year T. If we suppose that \1 and Ao
have independent gamma prior densities with parameters v and §, then Byy can be computed for each
T.

There is very strong evidence for change in any year from 1976 to 1986, with most evidence for a
change after 1980.

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

y 1 5 3 2 2 1 0 0 2 1
2log Byo, 7 =6 =1 49 —05 06 39 75 13 24 35 41 51
2log Byg, 7 =6=001 —-13 -59 —-45 —-10 30 97 20 32 39 51

2log B9, y =90 =0.0001 -10 -15 —-14 —-10 -6.1 0.6 11 23 30 42

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

Y 1 7 11 4 7 10 16 16 9 15
2log Brg,y=0=1 63 55 38 42 40 31 11 -29 =53 0
2log Bg, v =9 =0.01 64 57 40 47 46 38 18 1.8 1.2 0

2log Brg, v = ¢ = 0.0001 95 48 31 38 37 29 88 =71 =77 0
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Nested models

O Often 6 = (1, A) and we want to compare Hy : ¢ = 1p against Hy : 1) # 1)y.
O A prior density on 6 will give
P(Hy) = // (¢, \)d\dy = 0,
{(w7)‘)w:'¢}0}

so the posterior odds in favour of Hy are infinite for any dataset.

O To avoid we use prior densities weighted according to prior belief in Hy and Hy, giving overall prior
m(, A) = 6(¢ — tho)m (Yo, A | Ho)P(Ho) + m(¢, A | H1)P(Hy),
where
[ o x| Hoyix = [ w3 | By dvix =1,

0 Hence Bayes factors are more sensitive to the prior than are posterior densities.
O Improper priors cannot be used, as B1g depends on the ratio of the two arbitrary constants of

proportionality in the priors.
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Jeffreys—Lindley paradox

O Test Hp: p =0 against Hy : p # 0 when y1,...,9yn ifivd,/\/(u,JQ).
[0 Frequentist computes P-value pops = ®(—n'/2[7| /o).
[0 Bayesian writes 7y = P(Hy), supposes that under Hy, i ~ N(0,72) and computes
72\ 1/2 ng>
Boi=(1+n- -
n= (1) e~ |
O Ifng?/o? = 23/2' then pops = «, but By gives increasingly strong evidence in favour of Hy; see
the table, in which @ = 0.01:
n 1 10 100 1000 10* 105 108
Bypr 0269 0.163 0376 1.15 3.63 36.2 362
O The problem is that as n — oo, m(u | Hy) is increasingly dispersed compared to [y — 0.
0 To resolve this, note that we use tests when there is doubt about the hypotheses, i.e., sensible
alternatives are O(n~1/2) from the null, and if we take this account by setting 72 = 6o /n, then
the paradox dissipates, because (for example) with 6 = 10 and o = 0.05, 0.01, 0.001, and 0.0001,
Byp =1.73, 6.2, 41.4, and 293, in broad agreement.
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Model criticism

O Use marginal density f(y) to check the model (and degree of agreement between 7(6) and
f(y | 0). Simplest if

f@) = Fy | $)f(a) / £(t | a,0)7(6) do,

where s is sufficient and a ancillary.
00 Often leads to Bayesian variants of standard diagnostics (residuals, ... ).

(0 Another measure of plausibility based on possible new dataset Y, ~ f is

P{f(Yy) < f(¥°)},

and yet another is based on predictive diagnostics, comparing a discrepancy measure
D, =d(Y;,0) with its predictive distribution, i.e.,

P{d(Y5,0) > d(y,0) |y},

where the averaging is over both Y, and the posterior distribution of 6.

O We choose d(Y,,0) to measure some key aspects of the data and model.

stat.epfl.ch Autumn 2023 — slide 187

Prediction and model averaging

O Predict unobserved Z based on observed Y = y from a single model by computing f(z | y), but if
there are several models, then

k

i=1

which averages the posterior distributions of z under the different models, weighted according to
their posterior probabilities

f(y | M;)P(M;)

P(M; | y) = ’
S I TRTATIT)
where
fly| M) = /f(y | 0;, M;)m(6; | M;) d6;,
fz | Miyy) = J f(z 1y, 05, M) f(y | 03 Mi)7(8; | M;) d6;

[y | M;)
O If we have all possible models, the main problem is computational ...
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Example

Bayesian prediction using model averaging for the cement data. For each of the 16 possible subsets of
covariates, the table shows the log Bayes factor in favour of that subset compared to the model with
no covariates and gives the posterior probability of each model. The values of the posterior mean and
scale parameters a and b are also shown for the six most plausible models; (y+ — a)/b has a posterior ¢
density. For comparison, the residual sums of squares are also given.

posterior predictive density

Model RSS 2logBig P(M |y) a b
-——— 2715.8 0.0 0.0000
1--—- 12657 7.1 0.0000
-2—-—-906.3 12.2 0.0000
-—-3- 19394 0.6 0.0000
-—-——-4 8839 12.6 0.0000
12-—- 57.9 45.7 0.2027 93.77 2.31
1-3- 1227.1 4.0 0.0000
1--4 74.8 42.8 0.0480 99.05 2.58
-23- 4154 19.3 0.0000
-2-4 868.9 11.0 0.0000
--34 175.7 31.3 0.0002
123- 48.11 43.6 0.0716 95.96 2.80
12-4 4797 47.2 0.4344 05.88 2.45
1-34 50.84 44.2 0.0986 94.66 2.89
-234 7381 33.2 0.0004
1234 4786 45.0 0.1441 095.20 2.97
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Posterior predictive densities for cement data. Predictive densities for y based on individual models
are given as dotted curves, and the heavy curve is the averaged prediction from all 16 models.
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Arguments for/against Bayes

O For:

O Against:

O In any case, modelling can be flexible and general, provided computation is possible . ..

provides unified approach to inference—all unknowns, data, parameters, predictands are
treated on the same footing;

simple recipe — “just apply Bayes' theorem and compute ..."
gives results similar to likelihood inferences (in large samples);

argument based on axioms of ‘rational behaviour’ under uncertainty leads to ‘coherent’ (i.e.,
internally consistent) Bayes inference;

is it always (ever?) appropriate to treat data (whose model is checkable) on the same basis as
the prior?

Different priors may give different answers. Which is to be believed by a third party?
How do we agree on a prior?

External validity (in the frequency sense) with respect to reality is more important than internal
consistency (one can be consistently wrong!)
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5.3 Bayesian Computation slide 192
Motivation

0 We often want to approximate integrals such as those in the marginal posterior density

or the corresponding marginal posterior distribution function

0 Different approaches exist:

[ F, N, A) dA
= IT Fly v, (@, ) dAdy

fip;ff(y;ib,A)ww,A) dAdy
P vy = [T £y, (i, A) dAdy

deterministic approximations include

> quadrature rules — only work in low dimensions, not much used;

> variational Bayes — provides numerical bounds on some integrals;

> Laplace approximation — accurate analytical method with wide applications;
Monte Carlo approximations include

> importance sampling — uses independent samples, can be unstable;

> Markov chain Monte Carlo — widespread use in applications (other courses ... ).
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Laplace’s method

Lemma 72 Let h(u) be a smooth convex function defined for u € R, with a minimum at u = 4,
where /(@) = 0 and b (@) > 0, and let
o0
I, = / e ) gy,

—00

or \ /2 . 5h2 h
In: an —nh(a) 1 —1 _3__4 9] -2
(nh2> ‘ X{ o \oms Tag) " (") ¢

where hy = h" (1), etc. The leading term I, is known as the Laplace approximation to I,,.

Then

Comments:
0 the error is relative, so the approximation is often very accurate far into the tails;

O I, involves only h and its second derivative at %, so can be computed numerically;

O the series is asymptotic, so the partial sums may not converge, and including more than the
leading term may give no improvements;

0 most of the normal probability lies within =3 SD of the mean, so the limits of the integral don't
matter (much) provided they lie outside the interval @ =+ 3(nhg)~1/2;

O the exponent is written —nh(u) only for formal justification of the approximation; in practice we
set n = 1.
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Note to Lemma 72

Close to @ a Taylor series expansion gives h(u) = h(@) + 3ho(u — @)%, so
o0
[, = enh@® / o-nha(u—0)/2 g,
—00

e—nh(ﬂ) / 6—22/2@ dz
oo dz

1/2
_ (2 / o—nh(i)
nh2 ’

where the first and second equalities use the substitution z = (nhy)'/?(u — @) and the fact that the
normal density has unit integral. A more detailed accounting gives the required result.
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Laplace’'s method: General case

Lemma 73 Let h(u) be a smooth convex function defined for u € RY, with a minimum at u = 1,
where dh(w)/du = 0 and the hessian matrix

is positive definite, and let

Then

~ 21 p/2 -
L =L, {1+0(n™"} = <;> |ho| /2@ 1 1 O(n~1)} .

Example 74 Use Laplace approximation to derive the Bayesian information criterion.
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Note to Example 74

O Laplace approximation to log f(y) gives
~ ~ p ~ —
log m(0) + log f(y | 6) + 5 log(27/n) — 3 log |jl + O(n b,

where 0 maximises log 7(¢) + log f(y | 0) and j = —n~! times the hessian matrix of this function,
evaluated at 6.
O Now plog(2m) — log |j| is of order 1 as n — 0o, and so is log 7(6), and 6 = 6 + O(n™1), so

~

—2log f(y) = —2log f(y | 6) + plogn + O(1) =~ BIC.

stat.epfl.ch Autumn 2023 — note 1 of slide 195

Integral approximation

Lemma 75 Let

autw) = (5=) " [ atwe s {14 061}

o) ) s
where g(u) is a smooth convex function defined for u € R, and in addition to possessing the properties
of h in Lemma 1, g satisfies g(tu) = 0. Also let a(u) > 0. Then

In(o) = ®(n'?rg) + O(n™"),

where )
g'(uo)
a(ug)

* — Vo . -
rg =10 + (ron) " log <7"_0> . o = sign(ug — @){29(uo)}'/?, vy =
Example 76 Use the methods above to approximate the posterior conditional distribution
PO <00 |y)

of a scalar parameter 0 based on a random sample y1, ... ,y, from a regular model, and outline how
posterior confidence intervals for 6 are obtained.
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Note to Lemma 75

[0 The first step is to change the variable of integration from u to r(u) = sign(u — @){2g(u)}/?; that
is, 72/2 = g(u). Then ¢'(u) = dg(u)/du and r(u) have the same sign, and rdr/du = ¢'(u), so

Jn(UQ) _ <TL )1/2 /7“0 a(u) r efm«2/2{1_’_0(n71)} dr

o) ) g ()
_ < n )1/2 /T‘O e_nr2/2+]ogb(7") {1 + O(n_l)} d"“,

/) )

where b(r) = a(u)r/g’ (u) > 0 is regarded as a function of r.

0 We now change variable again, from r to 7* = r — (rn)"'log b(r), so
—nr*? = —nr? 4 2log b(r) — nlr 3 {log b(r)}>.

The Jacobian of the transformation and the third term in —nr*? contribute only to the error of

JIn(ug), so
n\Y2 [T —nr*2/2 -1 *
Jn(ug) = <§) e {1+0(n™ ")} dr
= d(n/HE) +0o(nh), (9)
where
/
7 = o (rom) o (£2) o = signtuo — ) 202, oy = L0
ro a(uo)
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Note to Example 76

O We write ;

Jooem(0)f(y | 0) 6
JZoem(0)f(y | ) dO

and set h(0) =

- —n~He(0) +log7(0)} = —£,,,(0) /n, say. This (scaled) modified log likelihood is
maximised at 6, which is the maximum a posteriori estimate of 6, and
R () = —n= 1" (0) = n~15(0) — n~L(log )" (0).

O Laplace approximation of the denominator integral gives

o exp{=nh(@)} {1+ 0(x 1)},

where hy = h”(6), and inserting this into the expression for the posterior probability gives

PO<bo|y)=1/"2 [ cntno-n@) “1)\ 46
<toly) =2 | e {1400} ao,

to which we can apply Lemma 75 with g(#) = h() — h(#) > 0; this equals zero when 6 = 6, and
a(f) = (nhz)l/z. We take u = 6, u® = 6y,

)d
PO <00|y) = T

o = g'(00)/ (nh2)"? = —n" 00, 00)/ (L@}, ro = sign(Bo—0) [2(t(8) — Lm(60)}/n]

and therefore

1/2, % 1/2
n4ry =n''rg —
0 nl/2p nl/2p

o () 11/2
L o { U (00) {=Ln (0} } |
- . /2
Hence we can simply set n = 1 and compute r¢ = sign(6y — 0) [Q{Em(ﬁ) - Em(éo)}} :
00 Hence we can write
P(0 < 0o |y) = @{rp(6o)} {1+ 0™},

where 7% (6p) is given by the expressions above with n = 1. We obtain confidence intervals by
solving for 6y the equations

a, 1 —a=®{rg(0y)}, orequivalently z,,2z1_o =15(0).

[ The likelihood root (almost) corresponds to setting m(6) o 1, so that § = 6 and nhy = 7, and

then we get
e ~ 1/2 iy
ro = —sign(f — 0y) [2{4(6) — £(6y)} , Vo= —J ?'(6p).

This makes sense, because
P(0 <0 |y)=2{rp(o)}

is increasing in 6, but the corresponding expression for a frequentist interval is decreasing in 6.
So we expect that r5;(6p) = —r*(6p).
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Integral approximation: General case

Lemma 77 Let u = (u1,u2), where uy is scalar and uy a p x 1 vector, and consider

UO
Jn(uf) = (271)(”“)/20/ 1 /exp{—ng(umm)} duadu, (10)

where ¢ is constant, the inner integral being over RP. Here g is supposed to have its previous
smoothness properties, to be maximized at (i, u2), and satisfies (@, u2) = 0. Then

Ta(uf) = ®(n'?r5) + O(n™),

where 1}, = ro + (ron) ! log (:f—g) with

. _ 172 _10g(uY, Gigg ~1/2
ro = Slgn(u? — ) {Qg(u?,wo)} / , Vp=¢ 1%1)‘922(21?,@0)‘ / ,
where tigg is the maximizing value of us when uq = u(l).
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Multivariate case

O The computations of Example 76 can be extended to the multiparameter case using Lemmas 73
and 77, and give

P(y <o | y) = @{r5(wo)} {1 +0(n™ ")},
where 75 (10) = 75 (v0) + re(o) " log {vp (o) /r(10)}, with
ra(v0) = sign(un - ) [2 {6, 3) — o, A }]

R A

(¥, D) PN .

?}B(wO) - = 8¢ ‘_82&”7(1%,5\) )
06000

here 5\1/,0 is the maximum a posteriori estimate of A\ when 1) is fixed at 1)g.
(0 Often we find the derivatives numerically.

[0 There is a close link to maximum likelihood estimation, because 6 = 6 + O(n~1), so the order of
error is not increased by using the MLEs instead of the MAPs — though the numerical
approximations are not so good.

stat.epfl.ch Autumn 2023 — slide 198

124



Frequentist aside

O In frequentist inference saddlepoint approximation is used to write conditional densities for
exponential families as

@
. . Iy ex DN oD
f(tm,w—{%']@)'} p{0(6,)— D)}

leading to
P(Ty <ty | T = to;00) = ®{r*(¥)},

where 1*(¢) = (1) + r(y) " log{r(¥)/v(¥)}, with

~ 1/2
r(¥) = sign( — ¥)[2{0(0) — £(0)}]'/2, v(¥) = (1) — ) {L@'} .
7 (0]

0 Saddlepoint approximation involves writing the exponential family density as an integral of its
Laplace transform (or equivalently its cumulant-generating function), and then approximating the
resulting integral.

0 The details are somewhat more painful, but the idea is similar to the Bayesian case.

[0 The approach sketched on slides 116-118 extends this to arbitrary regular models, by
approximating them by exponential families.
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Comments

0 For successful approximation we must be able to write the integrand as

exp {log f(y;0) +logm(0)},

where the exponent is O(n) and the integrand has one dominant mode.

O If so the methods can work well in fairly high dimensions, partly because the errors in numerator
and denominator can cancel.

0 However Monte Carlo methods are more flexible and in more general use — see Appendix | (and
other courses) for a summary of basic MCMC.
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5.4 Hierarchical Models slide 201

Exchangeability

0 Many types of data have layers of variation, which must be modelled:

— disease incidence varies between regions of a country, and within regions it may vary due to
effects of poverty, pollution, ...

— success of surgical interventions may depend on patients (age/state of health) within surgeons
(different experience/skill) within hospitals (different environments/skill of nursing staff)

0 We think of populations from which patients, doctors, hospitals, ... are drawn, and this suggests
modelling them using layers of randomness.

OO This is common in modelling complex data, in both classical and Bayesian frameworks.

[0 Some theoretical justification is provided by the notion of exchangeability: variables are
exchangeable if there is no reason to distinguish them.

Definition 78 The random variables Uy, ..., U, are called finitely exchangeable if their density has
the property

flug, ... up) = f (u§(1), .. ,u£(n))
for any permutation & of the set {1,...,n}. An infinite sequence Uy,Us, ..., is called infinitely
exchangeable if every finite subset of it is finitely exchangeable.
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De Finetti’'s theorem

Theorem 79 (de Finetti) /fU;,Us,..., is an infinitely exchangeable sequence of binary variables,
taking values uj = 0,1, then for any n there is a distribution G such that

1 n
f(ul,...,un):/o [T6% -0 G(do) (11)
j=1

where
G(¢) = lim P {m YU+ +Un) <0}, 0= n}gnoomfl(Ul o+ Up).
[0 Hence any set of exchangeable binary variables Uy, ..., U, that may be embedded within an

infinite sequence may be modelled as if they were independent Bernoulli variables, conditional on
their success probability 6, this having distribution G and being interpretable as the long-run
proportion of successes.

(0 Similar theorems apply to continuous and other types of variables.

O Thus a judgement that certain quantities are exchangeable implies that they may be represented
as a random sample conditional on some # — equivalent to using a prior distribution for 6.
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Normal example

The following example illustrates properties of all hierarchical models.

Example 80 Suppose that v, ..., vy, 02, jo and 72 are known and
U

H ~ N(:uO’TQ)’
iid
~ o N(p,o?),
ind
yi |0~ N(8,v)),

O 00 | 1

j=1...,n.

Here the hyperparameters jg and 72 control the uncertainty at the top level of the hierarchy. Show
that

B |y) = po/7 + 3 yi/ (0% +v))

1
172+ 5 1/(0% +v;) var(p [ y) = 2+ 5 1/(02 +v;)
oy; + viE(u | ) 1+ var(u | y)/o®
f] j
Discuss.
stat.epfl.ch
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Note to Example 80

00 The y; have different variances, but their means 6; are supposed indistinguishable and hence are
modelled as exchangeable, being normal with unknown mean p, and we can write

yj = po + (k= po) + (0 — ) + (y; — 65),

where 119 is known, and as the y; and 6; are linear combinations of normal variables it is
straightforward to check that

1 T2 217 721F
0| ~Nopi1{ polonsit, 21, 721,1F + 0?1, 721,17 4 021, , (12)
Y 21, 7'21”15 +0%I, V+ 721n1£ + o021,

where 1,, denotes the n x 1 vector of ones and V' = diag(vy,...,v,).

[0 The most direct approach to computing the posterior distributions . and 6 given y is to write

L
Q Q

0] ~ Nopti {,u012n+17 (Q; QZ) } ;

Yy

where var(y) = Q9. Then the posterior density of the parameters given y is also normal, with

</g> |y ~ Nog1 {polns1 + Q12955 (y — poln), Q11 — Q12055 Qo1 } - (13)

We shall take a less messy and maybe more enlightening route,, first computing the posterior
distribution of p, then that of € given both 1 and y, and then marginalising the latter over p.

0 Expression (12) shows that the joint density of 1 and y is normal with covariance matrix

T
<g BC«) ) 14:7'27 B:7’21n7 C:TQInIZ—i—D, D:diag(02+vl,...702—|—’(}n).
The Woodbury formula gives
(D+7°1,15) ' = D7 = DM, (7 72 + 1,07 1,) 11, D7

so with a = 17 D~!1,, we have
A-BC'B" = 7 —"1{D' =D ', (+*+1,D'1,,)"'1,D""}°1,

2
a
= 24 a-— B
T “+a

= (T +a)7h

which gives var(u | y), and a simpler calculation using (13) with p only gives the mean, resulting in

72 o2+ 1
E(p|y) = qu;TQ i%f}{(gz _:_Uj;)’ var(p | y) = 172+ 5 1/(02 + Uj)'

The posterior mean of y is a weighted average of its prior mean ji9 and of the y;, weighted
according to their precisions. Typically 72 is taken to be very large, and then E(u | ) is essentially
a weighted average of the data. Even when v; — 0 for all j there is still posterior uncertainty
about s, whose variance is 02 /n because 1, ..., y, is then a random sample from N (u,o?).
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Note 2 to Example 80

[0 To compute the posterior mean and variance of 6; we note that the graph structure gives
f(0; ] i, y) = f(6; | w,y;). This simplifies the computation because we need only compute the
joint distribution of (u,6;,;), and this is
72 72 72
N3 < 13u0, 2 72452 72 4+ 02
2 12402 7'2+02+vj

from which we obtain 6, | u1,y; ~ N{(y;/v; + u/c?)/(1/v; +1/0?),(1/v; +1/0?)7 ). As
E0; [ y) =ELE®O; | n,y;)},  var(0; [ y) = E{var(0; | p,y;)} + var{E(0; | 1, y;)},
where the outer expectation and variance are over the distribution of u given gy, we finally obtain

1+ var(u | y)/o®
1/vj+1/0?

o?y; +viB(u | y)
o2 +v;

E@; |y) = , var(0; |y) =

[0 The posterior mean of 6; is a weighted average of y; and E(y | y), showing shrinkage of y;
towards E(s | y) by an amount that depends on v;. As v; — 0, E(6; | y) — y;, while as v; — oo,
E(0; | y) = E(u | y). This is a characteristic feature of hierarchical models, in which there is a
‘borrowing of strength’ whereby all the data combine to estimate common parameters such as pu,
while estimates of individual parameters such as the §; are shrunk towards common values by
amounts that depend on the precisions v; of the corresponding observations.
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Example: Cardiac surgery data

A 0/47 B 18/148 C 8/119 D 46/810 E 8/211 F 13/196
G 9/148 H 31/215 I 14/207 J  8/97 K 29/256 L 24/360

Mortality rates r/m from cardiac surgery in 12 hospitals (numbers of deaths r out of m operations).

0 Hierarchical model:
ind . iid
T’j‘@j ~ B(mj,Hj), ]ZA,...,L, 6A7---70L‘C ~ f(H‘C), C ~ W(C)

Conditional on §;, the number of deaths r; at hospital j is binomial with probability 6; and
denominator m;, the number of operations, which plays the same role as v;l in the normal
example above: when m; is large then a death rate is relatively precisely known.

O Conditional on ¢, the §; are a random sample from a distribution f(6 | {), and the prior
distribution for ¢ depends on fixed hyperparameters.

O We take 3; = log{6;/(1 —0;)} ~ N(u,o?), conditional on ¢ = (u,0?), and p ~ N(0,c?) and
0? ~ IG(a,b), with a = b= 1072, so 2 has prior mean one but variance 103, and ¢ = 103,
giving . prior variance 10°.
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Example: Cardiac surgery data

OO The joint density is

IZI (ZJ> (1 frég)mﬂ‘ (277012)1/2 P {—%(ﬁj - u)z} x w(p)m(o?),

so the full conditional densities for ;2 and o2 are normal and inverse gamma.
0 We use a Metropolis—Hastings step for 8, using a random walk proposal with
m; +1
(rj +1/2)(m; —rj +1/2)°

B; ~ N{B;,d*c%v;/(0® +vj)}, v =

where we choose d to optimise the algorithm.

(0 This normal approximation comes from Example 80, taking

EJ|BNN(5>UJ)> 5]1'51'/\/’(1&70-2)7

and then computing f3; | Ej.
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Example: Cardiac surgery data

cardiac.gibbs <- function(data, mu0=0, a=10~(-3), b=10"(-3), c=10"3, R=10"5, d=1)
{ # parameter is mu, sig2, beta
card.update <- function(data, mu0, a, b, c, para)

{
sig2 <- paral[2]
beta <- paral-c(1,2)]
n <- length(beta)
mu <- rnorm( 1, (muO/c~2 + sum(beta)/sig2)/(1/c~2+n/sig2),sqrt(1/(1/c~2+n/sig2))| )
sig2 <- rigamma( a+n/2, b+0.5*sum((beta-mu)~2) )
v <- (data$m+1)/((data$r+0.5)*(data$m-data$r+0.5))
var.beta <- sig2*v/(v+sig2)
beta.prop <- rnorm(n, beta, sd=dxsqrt(var.beta))
acc.prob <- exp( data$r*beta.prop - data$m*log(l+exp(beta.prop)) -
0.5%(beta.prop-mu)~2/sig2 - data$rxbeta +
data$m*log(1l+exp(beta)) + 0.5*(beta-mu)~2/sig2 )
acc.prob <- pmin(l,acc.prob) # use pmin and ifelse to do all
beta <- ifelse(runif(n)<=acc.prob,beta.prop, beta) # acceptances/rejections at dnce
c( mu, sig2, beta)
}

rigamma <- function(a, b) 1/rgamma(l, shape=a, rate=b)
logit <- function(p) log(p/(1-p))
out <- matrix(NA, 2+nrow(data), R)
out[, 1] <- ¢c(0, 1, rep(0,nrow(data)))
for(r in 2:R)

out[, r] <- card.update(data, mu0, a, b, c, out[,r-1])
out

system.time( cardiac.sim <- cardiac.gibbs(cardiac, R=10"4, d=4) ) # around 3.5 seconds
acc.rate <- function(x) mean((diff(x)!=0))
apply(cardiac.sim,1,acc.rate) # compute acceptance rates for the proposals
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Effect of d

Acceptance probabilities for different values of d:

d 01 05 1 2 3 5 10 20 30
L 1 1 1 1 1 1 1 1 1
o? 1 1 1 1 1 1 1 1 1
B 095 082 07 05 037 025 0.12 0.06 0.05

PACF for d = 1:

Partial ACF
00 02 04 06 08

Partial ACF
00 01 02 03 04 05
13

1
|
|
1
Partial ACF
00 01 02 03 04 05

T T T T T T T T T T T T T
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
9 Lag Lag

Partial ACF
00 02 04 06 08
Partial ACF
Partial ACF
02 04 05 08

,,,,,,,,, oHmztozzocazz-s o lmaas sz szs
3

T T T T T T T T T T T
0 10 20 3 40 0 10 20 30 40 0 10 20 30 40
Lag Lag
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Effect of d: d=0.1

mu

-3 -2 -1 0

1 1 1 1
{ ‘g 4

sig2
0.0 X i k
2
1

T T T T T T T T T T T T T T T
0 2000 6000 10000 0 2000 6000 10000 0 2000 6000 100C

Time Time Time
o o] s
o o o
£+ 2 2
oo ™o <+ o
A e A
@ I ©
i v o
- - w0
o o o
T T T T T T T T T T T T T T T T T T
0 2000 6000 10000 0 2000 6000 10000 0 2000 6000 100C
Time Time Time

Taking d = 0.1 makes the acceptance probability too high, so the chain mixes too slowly.
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Effect of d: d=1

o

-

T T
0 2000

T
6000
Time

T T
10000

T
6000
Time

T T
0 2000 1001

00

T T T
6000 100C

Time

T T
0 2000

o

3

o

20

15
1

I

Rate 4 (%)
10

o

T T
0 2000

d ~ 4 seems somewhat better.

T
6000
Time

T T
10000

T
6000
Time

T T
0 2000

T T
10000

Taking d = 1 is OK, but theory suggest that the acceptance rate should be around 0.2-0.4, so taking

T T T
6000 100C

Time

T T
0 2000
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Effect of d: d =30

o w0 I
- ~
1 B
o g
2™ W”w* % 52
- ©
o
o _
i w0
<
i o o
T T T T T T T T T T T T T T T T T
0 2000 6000 10000 0 2000 6000 10000 0 2000 6000 100C
Time Time Time
=
o o
w
S
<+ o
o
©
o
w0
©- o o-
T T T T T T T T T T T T T T T T T
0 2000 6000 10000 0 2000 6000 10000 0 2000 6000 100C
Time Time Time

Taking d = 30 makes the acceptance probability too low, so the chain sticks.
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Example: Cardiac surgery data, effect of shrinkage

Posterior means and 0.95 equitailed credible intervals for separate analyses for each hospital are shown
by hollow circles and dotted lines, while blobs and solid lines show the corresponding quantities for a
hierarchical model. Note the shrinkage (‘borrowing of strength’) of the estimates for the hierarchical
model towards the overall posterior mean rate, shown as the solid vertical line; the hierarchical intervals
are slightly shorter than those for the simpler model.

H (31/215)

B (18/148)

K (20/256) I

J(8/97) -

C (8/119)

1 (14/207)

F (13/196)

L (24/360)

G (9/148) o e —

D (46/810) oo

E (8/211) s

A (0/47) |

0 5 10 15 20
Death rate (%)
stat.epfl.ch Autumn 2023 - slide 212

Summary

0 Hierarchical modelling allows us to fit complex models to data.

0 Key idea is to treat parameters as coming from a distribution, and to use the data to estimate the
distribution:

— appropriate when exchangeable elements are present;

— inappropriate when we are interested in certain pre-specified parameters or where prior
knowledge distinguishes them;

— an example of inappropriate use: economic modelling with countries of Europe treated as
exchangeable.

O Empirical Bayes is also based on hierarchical models, but estimates key parameters — e.g., in
Example 80 the parameters 1 and o2 would be estimated (e.g., by maximising a marginal
likelihood) rather than having a prior placed on them. Often this is more attractive than putting a
prior at the top level of the hierarchy.

(0 Can be hard to count the number of parameters: the prior ‘ties together’ some parameters, so
there are ‘really’ fewer—but how many?

O Graphical representation of dependence relations (hierarchical structure, ...) very useful — see
Appendix II.
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Appendix I: Monte Carlo Methods slide 214

Importance sampling

0 Seek to estimate

= [m0.p.2m(0 | ) a0
where taking, for example,

- m(0,y,z) =1(0 < a) will give u =P(0 < aly),
- m(0,y,z) = f(z]y,0) will give p = f(z | y).

O If we can sample 64,...,0R Y h(6), where the support of h includes that of 7(6 | y), then we

have an importance sampling estimator

R

i (0 |y _
lzm 7"7y7 (0|) ) R 1Zm(07"7y7z)w(07")7
r=1
where w(0) = 7(0 | y)/h(0) is an importance sampling weight.
(0 Advantage of i over MCMC output is that its variance is readily obtained.

O Disadvantage is that choice of A is usually difficult. and especially if dim(0) is large, so huge
samples are needed because most of the simulated 6, receive zero weight and so are wasted.
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Markov chain Monte Carlo

0 Want to learn about distribution m of random variable U € U:

— in Bayesian statistics, U is all unknowns and 7 is their posterior distribution conditioned on
observed data y;

— in frequentist statistics U may be functions of the data y, and we seek to condition on other
functions, e.g., to perform a conditional test.

OO0 Construct a Markov chain {U"} with state space U and transition kernel P, whose limiting
distribution is 7, i.e.,

PU ' c A|u’) - n(A) t—=o0, ueclU, ACU.

[0 We then use P to simulate a realisation u®,u!,. .., u* of the chain, and hence get estimates such
as
R
Brlo®) |9} = [ gtu(u|y) a Rzg HAlD R YT € A)
0 Must choose P and u° so that
— the distribution of U? converges quickly to 7 (so minimise simulation effort);
— % u!, ..., uf are as independent as possible (so have efficient estimation).
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Markov chains

Definition 81

(a) A sequence U°,U',U?, ... of elements of a set U is a Markov chain if the conditional
distribution of Ut! given U, ..., U depends only on U:

PUM e A|UL...,.UY=PWU™ cA|UY, AcuU.

We call U the state space of the Markov chain.

(b) A Markov chain has stationary transition probabilities if the conditional distribution of U'*!
given U does not depend on t.

(c) The distribution of U° is called the initial distribution, and the conditional distribution
P(u, A) = P(U™ € A|U" = u)

is called the transition probability distribution (or transition kernel); this does not depend on t if
the chain has stationary transition probabilities, and then we denote it by P.

(d) The stationary or invariant or equilibrium distribution of a Markov chain with transition kernel
P satisfies

w(A) :/P(u,.A)W(du), AcCU.
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Ergodicity and convergence
For the distribution of U? to converge to a stationary distribution, the chain must satisfy three
important properties:

O irreducibility — U/ does not split into separate parts when we run the chain on it, so the kernel P
allows us to reach any point of U/ starting from anywhere else;

0 aperiodicity — precludes the possibility of the ‘limiting’ distribution depending on the iteration
number, i.e., eliminates possibilities like a,, = (—1)", which equals 1 if n is even and otherwise is
odd;

0 positive recurrence — every state is visited infinitely often, if the chain is run forever. This
enables estimation of properties of that state.

O An irreducible, aperiodic, positive recurrent chain is called ergodic.

O The ergodic theorem states that an ergodic Markov chain has a unique stationary distribution 7,
PU'€e A|Uy=u) = n(A), t—o00, uecld,ACU,

and if g is a real-valued function with [ |g(u)|m(du) < oo, then

- Zg(Ut) 25 g(u)m(du), R — oc.
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Detailed balance

0 Modulo technical details (skipped here), the implication is that if we can find a transition kernel P
with invariant distribution 7, then we can generate samples (almost) from 7.
O Why ‘almost’? Because we run the chain for a finite number of steps, so in general our samples
are not exactly from .
0 We now describe some standard recipes for building MCMC algorithms.
O  For simplicity of exposition we take U to be countable, so P = P(u,v) for u,v € U.
O A sufficient condition for invariance is detailed balance:
m(u)P(u,v) = w(v)P(v,u), u,v€U.
O This guarantees invariance because
/ P(u, Ar(du) = > w(w)P(u,v)
veAuel
= Z Z m(v)P(v,u)
veAuel
= > 7ww) Y P(v,u) =7(A) x 1 =mr(A).
veA uel
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Metropolis—Hastings algorithm

Example 82 (Toy) Construct a Metropolis—Hastings algorithm with N'(0,1) target density and
proposal distribution q(v | u) = o~ 1¢{(v —u)/c}.

A very general algorithm to estimate a target density 7, with many variants.
Hastings (1970) generalised an idea of Metropolis et al. (1953):

— given a current value u of the chain, construct a candidate new value (a ‘proposal’) v by
drawing from an arbitrary density q(v | u);

— accept the proposal as the next state of the chain with probability

m(v)q(u | v) }

a(u,v) = min {1, W

and otherwise leave u unchanged.
The target density 7 is needed only up to the constant of proportionality, and only at u and the
proposal v, so in particular the normalising constant is not needed.
An important special case, the Gibbs sampler, updates each component wu; of u by successively
writing u = (u;, u—;) and then replacing u; with v; ~ w(u; | u—;), where 7(u; | u_;) is called the
full conditional density.
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Note: Detailed balance for the M-H algorithm

O First we note that
P(u,v) = q(v | wa(u, v) + r(u)I(u = v),

where

r(u)=1- /q(v | w)a(u,v) dv.

The first and second terms of P(u,v) are the probability density for a move from u to v being
proposed and accepted, and the probability that a move away from w is rejected.

O The Metropolis—Hastings update step satisfies detailed balance because

m(u)P(u,v) = 7(u)q(v |wu)min {1 M} + m(uw)r(u)l(u =)

m(u)gq(v | u)

s
i 77T(u)q(v | w m(v)r(v)I(v=u
()a(u ] o) min { L AL 4 (o) (0)1(0 = )

= 7(v)P(v,u).
Hence the corresponding Markov chain is reversible with equilibrium distribution 7, provided it is
irreducible and aperiodic.
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Note to Example 82

0 We need to work out the acceptance ratio

m(v)q(u | v)
m(u)gq(v | u)
where , Y
m(u) x e /2 qlu|v) = (2re?) Y2 207,
and this is

e~ V%12 « (27T0.2)—1/2€—(u—v)2/202

— 1/,2 2
e~v*/2 x (2m02) 1/ 2~ (v—u)?/20? = exp{3z(u” —v%)},

so the move u — v is accepted with probability min[1, exp{3(u? — v?)}].

O If v® < u? the acceptance ratio is greater than unity and the move is always accepted, whereas if
v? > u? the move may not be accepted, and if v? >> u? the move is very unlikely to be accepted.

O Note that
— we did not need the normalising constant for 7 to run the algorithm;
— the acceptance ratio does not depend on o;
— the acceptance probability does depend on 0. With W ~ U(0, 1), it is
Plur V]u) = P (W <min[l,exp{i(u®—v?)}]|u)

1 2 /9.2
= P(JVI<u|uw) +/ W2~ (v-u)/20% gy,
{o:Jol>[ul} (2mo?)1/2
which clearly depends on u and on o.
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Toy MH example: Code

toy.MH <- function(R=5000, sig=1, u0=-10, seed)

{
set.seed(seed)
u <- rep(u0,R)
for (r in 2:R)
{
v <- rnorm(1, ulr-1], sig)
log.ratio <- dnorm(v, log=T) + dnorm(v, mean=ul[r-1], sd=sig, log=T) -
dnorm(ulr-1], log=T) - dnorm(ulr-1], mean=v, sd=sig, log=T)
a <- min( 1, exp(log.ratio) )
ulr] <- ulr-1]
if (runif(1)<=a) ulr] <- v
}
u
}

save.seed <- .Random.seed # use the same seed for each simulation
outl <- toy.MH(sig=0.1, seed=save.seed)

out2 <- toy.MH(sig=0.5, seed=save.seed)

plot.ts(outl, ylim=c(-10,3), xlab="Iteration", ylab="u"
plot.ts(out2, ylim=c(-10,3), xlab="Iteration", ylab="u")
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Toy MH example

Simulations from a Metropolis—Hastings algorithm with A/(0,1) target density, with u® = —10 and
random walk proposal v ~ N (u,0?) with o = 0.1,0.5, 2.4, 10.

100 200 300 400 500
L L L L L

T T T T T T
0 100 200 300 400 500

With o = 0.1, 0.5, proposals often accepted but chain moves too slowly. With o = 10 chain gets stuck
for too long. Here o = 2.4 seems best.
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Proposal distributions

O In principle there is an (almost) completely free choice for the proposal distributions ¢;, but just a
few possibilities are typically used:

— Independence Metropolis—Hastings, in which ¢(v) is unrelated to u. Not much use in
practice, but helpful for theoretical analysis.

- Random walk Metropolis, in which g(u,v) = g(v — u) and ¢(-) is a density symmetric about

0, giving
a(u,v) = min {1, m(v) }

because ¢(u,v) = g(v,u). This amounts to setting v = u + €, where ¢ ~ q.

— Random walk Metropolis on the log scale, applied when u > 0, in which random walk
Metropolis is applied to log u; then ¢(v,u)/q(u,v) = v/u and so

a(u,v) = min {1, m(v)v } .

m(u)u

Similar random walks can be applied to other transformations.
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Toy Gibbs sampler

Example 83 Find the joint posterior density for the mean and standard deviation of a normal random
sample of size n with prior distributions ji ~ N (&,k71) and 072 ~ T'(a, B).
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Note to Example 83

The joint posterior is

B k=8> Yy —u)z}

(o2 | y) o (072)* T2 Lexp {—p -— 552

so the parameters are dependent a posteriori although they were independent a priori. The full
conditional densities are

wloy ~ N(Zyj—i-UQ,% 1 >

n+rko? ‘no 24k
1
Sluy ~ T(atn/28+ w5 —n?/2).

and the Gibbs sampler alternates updates of 1 and of o2 using these two equations.
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Toy Gibbs example: Code

# Darwin’s maize data in eighths of an inch
n <- 15
y <- c(49,-67,8,16,6,23,28,41,14,29,56,24,75,60,-48)

# Set (improper) prior parameters and number of iterations R
xl <- kappa <- alpha <- beta <- 0
R <- 10000

# Gibbs sampler with initial values mu=0, 1/sig~2=0.002

out <- matrix(NA,R,2)

out[1,] <- c(0, 0.002)

for (r in 2:R)

{

new.mean <- (sum(y) + kappa*xi/out[r-1,2])/(n+kappa/out[r-1,2])

new.var <- 1/(n*out[r-1,2] + kappa)

out[r,1] <- rnorm(1, mean=new.mean, sd=sqrt(new.var))

out[r,2] <- rgamma(l, rate=betat+sum((y-out[r,1])~2)/2, shape=alpha+n/2)
}

# posterior values of sigma
out[,2] <- sqrt(1/outl[,2])
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Toy Gibbs example

10,000 iterations of Gibbs sampler for (1, o), with initial value o = 0; the (u update, o update) steps
are shown for the first 20 iterations:

o
S|
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40
1
—

-20 0 20 40 60
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Toy Gibbs example

0.02 0.|03 0.04

Posterior density
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l l |

Posterior density
0.92

0.00 0.01

O.PO

[
-20

I
0

20
mu

40

60

Marginal histograms and density estimates for p and o, based on 10,000 simulations:
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Toy Gibbs example

autocorrelation:
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Toy Gibbs example: Estimation

O Any function of (i, ) can be estimated using the successive pairs (i, 0)1, ..., (i, 0)R.

O For example, to compute ¢ = P(Y; < —50 | y) we can either add simulation of a new observation
Y. to each iteration, giving (¢, 0, Y4 )1,..., (4,0, Yy )R, or we can use conditioning to obtain the
estimators

~ R 50 — 1
T
U = R;IYHg —50), ; < )

The maximum likelihood estimator of ¢ is ¥ = ®{(—=50 — 7i)/5} = 0.030, where Ji, & are the
MLEs, but the Bayes estimator is 1o = 0.045, which is larger because it allows for the variability of
the parameters (though it depends on the prior).

OO0 Similar arguments apply to estimation of marginal densities, using either by a kernel density
estimator or an unbiased estimator based on the full conditionals. For example,

R
w(u|y) = 1Zh (M MT>, m(ply) =R w(plony),

r=1

where K is a kernel function with bandwidth h.
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Discussion
0 Update several variables at once by taking vector u; — most useful if the components of u; are
conditionally independent given u_;, which allows parallel updates.

O  All the methods use the full conditionals 7(u; | u—;): the Gibbs sampler draws from them, but the
M-H algorithm only evaluates them at « and v.

O To ensure that the overall chain is ergodic we must make the chain reversible as a whole. In some
cases this is obvious, but if not, and the kernels for updating different variables are Py, ..., Py,
then we might take

m m
_ 1
P=P - P, 1PhnPp 1P, o P=m 1ZPZ-, or %;1_[1})5(1),
1=
where ¢ is a random permutation of {1,...,m}.

0 Convergence diagnostics are needed to check ‘stationarity’ of output — simple time series plots
are helpful, but more sophisticated methods exist, often based on comparing multiple chains.

O There is a huge (and still growing) literature on all aspects of these methods.
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Appendix IlI: Graphical Models slide 231

Graphical models

[0 Complex dependencies are often represented using graphs:
— helps understanding;
— transforming the type of graph can simplify certain computations.
O Graph language for generic variables Y7,...,Y,:
— Y] is represented by a node of the graph, so the node setis 7 = {1,...,n};
— we define a neighbourhood system N = {N,j € J} such that
> the neighbours of j are the elements of N; C J, where for each j the neighbourhood
Nj satisfies
(i) J&N;, (i) ieN; & JeEN,
and let N; = NV; U {j};
— the set of nodes and the neighbourhood structure (7, ) define the graph.
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Directed acyclic graphs

Definition 84 A directed acyclic graph (DAG) is a graphical model that represents a hierarchical
dependence structure:

O conditional dependence of Y1 on Y5 is represented by an arrow from the parent node Y; to the
child node Y7;

O Y; is a descendent of Y3 if there is a chain of arrows from Y3 to Y7;
OO it is directed because each arc is an arrow; and

O it is acyclic because it is impossible to start from a node, traverse a path by following arrows, and
end up at the starting-point.

The decomposition f(y) = f(y1 | y2,y5)f(v2 | y3,v6)f (y3)f(ya | y5) f(us | ys)f(ys) gives:
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Conditional independence graph

(0 Construct a conditional independence graph from a DAG, by adding edges between any parents
that share a child and dropping the arrowheads.

[J The conditional distribution of Y; given Y_; depends only on the variables Y, directly linked to
Y; in the conditional independence graph:

Fily—j) = fly; | yn;)-

0 Why? For any DAG,
Fy) =11 f(v; | parents of y;)

jeT
so
f(y) [L;cs f(yi | parents of y;)
flyjly—) = T = : oY de
Jfw)dy;  [Tlies f(yi | parents of y;) dy;
o« f(y; | parents of y;) H f(y; | parents of y;)
{i:y; is child of y;}
o< fy; [ yn;),

because terms without y; cancel from the ratio.
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Simplifying full conditional distributions
O The DAG and conditional independence graph help in constructing an MCMC sampler:
— we use the model definition to write down the DAG;
— we convert the DAG into a conditional independence graph;
— we read the required conditional dependencies off from the conditional independence graph.

O The conditional independence graph (right) implies that

fly-1)=fwily2,us), fly2ly—2)=f(y2|vy1,¥3, Y5 V6),
fsly=3)=fslveys), [(yaly-a)=Ff(yalys),

SN
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