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Introduction slide 2

Starting point

� We start with a concrete question, e.g.,

– Does the Higgs boson exist?

– Is fraud taking place at this factory?

– Are these two satellites likely to collide soon?

– Do lockdowns reduce Covid transmission?

� We aim

– to use data

– to provide evidence bearing on the question,

– to draw a conclusion or sometimes reach a decision.

� Here we mostly discuss how to express the evidence, but the choice and quality of the data, and
how they were obtained, affect the evidence and the clarity of any decision.

� The data typically display both structure and haphazard variation, so any conclusion reached is
uncertain, i.e., is an inference.

� A statistical inference uses probability models to express the variation in the data.
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Theory

� The goal of statistical theory is to clarify the foundations of statistical inference, which need not
involve deep mathematics.

� Some reasons for studying theory:

– to clarify underlying issues;

– to guide strategy for applied work;

– to elucidate the common structure of diverse applied procedures and thus to formulate general
approaches;

– to transfer ideas between different application domains;

– to give a basis for developing new methods (including adaptations for specific applied problems)

– to give a basis (or bases) for comparing competing procedures; and

– because it’s interesting.
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Mathematics, asymptotics and all that

� Statistical science is a mathematical science (like physics, . . . ): problems are often formulated in
mathematical terms, but success or failure is judged in consequences for the real world, not in an
abstract realm.

� Very often we argue as sample size n (or some other measure of information) becomes large,
because

– exact calculations are impossible or too onerous to be worthwhile;

– asymptotic arguments clarify the essential structure of a problem (and in particular the
necessary assumptions), and thus help generalisation;

– a procedure that fails when n = ∞ will be suspect for finite n.

� Such arguments are often used to generate approximations useful for some fixed finite n, so we
should always ask ‘will this approximation be adequate in this context?’ Often this involves

– Monte Carlo studies with a realistic sample size;

– general knowledge (e.g., Laplace approximations generally work better than Edgeworth
approximation);

– previous experience (hard to teach).
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Types of statistical analysis

� Conventionally divided into

– descriptive statistics/exploratory data analysis — informal (often graphical) methods used
to gain insight into data, used for initial data analysis and for presenting conclusions;

– statistical inference — more formal approaches using probability models to clarify the
support for particular statements about the underlying situation;

to which we nowadays add

– algorithmic methods — machine learning algorithms, generally complex and computationally
demanding, often used for prediction/decision-making.

� Even the first and the last are studied using probability models (e.g., formulation of a boxplot, ‘is
that difference significant?’, analysis of neural networks).

� Need to be clear what type of analysis is being conducted, otherwise conclusions may be horribly
biased.
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Dr Harold Shipman
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Descriptive statistics
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More descriptive statistics
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Excess mortality statistics
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Data

� Theoretical discussion generally takes observed data as given, but

– to get the data we may need to plan an investigation, perhaps design an experiment
largely controlled by the investigator — not considered here but often crucial to obtaining
strong data and hence secure conclusions; or

– to use data from an observational study (the investigator has little or no control over data
collection).

� In both cases the data used may be selected from those available, and especially if we have ‘found
data’ we must ask

– why am I seeing these data?

– what exactly was measured, and how?

– can the observations actually shed light on the problem?

– will using a function of the available data give more insight?

� Below we assume that these questions have suitable answers, and we can continue with our
analysis.
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Example: Satellite conjunction

� Goal is to say whether two ‘space objects’ will collide, based on repeated noisy measurements of
their velocities v and positions p.

� In a ‘close conjunction’ the problem is usually simplified:

– only the latest measurements are used,

– the relative position and velocity of the second object relative to the first are considered, giving
p2 − p1 (km), v2 − v1 (km/s),

– the relative motion is taken as rectilinear (Newton I), the objects are represented as spheres
and their radii are added to give a ‘combined hard-body radius’ (HBR),

so we ask

based on noisy measurements of p2 − p1 and v2 − v1, what is the evidence
that the true path of object 2 will pass inside the HBR?

� A simple probability model for the relative position and velocity is

(
p2 − p1
v2 − v1

)
∼ N6

{(
µ
ν

)
,

(
Ω Ω′

Ω′T Ω′′

)}

where µ and ν represent the unknown true relative position and velocity vectors and the 3× 3
matrices Ω, Ω′ and Ω′′ are treated as known.
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Multivariate normal distribution

A random variable Xn×1 with real components has the multivariate normal distribution,
X ∼ Nn(µ,Ω), if aTX ∼ N (aTµ, aTΩa) for any constant vector an×1, and then

� the mean vector and covariance matrix of X are

E(X) = µn×1, var(X) = Ωn×n,

where Ω is symmetric semi-positive definite with real components;

� for any matrix Am×n and vector bm×1 of constants,

AX + b ∼ Nm (Aµ+ b,AΩAT) ;

� X has a density on R
n iff Ω is positive definite (i.e., has rank n), and then

f(x;µ,Ω) =
1

(2π)n/2|Ω|1/2 exp
{
−1

2(x− µ)TΩ−1(x− µ)
}
, x ∈ R

n; (1)

� If XT = (XT

1 ,X
T

2 ), where X1 is m× 1, and µ and Ω are partitioned correspondingly, then the
marginal and conditional distributions of X1 are also multivariate normal:

X1 ∼ Nm(µ1,Ω11), X1 | X2 = x2 ∼ Nm

{
µ1 +Ω12Ω

−1
22 (x2 − µ2),Ω11 − Ω12Ω

−1
22 Ω21

}
.
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Example: Satellite conjunction II

� When the velocity measurements can be treated as noiseless compared to the position
measurements, i.e., ν = v2 − v1 (equivalently Ω′ = Ω′′ = 0), then we can write

X = p2 − p1 ∼ N3(µ,Ω), ψmin = HBR > 0,

and object 2 traverses the line {µ+ tν : t ≥ 0}.
� We use a matrix A2×3 to project X and µ into the plane P perpendicular to ν and passing

through the origin, and obtain the two-dimensional model

(
Y1
Y2

)
= Y = AX ∼ N2(ξ,D

−1), D−1 = AΩAT =

(
d−1
1 0

0 d−1
2

)
,

say, with known d1, d2 (as Ω is known and A depends on the known ν), and unknown

ξ =

(
ξ1
ξ2

)
=

(
ψ cos λ
ψ sinλ

)
, ψ > 0, 0 ≤ λ < 2π.

� We observe a value x of X and ask

based on the projection y = Ax of x into P, what is the evidence that
ξ = Aµ lies inside the HBR, or equivalently that ψ = ‖ξ‖ < ψmin?
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Example: Satellite conjunction III

� We seek inferences about the scalar ψ = ‖ξ‖ based on the bivariate observation y.

� A natural estimate of ψ is ‖y‖ = (y21 + y22)
1/2, but geometrically it is obvious that

P(‖y‖ > ψ) > 1/2, i.e., ‖y‖ will tend to be larger than ψ.

� The sample size is n = 1, and any asymptotics are as d1, d2 → ∞, i.e., var(Y ) → 0.
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Some definitions

� We use the term (probability) density for both the PMF of a discrete random variable, and the
PDF of a continuous random variable.

� A statistical model for data y is a probability density f(y) defined for y ∈ Y.

� A parametric model f ≡ f(y; θ) is determined by parameters θ ∈ Θ ⊂ R
d. If no such θ exists,

f is nonparametric.

� Sometimes we use the term family of models to stress that there are many possibilities,
{f(y; θ) : θ ∈ Θ}.

� Generally θ = (ψ, λ) splits into

– parameters of interest (interest parameters) ψ, usually scalar, that we focus on,

– nuisance parameters λ, usually vector, needed to complete the model but not of main
interest,

though different elements of θ may become of interest during an investigation.

� By convention we (try to) use

– letters like c, d, . . . for (known) constants,

– Roman letters for random variables X,Y, . . . and their realisations x, y, . . .,

– Greek letters µ, ν, ψ, λ,Ω,∆, . . . for unknown parameters.

stat.epfl.ch Autumn 2022 – slide 16
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Some shortcuts

� X1, . . . ,Xn
iid∼ f means that the Xj are independent and all have the density f , and we call the

Xj a random sample of size n from f .

� X1, . . . ,Xn
ind∼ f1, . . . , fn means that the Xj are independent and Xj ∼ fj.

� X1, . . . ,Xn
iid∼ (µ, σ2) means that the Xj are independent with mean µ and variance σ2 (we

assume that 0 < σ2 <∞). Here we do not assume that the Xj are normal.

� X1, . . . ,Xn
iid∼ (µ1, . . . , µn, σ

2
1 , . . . , σ

2
n) means that the Xj are independent with means µj and

variances σ2j (where 0 < σ2j <∞).

� We write N (0, 1) for the standard normal distribution, which has density and distribution functions

φ(u) =
1√
2π
e−u

2/2, u ∈ R, Φ(z) =

∫ z

−∞
φ(u) du, z ∈ R.

and write zp for the p quantile of the standard normal distribution, i.e., Φ(zp) = p, where
0 < p < 1.
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Example: Satellite conjunction IV

� If Y ∼ Nn(µ,Ω), then θ = (µ,Ω) ∈ Θ ⊂ R
n × S, where S denotes the set of all n× n symmetric

positive definite matrices, so this is a parametric model.

� In the satellite example, we assume that the observed position y is a realisation of

Y ∼ N2

{(
ψ cos λ
ψ sinλ

)
,

(
d−1
1 0

0 d−1
2

)}
,

where d1, d2 > 0, θ = (ψ, λ) ∈ Θ = R+ × [0, 2π), the density function is

(d1d2)
1/2

2π
exp

[
−1

2

{
d1(y1 − ψ cos λ)2 + d2(y2 − ψ sinλ)2

}]
, y1, y2 ∈ R.

� Given the constants d1, d2 and observed data y1, y2,

– the interest parameter is the length ψ of ξ,

– the nuisance parameter is the angle λ, and

we want to know the evidence that ψ < ψmin.

� A natural estimate of ψ is ‖y‖ = (y21 + y22)
1/2, but this will tend to be too long.

stat.epfl.ch Autumn 2022 – slide 18
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Objectives

� Given a specified family of models f(y; θ) with θ = (ψ, λ) and observed data y, the objectives of a
statistical analysis might be to

– give intervals (or more generally sets) of values within which ψ is ‘likely to lie’;

– assess the consistency of y with a particular ψ0;

– predict as-yet unobserved random variables from the system that generated y;

– use y to choose one of a specified set of decisions — requires the specification of the
consequences of the decisions.

� We might also seek to check whether the family of models adequately represents the data.
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Probability

� Two distinct roles of probability in statistical analysis:

– as a description of variation in data (‘aleatory probability’, ‘chance’), using a probability model
and treating the observed data y as an outcome of that model;

– to formulate uncertainty (‘epistemic probability’) about the reality modelled in terms of the
random experiment, based on y.

stat.epfl.ch Autumn 2022 – slide 20

Probability models for variation

� Two broad types of probability model:

– substantive — based on fundamental subject-matter theory (e.g., particle physics, Mendelian
genetics, Navier–Stokes equations);

– empirical — a convenient, adequately realistic, representation of data variation;

– and of course there is a spectrum between them.

� The satellite example is partly substantive (using Newtonian mechanics for the ideal trajectory
µ+ tν) and partly empirical (normal distributions for measurement error).

� We aim that

– primary questions/issues are encapsulated in the parameter(s) of interest;

– secondary aspects can be taken into account, often via nuisance parameters;

– variation in the data is realistically modelled, leading to reasonable statements of uncertainty;

– any special feature of the data collection process is represented;

– different approaches to analysis can if necessary be compared.

� Such models are always provisional and should if possible be checked against data.
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Uncertainty

� Essentially three bases for statements of uncertainty:

– a Bayesian (inverse probability) inference expresses it via a prior probability density and
uses Bayes’ theorem to update this in light of the data;

– a frequentist (sampling theory) inference compares y with the set S of other data that
might have been observed in a hypothetical sampling experiment;

– in a designed experiment, clinical trial, sample survey or similar the investigator uses
randomisation to generate a distribution against which y is compared.

� There are many variants of the first two approaches.

� In particular, a frequentist should choose S thoughtfully:

– what doctors would be a suitable comparison group for Shipman?

Example 1 (Measuring machines) A physical quantity θ can be measured with two machines, both
giving normal observations Y such that E(Y ) = θ. A measurement from machine 1 has variance 1,
and one from machine 2 has variance 100. A machine is chosen by tossing a fair coin, giving M = 1, 2
with equal probabilities.
If we observe m = 1 and y = 2, then clearly we can ignore the fact that we might have observed
m = 2, i.e., we should take S = {(y, 1) : y ∈ R} rather than S = {(y,m) : y ∈ R,m ∈ {1, 2}}.
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Bayesian inference

� Our observed data yo are assumed to be a realisation from a density f(y | ψ).
� If we can summarise information about ψ, separately from yo, in a prior density f(ψ), then we

can use Bayes’ theorem to obtain the posterior density

f(ψ | yo) = f(yo | ψ)f(ψ)∫
f(yo | ψ)f(ψ) dψ ,

and base all our uncertainty statements on this.

� For example, if ψp satisfies P(ψ ≤ ψp | yo) = p for any p ∈ (0, 1), we could give a (1− 2α)
posterior credible interval I1−2α = (ψα, ψ1−α) such that

P(ψ ∈ I1−α | yo) = 1− 2α;

here ψ is regarded as random and yo as fixed.

� Likewise if there is a nuisance parameter, we require a prior density f(ψ, λ) and compute the
marginal posterior density of ψ,

f(ψ | yo) =
∫
f(yo | ψ, λ)f(ψ, λ) dλ∫∫
f(yo | ψ, λ)f(ψ, λ) dλdψ .

stat.epfl.ch Autumn 2022 – slide 23
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Example

Example 2 In the satellite problem a natural prior density for ξ ∈ R
2 is the improper prior

f(ξ1, ξ2) ∝ c > 0, ξ1, ξ2 ∈ R,

used to express total ignorance about ξ, and if D = {(ξ1, ξ2) : ξ21 + ξ22 ≤ ψmin}, then

P(ψ < ψmin | yo) =
∫∫

D

(d1d2)
1/2

2π
exp

[
−1

2

{
d1(y

o
1 − ξ1)

2 + d2(y
o
2 − ξ2)

2
}]

dξ1dξ2

also equals (in polar coordinates)

∫ ψmin

0

∫ 2π

0

(d1d2)
1/2

2π
exp

[
−1

2

{
d1(y

o
1 − ψ cos λ)2 + d2(y

o
2 − ψ sinλ)2

}]
ψ dλdψ

corresponding to the prior
f(ψ, λ) ∝ ψ > 0, ψ > 0, 0 ≤ λ < 2π,

on the polar coordinates.
How does this prior express ignorance about ξ?
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Note to Example 2

� The posterior density for ξ1, ξ2 is proportional to

c× (d1d2)
1/2

2π
exp

[
−1

2

{
d1(y

o
1 − ξ1)

2 + d2(y
o
2 − ξ2)

2
}]
,

and the constant of proportionality is just the integral of this expression with respect to ξ1, ξ2. By
symmetry of the quadratic form in the exponent, this is just c, so the posterior density for ξ1, ξ2 is
just

(d1d2)
1/2

2π
exp

[
−1

2

{
d1(ξ1 − yo1)

2 + d2(ξ2 − yo2)
2
}]
, ξ1, ξ2 ∈ R,

i.e., ξ | yo ∼ N2(y
o,D−1). Compare the densities on the next slide to see how the sampling model

for y | ξ on the left is updated by Bayes’ theorem to the posterior density of ξ | y = yo on the right.

� The Jacobian for changing from the Cartesian coordinates ξ1, ξ2 to the polar coordinates
ψ = (ξ21 + ξ22)

1/2, λ = tan−1(ξ2/ξ2) is ψ, which gives the second expression.

� As the prior is uniform the prior probability that ξ lies in any set is the ratio of the measure of that
set to the measure of R2, and thus is zero for any bounded set, and thus in particular for any disk
around the origin.

stat.epfl.ch Autumn 2022 – note 1 of slide 24
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Conjunction

Left: sampling model y | ξ ∼ N2(ξ,D
−1). Right: posterior density ξ | y ∼ N2(y,D

−1) based on the
constant prior.
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Comments

� Bayesian inference

– requires the specification of a prior distribution on unknowns, separate from the data;

– implies that we regard prior information as equivalent to data, putting uncertainty and
variation on the same footing;

– reduces inference to computation of probabilities, so in principle is simple and direct.

� Specifying prior ‘ignorance’ in an objective way is problematic and can lead to paradoxes, especially
in high-dimensional settings.

� (Approximate) Bayesian computation can be performed using

– conjugate prior distributions (exact computations in simple cases),

– integral approximations (e.g., Laplace’s method),

– deterministic methods (e.g., variational approximation),

– simulation, especially Markov chain Monte Carlo.

stat.epfl.ch Autumn 2022 – slide 26
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Sampling theory

� Sampling theory inference treats the observed data yo as a realisation from some model f(y; θ),
and calculates probabilities using hypothetical samples from f(y; θ).

� We assess the plausibility of different values of θ by asking how well they explain yo, often using a
pivot.

Definition 3 If Y has density f(y; θ), then a pivot (or pivotal quantity) Q = q(Y, θ) is a function
of Y and θ that has a known distribution (i.e., does not depend on θ). Often it is convenient if Q is
monotone in θ for each Y .

Example 4 If M = max(Y1, . . . , Yn), where Y1, . . . , Yn
iid∼ U(0, θ), show that Q =M/θ is a pivot.
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Note to Example 4

Q1 is a function of the data and the parameter, and

P(M ≤ x) = FY (x)
n = (x/θ)n, 0 < x < θ,

so
P(Q1 ≤ q) = P(M/θ ≤ q) = P(M ≤ θq) = (θq/θ)n = qn, 0 < q < 1.

which is known and does not depend on θ. Hence Q1 is a pivot.
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Confidence intervals

Definition 5 Let Y = (Y1, . . . , Yn) be data from a parametric statistical model with scalar parameter
θ. A confidence interval (CI) (L,U) for θ with lower confidence bound L and upper confidence
bound U is a random interval that contains θ with a specified probability, called the (confidence)
level of the interval.

� L = l(Y ) and U = u(Y ) are statistics that can be computed from the data. They do not depend
on θ.

� In a continuous setting (so < gives the same probabilities as ≤), and if we write the probabilities
that θ lies below and above the interval as

P (θ < L) = αL, P (U < θ) = αU ,

then (L,U) has confidence level

P (L ≤ θ ≤ U) = 1− P (θ < L)− P (U < θ) = 1− αL − αU .

� Often we seek an interval with equal probabilities of not containing θ at each end, with
αL = αU = α/2, giving an equi-tailed (1− α)× 100% confidence interval.

� We often take standard values of α, such that 1− α = 0.9, 0.95, 0.99, . . .

stat.epfl.ch Autumn 2022 – slide 28
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Construction of a CI

� We use pivots to construct CIs:

– we find a pivot Q = q(Y, θ) involving θ;

– we obtain the quantiles qαU , q1−αL of Q;

– then we transform the equation

P{qαU ≤ q(Y, θ) ≤ q1−αL} = (1− αL)− αU

into the form
P(L ≤ θ ≤ U) = 1− αL − αU ,

where the bounds L, U depend on Y , q1−αL and qαU , but not on θ.

� Going from quantiles of Q to confidence limits for θ is known as inverting the pivot.

� In many cases, the bounds are of a standard form (see below).

Example 6 In Example 4, find a CI based on Q.
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Note to Example 6

The p quantile of Q1 =M/θ is given by p = P(Q1 ≤ qp) = qnp , so qp = p1/n. Thus

P{α1/n
U ≤M/θ ≤ (1− αL)

1/n} = 1− αL − αU ,

and a little algebra gives that

P{M/(1 − αL)
1/n ≤ θ ≤M/α

1/n
U } = 1− αL − αU ,

so
L =M/(1 − αL)

1/n, U =M/α
1/n
U .

stat.epfl.ch Autumn 2022 – note 1 of slide 29
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Interpretation of a CI

� (L,U) is a random interval that contains θ with probability 1− α.

� We imagine an infinity of possible datasets from the experiment that resulted in (L,U).

� Our particular CI is regarded as randomly chosen from the corresponding infinity of CIs.

� Although we do not know whether our particular CI contains θ, the event θ ∈ (L,U) has
probability 1− α across these datasets.

� In the figure below, the parameter θ (green line) is contained (or not) in realisations of the 95% CI
(red). The black points show the corresponding estimates.
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One- and two-sided intervals

� A two-sided confidence interval (L,U) is generally used, but one-sided confidence intervals,
(−∞, U) or (L,∞), are sometimes required instead.

� For one-sided CIs, we take αU = 0 or αL = 0, giving (L,∞) or (−∞, U).

� For a one-sided (1− α)× 100% interval, we compute a two-sided interval with αL = αU = α, and
then replace the unwanted limit by ±∞ (or another value if required in the context).

stat.epfl.ch Autumn 2022 – slide 31
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Comments

� We assume that yo is just one of many possible datasets y ∈ S that might have been generated
from f(y; θ), and the probability calculations are with respect to S.

� We choose the reference set S to ensure that the probability calculation is relevant to the data
actually observed. For example, if yo has n observations, we usually insist that every element of S
also has n observations.

� The repeated sampling principle ensures that (if we use an exact pivot) inferences are calibrated,
for example, a (1− α) confidence interval (L,U) satisfies

P(L < θ ≤ U) = 1− α,

for every θ ∈ Θ and every α ∈ (0, 1). Hence if such an interval is used repeatedly, then the
probability it does not contain θ is exactly α.

� Calibration guarantees that the procedure, if repeated, has the stated error probability, and any
particular interval either does or does not contain θ.

� Bayesians object that inferences should only be based on the dataset yo actually observed, so the
reference set S is irrelevant.

Example 7 What would the confidence intervals look like in Example 1? How would the image on
slide 30 change? What hypothetical repetitions form the reference set?
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Randomisation

� To compare how treatments affect a response, they are randomised to experimental units:

– treatments are clearly-defined procedures, one of which is applied to each unit;

– a unit is the smallest division of the raw material such that two different units might receive
two different treatments;

– the response is a well-defined variable measured for each unit-treatment combination.

� Examples are agricultural trials, industrial experiments, clinical trials, . . .

� The experiment is ‘under the control’ of the investigator, making strong inferences possible.

� Main goals of randomisation:

– avoidance of systematic error (eliminating bias);

– estimation of baseline variation (e.g., by use of replication and/or blocking);

– realistic statement of uncertainty of final conclusions;

– providing a basis for exact inferences using the randomisation distribution.

stat.epfl.ch Autumn 2022 – slide 33
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Example: Shoe data

� Shoe wear in an paired comparison experiment in which materials A (expensive) and B (cheaper)
were randomly assigned to the soles of the left (L) or right (R) shoe of each of m = 10 boys.

� The m = 10 differences d1, . . . , dm have average d = 0.41.

Boy Material Difference
A B d

1 13.2 (L) 14.0 (R) 0.8
2 8.2 (L) 8.8 (R) 0.6
3 10.9 (R) 11.2 (L) 0.3
4 14.3 (L) 14.2 (R) –0.1
5 10.7 (R) 11.8 (L) 1.1
6 6.6 (L) 6.4 (R) –0.2
7 9.5 (L) 9.8 (R) 0.3
8 10.8 (L) 11.3 (R) 0.5
9 8.8 (R) 9.3 (L) 0.5
10 13.3 (L) 13.6 (R) 0.3
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Example: Shoe data II

� A unit is a foot, a treatment is the type of sole, and the response is the amount of wear.

� This is paired comparison experiment, as there are blocks of two similar units, each of which is
given one treatment at random, according to the scheme

Treatment for boy j Left foot Right foot

A lj rj
B ψ + lj ψ + rj

� We observe either (ψ + lj, rj) or (lj , rj + ψ) so the difference Dj of B and A for boy j is
ψ + lj − rj or ψ + rj − lj. These are equally likely, so we can write Dj = ψ + Ijcj , where

– ψ is the unknown (extra wear) effect of B compared to A,

– Ij = 1 if the left shoe of boy j has material B and otherwise equals −1, and

– cj = lj − rj is the unobserved baseline difference in wear between the left and right feet of boy
j.

� If we observe (ψ + lj , rj) for boy j, then we cannot observe (lj , ψ + rj), which is said to be
counterfactual.
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Example: Shoe data III

� There are 2m equally-likely treatment allocations, and the observed d is a realisation of the random
variable

D =
1

m

m∑

j=1

Dj =
1

m

m∑

j=1

ψ + Ijcj = ψ +
1

m

m∑

j=1

Ijcj ,

where Ij = ±1 with equal probabilities, so

E(Ij) = 0, var(Ij) = 1.

� Hence E(D) = ψ and var(D) = m−2
∑m

j=1 c
2
j , which is unknown because the cj are unknown, is

estimated by (exercise)

S2 =
1

m(m− 1)

m∑

j=1

(Dj −D)2.

� D and S2 can be computed from the observed data, so the standardized quantity Z = (D − ψ)/S
is an approximate pivot.

� If there was no difference between B and A (i.e., ψ = 0), then T = D/S would be symmetrically
distributed, as positive and negative values of D would be equally likely.
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Example: Shoe data IV

Randomization distribution of T = D/S for the shoes data, i.e., setting ψ = 0, together with a t9
distribution. Left: histogram and rug for the values of T , with the t9 density overlaid; the observed
value is given by the vertical dotted line. Right: probability plot of the randomization distribution
against t9 quantiles.
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Comments

� Systematic error is reduced by randomisation,

– but if material A had by chance been allocated to all the left feet, then we might have
re-randomised;

– we could have used a design in which A appeared on left feet exactly 5 times.

� Baseline variation was reduced by blocking, i.e., using two treatments for each boy, and is
estimated by S2, based only on the observed values D1, . . . ,Dm.

� S2 also allows a statement of uncertainty for D and hence for estimates of ψ.

� If ψ = 0, then the observed value of D is highly unlikely: just 3 values of D exceed d = 0.41, so if
ψ = 0 then exact calculation gives

P(D ≥ d) = 7/210
.
= 0.007,

which seems unlikely enough to suggest that ψ > 0.

� Normal distribution theory suggests that Z
·∼ t9, and the QQ-plot shows that this would work well

even here. The symmetry induced by randomisation justifies the widespread use of normal errors in
designed experiments.
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Wrapping up

� Statistical inference involves (a family of) probability models from which observed data are
assumed to be drawn.

� These models express variation inherent in the data, but we also wish to express our uncertainty
about the underlying situation.

� Uncertainty is formulated using

– a Bayesian approach, which requires that ‘prior information’ on unknown quantities be
expressed as a probability distribution, or

– a repeated sampling (frequentist) approach, which invokes hypothetical repetitions of the
data-generating mechanism, or

– a randomisation approach, in which the model and hypothetical repetitions are controlled by
the investigator.

� The last is the strongest approach, but it is not always applicable.
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Some Basic Concepts slide 40

Likelihood

� Given observed data y thought to come from a parametric model fY (y; θ) for which θ ∈ Θ, the
likelihood and the log likelihood are

L(θ) = fY (y; θ), ℓ(θ) = log fY (y; θ), θ ∈ Θ;

we regard these as functions of θ for fixed y. The log likelihood is often more convenient to work
with because if y consists of independent observations y1, . . . , yn, then

ℓ(θ) = log fY (y; θ) = log

n∏

j=1

f(yj; θ) =

n∑

j=1

log f(yj; θ), θ ∈ Θ,

so laws of large numbers and other limiting results apply directly to n−1ℓ(θ).

� The posterior density based on data y and prior f(θ) is proportional to L(θ)× f(θ).
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Likelihood quantities

� The maximum likelihood estimate (MLE) θ̂ satisfies

ℓ(θ̂) ≥ ℓ(θ) or equivalently L(θ̂) ≥ L(θ), θ ∈ Θ.

� Often θ̂ is unique and satisfies the score (or likelihood) equation

∇ℓ(θ) = dℓ(θ)

dθ
= 0,

interpreted as a d× 1 vector equation if θ is a d× 1 vector.

� The observed information and expected (Fisher) information are defined as

J(θ) = −∇2ℓ(θ) = −d2ℓ(θ)

dθdθT
, I(θ) = E {J(θ)} ;

these are d× d matrices if θ has dimension d and otherwise are scalars.

� To evaluate I(θ) we replace y by the random variable Y and take expectations.

Example 8 (Poisson sample) If Y1, . . . , Yn
iid∼ Pois(θ), for θ > 0, find the log likelihood, the MLE,

the observed information and the Fisher information.
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Note to Example 8

� The log likelihood is

ℓ(θ) =

n∑

j=1

log f(yj; θ) =

n∑

j=1

log(θyje−θ/yj!) ≡ s log θ − nθ, , θ > 0,

where s =
∑

j yj and ≡ means that we have dropped additive constants from the log likelihood.

� It follows that ℓ′(θ) = s/θ − n and ℓ′′(θ) = −s/θ2, so provided s > 0 we have θ̂ = s/n = y and
J(θ) = s/θ2. If s = 0 then a sketch of ℓ(θ) shows that θ̂ = 0 = s/n, which is on the boundary of
the parameter space. Also ℓ′′(θ̂) is only defined as a limit from the right, and equals zero.

� As E(S) = nE(Yj) = nθ, the Fisher information is computed as

E(S/θ2) = n/θ.
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Invariance

� Seek invariance to (smooth) 1–1 transformations of data and/or parameter.

� If Z = z(Y ) is a 1–1 function of a continuous variable Y and the transformation does not depend
on θ, then fZ(z; θ) = fY {y−1(z); θ}|dy/dz|, so (in an explicit notation)

ℓ(θ; z) = log fZ(z; θ) ≡ ℓ(θ; y) = log fY (y; θ),

where ≡ means that an additive constant not depending on θ has been dropped — hence
likelihood inference is the same whether we use Y or Z.

� Likewise a smooth 1–1 transformation from θ to φ(θ) will give

f̃(y;φ) = f̃{y;φ(θ)} = f(y; θ),

where the tilde denotes the density expressed using φ. Clearly

f̃(y; φ̂) = f̃{y;φ(θ̂)} = f(y; θ̂), J(θ̂) =
∂φT

∂θ
J̃(φ)

∂φ

∂θT

∣∣∣∣
φ=φ(θ̂)

,

so the respective maximum likelihood estimates satisfy φ̂ = φ(θ̂).

� If possible inferences on ψ should be invariant to interest-respecting (or interest-preserving)
transformations

ψ, λ 7→ η = η(ψ), ζ = ζ(ψ, λ).
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Sufficiency

� A statistic S = s(Y ) is sufficient (for θ) under a model fY (y; θ) if the conditional density
fY |S(y | s; θ) is independent of θ for any θ and s.

� This implies that
fY (y; θ) = fS(s; θ)fY |S(y | s), ℓ(θ; s) ≡ ℓ(θ; y),

so we can regard s as containing all the sample information about θ: if we consider Y to be
generated in two steps,

– first generate S from fS(s; θ), and

– then generate Y from fY |S(y | s),
we see that if the model holds, then the second step gives no information about θ, so we could
stop after the first step.

� The conditional distribution fY |S(y | s) allows assessment of the model without reference to θ.
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Minimal sufficiency

� If S = s(Y ) is sufficient and T = t(Y ) is any other function of Y , then (S, T ) contains at least as
much information as S, and is also sufficient.

� To define a ‘smallest’ sufficient function of Y , we define a minimal sufficient statistic to be a
function of any other sufficient statistic. This is unique up to 1–1 maps.

� Below we always use minimal sufficient statistics, identified by finding the ‘lowest-dimensional
function of the data’ that allows us to plot the log likelihood.

Example 9 (Poisson sample) Let Y1, . . . , Yn
iid∼ Pois(θ), for θ > 0.

� Obtain a sufficient statistic and discuss how to assess the fit of the model.

� How does the sufficient statistic change if the sample size n is a realisation of a geometric random
variable with success probability θ?

Example 10 (Location model) If Y1, . . . , Yn
iid∼ g(y − θ), with g a known continuous density, find a

sufficient statistic.

Example 11 (Uniform model) If Y1, . . . , Yn
iid∼ U(θ), sketch the likelihood, and find a sufficient

statistic and the MLE of θ.
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Note to Example 9

� Here Y = (Y1, . . . , Yn) so

fY (y; θ) =

n∏

j=1

θyj

yj!
e−θ = m(y)θse−nθ,

where m(y) = 1/
∏
yj!, and clearly we need only know n and s =

∑
j yj, and of these only

s = s(y) depends on y. Hence S =
∑

j Yj, which has a Poisson distribution with mean nθ, looks
like a suitable sufficient statistic. We have

fY |S(y | s; θ) = fY (y; θ)

fS(s; θ)
=

m(y)θse−nθ

(nθ)se−nθ/s!
=

s!

y1! · · · yn!
n−s, y ∈ Ys,

where Ys = {y : y1, . . . , yn ∈ {0, . . . , s},∑j yj = s}. This conditional distribution does not
depend on θ, so S is sufficient for θ.

� The conditional distribution is in fact a multinomial distribution with denominator s and
probability vector (1/n, . . . , 1/n), and would be used for testing the fit of the Poisson model.

� When N is geometric with success probability θ ∈ (0, 1), the likelihood becomes

f(y, n; θ) = f(y | n; θ)f(n; θ) =
n∏

j=1

θyj

yj !
e−θ × (1− θ)n−1θ = m(y)(1 − θ)n−1θs+1e−nθ,

and now we see that we would need both n and s to sketch the likelihood. Hence the sufficient
statistic is now (n, s), which is two-dimensional, although there is only one parameter. This is
because the value of n now contains information about θ: very large n will suggest that θ is small.
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Note to Example 10

� The density g is continuous, so all the yj are distinct with probability one. The joint density is
therefore

f(y; θ) =

n∏

j=1

g(yj − θ) = n!

n∏

j=1

g(y(j) − θ), y(1) < · · · < y(n),

where s = (y(1), . . . , y(n)) are the sample order statistics. The labels on the original data are
simply a permutation of the n labels on the order statistics, but the values are the same, so

f(y | s; θ) = f(y; θ)

f(s; θ)
=

1

n!
, y ∈ Ys,

where Ys is the set of permutations of (y1, . . . , yn) with order statistics s; clearly |Ys| = n!,
because there are no ties.

� Here |s| = n in general. In special cases (e.g., the normal distribution, g = φ) we can find a
sufficient statistic of of lower dimension.
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Note to Example 11

� The density is f(y; θ) = θ−1I(0 < y < θ), so since the observations are independent, the
likelihood is

L(θ) =

n∏

j=1

θ−1I(0 < yj < θ) = θ−nI(0 < y1, . . . , yn < θ) = θ−nI(θ > m), θ > 0,

where m = max(y1, . . . , yn); note that
∏
j I(0 < yj < θ) = I(m < θ). Viewed as a function of θ

this is maximised at θ̂ = m, which is therefore the MLE.

� Here the maximum is NOT found by differentiation of the likelihood, which is not differentiable at
θ̂.

� We need m and n to compute the likelihood, and since n is supposed constant, the maximum m is
minimal sufficient.
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Formal results

� For a less informal treatment we note that

– any statistic T = t(Y ) taking values t ∈ T partitions the sample space Y into equivalence
classes Cs = {y′ ∈ Y : t(y′) = s};

– the partition Cs corresponding to T is sufficient if and only if the distribution of Y within each
Cs does not depend on θ; and

– a minimal sufficient statistic gives the coarsest possible sufficient partition.

� We use the following two results to identify the (minimal) sufficient statistic.

Theorem 12 (Factorisation) A statistic S = s(Y ) is sufficient for θ in a model f(y; θ) if and only if
there exist functions g and h such that

f(y; θ) = g{s(y); θ} × h(y).

Theorem 13 Let Y have density f(y; θ) and let S = s(Y ) be such that the ratio

f(y; θ)

f(z; θ)

is free of θ if and only if s(y) = s(z). Then S is minimal sufficient for θ.
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Note to Theorem 12

� The result is ‘if and only if’, so we need to argue in both directions.

� If S is sufficient, then the factorisation

f(y; θ) = f{s(y); θ} × f(y | s) = g{s(y); θ} × h(y)

holds.

� To prove the converse, suppose for simplicity that Y is discrete and that there is a factorisation.
Then S has density

f(s; θ) =
∑

y′∈Y :s(y′)=s

g{s(y′); θ}h(y′) = g(s; θ)
∑

y′∈Y :s(y′)=s

h(y′),

where the sum is in fact over y′ ∈ Cs. Thus the conditional density of Y given S = s = s(y) is

f(y | s; θ) = g{s(y); θ}h(y)
g(s; θ)

∑
y′∈Cs

h(y′)
=

h(y)∑
y′∈Cs

h(y′)
,

which does not depend on θ. Hence S is sufficient.

� The continuous case is similar, but the presence of a Jacobian makes the argument a bit messier.
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Note to Theorem 13

� We must show that that S is sufficient and that it is minimal.

� To show sufficiency, note that every y ∈ Y lies in an element of the partition Cs generated by the
possible values of S, and choose a representative dataset y′s ∈ Cs for each s. For any y, y′s(y) is in

the same equivalence set as y, so the ratio f(y; θ)/f(y′s(y); θ) does not depend on θ, by the

premise of the theorem. Hence

f(y; θ) = f(y′s(y); θ)×
f(y; θ)

f(y′s(y); θ)
= g{s(y); θ} × h(y),

because y′s(y) is a function of s(y). This factorisation shows that S = s(Y ) is sufficient.

� To show minimality, if T = t(Y ) is any other sufficient statistic the factorisation theorem gives

f(y; θ) = g′{t(y); θ}h′(y)

for some g′ and h′. If two datasets y and z are such that t(y) = t(z), then

f(y; θ)

f(z; θ)
=
g′{t(y); θ}h′(y)
g′{t(z); θ}h′(z) =

h′(y)

h′(z)

does not depend on θ, and hence s(y) = s(z). This implies that

{z ∈ Y : t(z) = t(y)} ⊂ {z ∈ Y : s(z) = s(y)},

i.e., the partition generated by the values of S is coarser than that generated by the values of T ,
and therefore it must be minimal.
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Exponential family models

� An elegant general theory puts many well-known distributions (Poisson, binomial, normal, . . . )
under the same roof.

� If θ ∈ Θ ⊂ R
d, where dimΘ = d, and there exists a d-dimensional statistic s = s(y) of data y and

a parametrisation ϕ ≡ ϕ(θ), i.e., a 1–1 function of θ, such that

f(y; θ) = m(y) exp {sTϕ− k(ϕ)} = m(y) exp [sTϕ(θ)− k{ϕ(θ)}] , θ ∈ Θ, y ∈ Y,

then this is a regular (or full) (d, d) exponential family of distributions, and

– the canonical statistic S = s(Y ) is minimal sufficient for θ,

– the canonical parameter is ϕ,

– the mean parameter η = E(S;ϕ) = dk(ϕ)/dϕ is obtained by differentiating the

– the cumulant-generating function k(ϕ+ t)− k(ϕ), and

– the cumulant generator k(·) is convex on the set N = {θ : log
∫
es

Tϕm(y) dy <∞}.
� The cumulant-generating function is the log moment-generating function for S, i.e.,

KS(t) = logMS(t) = k(ϕ+ t)− k(ϕ), t ∈ T ⊂ R
d,

where the open set T contains t = 0. Check that E(S) = ∇k(ϕ), var(S) = ∇2k(ϕ).
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Note on cumulant-generating functions

� The moment-generating function for the canonical statistic S of an exponential family is

MS(t) = E {exp(tTS)} =

∫
m(y) exp {sTt+ sTϕ− k(ϕ)} dy,

and since this must equal unity when t = 0 we see that

∫
m(y) exp {sTϕ} dy = exp{k(ϕ)},

and therefore that if it is defined,

MS(t) =

∫
m(y) exp {sT(t+ ϕ)− k(ϕ)} dy = exp{k(ϕ + t)− k(ϕ)},

as required.

� To find the mean and variance we note that MS(0) = 1,

∇MS(t)|t=0 = E(S), ∇2MS(t)
∣∣
t=0

− E(S)E(S)T = var(S),

and as KS(t) = logMS(t),

∇KS(t) =MS(t)
−1∇MS(t), ∇2KS(t) =MS(t)

−1∇2MS(t)−MS(t)
−2∇MS(t)∇TMS(t),

which reduce to the mean and covariance matrix when t = 0.
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Examples

Example 14 (Poisson sample) Are the models of Example 9 full exponential families?

Example 15 (Satellite conjunction) Show that the given model is an exponential family.
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Note to Example 14

� In the first model

fy(y; θ) =
n∏

j=1

θyj

yj!
e−θ = m(y) exp(s log θ − nθ),

where m(y) = (
∏
yj)

−1, s = s(y) =
∑
yj, ϕ = log θ, k(ϕ) = nθ = neϕ. This is a (1, 1)

exponential family.

� In the second model we saw that

f(y, n; θ) = m(y)(1−θ)n−1θs+1e−nθ = m(y) exp{−nθ+s log θ+n log(1−θ)+log θ−log(1−θ)},

so we can take

s(y) = (n, s), ϕ = (log(1− θ)− θ, log θ), k{ϕ(θ)} = log(1− θ)− log θ,

with θ scalar but s(y) of dimension 2. This is a (2, 1) curved exponential family (next slide).
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Note to Example 15

� The multivariate normal density is

f(y;µ,Ω) =
1

(2π)n/2|Ω|1/2 exp
{
−1

2(y − µ)TΩ−1(y − µ)
}
, y ∈ R

n

= (2π)−n/2 exp
{
−1

2(y − µ)TΩ−1(y − µ)− 1
2 log |Ω|

}
,

and the data y only appear in the exponent,

(y − µ)TΩ−1(y − µ) = yTΩ−1y − 2yTΩ−1µ+ µTΩ−1µ.

� When Ω is known (as in the satellite case), the only unknown parameter is µ and we can set

ϕ = Ω−1µ, s(y) = y, m(y) = (2π)−n/2|Ω|−1/2e−y
TΩ−1y/2, k(ϕ) = µTΩ−1µ/2 = ϕTΩϕ/2.

Note that ∇k(ϕ) = Ωϕ = ΩΩ−1µ = µ = E(y) and ∇2k(ϕ) = Ω = var(y), as expected.

� We could also have set ϕ = µ and s(y) = Ω−1y. Find k(ϕ) in this case and find the corresponding
mean and variance of the canonical statistic.

� If Ω is known, then y is a 1–1 transform of s(y) = Ω−1y, so y is sufficient also.

� In the satellite example n = 2 and Ω = D−1 is diagonal and known, so the expressions above
simplify slightly.
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Exponential family models II

� When dim s = k > dim θ = d the model is called a (k, d) curved exponential family, and the
k × 1 vector ϕ(θ) gives a d-dimensional manifold in R

k.

� The joint density of a random sample Y1, . . . , Yn from an exponential family is

n∏

j=1

f(yj; θ) =
n∏

j=1

m(yj) exp
{
sTj ϕ− k(ϕ)

}
= m∗(y) exp {nsTϕ− nk(ϕ)} ,

say, where ns =
∑

j s(yj), and this is also an exponential family, with canonical statistic ns and
cumulant generator nk(ϕ). Thus exponential families are closed under sampling.

� It is easy to check that the canonical statistic S =
∑n

j=1 s(Yj) of a random sample from an
exponential family is minimal sufficient.

� The log likelihood ℓ(θ) ≡ sTϕ− k(ϕ) in a full exponential family is concave as a function of ϕ, so
the MLEs of ϕ and µ are given by

s = ∇k(ϕ)|ϕ=ϕ̂ = µ̂,

and the observed and expected information quantities both equal ∇2k(ϕ).
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Eliminating nuisance parameters

Sometimes the removal of nuisance parameters can be based on the following results.

Lemma 16 In a statistical model f(y;ψ, λ) let Wψ be (minimal) sufficient for λ when ψ is regarded
as fixed. Then the conditional density f(y | wψ;ψ) depends only on ψ. This holds in particular if Wψ

does not depend on ψ.

Lemma 17 In a (d, d) exponential family in which ϕ(θ) = (ψ, λ) and s = (t, w) is partitioned
conformally with ϕ, the conditional density of T given W = wo is an exponential family that depends
only on ψ.

Example 18 (2× 2 table) Apply Lemma 17 to the 2× 2 table.

stat.epfl.ch Autumn 2022 – slide 50

Note to Lemma 16

If ψ is regarded as fixed, then

f(y;ψ, λ) = f(wψ;ψ, λ)× f(y | wψ;ψ),

where the rightmost term is free of λ, with logarithm

log f(y;ψ, λ)− log f(wψ;ψ, λ).
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Note to Lemma 17

In the discrete case, let
∑

o denote the sum over the set {y : w = wo} and note that

f(wo;ψ, λ) =
∑

o

m∗(y) exp {tTψ + woTλ− k(ϕ)}

= exp {woTλ− k(ϕ)}
∑

o

m∗(y) exp {tTψ}

so

f(t | wo;ψ) =
m∗(y) exp {tTψ + woTλ− k(ϕ)}

exp {woTλ− k(ϕ)}∑om
∗(y) exp(tTψ)

= m∗(y) exp

{
tTψ − log

∑

o

m∗(y) exp(tTψ)

}

= m∗(y) exp {tTψ − k(ψ;wo)} ,

say, where the cumulant generator for the conditional density depends on wo.
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Note to Example 18

� A 2× 2 table arises when m1 individuals are allocated to a treatment and m0 are allocated to a
control. Responses from all individuals are independent and are binary with values 0/1, so the
total number of successes for the control group R0 ∼ B(m0, π0) is independent of those for the
treatment group, R1 ∼ B(m1, π1). If the parameter of interest is the difference in log odds of
success. Here m0 and m1 are considered to be fixed, and R0 and R1 as random. If we write

ψ = log{π1/(1 − π1)} − log{π0/(1− π0)} = log

{
π1(1− π0)

π0(1− π1)

}
, λ = log{π0/(1− π0)},

then we have

π0 =
eλ

1 + eλ
, π0 =

eλ+ψ

1 + eλ+ψ
, ψ, λ ∈ R

and the joint density of the data reduces to

(
m0

r0

)
πr00 (1− π0)

m0−r0 ×
(
m1

r1

)
πr11 (1− π1)

m1−r1 =

(
m0

r0

)(
m1

r1

)
er1ψ+(r0+r1)λ

(1 + eλ)m0(1 + eλ+ψ)m1
,

which is a (2, 2) exponential family with ϕ = (ψ, λ), s = (r1, r0 + r1), and

m∗(y) =

(
m0

r0

)(
m1

r1

)
, k(ϕ) = −m0 log

(
1 + eλ

)
−m1 log

(
1 + eλ+ψ

)
.

� The result above implies that conditioning on W = R0 +R1 will eliminate λ, and

P(W = w) =

r+∑

r=r−

(
m0

w − r

)(
m1

r

)
erψ+wλ

(1 + eλ)m0(1 + eλ+ψ)m1
,

where r− = max(0, w −m0), r+ = min(w,m1), and hence the conditional density of T = R1

given W = R1 +R0 = w is the non-central hypergeometric density

P(T = t | W = w;ψ) =

(
m0

w−t

)(
m1

t

)
etψ

∑r+
r=r−

(
m0

w−r

)(
m1

r

)
erψ

, t ∈ {r−, . . . , r+}.
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Simple frequentist inference

� A basic frequentist recipe for inference on a parameter of interest:

– find the likelihood function for the data Y ;

– find a sufficient statistic S = s(Y ) of the same dimension as θ;

– find a function T of S whose distribution depends only on ψ;

– invert the distribution of T to find confidence limits for ψ for arbitrary α;

– (use the conditional distribution of Y given S to assess model adequacy).

Example 19 (Exponential sample) Apply the recipe above to inference for the mean of an
exponential random sample.

Example 20 (2× 2 table) Apply the recipe above to the 2× 2 table.
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Note to Example 19

� Here θ = ψ, so we can replace ψ by θ.

� The likelihood equals the joint density of y1, . . . , yn,

L(θ) =
n∏

j=1

θ−1 exp(−yj/θ) = θ−n exp(−s/θ), y1, . . . , yn > 0, θ > 0,

so ℓ(θ) = −n log θ − s/θ for θ > 0.

� The scalar statistic s =
∑m

j=1 yj is clearly minimal sufficient for θ, and its distribution is gamma
with parameters θ and n, i.e.,

fS(s; θ) =
sn−1

θnΓ(n)
exp(−s/θ), s > 0, θ > 0.

Note that Q = S/θ has density

fQ(q; θ) = fS(s; θ)|s=θq
∣∣∣∣
ds

dw

∣∣∣∣ =
qn−1

Γ(n)
exp(−q), q > 0,

so Q is a pivot, with quantiles qp that satisfy p =
∫ qp
0 fQ(u) du, for p ∈ (0, 1); these are just the

quantiles of the gamma distribution with parameters 1 and n.

� For α ∈ (0, 1), the equation

1− α = P(qα/2 < S/θ ≤ q1−α/2) = P(S/q1−α/2 ≤ θ ≤ S/qα/2),

yields exact (1− α) confidence interval (L,U) = (S/q1−α/2, S/qα/2).

� The conditional distribution of Y1, . . . , Yn given S = s is

fY (y; θ)

fS(s; θ)
=

θ−n exp(−s/θ)
sn−1

θnΓ(n) exp(−s/θ)
=

Γ(n)

sn−1
, (y1, . . . , yn)/s ∈ Sn,

where Sn denotes the simplex {(y1, . . . , yn) : y1, . . . , yn ≥ 0,
∑

j yj = 1}, and it follows that the
joint distribution of (Y1/S, . . . , Yn/S) is uniform on Sn and does not depend on θ. Model
assessment could be based on this.
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Note to Example 20

� In this case

P(T ≤ t | W = w;ψ) =

t∑

r=r−

( m0

w−r

)(m1

r

)
erψ

∑r+
r=r−

( m0

w−r

)(m1

r

)
erψ

, t ∈ {r−, . . . , r+},

and we can vary ψ to solve the equations

P(T ≤ t | W = w;ψ−) = α/2, P(T ≤ t |W = w;ψ+) = 1− α/2,

thus giving a (1− α) confidence interval.
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Ancillary statistics

Sometimes the dimension of the problem can be reduced by writing S = (T,A) where A = a(Y ) is an
ancillary statistic: a function of the minimal sufficient statistic whose distribution does not depend on
the parameter. Then

fY (y; θ) = fY |S(y | s)fS(s; θ) = fY |S(y | s)× fT |A(t | a; θ)× fA(a),

and inference on θ is based on the second term only, with the other terms used for model-checking.

Example 21 (Location model) Show that writing

T = Y(1), A = (0, Y(2) − Y(1), . . . , Y(n) − Y(1)),

leads to inference based on the conditional density

f(t | a; θ) =
∏n
j=1 g(t− θ + aj)∫ ∏n
j=1 g(u+ aj) du

.
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Note to Example 21

� Write y′j = y(j) for simplicity of notation, and note that

y′1 = t, y′j = y′1 + (y′j − y′1) = t+ aj, j = 2, . . . , n,

so the Jacobian for the transformation is

∂(y′1, . . . , y
′
n)

∂(t, a2, . . . , an)
=

∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
0 1 0 · · · 0
0 0 1 · · · 0

0 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣

= 1,

and thus (setting a1 = 0 for simplicity) the density of the configuration A is

fA(a) =

∫ n∏

j=1

g(t+ aj − θ) dt =

∫ n∏

j=1

g(u+ aj) du,

where we put u = t− θ in the second integral. We see that Q = T − θ is a pivot, because

P(Q ≤ q | A = a) = P(T − θ ≤ q | A = a) =

∫ q∏n
j=1 g(u+ aj) du∫ ∏n
j=1 g(u+ aj) du

,

and using the quantiles qα/2(a) and q1−α/2(a) will give conditional confidence limits.

� Assessment of model fit (i.e., of g) can be based on QQ plots of the values of a. We are familiar
with this in regression problems.
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Comments

� The essence of the recipe on slide 51 is to base an exact pivot Q = q(Y ;ψ) on a minimal sufficient
statistic and use the significance (or p-value) function

P{q(Y ;ψ) ≤ qp}, p ∈ (0, 1)

to invert Q and thus make inference on ψ using the quantiles of Q.

� The difficulties are that:

– finding the sufficient statistic and a function of it that depend exactly only on ψ are typically
possible only in simple models;

– finding the exact distribution of the pivot may be difficult; and

– assessment of model fit using the conditional distribution is difficult in general.

� Nevertheless the recipe suggests how to proceed in more general settings, by basing approximate
pivots on likelihood-based statistics, which will automatically depend on the minimal sufficient
statistic.

� To finish this section we outline the two main likelihood-based approaches (to be justified later).
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Maximum likelihood estimator

� In large samples from a regular model in which the true parameter is θ0d×1, the maximum

likelihood estimator θ̂ has an approximate normal distribution,

θ̂
·∼ Nd

{
θ0, J(θ̂)−1

}
.

� If we write vrr for the rth diagonal element of the d× d matrix J(θ̂)−1, then the Wald statistic
(better, Wald pivot)

θ̂r − θ0r

v
1/2
rr

·∼ N (0, 1), r = 1, . . . , d,

is an approximate pivot involving the rth component θ0r of θ0, for which an approximate (1− 2α)
confidence interval is

θ̂r ± zαv
1/2
rr .
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Profile log likelihood

� The Wald pivot is not invariant to interest-respecting transformations, but the profile log
likelihood for ψ,

ℓp(ψ) = max
λ

ℓ(ψ, λ) = ℓ(ψ, λ̂ψ),

is invariant and provides a better (but computationally more demanding) approach to removing
the nuisance parameter.

� If the model is regular and ψ is scalar then the likelihood root

r(ψ0) = sign(ψ̂ − ψ0)
[
2{ℓp(ψ̂)− ℓp(ψ

0)}
]1/2 ·∼ N (0, 1),

and therefore is an approximate pivot.

� A (1− α) confidence set for the value ψ0 generating the data is

{ψ : zα/2 ≤ r(ψ) ≤ z1−α/2}.

� We will say what ‘regular’ means and justify these results later.
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Hypothesis Testing slide 56

Discovery of the top quark (Abe et al., 1995, PRL)

Here are two extracts from the article announcing the discovery:
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Performing a test

� There’s a null hypothesis to be tested:

H0: the top quark does not exist.

This seems counter-intuitive, but as one cannot prove a hypothesis, we attempt to refute its
opposite — ‘proof by (stochastic) contradiction’.

� We obtain data, yobs = 27 events on the 3-jet, 4-jet, . . . channels.

� We compare yobs with its distribution P0 supposing that H0 is true.

� Here P0 is Poiss(λ0 = 6.7) and represents the baseline noise under H0.

� We compute the P-value

pobs = P0(Y ≥ yobs) =
∞∑

y=yobs

λy0
y!
e−λ0 = 3× 10−9,

so

– either H0 is true but a (very) rare event has occurred,

– or H0 is false and the top quark exists.

� Abe et al. announced a discovery, but if they had found pobs ≈ 0.001, maybe they would have
decided that H0 could not (yet) be rejected, and not published their work.
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Industrial fraud?

� n = 92 weighings of sacks upon the delivery of a commodity C:

261 289 291 265 281 291 285 283 280 261 263 281 291 289 280

292 291 282 280 281 291 282 280 286 291 283 282 291 293 291

300 302 285 281 289 281 282 261 282 291 291 282 280 261 283

291 281 246 249 252 253 241 281 282 280 261 265 281 283 280

242 260 281 261 281 282 280 241 249 251 281 273 281 261 281

282 260 281 282 241 245 253 260 261 281 280 261 265 281 241

260 241

� Their last digits are

0 1 2 3 4 5 6 7 8 9

14 42 14 9 0 6 2 0 0 5

� How can we tell if fraud has taken place?
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Benford’s law

Definition 22 For x ∈ R, let d(x, j) denote the ‘jth significant digit function (base 10)’, so
d(31.4, 1) = 3, d(0.314, 2) = 1 and d(314, 3) = 4.

Definition 23 If x ∈ R and Dj = d(x, j), for j = 1, 2, . . ., then (discarding any leading zeros) the Dr

follow Benford’s law if

P(D1 = d1,D2 = d2, . . . ,Dk = dk) = log10



1 +




k∑

j=1

dj × 10k−j




−1
 , dj ∈ {0, . . . , 9}.

� For example, P(D1 = 3,D2 = 1,D3 = 4) = log10{1 + (314)−1} ≈ 0.0014.

� This is an excellent model for the distribution of all sorts of digits.

� Frequencies (%) of the last digits D3 for three-digit integers.

Digit 0 1 2 3 4 5 6 7 8 9
Uniform 10 10 10 10 10 10 10 10 10 10
Benford 10.178 10.137 10.097 10.057 10.017 9.978 9.940 9.901 9.864 9.826

� Apparently the last digits of the weighings should be approximately uniform.

� To detect forged deliveries we test the null hypothesis

H0 : the last digits of the weighings are uniformly distributed on 0,. . . ,9.
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Pearson’s statistic

Definition 24 If O1, . . . , Ok are the numbers of observations from a random sample of size n falling
in categories 1, . . . , k, where

E(Oi) = Ei > 0, i = 1, . . . , k,

k∑

I=1

Ei = n,

then Pearson’s statistic (aka the ‘χ2 statistic’) is

T =

k∑

i=1

(Oi − Ei)
2

Ei
.

� If O1, . . . , Ok are multinomially distributed with total n and probabilities
p1 = E1/n, . . . , pk = Ek/n, then T

·∼ χ2
k−1 (approximation OK if average Ei ≥ 5).

� We use T to check whether data O1, . . . , Ok agree with specified probabilities p1, . . . , pk.

� For the original dataset we found tobs = 158.2 and hence

pobs = P0(T > tobs)
.
= P(χ2

9 ≥ 158.2)
.
= 0,

which is essentially impossible for uniformly distributed digits.
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For 250 ‘deliveries’ . . .

� Left: Q-Q plot of tobs for 250 different deliveries.

� Right: mean weights for deliveries and values of tobs. Deliveries with the largest values of tobs tend
also to be heavier, also suggestive of fraud.
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Elements of a test

� A null hypothesis H0 to be tested.

� A test statistic T , large values of which will suggest that H0 is false, and with observed value tobs.

� A P-value
pobs = P0(T ≥ tobs),

where the null distribution P0(·) denotes a probability computed under H0.

� The smaller pobs is, the more we doubt that H0 is true.

� If H0 is true, then we can consider that pobs is a realisation of a uniform random variable
P ∼ U(0, 1), and then

P0(P ≤ pobs) = pobs.

� If I decide that H0 is false, when in fact it is true, then I make an error whose probability under H0

is exactly pobs — so my uncertainty is quantified, because I know the probability of declaring a
“false positive”.
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Note: Why is a P-value uniform?

� Let T be a test statistic whose distribution is F0(t) when the null hypothesis is true. Then the
corresponding P-value is

P0(T ≥ tobs) = 1− F0(tobs),

and if the value of tobs is a realisation of Tobs (because the null hypothesis is true), then we can
write the random value of pobs seen in repetitions of the experiment as

Pobs = 1− F0(Tobs),

or equivalently Tobs = F−1
0 (1− Pobs). Hence for x ∈ [0, 1],

P0(Pobs ≤ x) = P0 {1− F0(Tobs) ≤ x}
= P0 {1− x ≤ F0(Tobs)}
= P0

{
Tobs ≥ F−1

0 (1− x)
}

= 1− F0

{
F−1
0 (1− x)

}

= x,

which shows that Pobs ∼ U(0, 1).

� The above proof works for any continuous Tobs, but is only approximate if Tobs is discrete (e.g.,
has a Poisson distribution). In such cases Pobs can only take a finite or countable number of values
known as the achievable significance levels.
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Some asides

� If we say that a hypothesis is true, we mean ‘it is reasonable to proceed as if the hypothesis was
true’ — any model is an idealisation, so it cannot be exactly ‘true’.

� If we have a discrete test statistic, pobs has at most a countable number of ‘achievable
significance levels’. This is only problematic when comparing tests, though randomisation has
(unfortunately) sometimes been proposed to overcome it.

� We may consider a two-sided test, with both unusually large and unusually small values of T of
interest. We can then define

p+ = P0(T ≥ tobs), p− = P0(T ≤ tobs), pobs = 2min(p−, p+),

so p− + p+ = 1 + P0(T = tobs), which equals 1 unless T is discrete;

� We sometimes avoid minor problems due to discreteness by computing ‘continuity-corrected’
P-values

p+ =
∑

t>tobs

P0(T = t) + 1
2P0(T = tobs), p− =

∑

t<tobs

P0(T = t) + 1
2P0(T = tobs).

� The top quark and fraud examples illustrate pure significance tests, where the situation if H0 is
false is not explicitly considered. We look at the effect of alternatives now.
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Testing as decision-making

Formulate testing as deciding between two hypotheses (Neyman–Pearson approach):

� the null hypothesis H0, which represents a baseline situation;

� the alternative hypothesis H1, which represents what happens if H0 is false.

� We choose H1 and ‘reject’ H0 if pobs is lower than some α ∈ (0, 1).

� For given α we partition the sample space Y as

Y0 = {y ∈ Y : pobs(y) > α}, Y1 = {y ∈ Y : pobs(y) ≤ α},

where the notation pobs(y) indicates that the P-value depends on the data, or equivalently

Y0 = {y ∈ Y : t(y) < t1−α}, Y1 = {y ∈ Y : t(y) ≥ t1−α},

where tp denotes the p quantile of the test statistic T = t(Y ) under H0

� We call Y1 the size α critical region of the test, and we reject H0 in favour of H1 if Y ∈ Y1, or
equivalently if the test statistic exceeds the size α critical point t1−α.

� Critical regions of different sizes for the same test should be nested, i.e., (in an obvious notation) if
α′ > α, then

Yα1 ⊂ Yα′

1 and t1−α > t1−α′ .
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False positives and negatives

Decision
Accept H0 Reject H0

State of Nature H0 true Correct choice (True negative) Type I Error (False positive)
H1 true Type II Error (False negative) Correct choice (True positive)

� We can make two sorts of wrong decisions:

Type I error (false positive): H0 is true, but we wrongly reject it (and choose H1);

Type II error (false negative): H1 is true, but we wrongly choose H0.

� Notice that the consequences of bad decisions are not really taken into account in this framework.

� Statistics books and papers call

– the Type I error/false positive probability the size α = P0(Y ∈ Y1), and

– the true positive probability the power β = P1(Y ∈ Y1).

Example 25 If Y1, . . . , Yn
iid∼ N (µ, σ2), with σ2 known, and H0 : µ = µ0 and H1 : µ = µ1, find the

Type II error as a function of the Type I error.
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Note to Example 31

� The minimal sufficient statistic for the normal model with both parameters unknown is (Y , S2),
and it is easy to check that if σ2 is known the minimal sufficient statistic reduces to Y , which has
a N (µ0, σ

2/n) distribution under H0. Hence we take the test statistic T to be Y , and Y = R
n.

� If µ1 > µ0, then clearly we will take

Y0 = {y : y < t1−α}, Y1 = {y : y ≥ t1−α};

this can be justified using the Neyman–Pearson lemma (below). Now

P0(Y ∈ Y0) = P0(Y < t1−α) = P0{
√
n(Y −µ0)/σ <

√
n(t1−α−µ0)/σ} = Φ

{√
n(t1−α − µ0)/σ

}
,

because Z =
√
n(Y − µ0)/σ ∼ N (0, 1) under H0, and for this probability to equal 1− α we must

take t1−α = µ0 + σn−1/2z1−α; this gives Type I error α.

� Note that although the form of Y0 above was determined by H1, the value of t1−α is given by
calculations under H0.

� Z =
√
n(Y − µ1)/σ ∼ N (0, 1) under H1, so the Type II error is

P1(Y ∈ Y0) = P1(Y < t1−α)

= P1(Y < µ0 + σn−1/2z1−α)

= P1{
√
n(Y − µ1)/σ <

√
n(µ0 + σn−1/2z1−α − µ1)/σ}

= Φ(z1−α − δ),

where δ = n1/2(µ1 − µ0)/σ. Hence the Type II error equals 1− α when µ1 = µ0 and decreases as
a function of δ. We would expect this, because as µ1 increases, the distribution of Y under H1

shifts to the right and we are less likely to make a false negative error.
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True and false positives: Example

� It is traditional to fix α and choose T (or equivalently Y1) to maximise β, but usually more
informative to consider P0(T ≥ t) and P1(T ≥ t) as functions of t.

� In Example 31 we would

– reject H0 incorrectly (false positive) with probability

α(t) = P0(T ≥ t) = 1− Φ{n1/2(t− µ0)/σ},

– reject H0 correctly (true positive) with probability

β(t) = P1(T ≥ t) = 1−Φ{n1/2(t− µ0)/σ − δ}.

H0 False positive probability α(t)

H1

True positive probability β(t)

t

stat.epfl.ch Autumn 2022 – slide 67

ROC curve

Definition 26 The receiver operating characteristic (ROC) curve of a test plots β(t) against α(t)
as t varies, i.e., it shows (P0(T ≥ t),P1(T > t)), when t ∈ R.

� As µ increases, it becomes easier to detect when H0 is false, because the densities under H0 and
H1 become more separated, and the ROC curve moves ‘further north-west’.

� When H0 and H1 are the same, i.e., µ = 0, then the curve lies on the diagonal. Then the
hypotheses cannot be distinguished.

� A common summary measure of the overall quality of a test is the area under the curve,

AUC =

∫ 1

0
β(α) dα,

which ranges between 0.5 for a useless test and 1.0 for a perfect test.
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Example

� In Example 31 α(t) = 1− Φ{n1/2(t− µ0)/σ} and β(t) = 1− Φ{n1/2(t− µ0)/σ − δ}, so
equivalently we graph

β(t) = 1− Φ(−z1−α − δ) = Φ(δ + zα) ≡ β(α) against α ∈ (0, 1).

� Here is the ROC curve with µ = 2 (in red). Also shown are curves for µ = 0, 0.4, 3, 6. Which is
which?
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Neyman–Pearson lemma

Definition 27 A simple hypothesis entirely fixes the distribution of the data Y , whereas a
composite hypothesis does not fix the distribution of Y .

Definition 28 The critical region of a hypothesis test is the subset Y1 of the sample space Y for
which Y ∈ Y1 implies that the null hypothesis is rejected.

We aim to choose Y1 to maximise the power of the test for a given size, i.e., such that P1(Y ∈ Y1) is
the largest possible such that P0(Y ∈ Y1) = α.

Lemma 29 (Neyman–Pearson) Let f0(y), f1(y) be the densities of Y under simple null and
alternative hypotheses. Then if it exists, the set

Y1 = {y ∈ Y : f1(y)/f0(y) > t}

such that P0(Y ∈ Y1) = α maximises P1(Y ∈ Y1) amongst all Y ′
1 for which P0(Y ∈ Y ′

1) ≤ α. Thus
the test of size α with maximal power rejects H0 when Y ∈ Y1.

Example 30 Construct an optimal test for testing H0 : ϕ = ϕ0 against H1 : ϕ = ϕ1 based on a
random sample from a canonical exponential family.

stat.epfl.ch Autumn 2022 – slide 70

44



Note to Lemma 29

Suppose that a region Y1 such that P0(Y ∈ Y1) = α exists and let Y ′
1 be any other critical region of

size α or less. Then for any density f ,

∫

Y1

f(y) dy −
∫

Y ′

1

f(y) dy, (2)

equals ∫

Y1∩Y ′

1

f(y) dy +

∫

Y1∩Y ′

0

f(y) dy −
∫

Y ′

1
∩Y1

f(y) dy −
∫

Y ′

1
∩Y0

f(y) dy,

where Y0 and Y ′
0 are the complements of Y1 and Y ′

1 in the sample space, and this is

∫

Y1∩Y ′

0

f(y) dy −
∫

Y ′

1
∩Y0

f(y) dy. (3)

If f = f0, then (2) is non-negative, because Y ′ has size at most that of Y1, so (3) is also non-negative,
giving

t

∫

Y1∩Y ′

0

f0(y) dy ≥ t

∫

Y ′

1
∩Y0

f0(y) dy

for t ≥ 0. But f1(y) > tf0(y) for y ∈ Y1, and tf0(y) ≥ f1(y) for y ∈ Y0, so

∫

Y1∩Y ′

0

f1(y) dy ≥
∫

Y ′

1
∩Y0

f1(y) dy.

On adding
∫
Y1∩Y ′

1

f1(y) dy to both sides we see that the power of Y1 is at least that of Y ′
1, as required.
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Note to Example 30

� The likelihood ratio is

f1(y)

f0(y)
=
m∗(y) exp{ϕ1s

∗ − nk(ϕ1)}
m∗(y) exp{ϕ0s∗ − nk(ϕ0)}

= exp{(ϕ1 − ϕ0)s
∗ + nk(ϕ0)− nk(ϕ1)},

say, where s∗ =
∑n

j=1 s(yj), so

Y1 = {y : f1(y)/f0(y) > t} = {y : (ϕ1 − ϕ0)s
∗ + nk(ϕ0)− nk(ϕ1) > log t},

and if ϕ1 > ϕ0 then

Y1 = {y : s∗ > [log t+ nk(ϕ1)− nk(ϕ0)]/(ϕ1 − ϕ0)},

This gives the form of Y1 and we should choose t so that P0(Y ∈ Y1) = α, or equivalently sα so
that (in the continuous case)

P0(S
∗ > sα) =

∫ ∞

sα

f(s;ϕ0) ds = α.

We saw such a calculation already in Example 31 for normal data with known σ2 and
ϕ1 = µ1/σ

2 > ϕ0 = µ0/σ
2.

� If ϕ1 < ϕ0, then division by ϕ1 − ϕ0 < 0 leads to

Y∗
1 = {y : s∗ < [log t+ nk(ϕ1)− nk(ϕ0)]/(ϕ1 − ϕ0)}.

� The Neyman–Pearson lemma tell us that Y1 gives a most powerful test, but as it does not depend
on the value of ϕ, this test is uniformly most powerful for all ϕ > ϕ0, and likewise Y∗

1 is
uniformly most powerful for ϕ1 < ϕ0.
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Exact and inexact tests

� Above we saw that P ∼ U(0, 1) under the null hypothesis, exactly in continuous cases and
approximately in discrete cases.

� If the null distribution of the test statistic is estimated, we have P
·∼ U(0, 1) only.

� For example, if the true parameter is θ = (ψ0, λ0) and H0 : ψ = ψ0, then the P-value is

pobs = P0(T ≥ tobs) = P(T ≥ tobs;ψ0, λ0),

which we estimate by
p̂obs = P(T ≥ tobs;ψ0, λ̂0),

where λ̂0 is the estimate of λ under H0.

� Exact tests, with P ∼ U(0, 1), can sometimes be obtained by using a pivot whose distribution is
invariant to λ, or by removing λ by conditioning.

Example 31 If X1, . . . ,Xn
iid∼ N (µ, σ2), show that the distribution of T = (Y − µ)/

√
S2/n is

invariant to σ2.

Example 32 Find an exact test on a canonical parameter in a logistic regression model.
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Note to Example 31

In this case the variables Y ∼ N (µ, σ2/n) and (n− 1)S2/σ2 ∼ χ2
n−1 are independent and we can

write Y
D
= µ+ σn−1/2Z and S2 =

D
= σ2V/(n − 1), where Z ∼ N (0, 1) and V ∼ χ2

n−1 are
independent. Hence

T =
Y − µ√
S2/n

D
=

µ+ σZ/n−1/2 − µ

[σ2V/{n(n− 1)}]1/2
D
=

Z√
V/(N − 1)

∼ tn−1,

is pivotal and thus allows tests on µ without reference to σ2.
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Note to Example 32

� In a logistic regression model we have independent binary variables Y1, . . . , Yn each with density

P(Yj = yj;β) = π
yj
j (1− πj)

1−yj =

(
ex

T
j β

1 + ex
T
j β

)yj (
1

1 + ex
T
j β

)1−yj

=
eyjx

T
j β

1 + ex
T
j β
,

for yj ∈ {0, 1}, known covariate vectors Xj ∈ R
d and parameter β ∈ R

d.

� The corresponding log likelihood is

ℓ(β) =

n∑

j=1

{
yjx

T

j β − log
(
1 + ex

T
j β
)}

= yTXβ −
n∑

j=1

log
(
1 + ex

T
j β
)
, β ∈ R

d.

This is a (d, d) exponential family with canonical statistic S = XTy, canonical parameter ϕ = β,

and cumulant generator k(ϕ) =
∑n

j=1 log
(
1 + ex

T
j ϕ
)
.

� Hence Lemma 17 implies that if ϕ = (ψ, λ) and S = (T,W ) = (XT

1 y,X
T

2 y), where X1 is n× 1
and X2 is n× (d− 1), an exact test on ψ is obtained from the conditional distribution

P(T = t |W = wo;ψ) =
etψ

∑
y′∈Swo

eX
T
1
y′ψ

,

where Sw = {(y′1, . . . , y′n) : XT

2 y
′ = wo}, with wo = XT

2 y
o and yo respectively the observed data

and the observed value of W .

� Calculation of this conditional density in applications may be awkward, but excellent
approximations are available.
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Interpretation of P-values

� Be careful about interpretation:

– pobs is a one-number summary of whether data are consistent with H0;

– it is NOT the probability that H0 is true (require prior probabilities on H0 and H1);

– even a tiny pobs can support H0 better than H1 (consider tobs = 3 when T ∼ N (µ, 1) with
µ0 = 0, µ1 = 10);

– the power depends on analogues of δ = n1/2(µ1 − µ0)/σ, where n is the sample size, µ1 − µ0
is the effect size, and σ is the precision, so

⊲ even a tiny (practically irrelevant) effect size can be detected with very large n;

⊲ conversely a practically important effect might be undetectable if n is small;

⊲ i.e., ‘statistical significance’ 6= ‘subject-matter importance’ !

� A confidence interval, or estimate and its standard error, is often more informative.

� Hypothesis testing is often applied by rote — in some medical journals no statement is complete
without an accompanying ‘(P < 0.05)’ — and is sometimes regarded as controversial, with certain
journals now refusing to publish tests and P-values.

� The replication crisis is partly due to abuse of hypothesis testing, e.g., by not correcting for
multiple tests, by formulating hypotheses in light of the data, . . .
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Contexts of testing

� It is unwise to be too categorical about testing, because of its different uses:

– testing a clear hypothesis of scientific interest (e.g., top quark);

– goodness of fit of a model (e.g., industrial fraud);

– decision-making with a clearly-specific alternative (e.g., covid testing);

– model simplification if null hypothesis true;

– ‘dividing hypothesis’ used to split parameter space into different sets with sharply different
interpretations;

– as a technical device for generating confidence intervals;

– to flag which of many null similar hypotheses might be false.

Example 33 The generalized Pareto distribution, with survival function

P(X > x) =

{
(1 + ξx/σ)

−1/ξ
+ , ξ 6= 0,

exp(−x/σ), ξ = 0,

simplifies if ξ = 0, and has finite upper support point x+ = −σ/ξ when ξ < 0 but x+ = ∞ when
ξ ≥ 0. Here H0 : ξ = 0 is both a simplifying and a dividing hypothesis, of interest when the
distribution is fitted to data on supercentenarians.
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Generating confidence intervals

� Using a statistic T with observed value tobs to test the null hypothesis H0 : ψ = ψ0 for a scalar
parameter ψ gives P-value

pobs = p(ψ0) = P(T ≥ tobs;ψ0),

and we regard ψ0 as incompatible with the data if pobs is too small.

� Recall that the corresponding random variable Pobs ∼ U(0, 1) under H0. Hence we can regard
values of ψ for which the P-value (or significance) function

p(ψ) = P(T ≥ tobs;ψ)

is too extreme as incompatible with the data, leading to the (two-sided) (1− α) confidence set

{ψ : α/2 ≤ P(T ≥ tobs;ψ) ≤ 1− α/2}.

� Related functions include

– the confidence function 1− p(ψ);

– the modified confidence function max{p(ψ), 1 − p(ψ)}; and

– a pivot function showing a (usually standard normal) pivot as a function of ψ.
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Significance and related functions
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Multiple testing

� Often require tests of several, even very many, hypotheses:

– comparison of responses for several treatment groups with the same control group;

– checking for a change in a series of observations;

– screening genomic data for effects of many genes on a response.

� There are null hypotheses H1, . . . ,Hm, of which

– m0 are true, indexed by an unknown set I ,

– m1 = m−m0 are false, and

– the global null hypothesis is H0 = H1 ∩ · · · ∩Hm.

� We apply some testing procedure and declare R hypotheses to be significant, of which FP are
false positives and TP are true positives. Only R and m are known.

Non-significant Significant

True nulls TN FP m0

False nulls FN TP m−m0

R m

� In the cartoon we have m = 20 hypotheses individually tested with α = 0.05. We observe R = 1,
but E(FP) = mα = 1, so this is not a surprise.
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The perils of multiple testing
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Graphical approach

� Graphs can be helpful in suggesting which hypotheses are most suspect, and it is helpful to
highlight the corresponding (i.e., smallest) P-values.

� P ∼ U(0, 1) implies Z = − log10 P ∼ exp(λ) with λ = ln 10.

� With this transformation small Pj become large Zj ; note that Zj > a iff Pj < 10−a.

� If H0 is true and the tests are independent, then Z1, . . . , Zm
iid∼ exp(λ) and the Rényi

representation

Z(r)
D
= λ−1

r∑

j=1

Ej
m+ 1− j

, r = 1, . . . ,m, E1, . . . , Em
iid∼ exp(1),

applies to their order statistics. Then

– a plot of the ordered empirical Zj against their expectations should be straight;

– outliers, very large Zj (i.e., very small Pj), casting doubt on the corresponding Hj.

– For very small Pj (i.e., large Zj) the uniformity may fail even under H0, because the null
distributions give poor approximations in the extreme tail; then some form of model-fitting may
be needed.

– Similar ideas apply to z statistics (e.g., in regression): use a normal QQ-plot (excluding the
intercept etc.) as a basis for discussion of significant effects.
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GWAS, I

� A genome-wide association study (GWAS) tests the association between SNPs (‘single
nucleotide polymorphisms’) and a phenotype such as the expression of a protein. The null
hypotheses are

H0,j : no association between the expression of the protein and SNPj, j = 1, . . . ,m.

� In a simple model we construct statistics Yj such that Yj
·∼ N (θj, 1), where θj = 0 under H0,j,

and we take Tj = |Yj|, which is likely to be far from zero if θj ≫ 0 orθj ≪ 0.

� If tobs,j denotes the observed value of Tj , then the P-value for association j is

pobs,j = P0(Tj > tobs,j) = 1− P0(−tobs,j ≤ Yj ≤ tobs,j)
.
= 2Φ(−tobs,j),

where the approximation comes from the fact that Yj
·∼ N (0, 1) under H0,j.

� Here it is reasonable to expect that the effects are sparse, i.e., most of the θj = 0, and we seek a
needle in a haystack.

� With many tests it is essential to ensure that the true positives are not drowned in the mass of
false positives.
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GWAS, II

� Left: a histogram of the P-values for tests of the association between m = 275297 SNPs and the
expression of the protein CFAB.

� The P-values for SNPs not associated with CFAB are uniformly distributed. Is there an excess of
small P-values?

� Right: exponential Q-Q plot of the Zj = − log Pj . What do you make of it?
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Control

� With several tests Type I error generalises to the familywise error rate (FWER), i.e., the
probability of at least one false positive when the individual hypotheses are tested,

FWER = P(FP ≥ 1) = 1− P(accept all Hj, j ∈ I),

and we aim to control this by ensuring that FWER ≤ α.

� There are different notions of control:

– weak control guarantees FWER ≤ α only under H0, i.e., m0 = m;

– strong control guarantees FWER ≤ α for any configuration of null and alternative
hypotheses.

� If all the tests are independent and we use individual levels α, then

FWER = 1− P(FP = 0) = 1− (1− α)m0 → 1, m0 → ∞.

� If conversely we fix FWER and the tests are independent we need

α = 1− (1− FWER)1/m0 ,

so with m0 = 20 and FWER = 0.05 we need α
.
= 0.0026, so the power for individual tests will be

tiny (recall ROC curves).
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Bonferroni methods

� If Pj is the P-value for the jth test and we reject Hj if Pj < α/m, then Boole’s inequality (the
first of the Bonferroni inequalities) gives

FWER = P(FP ≥ 1) = P




m0⋃

j=1

{
Pj ≤

α

m

}

 ≤

m0∑

j=1

P
(
Pj ≤

α

m

)
= m0

α

m
≤ α,

so we have strong control of FWER, even if the tests are dependent.

� Note that we could replace α/m for test j by αj such that
∑m

j=1 αj ≤ α.

� The resulting Bonferroni procedure lacks power when m is large (because α/m is very small),
but its assumptions are very weak.

� An improvement is the Holm–Bonferroni procedure: for given α,

– order the P-values as P(1) ≤ · · · ≤ P(m) and the hypotheses as H(1), . . . ,H(m), then

– reject H(1), . . . ,H(S−1), where

S = min

{
s : P(s) >

α

m+ 1− s

}
.

This gives strong control and is more powerful than the basic Bonferroni procedure.
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Note: Bonferroni–Holm procedure

If FP ≥ 1, then we must have wrongly rejected some Hj for which j ∈ I . If H(s) is the first such
hypothesis rejected in the sequential procedure, then the s− 1 hypotheses rejected before it must have
been among the m−m0 false null hypotheses, so s− 1 ≤ m−m0, i.e., m0 ≤ m+1− s. As H(s) was
rejected, the corresponding P-value satisfies

P(s) ≤
α

m+ 1− s
≤ α

m0
.

This implies that if FP ≥ 1 then the P-value for at least one of the true null hypotheses satisfies
Pj ≤ α/m0, and so Boole’s inequality gives

FWER = P(FP ≥ 1) ≤ P


⋃

j∈I

{Pj ≤ α/m0}


 ≤ α.

As the only assumption needed for the above argument was that the null P-values are U(0, 1), this
procedure strongly controls the FWER at level α.
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False discovery rate

� When m is large and the goal is exploratory, Bonferroni procedures are unreasonably stringent, and
it seems preferable to try and control the false discovery proportion

I(R > 0)FP/R,

where R is the number of rejected null hypotheses. The intention is to bound the proportion of
false positives among the rejections.

� Control of I(R > 0)FP/R is impossible because I is unknown, so instead we try and control the
false discovery rate (FDR)

FDR = E{I(R > 0)FP/R}.
� Strong control is achieved by the Benjamini–Hochberg procedure: specify α, then

– order the P-values as P(1) ≤ · · · ≤ P(m) and the hypotheses as H(1), . . . ,H(m),

– reject H(1), . . . ,H(R), where

R = max
{
r : P(r) <

αr

m

}
.

This guarantees that FDR ≤ α, but does not bound the actual proportion of false positives, just
its expectation. Often α = 0.1, 0.2, . . . .

stat.epfl.ch Autumn 2022 – slide 83

54



Note: Derivation of the Benjamini–Hochberg procedure

� Let the P-values for the false null hypotheses be P ′
1, . . . , P

′
m1

, say, independent of the true null

P-values P1, . . . , Pm0

iid∼ U(0, 1). Then

{R = r} ∩ {P1 ≤ rα/m} = {P1 ≤ rα/m} ∩ {R−1 = r − 1},

where {R−1 = r − 1} is the event that there are exactly r − 1 rejections among H2, . . . ,Hm.
Then the false discovery proportion is

m∑

r=1

FP

r
I(R = r) =

m∑

r=1

I(R = r)

r

m0∑

j=1

I(Pj ≤ rα/m),

and by symmetry of the Pj this has the same expectation as

m0

m∑

r=1

I(R = r)

r
I(P1 ≤ rα/m) = m0

m∑

r=1

I(R−1 = r − 1)

r
I(P1 ≤ rα/m).

Thus the false discovery rate is

FDR = m0

m∑

r=1

1

r
P(R−1 = r − 1, P1 ≤ rα/m)

= m0

m∑

r=1

1

r
P(R−1 = r − 1 | P1 ≤ rα/m)P(P1 ≤ rα/m)

= m0

m∑

r=1

1

r
P(R−1 = r − 1)

rα

m

=
m0α

m

m−1∑

r=0

P(R−1 = r)

=
m0α

m
≤ α.

The main steps above successively use the definition of conditional probability, the facts that P1

and R−1 are independent and P1 ∼ U(0, 1), and the fact that R−1 ∈ {0, 1, . . . ,m− 1}.
� We see that the Benjamini–Hochberg procedure strongly controls the FDR under the conditions

above.

� Note that

– if m0 ≪ m, then the last inequality may be very unequal, so the FDR may in fact be much
lower than α.

– if the P-values are dependent in such a way that

P(R−1 = r − 1 | P1 ≤ rα/m) ≤ P(R−1 = r − 1),

then the result also holds.

stat.epfl.ch Autumn 2022 – note 1 of slide 83

55



GWAS, II

� Left: a histogram of Qj = 10Pj (when Pj < 0.1) for tests of the association between m = 27530
SNPs and the expression of the protein CFAB.

� Right: exponential Q-Q plot of Zj = − logQj, with Bonferroni cutoff (blue) and
Benjamini–Hochberg cutoffs, both with α = 0.05.
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Comments

� The Bonferroni–Holm procedure compares P(1), P(2), . . . to α/m,α/(m − 1), . . ., whereas the
ordinary Bonferroni procedure compares all the Pj to α/m.

� The Simes procedure (exercises) has exact FWER α for independent tests and then is preferable
to the Bonferroni–Holm procedure.

� The Benjamini–Hochberg procedure strongly controls the false discovery rate, comparing the
ordered P-values to α/m, 2α/m, . . . , α.

� The first two also give strong control when the P-values are dependent. So does the third, using
the comparison

P(j) ≤
jα

mc(m)
,

with c(m) = 1 when the tests are independent or positively dependent, and c(m) =
∑m

j=1 1/j
under arbitrary dependence.

� Many variants exist, but these versions are simple and widely used.

� Other classical procedures for multiple testing in regression settings are named after

– Tukey — bounds the maximum of t statistics for different tests;

– Scheffé — simultaneously bounds all possible linear combinations of estimates β̂;

– Dunnett — compares different treatments with the same control.
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Data Complications slide 86

Overview

� In theoretical discussion we glibly write something like

“Let Y1, . . . , Yn
iid∼ f(y; θ) . . . ”

but in applications this cannot be taken for granted.

� Ideally we can ensure random sampling and full measurement of observations from a well-specified
population, but if not, possible complications include:

– selection of observations based on their values, especially truncation;

– censoring;

– dependence;

– missing data.

� We now briefly discuss these . . .
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Selection

� If the available data were selected from a population using a mechanism expressible in probabilistic
terms, then the likelihood is

P(Y = y | S; θ),
where S is the selection event. If S is unknown or not probabilistic, only sensitivity analysis is
possible (at best).

� A common example is truncation of independent data, where Sj = {Yj ∈ Ij} for some set Ij,
giving likelihood

n∏

j=1

f(yj | yj ∈ Ij; θ).

Example 34 In certain demographic databases on very old persons, an individual born on
calendar date x is included only if they die aged u0 + t, where u0 is a high threshold (e.g., 100
years) and t ≥ 0, between two calendar dates c1 and c2. The likelihood contribution for this
person is then of form

f(t)

F(a) −F(b)
, a < t < b, [a, b] = [max(0, c1 − x), c2 − x],

where x is the calendar date at which they reach age u0. See the next page.
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Selection in a Lexis diagram
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Lexis diagrams showing age on the vertical axis and calendar time on the horizontal axis. Only ages
over u0 are shown.
Left: only the individuals with solid lines appear in the sample.
Right: explanation of the intervals for which different individuals are observed.
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Censoring

� Truncation determines which observations appear in a sample, whereas censoring reduces the
information available in the sample.

� Censoring is very common in studies on lifetime data and leads to the precise values of certain
observations being unknown:

– right-censoring results in (T = min(Y, b),D = I(Y ≤ b)) for some b;

– left-censoring results in (T = max(Y, a),D = I(Y > a)) for some a;

– interval-censoring results in (Y, I(a < Y ≤ b)), (a, I(Y ≤ a)) or (b, I(Y > b)), or it is known
only which of the disjoint intervals I1, . . . ,IK contains Y .

� In each case we lose information when Y lies within some (possibly random) interval I , often with
the assumption that Y ⊥⊥ I .

� Rounding is a form of interval censoring, and we have already seen (exercises) that little
information is lost if the rounding is not too coarse.

� Likelihood contributions based on right- and left-censored observations are

fY (t)
d{1− FY (t)}1−d, fY (t)

d{FY (t)}1−d.

� Truncation and censoring can arise in the same study; see the Lexis diagram.
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Dependent data

� If the joint density of Y = (Y1, . . . , Yn) is known, we can write

f(y; θ) = f(y1, . . . , yn; θ) = f(y1; θ)

n∏

j=2

f(yj | y1, . . . , yj−1; θ),

the so-called prediction decomposition.

� This is most useful if the data arise in time order and satisfy the Markov property, that given the
‘present’ Yj−1, the ‘future’, Yj, Yj+1, . . ., is independent of the ‘past’, . . . , Yj−3, Yj−2, so

f(yj | y1, . . . , yj−1; θ) = f(yj | yj−1; θ)

and the product above simplifies to

f(y; θ) = f(y1; θ)

n∏

j=2

f(yj | yj−1; θ).

� Many variants of this are possible.

Example 35 (Poisson birth process) Find the likelihood when Y0 ∼ Poiss(θ) and Y0, . . . , Yn are
such that Yj+1 | Y0 = y0, . . . , Yj = yj ∼ Poiss(θyj).
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Note to Example 35

Here

f(yj+1 | yj; θ) =
(θyj)

yj+1

yj+1!
exp(−θyj), yj+1 = 0, 1, . . . , θ > 0.

If Y0 is Poisson with mean θ, the joint density of data y0, . . . , yn is

f(y0; θ)

n∏

j=1

f(yj | yj−1; θ) =
θy0

y0!
exp(−θ)

n−1∏

j=0

(θyj)
yj+1

yj+1!
exp(−θyj),

so the likelihood is

L(θ) =




n∏

j=0

yj!




−1

exp (s0 log θ − s1θ) , θ > 0,

where s0 =
∑n

j=0 yj and s1 = 1 +
∑n−1

j=0 yj . This is a (2,1) exponential family.
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Missing data

� Missing data are widespread in applications, especially those involving living subjects.

� Central problems are:

– uncertainty increases due to missingness;

– assumptions about missingness cannot be checked directly, so inferences are fragile.

� Suppose ideal is inference on θ based on n independent pairs (X,Y ), but some Y are missing,
indicated by a variable I, so we observe either (x, y, 1) or (x, ?, 0).

� The likelihood contributions from individuals with complete data and with y missing are
respectively

P(I = 1 | x, y)f(y | x; θ)f(x; θ),
∫

P(I = 0 | x, y)f(y | x; θ)f(x; θ) dy,

and there are three possibilities:

– data are missing completely at random, P(I = 0 | x, y) = P(I = 0);

– data are missing at random, P(I = 0 | x, y) = P(I = 0 | x); and

– non-ignorable non-response, P(I = 0 | x, y) depends on y and maybe on x.

The first two are sometimes called ignorable non-response, as then I has no information about θ
and can (mostly) be ignored.

stat.epfl.ch Autumn 2022 – slide 92

Example

Missing data in straight-line regression for Venice sea-level data. Clockwise from top left: original data,
data with values missing completely at random, data with values missing at random — missingness
depends on x but not on y, and data with non-ignorable non-response — missingness depends on both
x and y. Missing values are represented by a small dot. The dotted line is the fit from the full data,
the solid lines those from the non-missing data.
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Example

Truth Average estimate (average standard error)
Full MCAR MAR NIN

β0 120 120 (2.79) 120 (4.02) 120 (4.73) 132 (3.67)
β1 0.50 0.49 (0.19) 0.48 (0.28) 0.50 (0.32) 0.20 (0.25)

� Average estimates and standard errors for missing value simulation based on Venice data, for full
dataset, with data missing completely at random (MCAR), missing at random (MAR) and with
non-ignorable non-response (NIN) and non-response mechanisms

P(I = 0 | x, y) =





0.5,

Φ {0.05(x − x)} ,
Φ [0.05(x − x) + {y − β0 − β1(x− x)} /σ] ;

In each case roughly one-half of the observations are missing.

� Data loss increases the variability of the estimates but their means are unaffected when the
non-response is ignorable; otherwise they become entirely unreliable.

� Standard errors for the averages for β̂0 and β̂1 are at most 0.16 and 0.01; those for their standard
errors are at most 0.03 and 0.002.
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Discussion

� Truncation, censoring and other forms of data coarsening are widely observed in time-to-event
data and there is a huge literature on dealing with them, especially in terms of non- and
semi-parametric estimation.

� Selection (especially self-selection!) can totally undermine analyses if ignored or if it can’t be
modelled appropriately.

� The Markov property plays a key simplifying role in inference based on time series, and
generalisations are important in spatial and other types of complex data.

� Missingness is usually the most annoying of the complications above:

– it is quite common in applications, often for ill-specified reasons;

– when there is NIN and a non-negligible proportion of the data is missing, correct inference
requires us to specify the missingness mechanism correctly;

– in practice it is hard to tell whether missingness is ignorable, so fully reliable inference is largely
out of reach;

– sensitivity analysis and or bounds to assess how heavily the conclusions depend on plausible
mechanisms for non-response is then useful.
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Likelihood Theory slide 96

Motivation

� Likelihood

– provides a general paradigm for inference on parametric models, with many generalisations and
variants;

– is a central concept in both frequentist and Bayesian statistics;

– has a simple, general and widely-applicable ‘large-sample’ theory; but

– is not a panacea!

� Plan below:

– recall some basics on convergence;

– give (fairly) general setup for parameter;

– prove main results for scalar parameter;

– discussion of inference;

– vector parameter, nuisance parameters, . . .
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Reminders I

Definition 36 Let X,X1,X2, . . . be random variables with cumulative distribution functions
F,F1, F2, . . .. Then

(a) Xn converges to X in probability, Xn
P−→ X, if limn→∞P(|Xn −X| > ε) = 0 for all ε > 0;

(b) Xn converges to X in distribution, Xn
D−→ X, if limn→∞ Fn(x) = F (x) at each point x where

F (x) is continuous.

(c) A sequence X1,X2, . . . of estimators of a parameter θ is (weakly) consistent if Xn
P−→ θ.

Theorem 37 Let x0, y0 be constants, X,Y, {Xn}, {Yn} random variables and g(·) and h(·, ·)
continuous functions. Then

Xn
P−→ X ⇒ Xn

D−→ X,

Xn
D−→ x0 ⇒ Xn

P−→ x0,

Xn
P−→ X ⇒ g(Xn)

P−→ g(X),

Xn
D−→ X and Yn

D−→ y0 ⇒ h(Xn, Yn)
D−→ h(X, y0).

The last two lines are known as the continuous mapping theorem and Slutsky’s theorem.
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Reminders II

Theorem 38 (Weak law of large numbers) If X,X1,X2, . . . are independent identically distributed

random variables and E(X) is finite, then X = n−1(X1 + · · ·+Xn)
P−→ E(X).

Theorem 39 (Central limit theorem, CLT) If X1,X2, . . .
iid∼ (µ, σ2) and 0 < σ2 <∞, then

Zn =
n1/2(X − µ)

σ

D−→ Z ∼ N (0, 1), n→ ∞.

Theorem 40 (‘Delta method’) If an(Xn − µ)
D−→ Z, where an, µ ∈ R for all n, an → ∞ as

n→ ∞, and g is continuously differentiable at µ, then an{g(Xn)− g(µ)} D−→ g′(µ)Z.

� Many more general laws of large numbers and versions of the CLT exist.

� The delta method also applies with Xn, Z ∈ R
p, g(x) : Rp → R

q continuously differentiable and
g′(µ) replaced by Jg(µ) = ∂g(µ)/∂µT.

Theorem 41 If X is a random variable, a > 0 a constant, h a non-negative function and g a convex
function, then

P{h(X) ≥ a} ≤ E{h(X)}/a, (basic inequality),

g{E(X)} ≤ E{g(X)}, (Jensen’s inequality).
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Basic setup

� Let Y, Y1, . . . , Yn
iid∼ g, and define the Kullback–Leibler divergence from g to a density f ,

KL(g, f) = Eg{log g(Y )− log f(Y )} = Eg

[
− log

{
f(Y )

g(Y )

}]
≥ 0,

where the inequality follows because − log x is convex and is strict unless f ≡ g.

� g is the unknown model from which the Yj are drawn, and f is a candidate model.

� In a parametric setting there is a family of models, f ∈ F = {fθ : θ ∈ Θ}, so minimising KL(g, f)
over f is equivalent to maximising Eg log f(Y ; θ), which is estimated by

ℓ(θ) = n−1
n∑

j=1

log f(Yj; θ)
P−→ Eg log f(Y ; θ), n→ ∞.

� θg = argmaxθ Eg log f(Y ; θ) gives the best fit of fθ to g.

� In an ideal case g = fθg , i.e., g ∈ F , but the theory does not require this (yet).

� θ̂ = argmaxθ ℓ(θ) is the natural estimator of θg, and we hope that θ̂
P−→ θg as n→ ∞.

� Unfortunately this requires conditions to restrict the variation of ℓ as it converges.
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Regular models

� Recall the notation ∇g(θ) = ∂g(θ)/∂θ and ∇2g(θ) = ∇∇Tg(θ) = ∂2g(θ)/∂θ∂θT.

� The following conditions ensure consistency and asymptotic normality of the MLE:

(C1) θg is interior to Θ ⊂ R
d for some finite d, and Θ is compact;

(C2) the densities fθ defined by any two different values of θ ∈ Θ are distinct;

(C3) there is a neighbourhood N of θg within which the first three derivatives of the log
likelihood with respect to θ exist almost surely, and for r, s, t = 1, . . . , d satisfy
|∂3 log f(Y ; θ)/∂θr∂θs∂θt| < m(Y ) with Eg{m(Y )} <∞; and

(C4) within N , the d× d matrices

I1(θ) = Eg
{
−∇2 log f(Y ; θ)

}
, K1(θ) = Eg {∇ log f(Y ; θ)∇T log f(Y ; θ)} ,

are finite and positive definite. When g = fθg we shall see that K1(θg) = I1(θg).

� Comments:

– (C1) ensures that θ̂ can be ‘on all sides’ of θg in the limit;

– (C2) is essential for consistency, otherwise θ̂ might not converge;

– (C3) is a technical condition needed to bound terms of a Taylor series; and

– (C4) ensures that the asymptotic variance of θ̂ is positive definite.
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Consistency of the MLE

Lemma 42 If θ is scalar, then a sequence of maximum likelihood estimators θ̂ exists such that

θ̂
P−→ θg.

This result:

� does not require fθ to be smooth, so it is quite general;

� guarantees that a consistent sequence exists, but not that we can find it;

� but if the log likelihood is convex (as in exponential families, for example), then there is (at most)
one maximum for any n, and if it exists this must converge to θg;

� can be generalized to vector θ, but the argument is more delicate;

� van der Vaart (1998, Asymptotic Statistics, Chapter 5) gives more general proofs.
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Note to Lemma 42

� As the θs correspond to different densities, there is precisely one θg that minimises KL(g, fθ).

� Take any ε > 0 and let θ+, θ− = θg ± ε, write Dn(θ) = ℓ(θg)− ℓ(θ), so Dn(θg) = 0, and note
that as n→ ∞,

Dn(θ+)
P−→ KL(g, fθ+)−KL(g, fθg ) = a+ > 0, Dn(θ−)

P−→ KL(g, fθ−)−KL(g, fθg ) = a− > 0.

� If An and Bn denote the events Dn(θ+) > 0 and Dn(θ−) > 0, Boole’s inequality gives

P(An ∩Bn) = 1− P(Acn ∪Bc
n) ≥ 1− P(Acn)− P(Bc

n).

Now

P(Acn) = P{Dn(θ+) ≤ 0} = P{a+ −Dn(θ+) ≥ a+} ≤ P{|Dn(θ+)− a+| ≥ a+} → 0, n→ ∞,

and likewise P(Bc
n) → 0. Hence P(An ∩Bn) → 1.

� Hence there is a local minimum of Dn(θ), or equivalently a local maximum of ℓ(θ), inside the
interval (θg − ǫ, θg + ǫ) with probability one as n→ ∞, and as this is true for arbitrary ε, the

corresponding sequence of maximisers θ̂ satisfies P(|θ̂ − θg| > ε) → 0 and therefore is consistent.
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Asymptotic normality of the MLE

Theorem 43 If θ is scalar and the regularity conditions hold, then the sequence of consistent
maximum likelihood estimators θ̂ satisfies

n1/2(θ̂ − θg)
D−→ Nd{0, I−1

1 (θg)K1(θg)I
−1
1 (θg)},

where d = 1 and for a single observation Y we define

I1(θ) = Eg
{
−∇2 log f(Y ; θ)

}
, K1(θ) = Eg {∇ log f(Y ; θ)∇T log f(Y ; θ)} .

� In the vector case, d > 1, the above sandwich variance matrix expression also applies.

� This implies that for large n,

θ̂
·∼ Nd{θg, I−1(θg)K(θg)I

−1(θg)},

where I(θ) = nI1(θ), K(θ) = nK1(θ) correspond to a sample of size n.

� This provides tests and confidence intervals based on the approximate pivots

v−1/2
rr (θ̂r − θg,r)

·∼ N (0, 1), r = 1, . . . , d,

where vrr are the diagonal elements of an estimate of I−1(θg)K(θg)I
−1(θg).

� When g = fθg , I(θg) = K(θg) and the variance (matrix) becomes I(θg)
−1.
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Note to Theorem 43

� We first note that under the given conditions, θg gives a stationary point of KL(g, fθ), and
therefore

0 = ∇KL(g, fθ)|θ=θg = − ∇
∫

log f(y; θ)g(y) dy

∣∣∣∣
θ=θg

= −
∫

∇ log f(y; θ)

∣∣∣∣
θ=θg

g(y) dy,

so Eg{∇ log f(Y ; θ)} = 0.

� As θ̂ gives a local maximum of the differentiable function ℓ(θ) = n−1
∑n

j=1 log f(Yj; θ),

0 = ∇ℓ(θ̂) = n−1
n∑

j=1

∇ log f(Yj; θ̂),

and (supposing now that θ is scalar, to simplify the expressions), Taylor series expansion gives

0 = ∇ℓ(θg) + (θ̂ − θg)∇2ℓ(θg) +
1
2(θ̂ − θg)

2∇3ℓ(θ∗),

where θ∗ lies between θg and θ̂ (so θ∗
P−→ θg), and hence we can write

n1/2(θ̂ − θg) =
n1/2∇ℓ(θg)

−∇2ℓ(θg)−Rn/2
, Rn = (θ̂ − θg)∇3ℓ(θ∗). (4)

� Now

n1/2∇ℓ(θg) = n−1/2
n∑

j=1

∇ log f(Yj; θg)

has mean (vector) zero and variance (matrix)

var



n

−1/2
n∑

j=1

∇ log f(Yj; θg)



 = n−1

n∑

j=1

Eg{∇ log f(Yj; θg)∇T log f(Yj; θg)} = K1(θg).

so the numerator of (4) converges in distribution to N{0,K1(θg)}, using the CLT.

� Moreover the weak law of large numbers gives

−∇2ℓ(θg) = − 1

n

n∑

j=1

∇2 log f(Yj; θg)
P−→ I1(θg).

� Lemma 44 shows that Rn
P−→ 0, so the denominator of (4) tends in probability to I1(θg).

� Putting the pieces together, we find that

n1/2(θ̂ − θg)
D−→ Nd{0, I1(θg)−1K1(θg)I1(θg)

−1}, n→ ∞,

where the variance formula is also valid when I1 and K1 are d× d matrices.

� The information quantities based on a random sample of size n are I(θg) = nI1(θg) and
K(θg) = nK1(θg), giving

θ̂
·∼ Nd(θg, I(θg)

−1K(θg)I(θg)
−1},

in which the variance is of the usual order 1/n.
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Note: Lemma 44

Lemma 44 Under the conditions of Theorem 43, Rn = (θ̂ − θg)∇3ℓ(θ∗)
P−→ 0 as n→ ∞.

� For ε > 0, Bn = {|Rn| > ε}, An = {|θ̂ − θg| > δ} and δ > 0 small enough that N contains a ball
of radius δ around θg, we have

P(|Rn| > ε) = P(Bn ∩An) + P(Bn ∩Acn) ≤ P(An) + P(Bn ∩Acn),

where the first term tends to zero because the sequence θ̂ is consistent.

� If |θ̂ − θg| < δ, then (C3) implies that

|Rn| ≤ δn−1
n∑

j=1

|∂3 log f(Yj; θ∗)/∂θ3| ≤ δn−1
n∑

j=1

m(Yj) = δMn,

say, and clearly Mn
P−→ M , say. Therefore

P(Bn ∩Acn) = P(Bn ∩ |θ̂ − θg| > δ) ≤ P(Bn ∩ |Rn| ≤ δMn)

and for η > 0 this equals

P(Bn ∩ |Rn| ≤ δMn ∩Mn ≤M + η) + P(Bn ∩ |Rn| ≤ δMn ∩Mn > M + η),

which is bounded by

P{|Rn| > ε ∩ |Rn| ≤ δ(M + η)}+ P(|Mn −M | > η).

The last term here tends to zero, because Mn
P−→ M , and the first can be made equal to zero by

choosing δ such that δ(M + η) < ε. This proves the lemma.
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Classical asymptotics

� The true model is supposed to lie in the candidate family, i.e., g ∈ F , so θg ∈ Θ.

� We can differentiate under the integral sign and get the Bartlett identities:

1 =

∫
f(y; θ) dy,

0 =

∫
∇ log f(y; θ)× f(y; θ) dy,

0 =

∫
∇2 log f(y; θ)× f(y; θ) dy +

∫
∇ log f(y; θ)∇T log f(y; θ)× f(y; θ) dy,

0 = · · ·
giving the moments of the d× 1 score vector U(θ) = ∇ℓ(θ), viz

E{U(θ)} = 0, var{U(θ)} = E {∇ℓ(θ)∇Tℓ(θ)} = E
{
−∇2ℓ(θ)

}
, . . .

� Hence I(θ) = K(θ), and I(θ) = nI1(θ) = nK1(θ) when Y1, . . . , Yn
iid∼ g.

� The assumption that g ∈ F is technically always false, but this is irrelevant if model-checking
suggests that F is ‘close enough’ to g.

� Crucially, the interest parameter ψ should have a stable interpretation for candidates likely to be
close to g (i.e., within n−1/2) , so F is ‘robustly specified’.
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Note to the Bartlett identities

� The first is true for any θ, and provided we can exchange the order of integration and
differentiation we have

0 = ∇
∫
f(y; θ) dy =

∫
∇f(y; θ) dy =

∫
∇f(y; θ)f(y; θ)

f(y; θ)
dy =

∫
∇ log f(y; θ) f(y; θ) dy.

� The second stems from a second differentiation and applying the chain rule to the terms in the
final integral here; likewise for the third and higher-order ones, which give higher-order moments of
U(θ).

� For independent data Y1, . . . , Yn we have U(θ) =
∑n

j=1 Uj(θ), where the Uj = ∇ log f(Yj; θ) are
independent, so using the Bartlett identities for the individual densities fj(yj; θ) we have

var{U(θ)} =

n∑

j=1

var{Uj(θ)} =

n∑

j=1

E{Uj(θ)UT

j (θ)} =

n∑

j=1

−E{∇TUj(θ)} = −E {∇TU(θ)}

and this equals E
{
−∇2ℓ(θ)

}
= I(θ), and this in turn equals nI1(θ) if Yj

iid∼ fθg .
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In practice . . .

� We usually assume classical asymptotics and replace the sandwich matrix

I(θg)
−1K(θg)I(θg)

−1 by the observed information matrix ̂ = −∇2ℓ(θ̂),

which

– can be computed numerically without (possibly awkward) expectations,

– will (helpfully!) misbehave if the maximisation is questionable,

– has been found to give generally good results in applications,

– has the heuristic justification that (θ̂, ̂) are approximately sufficient for θg, as

ℓ(θg)
.
= ℓ(θ̂)− 1

2 (θ̂ − θg)
T̂ (θ̂ − θg).

� Standard errors for θ̂ are the square roots of the diagonal elements of ̂−1.

� To make the sandwich we can replace I(θg) by ̂ and K(θg) by (some version of)

K̂ =

n∑

j=1

∇ log f(Yj; θ̂)∇T log f(Yj; θ̂),

though ̂−1K̂ ̂−1 can unstable because of numerical problems with K̂.
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Related statistics

WE

WL

l(θ)

θ θθ0

WU

Figure 6.2. Three asymptotically equivalent ways, all based on the log likelihood

function of testing null hypothesis θ = θ0: WE , horizontal distance; WL vertical

distance; WU slope at null point.

From Cox (2006,Principles of Statistical Inference)
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Related statistics

� When θ is scalar the asymptotic arguments support inference based on any of the pivots

T = t(θg) = ̂ 1/2(θ̂ − θg)
·∼ N (0, 1), Wald statistic,

S = s(θg) = ̂−1/2U(θg)
·∼ N (0, 1), score statistic,

W = w(θg) = 2{ℓ(θ̂)− ℓ(θg)} ·∼ χ2
1, likelihood ratio statistic,

R = r(θg) = sign(θ̂ − θg)w(θg)
1/2 ·∼ N (0, 1), likelihood root.

The likelihood root has other names (e.g., directed likelihood ratio statistic).

� The distribution of W follows from the expansion on the previous slide.

� If θ̂o and (θ̂o) have been obtained for observed data yo, then the approximation

Pg{T (θg) ≤ to(θg)} .
= Φ{to(θg)}

leads to (1− α) confidence interval θ̂o ± (θ̂o)−1/2z1−α/2 based on T , while that based on W is

{θ : W o(θ) ≤ χ2
1(1− α)} = {θ : ℓo(θ) ≥ ℓo(θ̂o)− 1

2χ
2
1(1− α)},

where zp and χ2
ν(p) are respectively the p quantiles of the N(0, 1) and χ2

ν distributions.

stat.epfl.ch Autumn 2022 – slide 107

Comments

� Comparative comments:

– confidence intervals based on T are symmetric, but those based on W or R take the shape of ℓ
into account and are parametrisation-invariant;

– in small samples the distributional approximations for W and R are better than that for T , and
that for W can be improved by Bartlett correction, using WB =W/(1 + b/n);

– confidence sets based on W may not be connected (and if so those based on T or R are
unreliable);

– the main use of S is for testing in situations where maximisation of ℓ is awkward, and then ̂ is
often replaced by I(θg);

– a variant of R, the modified likelihood root

R∗ = r∗(θg) = r(θg) +
1

r(θg)
log

q(θg)

r(θg)
,

often gives almost perfect inferences even in small samples (more later . . . ).

Example 45 Compute the above statistics when y1, . . . , yn
iid∼ exp(θ) and compare the resulting

inferences with those from an exact pivot.
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Note to Example 45

� The log likelihood is ℓ(θ) = n(log θ − θy), for θ > 0, which is clearly unimodal with θ̂ = 1/y and
(θ) = n/θ2.

� Hence

t(θ) = n1/2(1− θ y),

s(θ) = n1/2{1/(θ y)− 1},
w(θ) = 2n {θ y − log(θ y)− 1} ,
r(θ) = sign(1− θ y) [2n {θ y − log(θ y)− 1}]1/2 .

� The exact pivot is θ
∑
Yj whose distribution is gamma with unit scale and shape parameter n.

� Consider an exponential sample with n = 1 and y = 1; then ̂ = 1. The log likelihood ℓ(θ), shown
in the left-hand panel of the figure, is unimodal but strikingly asymmetric, suggesting that
confidence intervals based on an approximating normal distribution for θ̂ will be poor. The
right-hand panel is a chi-squared probability plot in which the ordered values of simulated w(θ) are
graphed against quantiles of the χ2

1 distribution—if the simulations lay along the diagonal line
x = y, then this distribution would be a perfect fit. The simulations do follow a straight line rather
closely, but with slope (1 + b/n)χ2

1, where b = 0.1544. This indicates that the distribution of the
Bartlett-adjusted likelihood ratio statistic w(θ)/(1 + b/n) would be essentially χ2

1. The 95%
confidence intervals for θ based on the unadjusted and adjusted likelihood ratio statistics are
(0.058, 4.403) and (0.042, 4.782) respectively.
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Exponential example
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Likelihood inference for exponential sample of size n = 1. Left: log likelihood ℓ(θ). Intersection of the
function with the two horizontal lines gives two 95% confidence intervals for θ: the upper line is based
on the χ2

1 approximation to the distribution of w(θ), and the lower line is based on the
Bartlett-corrected statistic. Right: comparison of simulated values of likelihood ratio statistic w(θ)
with χ2

1 quantiles. The χ2
1 approximation is shown by the line of unit slope, while the (1 + b/n)χ2

1

approximation is shown by the upper straight line.
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Exponential example
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Approximate pivots and P-values based on an exponential sample of size n = 1. Left: likelihood root
r(θ) (solid), score pivot s(θ) (dots), Wald pivot t(θ) (dashes), modified likelihood root r∗(θ) (heavy),
and exact pivot θ

∑
yj (dot-dash). The modified likelihood root is indistinguishable from the exact

pivot. The horizontal lines are at 0,±1.96. Right: corresponding significance functions, with horizontal
lines at 0.025 and 0.975.
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Vector case

� When θ is a vector and under classical asymptotics we base inference on the approximations

θ̂
·∼ Nd(θg, ̂

−1), w(θg) = 2
{
ℓ(θ̂)− ℓ(θg)

}
·∼ χ2

d, s(θg) = ̂−1/2U(θg)
·∼ Nd(0, Id),

with

– the first very commonly used for inferences on parameters;

– the second used to test whether θ = θg;

– the third much less used than the others, generally in the form s(θg)
Ts(θg)

·∼ χ2
d.

� If θ divides into a p× 1 interest parameter ψ and a q × 1 nuisance parameter λ, then

θ̂ =

(
ψ̂

λ̂

)
·∼ Np+q

{(
ψg
λg

)
,

(
̂ψψ ̂ψλ
̂λψ ̂λλ

)−1
}
,

where for brevity we now write λ̂ψ = maxλ ℓ(ψ, λ), θ̃ = θ̂ψ = (ψ, θ̂ψ),

ℓψ =
∂ℓ(θ)

∂ψ

∣∣∣∣
θ=θg

, ̂ψψ = −ℓ̂ψψ = − ∂2ℓ(θ)

∂ψ∂ψT

∣∣∣∣
θ=θ̂

, ℓ̃ψψ =
∂2ℓ(θ)

∂ψ∂ψT

∣∣∣∣
θ=θ̃

, etc.
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Inference on ψ

� Under classical asymptotics and setting ̂ψψ = (̂ψψ − ̂ψλ̂
−1
λλ ̂λψ)

−1 we have

ψ̂
·∼ Np

(
ψg, ̂

ψψ
)

maximum likelihood estimator,

wp(ψg) = 2
{
ℓp(ψ̂)− ℓp(ψg)

}
·∼ χ2

p (generalized) likelihood ratio statistic,

s(ψg) = ℓ̃Tψ ̃
ψψ ℓ̃ψ

·∼ χ2
p score statistic,

where we defined wp using the profile log likelihood ℓp(ψ) = ℓ(ψ, λ̂ψ) = maxλ ℓ(ψ, λ).

� If ψ is scalar (p = 1, the usual situation), the likelihood root

r(ψg) = sign
(
ψ̂ − ψg

)√
w(ψg)

·∼ N (0, 1).

� Properties:

– inferences using w(ψg) and r(ψg) are invariant to interest-respecting reparametrisation, so are
preferable but more computationally burdensome;

– s(ψg) is mainly used for tests, since only λ must be estimated (as ψ = ψg is known).

� A (1− α) confidence set based on wp(ψg) (or equivalently on ℓp(ψ)) is

{
ψ : wp(ψ) ≤ χ2

p(1− α)
}
=
{
ψ : ℓ(ψ, λ̂ψ) ≥ ℓ(ψ̂, λ̂)− 1

2χ
2
p(1− α)

}
.
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Note: Large-sample distribution of the likelihood ratio statistic wp(ψg)

� We write
wp(ψg) = 2{ℓ(θ̂)− ℓ(θ̂ψ)} = 2{ℓ(θ̂)− ℓ(θg)} − 2{ℓ(θ̂ψ)− ℓ(θg)}

and shall use Taylor series to approximate both terms by quadratic forms in θ̂ − θg and λ̂ψ − λg.

� We shall need to express ℓθ, ℓλ and λ̂ψ − λg in terms of θ̂ − θg. Taylor expansion gives

0 = ℓ̂θ = ℓθ + ℓθθ(θ̂ − θg) + · · · = ℓθ − ıθθ(θ̂ − θg) + · · · ,

where ıθθ denotes the expected information matrix evaluated at θg and · · · denotes terms of
smaller order containing third derivatives. Likewise

0 = ℓ̃λ = ℓλ + ℓλλ(λ̂ψ − λg) + · · · = ℓλ − ıλλ(λ̂ψ − λg) + · · · .

This implies that
ℓλ

.
= ıλψ(ψ̂ − ψg) + ıλλ(λ̂− λg) = ıλλ(λ̂ψ − λg),

so the necessary approximations are

ℓθ
.
= ıθθ(θ̂ − θg), ℓλ

.
= ıλλ(λ̂ψ − λg), λ̂ψ − λg

.
= λ̂− λg + ı−1

λλ ıλψ(ψ̂ − ψg).

� To obtain the quadratic forms we write

ℓ(θ̂) = ℓ(θg) + (θ̂ − θg)
Tℓθ +

1
2(θ̂ − θg)

Tℓθθ(θ̂ − θg) + · · ·
.
= ℓ(θg) + (θ̂ − θg)

Tıθθ(θ̂ − θg)− 1
2(θ̂ − θg)

Tıθθ(θ̂ − θg),

resulting in
2{ℓ(θ̂)− ℓ(θg)} .

= (θ̂ − θg)
Tıθθ(θ̂ − θg),

and with a similar expression for 2{ℓ(θ̂ψ)− ℓ(θg)} we obtain

wp(ψg)
.
= (θ̂ − θg)

Tıθθ(θ̂ − θg)− (λ̂ψ − λg)
Tıλλ(λ̂ψ − λg)

.
= (ψ̂ − ψg)

Tıψψ(ψ̂ − ψg) + 2(ψ̂ − ψg)
Tıψλ(λ̂− λg) + (λ̂− λg)

Tıλλ(λ̂− λg)

−
{
(λ̂− λg) + ı−1

λλ ıλψ(ψ̂ − ψg)
}

T

ıλλ

{
(λ̂− λg) + ı−1

λλ ıλψ(ψ̂ − ψg)
}

= (ψ̂ − ψg)
T(ıψψ − ıψλı

−1
λλ ıλψ)(ψ̂ − ψg),

and as ψ̂
·∼ N{ψg, (ıψψ − ıψλı

−1
λλ ıλψ)

−1}, we see that wp(ψg)
·∼ χ2

p, as claimed.

� Arguments along the lines of Lemma 44 show that the terms dropped above all tend in probability
to zero, and thus do not affect the approximation.
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Example: Human lifespan

Example 46 The figure below shows profile log likelihoods for the endpoint ψ of a generalized Pareto
distribution fitted to data on lifetimes of semi-supercentenarians from different databases, with
thresholds at 105, 108, 110 years. Here λ is scalar, so p = q = 1, and the horizontal line at
−1

2χ
2
1(0.95) = −1.92 indicates 95% confidence regions.
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From Belzile et al. (2022, Annual Reviews of Statistics and its Application).
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Model selection

� The fact that the Kullback–Leibler divergence

KL(g, f) = Eg{log g(Y )− log f(Y )} = Eg

[
− log

{
f(Y )

g(Y )

}]
≥ 0,

is minimised when f = g suggested that we compare competing models F1, . . . ,FM in terms of
their maximised log likelihoods log fm(y; θ̂m) = ℓ̂m.

� But ℓ̂m should be penalized, because

– ℓ̂m ≥ log fm(y; θm) even if Fm is the true model class, and

– enlarging θm will increase ℓ̂m even if further parameters are unnecessary.

� Akaike proposed minimising 2EgE
+
g

[
− log{f(Y +; θ̂)/g(Y +)}

]
, where Y +, Y

iid∼ g are

independent datasets. The idea is that if θ̂ = θ̂(Y ) is estimated separately from Y +, there will be
a penalty due to ‘missing θg’ which will grow with dim(θ) (picture . . . )

� This leads to choosing m to minimise the Akaike or the network information criteria

AICm = 2
(
dm − ℓ̂m

)
, NICm = 2

{
tr(K̂m̂

−1
m )− ℓ̂m

}
,

where the first takes tr(K̂m̂
−1
m ) ≈ dm = dim(θm).
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Note: Derivation of AIC/NIC

� Now

2EgE
+
g

[
− log{f(Y +; θ̂)/g(Y +)}

]
= 2E+

g

{
log g(Y +)

}
− 2EgE

+
g

{
log f(Y +; θ̂)

}
,

so we can ignore the first term in the minimisation over f . An unbiased estimator of the second
term would be 2ℓ+(θ̂), where ℓ+ is the log likelihood based on Y + and θ̂ is based on Y , but the
estimator we have available is 2ℓ(θ̂), in which the log likelihood and θ̂ are both based on Y .
Clearly ℓ(θ̂) is upwardly biased, but by how much?

� To find out we consider the expectation over Y + and Y of

2
{
ℓ(θ̂)− ℓ+(θ̂)

}
= 2{ℓ(θ̂)− ℓ(θg)}+ 2{ℓ(θg)− ℓ+(θg)}+ 2{ ℓ+(θg)− ℓ+(θ̂)}, (5)

where as before θg is the best candidate parameter value under f .

� As θ̂ maximises the log likelihood, ℓθ(θ̂) = 0, so the first term on the right-hand side of (5) is

2{ℓ(θ̂)− ℓ(θg)} .
= 2

{
ℓ(θ̂)− ℓ(θ̂)− ℓθ(θ̂)(θg − θ̂)− 1

2(θg − θ̂)Tℓθθ(θ̂)(θg − θ̂)
}

.
= (θ̂ − θg)

Tıθθ(θg)(θ̂ − θg),

where we have neglected terms that are op(1). The expectation of this scalar equals that of its

trace, and the large-sample normal distribution of θ̂ gives

Eg

[
tr
{
(θ̂ − θg)

Tıθθ(θg)(θ̂ − θg)
}]

= Eg

[
tr
{
(θ̂ − θg)(θ̂ − θg)

Tıθθ(θg)
}]

.
= tr

{
ı−1
θθ (θg)K(θg)ı

−1
θθ (θg)ıθθ(θg)

}

= tr
{
K(θg)ı

−1
θθ (θg)

}
.

� The second term on the right-hand side of (5) has expectation zero.

� The third term on the right-hand side of (5) can be written as

2{ℓ+(θg)− ℓ+(θ̂)} .
= 2

{
ℓ+(θg)− ℓ+(θg)− ℓ+θ (θg)(θ̂ − θg)− 1

2(θ̂ − θg)
Tℓ+θθ(θg)(θ̂ − θg)

}
,

plus op(1) terms. Now E+
g

{
ℓ+θ (θg)

}
= 0 and E+

g

{
ℓ+θθ(θg)

}
= −ıθθ(θg), so

2EgE
+
g

{
ℓ+(θg)− ℓ+(θ̂)

}
.
= Eg

{
(θ̂ − θg)

Tıθθ(θg)(θ̂ − θg)
}
.
= tr

{
K(θg)ı

−1
θθ (θg)

}
.

� Hence
2EgE

+
g

[
− log f(Y +; θ̂)

]
.
= 2EgE

+
g

[
− log f(Y ; θ̂)

]
+ 2tr

{
K(θg)ı

−1
θθ (θg)

}
.

If K(θg)
.
= ıθθ(θg), then this final expression can be estimated by AIC = 2{d− ℓ(θ̂)}, where

d = dim(θ), or by the network information criterion NIC = 2{tr(K̂̂−1)− ℓ(θ̂)}, though neither
gives consistent estimation of the true model, which would require the penalty to grow with n.
The calculations above rely on generic large-sample likelihood results, and could be improved in
specific cases (e.g., with normal errors).
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Dealing with nuisance parameters

� Profiling removes nuisance parameters, but the bias of ψ̂ is O(d3/n) in general, and then we
require d = o(n1/3) for consistency. Hence accuracy may be low if dim(λ) is high.

� Other approaches to dealing with λ include:

– basing inference on a marginal likelihood or a conditional likelihood,

f(y;ψ, λ) = f(w;ψ) × f(y | w;ψ, λ) = f(y | wψ;ψ)× f(wψ;ψ, λ),

where wψ may not depend on ψ (recall Lemmas 16 and 17) — OK for any configuration of λs,
but may lose information on ψ;

– constructing a partial likelihood (like the above, but harder to build);

– higher-order inference such as using a modified profile likelihood, which can approximate
both conditional and marginal likelihoods;

– taking λ ∼ h(·) and using the integrated likelihood
∫
f(y;ψ, λ)h(λ) dλ — depends on h,

like Bayesian inference;

– using orthogonal parameters, i.e., mapping λ 7→ ζ(λ, ψ) which is orthogonal to ψ; or

– using a composite likelihood in which λ does not appear.

� Below we sketch some of these.
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Modified profile likelihood

� Replace profile likelihood exp{ℓp(ψ)} by the modified profile likelihood

Lmp(ψ) = exp {ℓmp(ψ)} =M(ψ)Lp(ψ),

with M(ψ) chosen to mimic properties of marginal or conditional likelihood.

� Taking

M(ψ) =
∣∣∣λλ(ψ, λ̂ψ)

∣∣∣
−1/2

∣∣∣∣∣
∂λ̂

∂λ̂T

ψ

∣∣∣∣∣

does this in some generality.

� The

– first term can be obtained numerically if need be, but

– the second term is hard to compute in general.

� Simpler to base a likelihood on the normal distribution of the modified likelihood root r∗(ψ) (next).
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Higher-order inference . . .

� Classical theory gives first-order accuracy. With ψ scalar using the likelihood root gives

P {r(ψg) ≤ ro(ψg)} = Φ{ro(ψ)} +O(n−1/2) ,

so tests and confidence sets based on data yo have error n−1/2.

� If we use the modified likelihood root,

r∗(ψ) = r(ψ) +
1

r(ψ)
log

{
q(ψ)

r(ψ)

}
,

where q(ψ) depends on the model, then the error drops to O(n−3/2) for continuous responses and
to O(n−1) for discrete responses, so

P {r∗(ψg) ≤ r∗o(ψg)} = Φ{r∗o(ψg)}+O(n−3/2) ,

for continuous data (often almost exact even for tiny n; see Example 45).

� Highly accurate even into the distribution tails, because the relative error is bounded.

� A 1− 2α confidence interval,
{ψ : zα ≤ r∗o(ψ) ≤ 1− α},

has error of order n−3/2 (often effectively perfect).
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. . . with nuisance parameters

� With nuisance parameters, r(ψ) = sign(ψ̂ − ψ)
√
wp(ψ), and

q(ψ) =
| ϕ(θ̂)− ϕ(θ̂ψ) ϕλ(θ̂ψ) |

| ϕθ(θ̂) |

{
| ̂ |

| λλ(θ̂ψ) |

}1/2

where ϕ is the d× 1 canonical parameter of a local exponential family approximation to the model
at the observed data yo, with ϕθ(θ) = ∂ϕ(θ)/∂θT, etc.

� In a general exponential family ϕ(θ) is the canonical parameter, and in a linear exponential family,

q(ψ) = (ψ̂ − ψ)

{
|̂|

|λλ(θ̂ψ)|

}1/2

.

� In general for independent continuous observations we write

ϕ(θ)d×1 = V T

d×n
∂ℓ(θ; y)

∂y

∣∣∣∣
y=yo

=

n∑

j=1

V T

j

∂ log f(yj;ψ, λ)

∂yj

∣∣∣∣
y=yo

,

where the 1× d Vj = ∂yj/∂θ
T are evaluated at yo and θ̂o.
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Properties of higher order approximations

� Invariant to interest-respecting reparameterization.

� Computation almost as easy as first order versions.

� Error O(n−3/2) in continuous response models, O(n−1) in discrete response models.

� Relative (not absolute) error, so highly accurate in tails.

� Bayesian version is also available (and easier to derive).

Example 47 (Location-scale model) Compute ϕ(θ) for a location-scale model, in which
independent observations Yj have density τ−1h{(y − η)/τ}. What about the normal density?
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Note to Example 47

� In this case the overall log likelihood is

ℓ(η, τ) = −n log τ +
n∑

j=1

log h{(yj − η)/τ},

so the vector ∂ℓ(η, τ)/∂y has components τ−1(log h)′{(yj − η)/τ}, evaluated at the maximum
likelihood estimates η̂o and τ̂o and observed data vector yo1, . . . , y

o
n.

� To compute the Vj we use the structural expression y = η + τε, where ε ∼ h. This represents y as
a function of θT = (η, τ), and yields ∂yj/∂θ

T = (1, εj). This has to be evaluated at the observed
data point yo, and at that point the parameters are replaced by their maximum likelihood
estimates, giving V T

j = (1, (yoj − η̂o)/τ̂o).

� This yields

ϕ(θ) =

n∑

j=1

τ−1(log h)′{(yoj − η)/τ}(1, ej )T,

where we have set ej = (yoj − η̂o)/τ̂o.

� If h is normal, then log h(u) ≡ −u2/2, so (log h)′{(yoj − η)/τ} = −(yoj − η)/τ2, leading to

ϕ(θ)T =




n∑

j=1

(η − yoj )/τ
2,

n∑

j=1

(η − yoj )/τ
2 × ej


 ≡ (η/τ2, 1/τ2),

because it turns out that inferences are invariant under non-singular affine transformations of ϕ(θ)
(exercise).
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Orthogonal parameters

� If the expected information matrix is block diagonal, with ıψ,λ(θ) = 0 for all θ, then ψ̂ is

asymptotically independent of λ̂, and we can hope that the effect on ψ̂ of estimating λ will be
limited. If so, we say that ψ and λ are orthogonal.

� This suggests mapping (ψ, γ) to (ψ, λ), where λ = λ(ψ, γ) is orthogonal to ψ.

� Writing γ = γ(ψ, λ) gives
ℓ(ψ, λ) = ℓ∗ {ψ, γ(ψ, λ)} ,

and differentiation with respect to ψ and λ leads to

∂2ℓ

∂λ∂ψ
=
∂γT

∂λ

∂2ℓ∗

∂γ∂ψ
+
∂γT

∂λ

∂2ℓ∗

∂γ∂γT

∂γ

∂ψ
+
∂2γT

∂λ∂ψ

∂ℓ∗

∂γ
.

� For orthogonality this must have expectation zero, so

0 =
∂γT

∂λ
ı∗γψ +

∂γT

∂λ
ı∗γγ

∂γ

∂ψ
,

where ı∗γψ and ı∗γγ are components of the expected information matrix in the non-orthogonal
parametrization, so λ solves the system of q PDEs

∂γ

∂ψ
= −ı∗−1

γγ (ψ, γ)ı∗γψ(ψ, γ).
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Orthogonal parameters II

� A (possibly numerical) solution always exists when dim(ψ) = 1, but need not exist when ψ is
vector, because then we must simultaneously solve

∂γ

∂ψ1
= −ı∗−1

γγ (ψ, γ)ı∗γψ1
(ψ, γ),

∂γ

∂ψ2
= −ı∗−1

γγ (ψ, γ)ı∗γψ2
(ψ, γ),

for all γ, ψ1 and ψ2, but the compatibility condition

∂2γ

∂ψ1∂ψ2
=

∂2γ

∂ψ2∂ψ1

may fail.

Example 48 (Linear exponential family) What parameter is orthogonal to ψ in the linear
exponential family with log likelihood

ℓ∗(ψ, γ) ≡ sT1ψ + sT2γ − k(ψ, γ)?

Consider normal and Poisson likelihoods in particular.
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Note to Example 48

� The parameters λ = λ(ψ, γ) orthogonal to ψ are determined by

∂γ

∂ψT
= −k−1

γγ (ψ, γ)kγψ(ψ, γ). (6)

If we reparametrize in terms of ψ and λ = kγ(ψ, γ) = ∂k(ψ, γ)/∂γ, then in this new
parametrization, γ is a function of ψ and λ, and

0 =
∂λT

∂ψ
=
∂γT

∂ψ
kγγ(ψ, γ) + kψγ(ψ, γ),

so λ = kγ(ψ, γ) is a solution to (6). That is, the parameter orthogonal to ψ is the so-called
complementary mean parameter λ(ψ, γ) = E(S2;ψ, γ). By symmetry, E(S1;ψ, γ) is orthogonal to
γ.

� The normal distribution with mean µ and variance σ2 has canonical parameter (µ/σ2,−1/(2σ2)).
The canonical statistic (Y, Y 2) has expectation (µ, µ2 + σ2), so µ is orthogonal to −1/(2σ2), and
hence to σ2, while µ/σ2 is orthogonal to µ2 + σ2.

� Independent Poisson variables Y1 and Y2 with means exp(γ) and exp(γ + ψ) have log likelihood

ℓ∗(ψ, γ) ≡ (y1 + y2)γ + y2ψ − eγ − eγ+ψ.

The discussion above suggests that

λ = E(Y1 + Y2) = exp(γ) + exp(γ + ψ) = eγ(1 + eψ)

is orthogonal to ψ, so γ = log λ− log(1 + eψ) and

ℓ(ψ, λ) ≡ y2ψ − (y1 + y2) log(1 + eψ) + (y1 + y2) log λ− λ.

The separation of ψ and λ implies that the profile and modified profile likelihoods for ψ are
proportional. They correspond to the conditional likelihood obtained from the density of Y2 given
Y1 + Y2.
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Composite likelihood

� Used when full likelihood can’t be computed but densities for distinct subsets of the observations,
yS1

, . . . , ySC , are available, can use a composite (log) likelihood

ℓC(θ) =

C∑

c=1

log f(ySc; θ).

� The choice of subsets S1, . . . ,SC determines what parameters can be estimated.

� Special cases:

– independence likelihood takes Sj = {yj} and treats (possibly dependent) yj as independent;

– pairwise likelihood uses subsets of distinct pairs {yj , yj′}.
� May be useful with spatial data, and then contributions from distant pairs may be downweighted

or dropped entirely.

� ℓC(θ) satisfies the first Bartlett identity, so can give consistent estimators θ̃, but requires a
sandwich variance matrix (or some other approach) to estimate var(θ̃).

� Model comparisons use the composite likelihood information criterion

CLIC = 2
[
tr{K(θ̃)(θ̃)−1} − ℓC(θ̃)

]
.
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Empirical likelihood

� Empirical likelihood allows nonparametric estimation of constrained distributions.

� If y1, . . . , yn
iid∼ G, then the Ĝ that maximises the ‘nonparametric likelihood’

L(G) =

n∏

j=1

G(dyj) =

n∏

j=1

pj, subject to pj ≥ 0,

n∑

j=1

pj ≤ 1,

sets G(dyj) = p̂j ≡ n−1: Ĝ is the empirical distribution function of y1, . . . , yn.

� Adding the constraint E{c(Y ; θ)} = 0 leads to maximising

n∑

j=1

log pj subject to pj ≥ 0,

n∑

j=1

pj ≤ 1,

n∑

j=1

pjc(yj ; θ) = 0,

and a use of Lagrange multipliers shows that we must find a = aθ to solve

n∑

j=1

c(yj ; θ)

n{1 + ac(yj ; θ)}
= 0

giving â = âθ, p̂j(θ) = n−1/{1 + âc(yj ; θ)} and empirical likelihood ratio statistic
w(θ) = 2

∑
log{1 + âc(yj ; θ)}

� The usual χ2 result applies to w(θ). Can be widely generalised . . .
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Example: Newcomb data

n = 20 observations on the speed of light (made by Simon Newcomb), empirical likelihood (black) and
normal likelihood (red) for the mean θ. Note how the empirical likelihood adapts to the ‘shape’ of the
data.
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Non-regular models

� The regularity conditions (C1)–(C4) apply in many settings met in practice, but not universally.
The most common failures arise when

– some of the parameters are discrete (e..g, change point problems),

– the model is not identifiable (distinct θ values give the same model),

– θg is on the boundary of the parameter space (e.g., testing for a zero variance),

– d = dim(θ) grows (too fast) with n, or

– the support of f(y; θ) depends on θ (so the Bartlettt identities fail).

� Even when the conditions are satisfied there can be datasets for which maximum likelihood
estimation fails, e.g.,

– there is no unique maximum to the likelihood, or

– the maximum is on the edge of the parameter space,

and then penalisation (equivalent to using a prior) is often used.

Example 49 If Y1, . . . , Yn
iid∼ U(0, θ), find the likelihood and θ̂, and show that the limit distribution

of n(θ − θ̂)/θ when n→ ∞ is exp(1). Discuss.
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Note to Example 49

Owing to the independence,

L(θ) =

n∏

j=1

fY (yj ; θ) =

n∏

j=1

{
θ−1I(0 < yj < θ)

}
= θ−nI(max yj < θ), θ > 0,

and therefore θ̂ =M = maxYj , whose distribution is

P(M ≤ x) = (x/θ)n, 0 < x < θ.

Now
P
{
n(θ − θ̂)/θ ≤ x

}
= P(θ̂ ≥ θ − xθ/n) = 1− {(θ − xθ/n)/θ}n → 1− exp(−x),

as required. Note that:

� the scaling needed to get a limiting distribution is much faster here than in the regular case (we
have to multiply by n to get a non-degenerate limit);

� the limit is not normal.
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Uniform example

Comparison of the distributions of θ̂ in a regular case (panels above, with standard deviation ∝ n−1/2)
and in a nonregular case (Example 49, panels below, with standard deviation ∝ n−1). In other
nonregular cases it might happen that the distribution is nasty (unlike here) and/or that the
convergence is slower than in regular cases.
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Comments

� Other likelihoods and/or likelihood-like functions are widely used, especially

– partial likelihood, used to eliminate nuisance functions for inference (survival data),

– quasi-likelihood, used to model over-dispersion in exponential family models,

– pseudo-likelihood, treats data as Gaussian even when they are not (econometrics).

� Strengths of likelihood approach:

– heuristic as plausibility of a model as explanation of data;

– we ‘just’ have to write down the density of the observed data;

– invariance to data and parameter transformations;

– simple and (fairly) general approximate theory for inference under regularity conditions, also
easily implemented numerically;

– large-sample optimality properties in regular cases;

– close links to Bayesian inference (next).

� Weaknesses of likelihood approach:

– requires ‘parametric’ model for data;

– can have trouble in high-dimensional settings;

– not all models are regular.
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Bootstrap Inference slide 128

Parameters and functionals

� Parametric models are determined by a finite vector θ ∈ Θ. Does this generalise?

� If Y ∼ G, then we can define a parameter in terms of a statistical functional, e.g.,

µ = t1(G) =

∫
y dG(y), σ2 = t2(G) =

∫
y2 dG(y)−

{∫
y dG(y)

}2

.

� Below we always assume that such functionals are well-defined.

� We apply the ‘plug-in principle’ and replace G by an estimator Ĝ, giving

µ̂ = t1(Ĝ) =

∫
y dĜ(y), σ̂2 = t2(Ĝ) =

∫
y2 dĜ(y)−

{∫
y dĜ(y)

}2

.

� With a parametric model we can write G ≡ Gθ and Ĝ ≡ G
θ̂
, but a general estimator of G based

on Y1, . . . , Yn
iid∼ G is the empirical distribution function (EDF)

Ĝ(y) =
1

n

n∑

j=1

H(y − Yj), H(x) =

{
0, x < 0,

1, x ≥ 0,

where H(·) is the Heaviside function.
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Algorithmic approach

Example 50 Give general definitions of the median and the parameter obtained from a maximum
likelihood fit of a density f(y; θ). What are the corresponding estimators (a) under a fitted exponential
model, and (b) a nonparametric model?

� This approach is essentially algorithmic: t(·) is an algorithm that

– when applied to the distribution G gives the parameter t(G);

– when applied to an estimator Ĝ based on data Y1, . . . , Yn gives the estimator t(Ĝ).

� The algorithm t(·) can be (almost) arbitrarily complex.

� This point of view suggests a sampling approach to frequentist inference:

– if we knew G, we could assess the properties of t(Ĝ) by generating many samples
Ĝ ≡ {Y1, . . . , Yn} from G and looking at the corresponding values of t(Ĝ);

– since G is unknown, we replace it by Ĝ, generate samples Ĝ∗ ≡ {Y ∗
1 , . . . , Y

∗
n } from Ĝ, and use

the corresponding values of t(Ĝ∗) to estimate the distribution of t(Ĝ).

� The samples Ĝ∗ ≡ {Y ∗
1 , . . . , Y

∗
n } are known as bootstrap samples, and the overall procedure is

known as a bootstrap, one of many possible resampling procedures.
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Example 50

� The usual definition of the p quantile is

t1(G) = inf{x : G(x) ≥ p},

for p ∈ (0, 1). For the median we set p = 1/2.

� The maximum likelihood estimator is defined as

t2(G) = argmax
θ

EG{log f(Y ; θ)} = argmax
θ

∫
log f(y; θ) dĜ(y),

which we earlier called θg.

� Under an exponential model

t1(G) = inf{x : 1− exp(−λx) ≥ p} = −λ1 log(1− p) = λ−1 log 2,

so if the fitted model has parameter λ̂, then t1(Ĝ) = λ̂−1 log 2.
Likewise θg is estimated by

argmax
θ

∫
log f(y; θ) λ̂e−λ̂y dy;

note that f is not necessarily exponential.

� Under the general model and with order statistics Y(1) ≤ Y(2) ≤ · · · ≤ Y(n),

t1(Ĝ) = inf{x : Ĝ(x) ≥ p} = Y(m),

where m = ⌊(n+ 1)/2⌋, and as dH(u) puts a unit mass at u = 0,

t2(Ĝ) = argmax
θ

∫
log f(y; θ) dĜ(y)

= argmax
θ

∫
log f(y; θ) d



n

−1
n∑

j=1

H(y − Yj)





= argmax
θ

n−1
n∑

j=1

∫
log f(y; θ) dH(y − Yj)

= argmax
θ

n−1
n∑

j=1

log f(Yj; θ),

i.e., the maximum likelihood estimator of θ based on the sample.
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Example: Handedness data

Table 1: Data from a study of handedness; hand is an integer measure of handedness, and dnan a
genetic measure. Data due to Dr Gordon Claridge, University of Oxford.

dnan hand dnan hand dnan hand dnan hand

1 13 1 11 28 1 21 29 2 31 31 1
2 18 1 12 28 2 22 29 1 32 31 2
3 20 3 13 28 1 23 29 1 33 33 6
4 21 1 14 28 4 24 30 1 34 33 1
5 21 1 15 28 1 25 30 1 35 34 1
6 24 1 16 28 1 26 30 2 36 41 4
7 24 1 17 29 1 27 30 1 37 44 8
8 27 1 18 29 1 28 31 1
9 28 1 19 29 1 29 31 1
10 28 2 20 29 2 30 31 1

stat.epfl.ch Autumn 2022 – slide 131

Example: Handedness data

Scatter plot of handedness data. The numbers show the multiplicities of the observations.
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Example: Handedness data

� How do we quantify dependence between dnan and hand for these n = 37 individuals?

� A standard measure is the product-moment (Pearson) correlation for G(u, v), i.e.,

θ = t(G) =

∫ {
u−

∫
udG(u, v)

}{
v −

∫
v dG(u, v)

}
dG(u, v)

[∫ {
u−

∫
udG(u, v)

}2
dG(u, v)

∫ {
v −

∫
v dG(u, v)

}2
dG(u, v)

]1/2 .

� With (u, v) = (dnan, hand), the sample version is

θ̂ = t(Ĝ) =

∑n
j=1(dnanj − dnan)(handj − hand)

{∑n
j=1(dnanj − dnan)2

∑n
j=1(handj − hand)2

}1/2

= 0.509.

� Standard (bivariate normal) 95% confidence interval is (0.221, 0.715), but this is obviously
inappropriate (the data look highly non-normal).

� Try simulation approach . . .
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Bootstrap simulation

� Whether Ĝ is parametric or non-parametric, we simulate as follows:

– For r = 1, . . . , R:

⊲ generate a bootstrap sample y∗1, . . . , y
∗
n

iid∼ Ĝ,

⊲ compute θ̂∗r using y∗1, . . . , y
∗
n,

so the output is a set of bootstrap replicates,

θ̂∗1, . . . , θ̂
∗
R.

� We then use θ̂∗1, . . . , θ̂
∗
R to estimate properties of θ̂ (histogram, . . .).

� If R→ ∞, then get perfect match to theoretical calculation based on Ĝ (if this is available):
Monte Carlo error disappears completely.

� In practice R is finite, so some Monte Carlo error remains.

� If Ĝ is the EDF, then y∗1, . . . , y
∗
n

iid∼ Ĝ are sampled with replacement and equal probabilities from
y1, . . . , yn, so if f∗i = #{y∗j = yi}, then (f∗1 , . . . , f

∗
n) has the multinomial distribution with

denominator n and probability vector (n−1, . . . , n−1).

� Although E∗(f∗j ) = 1, yj can appear 0, 1, . . . , n times in the bootstrap sample.
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Handedness data: Fitted bivariate normal model

Contours of bivariate normal distribution fitted to handedness data; parameter estimates are
µ̂1 = 28.5, µ̂2 = 1.7, σ̂1 = 5.4, σ̂2 = 1.5, ρ̂ = 0.509. The data are also shown.
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Handedness data: Parametric bootstrap samples

Left: original data, with jittered vertical values. Centre and right: two samples generated from the
fitted bivariate normal distribution.
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Handedness data: Correlation coefficient

Bootstrap distributions with R = 10000. Left: simulation from fitted bivariate normal distribution.
Right: nonparametric sampling from the EDF. The lines show the theoretical probability density
function of the correlation coefficient under sampling from a fitted bivariate normal distribution.
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Handedness data: Bootstrap samples

Left: original data, with jittered vertical values. Centre and right: two bootstrap samples, with jittered
vertical values.
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Using the θ̂∗

� The bias and variance of θ̂ as an estimator of θ = t(G),

β(G) = E(θ̂ | y1, . . . , yn iid∼ G)− t(G), ν(G) = var(θ̂ | G),

are estimated by replacing the unknown G by its known estimate Ĝ:

β(Ĝ) = E(θ̂ | y1, . . . , yn iid∼ Ĝ)− t(Ĝ), ν(Ĝ) = var(θ̂ | y1, . . . , yn iid∼ Ĝ).

� The Monte Carlo approximations to β(Ĝ) and ν(Ĝ) are

b = θ̂∗ − θ̂ = R−1
R∑

r=1

θ̂∗r − θ̂, v =
1

R− 1

R∑

r=1

(
θ̂∗r − θ̂∗

)2
.

For the handedness data, R = 104 and b = −0.046, v = 0.043 = 0.2052.

� We estimate the p quantile of θ̂ using the p quantile of θ̂∗1, . . . , θ̂
∗
R, i.e., θ̂∗((R+1)p).
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Handedness data

Summaries of the θ̂∗. Left: histogram, with vertical line showing θ̂. Right: normal Q–Q plot of θ̂∗.
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Common questions

� How big should n be? — depends on the context

� What if the sample is unrepresentative? — this is always a potential problem in statistics, not
specific to resampling methods.

� How big should R be? — at least 1000 for most purposes

� Why take resamples of size n?

– We usually want to mimic the sampling properties of samples like the original one, so take
resamples of size n,

– but sometimes we take resamples of size m≪ n in order to achieve validity of the
bootstrap—e.g., for extreme quantiles.

� Why resample from the EDF?

– The EDF is the nonparametric MLE of G, so is a natural choice, but

– sometimes (e.g., testing) we resample from a constrained version of Ĝ,

– sometimes it may be useful to smooth Ĝ;

– sometimes it may be useful to simulate from (several) parametric fits.
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How big should n be?

� For the average θ̂ = y, the number of distinct samples is

mn =

(
2n− 1

n

)
,

the most probable of which has probability pn = n!/nn.
For n > 12, we have mn > 106 and pn < 6× 10−5.

� Bootstrapping of smooth statistics like the average will often work OK provided n > 20.

� For the median of a sample of size n = 2m+ 1, the possible distinct values of θ̂∗ are
y(1) < · · · < y(n), and

P∗(θ̂∗ > y(l)) =

m∑

r=0

(
n

r

)(
l

n

)r (
1− l

n

)n−r
,

so exact calculations of the variance etc. are possible.

� However the median is very vulnerable to bad sample values, so for the median (and other
‘non-smooth’ statistics) much larger n is needed for reliable inference.
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How many bootstraps?

� Must estimate moments and quantiles of θ̂ and derived quantities. Often feasible to take
R≫ 1000

� Need R ≥ 200 to estimate bias, variance, etc.

� Need R≫ 100, preferably R ≥ 2500 to estimate quantiles needed for 95% confidence intervals
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Resamples of size n?

� Exponential sample of size n = 1000

� Distribution of nmin(Y1, . . . , Yn) is exp(1)

� Resampling distribution mmin(Y ∗
1 , . . . , Y

∗
m) using resamples of size m = 1000, 100, 50

� To avoid discreteness must choose m≪ n, but how?
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Variants of Ĝ?

� Can be useful to simulate from a smoothed EDF, given by

Y ∗ = yj∗ + hε∗, ε∗ ∼ N (0, 1) ⊥⊥ j∗ ∼ U{1, . . . , n},

equivalent to simulating from a kernel density estimate. Below, with h = 0.1 (red) and h = 0.5
(blue).

� Since var∗(Y ∗) = σ̂2 + h2, may prefer a shrunk smoothed estimate, given by

Y ∗ = y +
(yj∗ − y) + hε∗

(1 + h2/σ̂2)1/2
.
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When does the bootstrap work?

� ‘Work’ might mean the bootstrap gives

– reliable answers when used in practice, or

– mathematically correct answers under ‘suitable’ regularity conditions.

� For the second of these, suppose we seek to estimate properties of a standardized quantity
Q = q(Y1, . . . , Yn;G), maybe Q = n1/2(Y − θ). Let n→ ∞ to get limiting results for the
distribution function

HG,n(q) = PG {Q(Y1, . . . , Yn;G) ≤ q} ,
where subscript G indicates that Y1, . . . , Yn is a random sample from G.

� Bootstrap estimate of this is

H
Ĝ,n

(q) = P
Ĝ

{
Q(Y ∗

1 , . . . , Y
∗
n ; Ĝ) ≤ q

}

where Q(Y ∗
1 , . . . , Y

∗
n ; Ĝ) = n1/2(Y

∗ − y).

� We need conditions under which HĜ,n

D−→ HG,n as n→ ∞.
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Regularity conditions

� The true distribution G is surrounded by a neighbourhood N in a suitable space of distributions,
and as n→ ∞, Ĝ eventually falls into N with probability one. Also:

1. for any F ∈ N , HF,n converges weakly to a limit HF,∞;

2. this convergence must be uniform on N ; and

3. the function mapping F to HF,∞ must be continuous.

� Weak convergence of HF,n to HF,∞ means that for all integrable b(·),
∫
b(u) dHF,n(u) →

∫
b(u) dHF,∞(u), n→ ∞.

� Under these conditions the bootstrap is consistent: for any q and ε > 0,

P{|HĜ,n(q)−HG,∞(q)| > ε} → 0, n→ ∞.

� The first condition ensures that there is a limit for HG,n to converge to.

� As n increases, Ĝ changes, so the second and third conditions are needed to ensure that H
Ĝ,n

approaches HG,∞ along every possible sequence of Ĝs.

� If any one of these conditions fails, the bootstrap can fail. For the minimum (for example) the
convergence is not uniform on suitable neighbourhoods of G.
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Summary

� Estimator is algorithm:

– applied to original data y1, . . . , yn gives original θ̂;

– applied to simulated data y∗1, . . . , y
∗
n gives θ̂∗;

– θ̂ can be of (almost) any complexity; but

– for more sophisticated ideas to work, θ̂ must often be smooth function of data.

� Sample is used to estimate G:

– Ĝ ≈ G — heroic assumption

� Simulation replaces theoretical calculation:

– removes need for mathematical skill;

– does not remove need for thought; and in particular,

– check code very carefully — garbage in, garbage out!

� Two sources of error:

– statistical (Ĝ 6= G) — reduce by thought; and

– simulation (R 6= ∞) — reduce by taking R large (enough).
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Bootstrap confidence Intervals: Desiderata

� A (1− α) upper confidence limit for a scalar parameter θ based on data Y is a random variable
θα = θα(Y ) for which

P (θ ≤ θα) = α, 0 < α < 1, θ ∈ Θ. (7)

� We may seek invariance to monotone transformations ψ = ψ(θ), that is

P {ψ(θ) ≤ ψα} = α, 0 < α < 1, θ ∈ Θ.

� In practice exact intervals are rarely available, and we seek intervals such that (7) is satisfied as
closely as possible. If Y ≡ Y1, . . . , Yn, then we typically have

P (θ ≤ θα) = α+O(n−1/2), 0 < α < 1, θ ∈ Θ,

and the corresponding two-sided interval satisfies

P (θα < θ ≤ θ1−α) = (1− 2α) +O(n−1), 0 < α < 1/2, θ ∈ Θ.
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Normal confidence intervals

� If θ̂
·∼ N (θ+ β, ν) with known bias β = β(G) and variance ν = ν(G), then a (1− 2α) confidence

interval is based on the equation

P

(
zα <

θ̂ − θ − β

ν1/2
≤ z1−α

)
= 1− 2α,

and has limits θ̂ − β ± zαν
1/2, where Φ(zα) = α.

� We replace β, ν by the bootstrap estimates

β(G)
.
= β(Ĝ)

.
= b = θ̂∗ − θ̂,

ν(G)
.
= ν(Ĝ)

.
= v = (R − 1)−1

∑

r

(θ̂∗r − θ̂∗)2,

to get the (1− 2α) interval with limits θ̂ − b± zαv
1/2.

� For the handedness data we have R = 10, 000, b = −0.046, v = 0.2052, α = 0.025, zα = −1.96,
so 95% CI is (0.147, 0.963)

� We can use the θ̂∗1, . . . , θ̂
∗
R to check the quality of the normal approximation, and perhaps to

suggest transformations.
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Handedness data

Summaries of the θ̂∗. Left: histogram, with vertical line showing θ̂. Right: normal Q–Q plot of θ̂∗.
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Handedness data: Transformed scale?

Plots for ψ̂∗ = 1
2 log{(1 + θ̂∗)/(1 − θ̂∗)}:

Transformed correlation coefficient
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Normal confidence intervals

� Correlation coefficient: try Fisher’s z transformation:

ψ̂∗ = ψ(θ̂∗) = 1
2 log{(1 + θ̂∗)/(1 − θ̂∗)}

with bias and variance estimates

bψ = R−1
R∑

r=1

ψ̂∗
r − ψ̂, vψ =

1

R− 1

R∑

r=1

(
ψ̂∗
r − ψ̂∗

)2
,

� Then the (1− 2α) confidence interval for θ is

ψ−1
{
ψ̂ − bψ − z1−αv

1/2
ψ

}
, ψ−1

{
ψ̂ − bψ − zαv

1/2
ψ

}

� For handedness data, get (0.074, 0.804) . . . but how do we choose a transformation in general?
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Pivots

� Assume properties of θ̂∗1, . . . , θ̂
∗
R mimic effect of sampling from original model (plug-in principle)

— false in general, but more nearly true for pivots.

� Pivot is combination of data and parameter whose distribution is independent of underlying
model, such as t statistic

Z =
Y − µ

(S2/n)1/2
∼ tn−1,

when Y1, . . . , Yn
iid∼ N (µ, σ2).

� Exact pivot generally unavailable in nonparametric case, but if we can estimate the variance of θ̂∗

using V , we use

Z =
θ̂ − θ

V 1/2

� If the quantiles zα of Z known, then

P (zα ≤ Z ≤ z1−α) = P

(
zα ≤ θ̂ − θ

V 1/2
≤ z1−α

)
= 1− 2α

(zα no longer denotes a normal quantile!) gives (1− 2α) CI (θ̂ − V 1/2z1−α, θ̂ − V 1/2zα)
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Studentized statistic

� Bootstrap sample gives (θ̂∗, V ∗) and hence

Z∗ =
θ̂∗ − θ̂

V ∗1/2
.

� We bootstrap to get R copies of (θ̂, V ), i.e.,

(θ̂∗1, V
∗
1 ), (θ̂∗2, V

∗
2 ), . . . , (θ̂∗R, V

∗
R),

and the corresponding

z∗1 =
θ̂∗1 − θ̂

V
∗1/2
1

, z∗2 =
θ̂∗2 − θ̂

V
∗1/2
2

, . . . , z∗R =
θ̂∗R − θ̂

V
∗1/2
R

,

then order these to estimate quantiles of Z, with zp estimated by z∗(p(R+1)).

� Get (1− 2α) Studentized bootstrap confidence interval

θ̂ − V 1/2z∗((1−α)(R+1)) , θ̂ − V 1/2z∗(α(R+1)).

� This is not invariant to transformation and needs an estimated variance V ∗
r for each θ̂∗r .

stat.epfl.ch Autumn 2022 – slide 155

Why Studentize?

� If we Studentize, then Z
D−→ N(0, 1) as n→ ∞, and we can use Edgeworth series to write

PG(Z ≤ z) = Φ(z) + n−1/2a(z)φ(z) +O(n−1),

where a(·) is an even quadratic polynomial.

� For example, if we use θ̂ = Y and V = n−1S2 to compute Z for data with skewness γ, then
a(x) = γ(2x2 + 1)/6 and (next slide) a′(x) = −γ(x2 − 1)/6.

� The corresponding expansion for Z∗ is

PĜ(Z
∗ ≤ z) = Φ(z) + n−1/2â(z)φ(z) +Op(n

−1).

� Typically â(z) = a(z) +Op(n
−1/2), so

P
Ĝ
(Z∗ ≤ z)− PG(Z ≤ z) = Op(n

−1),

so the order of error is n−1.
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Why Studentize? II

� Without Studentization, Z = n1/2(θ̂ − θ)
D−→ N(0, ν ′), and then

PG(Z ≤ z) = Φ
( z

ν ′1/2

)
+ n−1/2a′

( z

ν ′1/2

)
φ
( z

ν ′1/2

)
+O(n−1)

and
PĜ(Z

∗ ≤ z) = Φ
( z

ν̂ ′1/2

)
+ n−1/2â′

( z

ν̂ ′1/2

)
φ
( z

ν̂ ′1/2

)
+Op(n

−1).

� Typically ν̂ ′ = ν ′ +Op(n
−1/2), giving

PĜ(Z
∗ ≤ z)− PG(Z ≤ z) = Op(n

−1/2),

and the difference in the leading terms means that the overall error is of order n−1/2.

� Thus Studentizing reduces error from Op(n
−1/2) to Op(n

−1): better than using large-sample
asymptotics, for which error is usually Op(n

−1/2).
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Other confidence intervals

� Simpler approaches:

– Basic bootstrap interval: treat θ̂ − θ as pivot, get

θ̂ − (θ̂∗((R+1)(1−α)) − θ̂), θ̂ − (θ̂∗((R+1)α) − θ̂).

– Percentile interval: use empirical quantiles of θ̂∗1, . . . , θ̂
∗
R:

θ̂∗((R+1)α), θ̂∗((R+1)(1−α)) .

� The percentile interval is transformation-invariant, not the basic bootstrap interval.

� Bias-corrected and accelerated (BCa) intervals replace percentile interval with
(θ̂∗((R+1)α′), θ̂

∗
((R+1)(1−α′′)), where

α′ = Φ

{
w +

w + zα
1− a(w + zα)

}
, w = Φ−1

{
Ĝ∗(θ̂)

}
, a = 1

6

∑n
j=1 l

3
j(∑n

j=1 l
2
j

)3/2 ,

with Ĝ∗ the EDF of the θ̂∗1, . . . , θ̂
∗
R, and l1, . . . , ln the empirical influence values (soon).

� If the bias w = 0, then Ĝ∗(θ̂) = 1
2 , so θ̂ is at the median of the EDF of θ̂∗

� If the acceleration a = 0, then the effect of the data y1, . . . , yn on θ̂ is symmetric.
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Comparisons

Table 2: Empirical error rates (%) for nonparametric bootstrap confidence limits in ratio estimation:
rates for sample sizes n1 = n2 = 10 are given above those for sample sizes n1 = n2 = 25. R = 999 for
all bootstrap methods. 10,000 data sets generated from Gamma distributions.

Method Nominal error rate
Lower limit Upper limit

1 2.5 5 10 10 5 2.5 1

Exact 1.0 2.8 5.5 10.5 9.8 4.8 2.6 1.0
1.0 2.3 4.8 9.9 10.2 4.9 2.5 1.1

Normal approximation 0.1 0.5 1.7 6.3 20.6 15.7 12.5 9.6
0.1 0.5 2.1 6.4 16.3 11.5 8.2 5.5

Basic bootstrap 0.0 0.0 0.2 1.8 24.4 21.0 18.6 16.4
0.0 0.1 0.4 3.0 19.2 15.0 12.5 10.3

Basic bootstrap, log scale 2.6 4.9 8.1 12.9 13.1 7.5 4.8 2.5
1.6 3.2 6.0 11.4 11.5 6.3 3.3 1.7

Studentized bootstrap 0.6 2.1 4.6 9.9 11.9 6.7 4.0 2.0
0.8 2.3 4.6 9.9 10.9 5.9 3.0 1.4

Studentized bootstrap, log scale 1.1 2.8 5.6 10.7 11.6 6.3 3.5 1.7
1.1 2.5 5.0 10.1 10.8 5.7 2.9 1.3

Bootstrap percentile 1.8 3.6 6.5 11.6 14.6 8.9 5.9 3.3
1.2 2.6 5.1 10.1 12.6 7.1 4.2 2.1

BCa 1.9 4.0 6.9 12.3 14.0 8.3 5.3 3.0
1.4 3.0 5.6 10.9 11.8 6.8 3.8 1.9

ABC 1.9 4.2 7.4 12.7 14.6 8.7 5.5 3.1
1.3 3.0 5.7 11.0 12.1 6.8 3.7 1.9
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Confidence interval lengths

Lengths of 95% confidence intervals for the first 1000 simulated samples in the numerical experiment
with Gamma data.
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Discussion

� Bootstrap confidence intervals usually under-cover (i.e., are too short).

� Normal, basic, and studentized intervals depend on scale.

� Percentile interval often too short but is transformation-invariant.

� Studentized intervals give best coverage overall, but

– they depend on scale, can be sensitive to V ;

– their lengths can be very variable;

– they are best when V is approximately constant.

� Improved percentile intervals have same asymptotic error as Studentized intervals, but often are
shorter, so give lower coverage probabilities.

� Caution: Edgeworth theory OK for smooth statistics, but beware rough statistics: must check
output.

� Typically need R > 1000 for reliable estimation of quantiles.
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Nonparametric delta method

� The delta method (Theorem 40) gives variance formulae for functions of averages.

� More generally we use the nonparametric delta method, which is based on the linear functional
expansion

t(F )
.
= t(G) +

∫
Lt(x;G) dF (x),

where Lt, the first derivative of t(·) at G, is defined by

Lt(y;G) = lim
ε→0

t{(1− ε)G+ εHy} − t(G)

ε
=
∂t {(1− ε)G+ εHy}

∂ε

∣∣∣∣
ε=0

,

with Hy(u) ≡ H(u− y) the Heaviside function jumping from 0 to 1 at u = y.

� The influence function value Lt(y;G) for the statistical functional t for an observation at y
when the background distribution is G, satisfies EG{Lt(Y ;G)} = 0.

� If Ĝ is based on a random sample y1, . . . , yn, then the jth empirical influence value is

lj = Lt(yj; Ĝ),

and EĜ{Lt(Y ; Ĝ)} = n−1
∑

j lj = 0.

� The influence function also plays an important role in robust statistics.
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Nonparametric delta method II

� If we replace F by the EDF Ĝ for a random sample Y1, . . . , Yn, then

t(Ĝ)
.
= t(G) +

∫
Lt(x;G) dĜ(x) = t(G) +

1

n

n∑

j=1

Lt(Yj ;G),

has variance

var{t(Ĝ)} .
=

1

n2

n∑

j=1

L2
t (Yj ;G) = VL,

say, which we estimate based on a sample y1, . . . , yn by vL = n−2
∑
l2j .

Example 51 Apply the nonparametric delta method to the average Y .

Example 52 Apply the nonparametric delta method to a statistic defined by an estimating equation,
and hence find the variance of the ratio V /U for data pairs Y = (U, V ).
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Example 51

� The population mean and its empirical version are

θ = t(G) =

∫
x dG(x), θ̂ = t(Ĝ) =

∫
x dĜ(x) = n−1

n∑

j=1

Yj = Y .

� If Hy puts unit mass at y, its ‘density’ is a Dirac delta function δy(x), and

θ {(1− ε)G + εHy} =

∫
xd{(1− ε)G + εHy}(x)

= (1− ε)

∫
xdG(x) + ε

∫
xdHy(x) = (1− ε)θ(G) + εy

and therefore

L(y;G) = lim
ε→0

θ {(1− ε)G + εHy} − θ(G)

ε
= lim

ε→0

(1− ε)θ(G) + εy − θ(G)

ε
= y − θ(G),

� Hence the empirical influence values and variance estimate are

lj = L(yj; Ĝ) = yj − y, vL =
1

n2

∑
(yj − y)2 =

n− 1

n
n−1s2.
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Example 52

� The scalar parameter θ = t(G) is determined implicitly through the estimating equation

∫
a(x; θ) dG(x) =

∫
a{x; t(G)}dG(x) = 0.

We replace G by Gε = (1− ε)G + εHy and see that

0 =

∫
a {x; t(Gε)} dGε(x)

= (1− ε)

∫
a {x; t(Gε)} dG(x) + ε

∫
a {x; t(Gε)} dHy(x)

= (1− ε)

∫
a {x; t(Gε)} dG(x) + εa {y; t(Gε)} ,

and differentiation using the chain rule gives

0 = a {y; t(Gε)}−
∫
a {x; t(Gε)} dG(x)+εaθ {y; t(Gε)}

∂t(Gε)

∂ε
+(1−ε)

∫
aθ {x; t(Gε)}

∂t(Gε)

∂ε
dG(x),

which reduces to

0 = a {y; t(G)}+
∫
aθ {x; t(G)} dG(x)

∂t(G)

∂ε

∣∣∣∣
ε=0

on setting ε = 0. Hence

Lt(y;G) =
∂t(Gε)

∂ε

∣∣∣∣
ε=0

=
a(y; θ)

−
∫
aθ(x; θ) dG(x)

, where aθ(x; θ) =
∂a(x; θ)

∂θ
.

� In the case of the ratio and with y = (u, v), we take a(y; θ) = v − θu, so

θ = θ(G) =

∫
v dG(u, v)/

∫
udG(u, v), θ̂ = v/u,

and aθ = −u, so lj = (xj − θ̂uj)/u, giving

vL =
1

n2

∑
(
xj − θ̂uj

u

)2

.
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Comments

� For statistics involving only averages (ratio, correlation coefficient, . . . ), the nonparametric delta
method retrieves the delta method.

� For example, the correlation coefficient may be written as a function of xu = n−1
∑
xjuj, etc.:

θ̂ =
xu− x u

{
(x2 − x2)(u2 − u2)

}1/2
,

from which empirical influence values lj can be derived, giving vL = 0.029 for the handedness
data, to be compared with v = 0.043 obtained by bootstrapping.

� vL typically underestimates var(θ̂)!

� The lj can also be obtained by numerical differentiation if t(Ĝ) is coded appropriately, or
approximated using a jackknife method.
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Bayesian Inference slide 165

Thomas Bayes (1702–1761)

Bayes (1763/4) Essay towards solving a problem in the doctrine of chances. Philosophical Transactions
of the Royal Society of London.
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Bayesian vs frequentist inference

Observed data yo assumed to be realisation of Y ∼ f(y; θ) ≡ f(y | θ), where θ ∈ Θ.

� Frequentist viewpoint:

– some ‘true value’ of θ generated the data;

– this ‘true value’ of θ is treated as an unknown constant;

– probability statements compare yo with outcomes in a suitable reference set S.

� Bayesian viewpoint:

– degrees of belief should (and can) be expressed using probability distributions;

– knowledge about θ prior to seeing yo is expressed as a prior density π(θ);

– Bayes’ theorem

π(θ | yo) = π(θ)f(yo | θ)∫
π(θ)f(yo | θ) dθ

should be used to convert π(θ) into a posterior density π(θ | yo);
– probability statements are based on π(θ | yo) and thus are conditioned on all observed

quantities.

� The benefit is that statistics reduces to calculations of probabilities, at the cost of expressing prior
information in distributional terms.
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Example

Example 53 (a) Find the posterior density for the success probability θ based on a series of
independent Bernoulli trials y1, . . . , yn, when the prior density is the Beta density

π(θ) =
θa−1(1− θ)b−1

B(a, b)
, 0 < θ < 1, a, b > 0,

where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the beta function, and

Γ(a) =

∫ ∞

0
ua−1e−u du

is the gamma function.
(b) Show how the mean and variance of θ are updated.
(c) Find the posterior density for predicting the result Z of the next trial.
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Example 53

� Suppose that conditional on θ, the data y1, . . . , yn are a random sample from the Bernoulli
distribution, for which P(Yj = 1) = θ and P(Yj = 0) = 1− θ, where 0 < θ < 1. The likelihood is

L(θ) = f(y | θ) =
n∏

j=1

θyj(1− θ)1−yj = θs(1− θ)n−s, 0 < θ < 1,

where s =
∑
yj.

� A natural prior here is the beta density with parameters a and b,

π(θ) =
1

B(a, b)
θa−1(1− θ)b−1, 0 < θ < 1, a, b > 0, (8)

where B(a, b) is the beta function Γ(a)Γ(b)/Γ(a + b).

� The posterior density of θ conditional on the data is

π(θ | y) =
θs+a−1(1− θ)n−s+b−1/B(a, b)

∫ 1
0 θ

s+a−1(1− θ)n−s+b−1 dθ/B(a, b)

∝ θs+a−1(1− θ)n−s+b−1, 0 < θ < 1. (9)

As (8) has unit integral for all positive a and b, the constant normalizing (??) must be
B(a+ s, b+ n− s). Therefore

π(θ | y) = 1

B(a+ s, b+ n− s)
θs+a−1(1− θ)n−s+b−1, 0 < θ < 1.

� Thus the posterior density of θ has the same form as the prior: acquiring data has the effect of
updating (a, b) to (a+ s, b+ n− s). As the mean of the B(a, b) density is a/(a+ b), the posterior
mean is (s + a)/(n + a+ b), and this is roughly s/n in large samples. Hence the prior density
inserts information equivalent to having seen a sample of a+ b observations, of which a were
successes. If we were very sure that θ

.
= 1/2, for example, we might take a = b very large, giving a

prior density tightly concentrated around θ = 1/2, whereas taking smaller values of a and b would
increase the prior uncertainty.
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100 spins of a 5Fr coin

1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1

1 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 0 1

1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1

1 0 1 0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1

1 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 1 1 0
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Beta prior densities
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n = 10, s = 9
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n = 30, s = 24
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n = 100, s = 69
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Link to likelihood

� In large samples the prior has less influence, because

log π(θ | y) = log π(θ) + ℓ(θ)− log f(y),

where the terms on the right are successively O(1), O(n) and O(n).

� Later we shall see that

f(y)
.
=

(
2π

̂

)1/2

π(θ̂)eℓ(θ̂)

in terms of the MLE θ̂ and observed information ̂, so

π(θ | y) .= π(θ)

π(θ̂)
×
(
̂

2π

)1/2

eℓ(θ)−ℓ(θ̂)
.
=
π(θ)

π(θ̂)
×
(
̂

2π

)1/2

e−̂(θ̂−θ)
2/2,

giving the distributional approximation

θ | y ·∼ N (θ̂, ̂−1).

� Formal versions of this result, known as Bernstein–von Mises theorems, suggest that
large-sample Bayesian and likelihood-based inferences will be similar.

� Hence we need to consider situations in which the prior may be appreciable relative to the
information in the data, or in which standard likelihood approaches are unsuitable.
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Conjugate priors

� Certain combinations of data model f(y | θ) and prior π(θ) give posterior densities of the same
form as the prior.

� Example: s ∼ B(n, θ) gives

θ ∼ Beta(a, b)
s,n−→ θ | y ∼ Beta(a+ s, b+ n− s).

The beta density is the conjugate prior for binomial data.

� Conjugate priors greatly simplify computation and are widely used in modelling.

� Mixtures of conjugate priors are also conjugate (problem in Week 1).

Lemma 54 An exponential family density

f(y | θ) = m(y) exp[s(y)ϕ(θ)− k{ϕ(θ)}], y ∈ Y, θ ∈ Θ,

has conjugate prior
f(θ; a, b) = h(a, b) exp[aϕ(θ)− bk{ϕ(θ)}], θ ∈ Θ,

that depends on hyperparameters a, b.
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Two giants

Left: Harold Jeffreys (1891–1989), a geophysicist and astronomer who developed a (failed) theory of
objective inference based on noninformative prior distributions.
Right: Ronald Alymer Fisher (1890–1962), a geneticist and statistician who developed a (failed) theory
of objective inference based on the ‘fiducial’ distribution.
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‘Ignorance’ about what?

Definition 55

� A uniform prior satisfies π(θ) ∝ 1 for θ ∈ Θ.

� An improper prior cannot be renormalised to have finite integral.

� The Jeffreys prior for a statistical model with Fisher information ı(θ) is π(θ) ∝ |ı(θ)|1/2.

Example 56 What does a uniform prior for θ ∈ (0, 1) imply for ψ = log{θ/(1− θ)} ∈ R?

Lemma 57 The Jeffreys prior is invariant to smooth reparametrizations θ = θ(ψ).

� Jeffreys priors were introduced to give ‘objective’ expressions of ignorance, and give uniform priors
for location parameters, 1/θ for scale parameters, etc.

� Jeffreys priors for the same θ based on different experiments might differ!

� Many other attempts to represent ‘ignorance’ have been made (e.g., by providing priors with
minimal information), but none is seen as fully satisfactory.

� In practice ‘uninformative’ (i.e., flat but proper) priors are usually chosen and then sensitivity
analyses performed.
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Example 56

The probability of success in a Bernoulli trial lies in the interval [0, 1], so if we are completely ignorant
of its true value, the obvious prior to use is uniform on the unit interval: π(θ) = 1, 0 ≤ θ ≤ 1. But if
we are completely ignorant of θ, we are also completely ignorant of ψ = log{θ/(1− θ)}, which takes
values in the real line. The density implied for ψ by the uniform prior for θ is

π(ψ) = π{ψ(θ)} ×
∣∣∣∣
dθ

dψ

∣∣∣∣ =
eψ

(1 + eψ)2
, −∞ < ψ <∞ :

the standard logistic density. Far from expressing ignorance about ψ, this density asserts that the prior
probability of |ψ| < 3 is about 0.9.
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Lemma 57

� For a smooth reparametrization θ = θ(ψ) in terms of ψ, the expected information for ψ is

ı(ψ) = −E

[
d2ℓ{θ(ψ)}

dψ2

]
= −E

{
d2ℓ(θ)

dθ2

}
×
∣∣∣∣
dθ

dψ

∣∣∣∣
2

= ı(θ)×
∣∣∣∣
dθ

dψ

∣∣∣∣
2

.

Consequently |ı(θ)|1/2dθ = |ı(ψ)|1/2dψ: the Jeffreys prior does behave consistently under
reparametrization; furthermore such priors give widely-accepted solutions in some standard
problems. When θ is vector, |ı(θ)| is taken to be the determinant of ı(θ).

� This prior was initially proposed with the aim of giving an ‘objective’ basis for inference, but after
further paradoxes emerged its use was suggested for convenience, a matter of scientific convention
rather than as a logically unassailable expression of ignorance about the parameter.
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High dimensions

Example 58 (Stein’s paradox) Let Yj
ind∼ N (µj, 1) for j = 1, . . . , n, and set D =

∑
Y 2
j and

θ = µ21 + · · ·+ µ2n. Show that if the µj are independent a priori with flat priors, then

E(θ | y) = D + n, but D ≈ θ + n+Op(n
1/2)

for any θ, which is absurd.

� Thus although flat priors may be sensible in low dimensions, they can lead to major problems in
high dimensions.

� If we seek an uninformative prior for a scalar parameter ψ when nuisance parameters λ1, . . . , λp
are orthogonal to ψ, we can set

π(ψ, λ) ∝ ı
1/2
ψψ (ψ, λ) × g(λ),

where ıψψ(ψ, λ) is the (ψ,ψ) element of the Fisher information matrix and g(λ) is an arbitrary
function of the nuisance parameter.

stat.epfl.ch Autumn 2022 – slide 178

113



Example 58

� If y | µ ∼ N (µ, 1) and π(µ) ∝ 1, then symmetry of the normal density φ gives

π(µ | y) = φ(y − µ)∫
φ(y − µ) dµ

=
φ(µ− y)∫
φ(µ− y) dy

= φ(µ − y),

so µ | y ∼ N (y, 1). If this is true independently for all the yj, then

E(θ | y) =
n∑

j=1

E(µ2j | y) =
n∑

j=1

{
E(µj | yj)2 + var(µj | yj)

}
=

n∑

j=1

(y2j + 1) = D + n,

and its posterior variance is var(θ | y) =∑n
j=1 var(µ

2
j | yj) = 2n+ 4D = O(n).

� On the other hand, for large n we have D =
∑
Y 2
j ≈ E(D) =

∑n
j=1(µ

2
j + 1) = θ + n and

var(D) = 2n+ 4θ = O(n).

� This implies that the posterior is placing probability in the wrong place asymptotically, i.e., around
D + n instead of around D − n. Hence the posterior probability that θ lies in any interval
D − n± a

√
n tends to zero.

stat.epfl.ch Autumn 2022 – note 1 of slide 178

Matching priors

Definition 59 The posterior α quantile of a scalar parameter θ satisfies

Pθ|Y {θ ≤ θα(y) | y} =

∫ θα

−∞
π(θ | y) dθ = α, α ∈ (0, 1)

� Consider random sample Y1, . . . , Yn with joint density f(y | θ), with prior π(θ) and θ ∈ R
d, and

let θ̂ be the MLE and σ̂2/n = ̂−1 its asymptotic variance.

� Bayes and likelihood inferences will agree as n→ ∞, but is (approximate?) agreement achievable
for small n?

� If for every α ∈ (0, 1) and θ ∈ Θ we could have

PY |θ {θα(Y ) ≥ θ} =

∫
I{θα(y) ≥ θ}f(y | θ) dy = α,

then Bayes and frequentist inference would agree perfectly, and we would have

– a Bayes/frequentist compromise;

– default priors for routine Bayesian use; and

– a basis for assessment of robustness of inference using other priors.

stat.epfl.ch Autumn 2022 – slide 179

114



Edgeworth series

We use asymptotic approximations to compare the Bayesian and frequentist solutions.

Definition 60 Let X1, . . . ,Xn be a random sample of continuous variables with cumulant-generating

function K(u) and finite cumulants κr, let ρr = κr/κ
r/2
2 denote the rth standardized cumulant, and

let Zn = (Sn − nκ1)/(nκ2)
1/2 denote the standardized version of Sn = X1 + · · · +Xn. Also let

H1(z) = z, H2(z) = z2 − 1, H3(z) = z3 − 3z, H4(z) = z4 − 6z2 + 3,

H5(z) = z5 − 10z3 + 15z, H6(z) = z6 − 15z4 + 45z2 − 15

denote the Hermite polynomials. Then the Edgeworth series for the distribution of Zn is

FZn(z) = Φ(z)− φ(z)

[
ρ3

6n1/2
H2(z) +

1

n

{
ρ4
24
H3(z) +

ρ23
72
H5(z)

}
+O(n−3/2)

]
,

and Cornish–Fisher inversion yields that the α quantile of FZn(z) equals

zα +
ρ3

6n1/2
H2(zα) +

1

n

{
ρ4
24
H3(zα) +

ρ23
36

(5zα − 2z3α)

}
+O(n−3/2).
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Matching: scalar θ

� We now compute Edgeworth series for the Bayesian quantity n1/2(θ − θ̂)/σ̂, conditional on y (so
θ̂(y), σ̂(y) are constants), invert it to get the corresponding Cornish–Fisher series

θα(y) = θ̂ − σ̂

n1/2
zα +

σ̂

n

{
(z2α + 2)A3(y) +A1(y)

}
+O(n−3/2),

and then insert this expansion into

PY |θ {θα(Y ) ≥ θ} =

∫
I{θα(y) ≥ θ}f(y | θ) dy.

� This gives

α+
φ(zα)

n1/2
T1(π, θ)−

zαφ(zα)

n
T2(π, θ) +O(n−3/2),

where

T1(π, θ) =
1

π(θ)

d

dθ

{
π(θ)

ı(θ)1/2

}
, T2 = 0 ⇐⇒ d

dθ

{
EY |θ(ℓ

3
θ)

ı(θ)3/2

}
= 0.

� Choosing π to knock out T1 will ensure matching to order n−1, etc.
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Discussion

� Clearly T1(π, θ) ≡ 0 if and only if
π(θ) ∝ ı(θ)1/2,

so the Jeffreys prior is matching to order n−1 for scalar θ.

� With the Jeffreys prior, T2 vanishes if and only if

d

dθ

{
EY |θ(ℓ

3
θ)

ı(θ)3/2

}
= 0,

so even for scalar θ, higher-order matching is only possible in special cases.

� In the vector case, inferences for ψ match to order n−1 if ψ is orthogonal to the other parameters
λ, and

π(ψ, λ) ∝ ı
1/2
ψψ (ψ, λ) × g(λ).

� In general impossible to match for all parameters simultaneously—need separate (and
incompatible) priors for each parameter.

� Higher order matching requires data-dependent priors.

� Kass and Wasserman (1996, JASA) give a general discussion of reference priors.
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Inference

Once we have a prior, what about

� confidence sets?

� prediction?

� hypothesis tests?

� model comparison?

� model checking?
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Confidence sets

� All measures of uncertainty are computed from the relevant posterior density.

� Posterior confidence bound for θ is quantile of π(θ | y):

P {θ ≤ θα(y) | y} =

∫ θα(y)

−∞
π(θ | y) dθ = α, α ∈ (0, 1),

giving (1− 2α) posterior credible set (θα(y), θ1−α(y)).

� In multiparameter case we use the marginal α quantile of ψ, ψα ≡ ψα(y) as

P(ψ ≤ ψα | y) =
∫ ψα
−∞

∫
f(y;ψ, λ)π(ψ, λ) dλdψ∫∫

f(y;ψ, λ)π(ψ, λ) dλdψ
α, α ∈ (0, 1),

based on the marginal posterior density of ψ.

� A highest posterior density (HPD) credible set C1−α satisfies P(θ ∈ C1−α | y) = 1− α and
supθ 6∈C1−α π(θ | y) ≤ infθ∈C1−α π(θ | y).

� Such intervals/sets are interpreted as probability statements about the the parameter, with y fixed,
contrary to frequentist confidence intervals.

� Likewise prediction intervals are based on the posterior predictive distribution P(Z ≤ z | y).
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Example

Mortality rates r/m from cardiac surgery in 12 hospitals, showing the numbers of deaths r out of m
operations.

A 0/47 B 18/148 C 8/119 D 46/810 E 8/211 F 13/196
G 9/148 H 31/215 I 14/207 J 8/97 K 29/256 L 24/360

Example 61 (Cardiac surgery data) A simple model for the data above treats the number of deaths
r as binomial with mortality rate θ and denominator m. At hospital A, for example, m = 47 and
r = 0, giving maximum likelihood estimate θ̂A = 0/47 = 0, but it seems too optimistic to suppose that
θA could be so small when the other rates are evidently larger. If we take a beta prior density with
a = b = 1, the posterior density is beta with parameters a+ r = 1 and b+m− r = 48. The 0.95 HPD
credible interval is (0, 6.05)%, while the equitailed credible interval uses the 0.025 and 0.975 quantiles
of π(θA | y) and is (0.05, 7.40)%.

Show that the maximum posterior density estimator can be regarded as a penalized MLE.
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Example

Cardiac surgery data. Left panel: posterior density for θA, showing boundaries of 0.95 highest posterior
credible interval (vertical lines) and region between posterior 0.025 and 0.975 quantiles of π(θA | y)
(shaded). Right panel: exact posterior beta density for overall mortality rate θ (solid) and normal
approximation (dots).
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Bayes factors

� Bayes factors compare competing models/hypotheses.

� Given prior probabilities P(H0) and P(H1) for two hypotheses, we compute

P(Hi | y) =
P(y | Hi)P(Hi)

P(y | H0)P(H0) + P(y | H1)P(H1)
, i = 0, 1.

� Unlike in frequentist testing,

– prior probabilities for the Hi must be specified, and

– we compute the probability of each hypothesis given the data.

� To avoid specifying the prior probabilities we write

P(H1 | y)
P(H0 | y)

=
P(y | H1)

P(y | H0)
× P(H1)

P(H0)
= B10 ×

P(H1)

P(H0)
,

where B10 is the Bayes factor, and usually

P(y | Hi) =

∫
f(y | Hi, θi)π(θi | Hi) dθi, i = 0, 1.
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Interpretation

� Often 2 logB10 is used to summarise the evidence for H1, using a table like

B10 2 logB10 Evidence for H1

1–3 0–2 Hardly worth a mention
3–20 2–6 Positive
20–150 6–10 Strong
> 150 > 10 Very strong

� As B10 = B−1
01 , the evidence for H0 is 2 logB01 = −2 logB10.

� Models f(y | H, θ) for n observations and d× 1 parameter θ often compared using

BIC = −2ℓ(θ̂) + d log n,

which can be derived by approximating the model evidence P(y | H).
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Example

Changepoint analysis for data on diarrhoea-associated haemolytic uraemic syndrome (HUS). Left:
counts of cases of HUS treated in Birmingham, 1970–1989 (solid), and scaled likelihood ratio statistic
Wp(τ)/10 (blobs). Right: density of W , estimated from 10,000 simulations, and χ2

1 density (solid).
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Example

Example 62 (HUS data) The graph suggests a sharp rise in incidence around 1980. Suppose the
annual counts y1, . . . , yn are realizations of independent Poisson variables with means λ1 for
j = 1, . . . , τ and λ2 for j = τ + 1, . . . , n. Here the changepoint τ can take values 1, . . . , n− 1. Under
H0, λ1 = λ2 = λ, that is, no change, and Hτ allows change after year τ . If we suppose that λ1 and λ2
have independent gamma prior densities with parameters γ and δ, then B10 can be computed for each
τ .
There is very strong evidence for change in any year from 1976 to 1986, with most evidence for a
change after 1980.

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

y 1 5 3 2 2 1 0 0 2 1
2 logBτ0, γ = δ = 1 4.9 −0.5 0.6 3.9 7.5 13 24 35 41 51
2 logBτ0, γ = δ = 0.01 −1.3 −5.9 −4.5 −1.0 3.0 9.7 20 32 39 51
2 logBτ0, γ = δ = 0.0001 −10 −15 −14 −10 −6.1 0.6 11 23 30 42

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

y 1 7 11 4 7 10 16 16 9 15
2 logBτ0, γ = δ = 1 63 55 38 42 40 31 11 −2.9 −5.3 0
2 logBτ0, γ = δ = 0.01 64 57 40 47 46 38 18 1.8 1.2 0
2 logBτ0, γ = δ = 0.0001 55 48 31 38 37 29 8.8 −7.1 −7.7 0
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Nested models

� Often θ = (ψ, λ) and we want to compare H0 : ψ = ψ0 against H1 : ψ 6= ψ0.

� A prior density on θ will give

P(H0) =

∫∫

{(ψ,λ):ψ=ψ0}
π(ψ, λ) dλdψ = 0,

so the posterior odds in favour of H1 are infinite for any dataset.

� To avoid we use prior densities weighted according to prior belief in H0 and H1, giving overall prior

π(ψ, λ) = δ(ψ − ψ0)π(ψ0, λ | H0)P(H0) + π(ψ, λ | H1)P(H1),

where ∫
π(ψ0, λ | H0) dλ =

∫
π(ψ, λ | H1) dψdλ = 1.

� Hence Bayes factors are more sensitive to the prior than are posterior densities.

� Improper priors cannot be used, as B10 depends on the ratio of the two arbitrary constants of
proportionality in the priors.
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Jeffreys–Lindley paradox

� Test H0 : µ = 0 against H1 : µ 6= 0 when y1, . . . , yn
iid∼ N (µ, σ2).

� Frequentist computes P-value pobs = Φ(−n1/2|y|/σ).
� Bayesian writes π0 = P(H0), supposes that under H1, µ ∼ N (0, τ2) and computes

B01 =

(
1 + n

τ2

σ2

)1/2

exp

{
− ny2

2σ2(1 + n−1σ2/τ2)

}

� If ny2/σ2 = z2α/2, then pobs = α, but B01 gives increasingly strong evidence in favour of H0; see

the table, in which α = 0.01:

n 1 10 100 1000 104 106 108

B01 0.269 0.163 0.376 1.15 3.63 36.2 362

� The problem is that as n→ ∞, π(µ | H1) is increasingly dispersed compared to |y − 0|.
� To resolve this, note that we use tests when there is doubt about the hypotheses, i.e., sensible

alternatives are O(n−1/2) from the null, and if we take this account by setting τ2 = δσ2/n, then
the paradox dissipates, because (for example) with δ = 10 and α = 0.05, 0.01, 0.001, and 0.0001,
B10 = 1.73, 6.2, 41.4, and 293, in broad agreement.
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Model criticism

� Use marginal density f(y) to check the model (and degree of agreement between π(θ) and
f(y | θ). Simplest if

f(y) = f(y | s)f(a)
∫
f(t | a, θ)π(θ) dθ,

where s is sufficient and a ancillary.

� Often leads to (Bayesian variants of) standard diagnostics (e.g., residuals, . . . ).

� Another measure of plausibility based on possible new dataset Y+ ∼ f is

P{f(Y+) ≤ f(yo)},

and yet another is based on predictive diagnostics, comparing a discrepancy measure
D+ = d(Y+, θ) with its predictive distribution, i.e.,

P {d(Y+, θ) ≥ d(y, θ) | y} ,

where the averaging is over both Y+ and the posterior distribution of θ.

� We choose d(Y+, θ) to measure some key aspects of the data and model.
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Prediction and model averaging

� Predict unobserved Z based on observed Y = y from a single model by computing f(z | y), but if
there are several models, then

f(z | y) =
k∑

i=1

f(z | y,Mi)P(Mi | y),

which averages the posterior distributions of z under the different models, weighted according to
their posterior probabilities

P(Mi | y) =
f(y |Mi)P(Mi)∑k
l=1 f(y |Ml)P(Ml)

,

where

f(y |Mi) =

∫
f(y | θi,Mi)π(θi |Mi) dθi,

f(z |Mi, y) =

∫
f(z | y, θi,Mi)f(y | θi,Mi)π(θi |Mi) dθi

f(y |Mi)
.

� If we have all possible models, the main problem is computational . . .
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Example

Bayesian prediction using model averaging for the cement data. For each of the 16 possible subsets of
covariates, the table shows the log Bayes factor in favour of that subset compared to the model with
no covariates and gives the posterior probability of each model. The values of the posterior mean and
scale parameters a and b are also shown for the six most plausible models; (y+ − a)/b has a posterior t
density. For comparison, the residual sums of squares are also given.

Model RSS 2 logB10 P(M | y) a b

– – – – 2715.8 0.0 0.0000
1 – – – 1265.7 7.1 0.0000
– 2 – – 906.3 12.2 0.0000
– – 3 – 1939.4 0.6 0.0000
– – – 4 883.9 12.6 0.0000
1 2 – – 57.9 45.7 0.2027 93.77 2.31
1 – 3 – 1227.1 4.0 0.0000
1 – – 4 74.8 42.8 0.0480 99.05 2.58
– 2 3 – 415.4 19.3 0.0000
– 2 – 4 868.9 11.0 0.0000
– – 3 4 175.7 31.3 0.0002
1 2 3 – 48.11 43.6 0.0716 95.96 2.80
1 2 – 4 47.97 47.2 0.4344 95.88 2.45
1 – 3 4 50.84 44.2 0.0986 94.66 2.89
– 2 3 4 73.81 33.2 0.0004
1 2 3 4 47.86 45.0 0.1441 95.20 2.97
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Example

Posterior predictive densities for cement data. Predictive densities for y+ based on individual models
are given as dotted curves, and the heavy curve is the averaged prediction from all 16 models.
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Arguments for/against Bayes

� For:

– provides unified approach to inference—all unknowns, data, parameters, predictands are
treated on the same footing;

– simple recipe — just apply Bayes’ theorem and compute . . .

– gives results similar to likelihood inferences (in large samples);

– argument based on axioms of ‘rational behaviour’ under uncertainty leads to ‘coherent’ (i.e.,
internally consistent) Bayes inference;

� Against:

– is it always (ever?) appropriate to treat data (whose model is checkable) on the same basis as
the prior?

– Different priors may give different answers. Which is to be believed by a third party?

– How do we agree on a prior?

– External validity (in the frequency sense) with respect to reality is more important than internal
consistency (one can be consistently wrong!)

� In any case, modelling can be flexible and general, provided computation is possible . . .
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Bayesian Computation slide 198

Motivation

� We often want to approximate integrals such as those in the marginal posterior density

π(ψ | y) =
∫
f(y;ψ, λ)π(ψ, λ) dλ∫∫
f(y;ψ, λ)π(ψ, λ) dλdψ

or the corresponding marginal posterior distribution function

P(ψ ≤ ψ0 | y) =
∫ ψ0

−∞

∫
f(y;ψ, λ)π(ψ, λ) dλdψ∫∫

f(y;ψ, λ)π(ψ, λ) dλdψ
.

� Different approaches exist:

– deterministic approximations include

⊲ quadrature rules — only work in low dimensions, not much used;

⊲ variational Bayes — provides numerical bounds on some integrals;

⊲ Laplace approximation — accurate analytical method with wide applications;

– Monte Carlo approximations include

⊲ importance sampling — uses independent samples, can be unstable;

⊲ Markov chain Monte Carlo — widespread use in applications.
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Laplace’s method

Lemma 63 Let h(u) be a smooth convex function defined for u ∈ R, with a minimum at u = ũ,
where h′(ũ) = 0 and h′′(ũ) > 0, and let

In =

∫ ∞

−∞
e−nh(u) du.

Then

In =

(
2π

nh2

)1/2

e−nh(ũ) ×
{
1 + n−1

(
5h23
24h32

− h4
8h22

)
+O

(
n−2

)}
,

where h2 = h′′(ũ), etc. The leading term Ĩn is known as the Laplace approximation to In.

Comments:

� the error is relative, so the approximation is often very accurate far into the tails;

� Ĩn involves only h and its second derivative at ũ, so can be computed numerically;

� the series is asymptotic, so the partial sums may not converge, and including more than the
leading term may give no improvements;

� most of the normal probability lies within ±3 SD of the mean, so the limits of the integral don’t
matter (much) provided they lie outside the interval ũ± 3(nh2)

−1/2;

� the exponent is written −nh(u) only for formal justification of the approximation; in practice we
set n = 1.
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Note to Lemma 63

Close to ũ a Taylor series expansion gives h(u)
.
= h(ũ) + 1

2h2(u− ũ)2, so

In
.
= e−nh(ũ)

∫ ∞

−∞
e−nh2(u−ũ)

2/2 du

= e−nh(ũ)
∫ ∞

−∞
e−z

2/2du

dz
dz

=

(
2π

nh2

)1/2

e−nh(ũ),

where the first and second equalities use the substitution z = (nh2)
1/2(u− ũ) and the fact that the

normal density has unit integral. A more detailed accounting gives the required result.
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Laplace’s method: General case

Lemma 64 Let h(u) be a smooth convex function defined for u ∈ R
d, with a minimum at u = ũ,

where dh(ũ)/du = 0 and the hessian matrix

h2 ≡
d2h(ũ)

duduT

is positive definite, and let

In =

∫

Rd

e−nh(u) du.

Then

In = Ĩn
{
1 +O(n−1)

}
=

(
2π

n

)p/2
|h2|−1/2e−nh(ũ)

{
1 +O(n−1)

}
.

Example 65 Use Laplace approximation to derive the Bayesian information criterion.
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Note to Example 65

� Laplace approximation to log f(y) gives

log π(θ̃) + log f(y | θ̃) + p

2
log(2π/n)− 1

2 log |̃|+O(n−1),

where θ̃ maximises log π(θ) + log f(y | θ) and ̃ = −n−1 times the hessian matrix of this function,
evaluated at θ̃.

� Now p log(2π)− log |̃| is of order 1 as n→ ∞, and so is log π(θ̃), and θ̃ = θ̂ +O(n−1), so

−2 log f(y)
.
= −2 log f(y | θ̂) + p log n+O(1) ≈ BIC.
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Integral approximation

Lemma 66 Let

Jn(u0) =
( n
2π

)1/2 ∫ u0

−∞
a(u)e−ng(u)

{
1 +O(n−1)

}
du,

where g(u) is a smooth convex function defined for u ∈ R, and in addition to possessing the properties
of h in Lemma 1, g satisfies g(ũ) = 0. Also let a(u) > 0. Then

Jn(u0) = Φ(n1/2r∗0) +O(n−1),

where

r∗0 = r0 + (r0n)
−1 log

(
v0
r0

)
, r0 = sign(u0 − ũ){2g(u0)}1/2, v0 =

g′(u0)

a(u0)
.

Example 67 Use the methods above to approximate the posterior conditional distribution

P(θ ≤ θ0 | y)

of a scalar parameter θ based on a random sample y1, . . . , yn from a regular model, and outline how
posterior confidence intervals for θ are obtained.
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Note to Lemma 66

� The first step is to change the variable of integration from u to r(u) = sign(u− ũ){2g(u)}1/2 ; that
is, r2/2 = g(u). Then g′(u) = dg(u)/du and r(u) have the same sign, and rdr/du = g′(u), so

Jn(u0) =
( n
2π

)1/2 ∫ r0

−∞
a(u)

r

g′(u)
e−nr

2/2
{
1 +O(n−1)

}
dr

=
( n
2π

)1/2 ∫ r0

−∞
e−nr

2/2+log b(r)
{
1 +O(n−1)

}
dr,

where b(r) = a(u)r/g′(u) > 0 is regarded as a function of r.

� We now change variable again, from r to r∗ = r − (rn)−1 log b(r), so

−nr∗2 = −nr2 + 2 log b(r)− n−1r−2{log b(r)}2.

The Jacobian of the transformation and the third term in −nr∗2 contribute only to the error of
Jn(u0), so

Jn(u0) =
( n
2π

)1/2 ∫ r∗0

−∞
e−nr

∗2/2
{
1 +O(n−1)

}
dr∗

= Φ(n1/2r∗0) +O(n−1), (10)

where

r∗0 = r0 + (r0n)
−1 log

(
v0
r0

)
, r0 = sign(u0 − ũ){2g(u0)}1/2, v0 =

g′(u0)

a(u0)
.
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Note to Example 67

� We write

P(θ ≤ θ0 | y) =
∫ θ0
−∞ π(θ)f(y | θ) dθ∫∞
−∞ π(θ)f(y | θ) dθ

and set h(θ) = −n−1{ℓ(θ) + log π(θ)} = −ℓm(θ)/n, say. This (scaled) modified log likelihood is
maximised at θ̃, which is the maximum a posteriori estimate of θ, and
h′′(θ) = −n−1ℓ′′m(θ) = n−1(θ)− n−1(log π)′′(θ).

� Laplace approximation of the denominator integral gives

√
2π

nh2
exp{−nh(θ̃)}

{
1 +O(n−1)

}
,

where h2 = h′′(θ̃), and inserting this into the expression for the posterior probability gives

P(θ ≤ θ0 | y) =
√
nh2
2π

∫ θ0

−∞
e−n{h(θ)−h(θ̃)}

{
1 +O(n−1)

}
dθ,

to which we can apply Lemma 66 with g(θ) = h(θ)− h(θ̃) ≥ 0; this equals zero when θ = θ̃, and
a(θ) = (nh2)

1/2. We take u = θ, u0 = θ0,

v0 = g′(θ0)/(nh2)
1/2 = −n−1ℓ′m(θ0)/{−ℓ′′m(θ̃)}1/2, r0 = sign(θ0−θ̃)

[
2{ℓm(θ̃)− ℓm(θ0)}/n

]1/2
,

and therefore

n1/2r∗0 = n1/2r0 −
1

n1/2r0
log

{
−ℓ′m(θ0)/{−ℓ′′m(θ̃)}1/2

n1/2r0

}
.

Hence we can simply set n = 1 and compute r0 = sign(θ0 − θ̃)
[
2{ℓm(θ̃)− ℓm(θ0)}

]1/2
.

� Hence we can write
P(θ ≤ θ0 | y) = Φ{r∗B(θ0)}

{
1 +O(n−1)

}
,

where r∗B(θ0) is given by the expressions above with n = 1. We obtain confidence intervals by
solving for θ0 the equations

α, 1− α = Φ{r∗B(θ0)}, or equivalently zα, z1−α = r∗B(θ0).

� The likelihood root (almost) corresponds to setting π(θ) ∝ 1, so that θ̃ = θ̂ and nh2 = ̂, and
then we get

r0 = −sign(θ̂ − θ0)
[
2{ℓ(θ̂)− ℓ(θ0)}

]1/2
, v0 = −̂−1/2ℓ′(θ0).

This makes sense, because
P(θ ≤ θ0 | y) .= Φ{r∗B(θ0)}

is increasing in θ0, but the corresponding expression for a frequentist interval is decreasing in θ0.
So we expect that r∗B(θ0)

.
= −r∗(θ0).
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Integral approximation: General case

Lemma 68 Let u = (u1, u2), where u1 is scalar and u2 a p× 1 vector, and consider

Jn(u
0
1) = (2π)−(p+1)/2c

∫ u0
1

−∞

∫
exp {−ng(u1, u2)} du2du1, (11)

where c is constant, the inner integral being over Rp. Here g is supposed to have its previous
smoothness properties, to be maximized at (ũ1, ũ2), and satisfies g(ũ1, ũ2) = 0. Then

Jn(u
0
1) = Φ(n1/2r∗0) +O(n−1),

where r∗0 = r0 + (r0n)
−1 log

(
v0
r0

)
, with

r0 = sign(u01 − ũ1)
{
2g(u01, ũ20)

}1/2
, v0 = c−1∂g(u

0
1, ũ20)

∂u1

∣∣g22(u01, ũ20)
∣∣1/2,

where ũ20 is the maximizing value of u2 when u1 = u01.
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Multivariate case

� The computations of Example 67 can be extended to the multiparameter case using Lemmas 64
and 68, and give

P(ψ ≤ ψ0 | y) = Φ{r∗B(ψ0)}
{
1 +O(n−1)

}
,

where r∗B(ψ0) = rB(ψ0) + rB(ψ0)
−1 log {vB(ψ0)/rB(ψ0)}, with

rB(ψ0) = sign(ψ0 − ψ̃)
[
2
{
ℓm(ψ̃, λ̃)− ℓm(ψ0, λ̃ψ0

)
}]1/2

,

vB(ψ0) = −∂ℓm(ψ0, λ̃ψ0
)

∂ψ





∣∣∣∣−
∂2ℓm(ψ0,λ̃ψ0)

∂λ∂λT

∣∣∣∣
∣∣∣−∂2ℓm(ψ̃,λ̃)

∂θ∂θT

∣∣∣





1/2

;

here λ̃ψ0
is the maximum a posteriori estimate of λ when ψ is fixed at ψ0.

� Often we find the derivatives numerically.

� There is a close link to maximum likelihood estimation, because θ̃ = θ̂ +O(n−1), so the order of
error is not increased by using the MLEs instead of the MAPs — though the numerical
approximations are not so good.
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Frequentist aside

� In frequentist inference saddlepoint approximation is used to write conditional densities for
exponential families as

f(t1 | t2;ψ) .=
{
|λλ(θ̂ψ)|
2π|(θ̂)|

}1/2

exp
{
ℓ(θ̂ψ)− ℓ(θ̂)

}
,

leading to
P(T1 ≤ t1 | T2 = t2;ψ)

.
= Φ{r∗(ψ)},

where r∗(ψ) = r(ψ) + r(ψ)−1 log{r(ψ)/v(ψ)}, with

r(ψ) = sign(ψ̂ − ψ)[2{ℓ(θ̂)− ℓ(θ̂ψ)}]1/2, v(ψ) = (ψ̂ − ψ)

{
|(θ̂)|

|λλ(θ̂ψ)|

}1/2

.

� Saddlepoint approximation involves writing the exponential family density as an integral of its
Laplace transform (or equivalently its cumulant-generating function), and then approximating the
resulting integral.

� The details are somewhat more painful, but the idea is similar to the Bayesian case.

� The approach sketched on slides 117–119 extends this to arbitrary regular models, by
approximating them by exponential families.
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Comments

� For successful approximation we must be able to write the integrand as

exp {log f(y; θ) + log π(θ)} ,

where the exponent is O(n) and the integrand has one dominant mode.

� If so the methods can work well in fairly high dimensions, partly because the errors in numerator
and denominator can cancel.

� However Monte Carlo methods are more flexible and in more general use . . .
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Importance sampling

� Seek to estimate

µ =

∫
m(θ, y, z)π(θ | y) dθ,

where taking, for example,

– m(θ, y, z) = I(θ ≤ a) will give µ = P(θ ≤ a | y),
– m(θ, y, z) = f(z | y, θ) will give µ = f(z | y).

� If we can sample θ1, . . . , θR
iid∼ h(θ), where the support of h includes that of π(θ | y), then we

have an importance sampling estimator

µ̂ = R−1
R∑

r=1

m(θr, y, z)
π(θr | y)
h(θr)

= R−1
R∑

r=1

m(θr, y, z)w(θr),

where w(θ) = π(θ | y)/h(θ) is an importance sampling weight.

� Advantage of µ̂ over MCMC output is that its variance is readily obtained.

� Disadvantage is that choice of h is usually difficult. and especially if dim(θ) is large, so huge
samples are needed because most of the simulated θr receive zero weight and so are wasted.
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Markov chain Monte Carlo

� Want to learn about distribution π of random variable U ∈ U :

– in Bayesian statistics, U is all unknowns and π is their posterior distribution conditioned on
observed data y;

– in frequentist statistics U may be functions of the data y, and we seek to condition on other
functions, e.g., to perform a conditional test.

� Construct a Markov chain {U t} with state space U and transition kernel P , whose limiting
distribution is π, i.e.,

P(U t ∈ A | u0) → π(A) t→ ∞, u0 ∈ U ,A ⊂ U .

� We then use P to simulate a realisation u0, u1, . . . , uR of the chain, and hence get estimates such
as

Eπ{g(U) | y} =

∫
g(u)π(u | y) du ≈ 1

R

R∑

r=1

g(ur), π(A | y) ≈ 1

R

R∑

r=1

I(ur ∈ A).

� Must choose P and u0 so that

– the distribution of U t converges quickly to π (so minimise simulation effort);

– u0, u1, . . . , uR are as independent as possible (so have efficient estimation).
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Markov chains

Definition 69

(a) A sequence U0, U1, U2, . . . of elements of a set U is a Markov chain if the conditional
distribution of U t+1 given U1, . . . , U t depends only on U t:

P(U t+1 ∈ A | U1, . . . , U t) = P(U t+1 ∈ A | U t), A ⊂ U .

We call U the state space of the Markov chain.

(b) A Markov chain has stationary transition probabilities if the conditional distribution of U t+1

given U t does not depend on t.

(c) The distribution of U0 is called the initial distribution, and the conditional distribution

P (u,A) = P(U t+1 ∈ A | U t = u)

is called the transition probability distribution (or transition kernel); this does not depend on t
if the chain has stationary transition probabilities, and then we denote it by P .

(d) The stationary or invariant or equilibrium distribution of a Markov chain with transition kernel
P satisfies

π(A) =

∫
P (u,A)π(du), A ⊂ U .
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Ergodicity and convergence

For the distribution of U t to converge to a stationary distribution, the chain must satisfy three
important properties:

� irreducibility — U does not split into separate parts when we run the chain on it, so the kernel P
allows us to reach any point of U starting from anywhere else;

� aperiodicity — precludes the possibility of the ‘limiting’ distribution depending on the iteration
number, i.e., eliminates possibilities like an = (−1)n, which equals 1 if n is even and otherwise is
odd;

� positive recurrence — every state is visited infinitely often, if the chain is run forever. This
enables estimation of properties of that state.

� An irreducible, aperiodic, positive recurrent chain is called ergodic.

� The ergodic theorem states that an ergodic Markov chain has a unique stationary distribution π,

P(U t ∈ A | U0 = u) → π(A), t→ ∞, u ∈ U ,A ⊂ U ,

and if g is a real-valued function with
∫
|g(u)|π(du) <∞, then

1

R

R∑

t=1

g(U t)
a.s.−→

∫
g(u)π(du), R→ ∞.
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Detailed balance

� Modulo technical details (skipped here), the implication is that if we can find a transition kernel P
with invariant distribution π, then we can generate samples (almost) from π.

� Why ‘almost’? Because we run the chain for a finite number of steps, so in general our samples
are not exactly from π.

� We now describe some standard recipes for building MCMC algorithms.

� For simplicity of exposition we take U to be countable, so P ≡ P (u, v) for u, v ∈ U .

� A sufficient condition for invariance is detailed balance:

π(u)P (u, v) = π(v)P (v, u), u, v ∈ U .

� This guarantees invariance because∫
P (u,A)π(du) =

∑

v∈A

∑

u∈U

π(u)P (u, v)

=
∑

v∈A

∑

u∈U

π(v)P (v, u)

=
∑

v∈A

π(v)
∑

u∈U

P (v, u) = π(A)× 1 = π(A).
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Metropolis–Hastings algorithm

� A very general algorithm to estimate a target density π, with many variants.

� Hastings (1970) generalised an idea of Metropolis et al. (1953):

– given a current value u of the chain, construct a candidate new value (a ‘proposal’) v by
drawing from an arbitrary density q(v | u);

– accept the proposal as the next state of the chain with probability

a(u, v) = min

{
1,
π(v)q(u | v)
π(u)q(v | u)

}

and otherwise leave u unchanged.

� The target density π is needed only up to the constant of proportionality, and only at u and the
proposal v, so in particular the normalising constant is not needed.

� An important special case, the Gibbs sampler, updates each component ui of u by successively
writing u = (ui, u−i) and then replacing ui with vi ∼ π(ui | u−i), where π(ui | u−i) is called the
full conditional density.

Example 70 (Toy) Construct a Metropolis–Hastings algorithm with N (0, 1) target density and
proposal distribution q(v | u) = σ−1φ{(v − u)/σ}.
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Note: Detailed balance for the M-H algorithm

� First we note that
P (u, v) = q(v | u)a(u, v) + r(u)I(u = v),

where

r(u) = 1−
∫
q(v | u)a(u, v) dv.

The first and second terms of P (u, v) are the probability density for a move from u to v being
proposed and accepted, and the probability that a move away from u is rejected.

� The Metropolis–Hastings update step satisfies detailed balance because

π(u)P (u, v) = π(u)q(v | u)min

{
1,
π(v)q(u | v)
π(u)q(v | u)

}
+ π(u)r(u)I(u = v)

= π(v)q(u | v)min

{
π(u)q(v | u)
π(v)q(u | v) , 1

}
+ π(v)r(v)I(v = u)

= π(v)P (v, u).

Hence the corresponding Markov chain is reversible with equilibrium distribution π, provided it is
irreducible and aperiodic.

stat.epfl.ch Autumn 2022 – note 1 of slide 212

Note to Example 70

� We need to work out the acceptance ratio

π(v)q(u | v)
π(u)q(v | u)

where
π(u) ∝ e−u

2/2, q(u | v) = (2πσ2)−1/2e−(u−v)2/2σ2 ,

and this is
e−v

2/2 × (2πσ2)−1/2e−(u−v)2/2σ2

e−u2/2 × (2πσ2)−1/2e−(v−u)2/2σ2
= exp{1

2 (u
2 − v2)},

so the move u 7→ v is accepted with probability min[1, exp{1
2(u

2 − v2)}].
� If v2 ≤ u2 the acceptance ratio is greater than unity and the move is always accepted, whereas if

v2 > u2 the move may not be accepted, and if v2 ≫ u2 the move is very unlikely to be accepted.

� Note that

– we did not need the normalising constant for π to run the algorithm;

– the acceptance ratio does not depend on σ;

– the acceptance probability does depend on σ. With W ∼ U(0, 1), it is

P(u 7→ V | u) = P
(
W ≤ min[1, exp{1

2(u
2 − v2)}] | u

)

= P(|V | ≤ u | u) +
∫

{v:|v|>|u|}
e(u

2−v2)/2 1

(2πσ2)1/2
e−(v−u)2/2σ2 du,

which clearly depends on u and on σ.
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Toy MH example: Code

toy.MH <- function(R=5000, sig=1, u0=-10, seed)

{

set.seed(seed)

u <- rep(u0,R)

for (r in 2:R)

{

v <- rnorm(1, u[r-1], sig)

log.ratio <- dnorm(v, log=T) + dnorm(v, mean=u[r-1], sd=sig, log=T) -

dnorm(u[r-1], log=T) - dnorm(u[r-1], mean=v, sd=sig, log=T)

a <- min( 1, exp(log.ratio) )

u[r] <- u[r-1]

if (runif(1)<=a) u[r] <- v

}

u

}

save.seed <- .Random.seed # use the same seed for each simulation

out1 <- toy.MH(sig=0.1, seed=save.seed)

out2 <- toy.MH(sig=0.5, seed=save.seed)

plot.ts(out1, ylim=c(-10,3), xlab="Iteration", ylab="u")

plot.ts(out2, ylim=c(-10,3), xlab="Iteration", ylab="u")
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Toy MH example

Simulations from a Metropolis–Hastings algorithm with N (0, 1) target density, with u0 = −10 and
random walk proposal v ∼ N (u, σ2) with σ = 0.1, 0.5, 2.4, 10.

-10
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-2
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4
0.5

0 100 200 300 400 500

2.4

0.1

-10

-8

-6

-4

-2

0

2

4
10

0 100 200 300 400 500

Iteration

u

With σ = 0.1, 0.5, proposals often accepted but chain moves too slowly. With σ = 10 chain gets stuck
for too long. Here σ = 2.4 seems best.
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Proposal distributions

� In principle there is an (almost) completely free choice for the proposal distributions qi, but just a
few possibilities are typically used:

– Independence Metropolis–Hastings, in which q(v) is unrelated to u. Not much use in
practice, but helpful for theoretical analysis.

– Random walk Metropolis, in which q(u, v) = q(v − u) and q(·) is a density symmetric about
0, giving

a(u, v) = min

{
1,
π(v)

π(u)

}

because q(u, v) = q(v, u). This amounts to setting v = u+ ε, where ε ∼ q.

– Random walk Metropolis on the log scale, applied when u > 0, in which random walk
Metropolis is applied to log u; then q(v, u)/q(u, v) = v/u and so

a(u, v) = min

{
1,
π(v)v

π(u)u

}
.

Similar random walks can be applied to other transformations.
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Toy Gibbs sampler

Example 71 Find the joint posterior density for the mean and standard deviation of a normal random
sample of size n with prior distributions µ ∼ N (ξ, κ−1) and σ−2 ∼ Γ(α, β).
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Note to Example 71

The joint posterior is

π(µ, σ−2 | y) ∝ (σ−2)α+n/2−1 exp

{
− β

σ2
− κ(µ− ξ)2

2
−
∑

(yj − µ)2

2σ2

}

so the parameters are dependent a posteriori although they were independent a priori. The full
conditional densities are

µ | σ, y ∼ N
(∑

yj + σ2κξ

n+ κσ2
,

1

nσ−2 + κ

)
,

1

σ2
| µ, y ∼ Γ

(
α+ n/2, β +

∑
(yj − µ)2/2

)
,

and the Gibbs sampler alternates updates of µ and of σ−2 using these two equations.
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Toy Gibbs example: Code

# Darwin’s maize data in eighths of an inch

n <- 15

y <- c(49,-67,8,16,6,23,28,41,14,29,56,24,75,60,-48)

# Set (improper) prior parameters and number of iterations R

xi <- kappa <- alpha <- beta <- 0

R <- 10000

# Gibbs sampler with initial values mu=0, 1/sig^2=0.002

out <- matrix(NA,R,2)

out[1,] <- c(0, 0.002)

for (r in 2:R)

{

new.mean <- (sum(y) + kappa*xi/out[r-1,2])/(n+kappa/out[r-1,2])

new.var <- 1/(n*out[r-1,2] + kappa)

out[r,1] <- rnorm(1, mean=new.mean, sd=sqrt(new.var))

out[r,2] <- rgamma(1, rate=beta+sum((y-out[r,1])^2)/2, shape=alpha+n/2)

}

# posterior values of sigma

out[,2] <- sqrt(1/out[,2])
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Toy Gibbs example

10,000 iterations of Gibbs sampler for (µ, σ), with initial value µ = 0; the (µ update, σ update) steps
are shown for the first 20 iterations:
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Toy Gibbs example

Marginal histograms and density estimates for µ and σ, based on 10,000 simulations:
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Toy Gibbs example

Time series of µ and σ, and correlograms. The series appear to be stationary with (very) low
autocorrelation:
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Toy Gibbs example: Estimation

� Any function of (µ, σ) can be estimated using the successive pairs (µ, σ)1, . . . , (µ, σ)R.

� For example, to compute ψ = P(Y+ ≤ −50 | y) we can either add simulation of a new observation
Y+ to each iteration, giving (µ, σ, Y+)1, . . . , (µ, σ, Y+)R, or we can use conditioning to obtain the
estimators

ψ̂1 =
1

R

R∑

r=1

I(Y+,r ≤ −50), ψ̂2 =
1

R

R∑

r=1

Φ

(−50− µr
σr

)
.

The maximum likelihood estimator of ψ is ψ̂ = Φ{(−50 − µ̂)/σ̂} = 0.030, where µ̂, σ̂ are the
MLEs, but the Bayes estimator is ψ̂2 = 0.045, which is larger because it allows for the variability of
the parameters (though it depends on the prior).

� Similar arguments apply to estimation of marginal densities, using either by a kernel density
estimator or an unbiased estimator based on the full conditionals. For example,

π(µ | y) .= R−1
R∑

r=1

1

h
K

(
µ− µr
h

)
, π(µ | y) .= R−1

R∑

r=1

π(µ | σr, y),

where K is a kernel function with bandwidth h.
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Discussion

� Update several variables at once by taking vector ui — most useful if the components of ui are
conditionally independent given u−i, which allows parallel updates.

� All the methods use the full conditionals π(ui | u−i): the Gibbs sampler draws from them, but the
M–H algorithm only evaluates them at u and v.

� To ensure that the overall chain is ergodic we must make the chain reversible as a whole. In some
cases this is obvious, but if not, and the kernels for updating different variables are P1, . . . , Pm,
then we might take

P = P1 · · ·Pm−1PmPm−1 · · ·P1, or P = m−1
m∑

i=1

Pi, or
1

m!

∑

ξ

m∏

i=1

Pξ(i),

where ξ is a random permutation of {1, . . . ,m}.
� Convergence diagnostics are needed to check ‘stationarity’ of output — simple time series plots

are helpful, but more sophisticated methods exist, often based on comparing multiple chains.

� There is a huge (and still growing) literature on all aspects of these methods.
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Hierarchical Models slide 223

Motivation

� Many types of data have layers of variation, which must be modelled:

– disease incidence varies between regions of a country, and within regions it may vary due to
effects of poverty, pollution, . . .

– success of surgical interventions may depend on patients (age/state of health) within surgeons
(different experience/skill) within hospitals (different environments/skill of nursing staff)

� We think of populations from which patients, doctors, hospitals, . . . are drawn, and this suggests
modelling them using layers of randomness.

� This sort of construction is very common in modelling complex data, in both classical and
Bayesian frameworks.

� Some theoretical justification is provided by the notion of exchangeability.

� First, an aside on graphical representations of complex models.
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Graphical models

� Complex dependencies are often represented using graphs:

– helps understanding;

– transforming the type of graph can simplify certain computations.

� Graph language for generic variables Y1, . . . , Yn:

– Yj is represented by a node of the graph, so the node set is J = {1, . . . , n};
– we define a neighbourhood system N = {Nj, j ∈ J } such that

⊲ the neighbours of j are the elements of Nj ⊂ J , where for each j the neighbourhood
Nj satisfies

(i) j 6∈ Nj, (ii) i ∈ Nj ⇔ j ∈ Ni,

and let Ñj = Nj ∪ {j};
– the set of nodes and the neighbourhood structure (J ,N ) define the graph.
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Directed acyclic graphs

Definition 72 A directed acyclic graph (DAG) is a graphical model that represents a hierarchical
dependence structure:

� conditional dependence of Y1 on Y2 is represented by an arrow from the parent node Y2 to the
child node Y1;

� Y1 is a descendent of Y3 if there is a chain of arrows from Y3 to Y1;

� it is directed because each arc is an arrow; and

� it is acyclic because it is impossible to start from a node, traverse a path by following arrows, and
end up at the starting-point.

The decomposition f(y) = f(y1 | y2, y5)f(y2 | y3, y6)f(y3)f(y4 | y5)f(y5 | y6)f(y6) gives:

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✛

✛

✛

✛

❅
❅

❅❅■

❅
❅

❅❅■
Y1 Y2 Y3

Y4 Y5 Y6
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Conditional independence graph

� Construct a conditional independence graph from a DAG, by adding edges between any parents
that share a child and dropping the arrowheads.

� The conditional distribution of Yj given Y−j depends only on the variables YNj directly linked to
Yj in the conditional independence graph:

f(yj | y−j) = f(yj | yNj).

� Why? For any DAG,

f(y) =
∏

j∈J

f(yj | parents of yj)

so

f(yj | y−j) =
f(y)∫
f(y) dyj

=

∏
i∈J f(yi | parents of yi)∫ ∏
i∈J f(yi | parents of yi) dyj

∝ f(yj | parents of yj)
∏

{i: yi is child of yj}

f(yi | parents of yi)

∝ f(yj | yNj),
because terms without yj cancel from the ratio.
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Simplifying full conditional distributions

� The DAG and conditional independence graph help in constructing an MCMC sampler:

– we use the model definition to write down the DAG;

– we convert the DAG into a conditional independence graph;

– we read the required conditional dependencies off from the conditional independence graph.

� The conditional independence graph (right) implies that

f(y1 | y−1) = f(y1 | y2, y5), f(y2 | y−2) = f(y2 | y1, y3, y5, y6),
f(y3 | y−3) = f(y3 | y2, y6), f(y4 | y−4) = f(y4 | y5), . . .

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✛

✛

✛

✛

❅
❅

❅❅■

❅
❅

❅❅■
Y1 Y2 Y3

Y4 Y5 Y6 ✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

❅
❅

❅❅

❅
❅

❅❅
Y1 Y2 Y3

Y4 Y5 Y6
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Exchangeability

Back to hierarchical models:

Definition 73 The random variables U1, . . . , Un are called finitely exchangeable if their density has
the property

f(u1, . . . , un) = f
(
uξ(1), . . . , uξ(n)

)

for any permutation ξ of the set {1, . . . , n}. An infinite sequence U1, U2, . . . , is called infinitely
exchangeable if every finite subset of it is finitely exchangeable.

� Variables are exchangeable if there is no reason to distinguish them.

� f is completely symmetric in its arguments and in probabilistic terms the U1, . . . , Un are
indistinguishable (but not necessarily independent).
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De Finetti’s theorem

Theorem 74 (de Finetti) If U1, U2, . . ., is an infinitely exchangeable sequence of binary variables,
taking values uj = 0, 1, then for any n there is a distribution G such that

f(u1, . . . , un) =

∫ 1

0

n∏

j=1

θuj(1− θ)1−uj G(dθ) (12)

where
G(θ) = lim

m→∞
P
{
m−1(U1 + · · ·+ Um) ≤ θ

}
, θ = lim

m→∞
m−1(U1 + · · ·+ Um).

� Hence any set of exchangeable binary variables U1, . . . , Un that may be embedded within an
infinite sequence may be modelled as if they were independent Bernoulli variables, conditional on
their success probability θ, this having distribution G and being interpretable as the long-run
proportion of successes.

� Similar theorems apply to other types of variables (continuous, . . . ).

� Thus a judgement that certain quantities are exchangeable implies that they may be represented
as a random sample conditional on some θ — equivalent to using a prior distribution for θ.
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Normal example

The following example illustrates properties of all hierarchical models.

Example 75 Suppose that v1, . . . , vn, σ
2, µ0 and τ2 are known and

µ ∼ N (µ0, τ
2),

θ1, . . . , θn | µ iid∼ N (µ, σ2),

yj | θj ind∼ N (θj , vj), j = 1, . . . , n.

Here the hyperparameters µ0 and τ2 control the uncertainty at the top level of the hierarchy. Give
the DAG and conditional independence graph for this model, and show that

E(µ | y) = µ0/τ
2 +

∑
yj/(σ

2 + vj)

1/τ2 +
∑

1/(σ2 + vj)
, var(µ | y) = 1

1/τ2 +
∑

1/(σ2 + vj)
,

E(θj | y) =
σ2yj + vjE(µ | y)

σ2 + vj
, var(θj | y) =

1 + var(µ | y)/σ2
1/vj + 1/σ2

.

Discuss.
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Note to Example 75

� The yj have different variances, but their means θj are supposed indistinguishable and hence are
modelled as exchangeable, being normal with unknown mean µ, and we can write

yj = µ0 + (µ− µ0) + (θj − µ) + (yj − θj),

where µ0 is known, and as the yj and θj are linear combinations of normal variables it is
straightforward to check that



µ
θ
y


 ∼ N2n+1



µ012n+1,




τ2 τ21T

n τ21T

n

τ21n τ21n1
T

n + σ2In τ21n1
T

n + σ2In
τ21n τ21n1

T

n + σ2In V + τ21n1
T

n + σ2In





 , (13)

where 1n denotes the n× 1 vector of ones and V = diag(v1, . . . , vn).

� The most direct approach to computing the posterior distributions µ and θ given y is to write



µ
θ
y


 ∼ N2n+1

{
µ012n+1,

(
Ω11 Ω12

Ω21 Ω22

)}
,

where var(y) = Ω22. Then the posterior density of the parameters given y is also normal, with

(
µ
θ

)
| y ∼ Nn+1

{
µ01n+1 +Ω12Ω

−1
22 (y − µ01n),Ω11 − Ω12Ω

−1
22 Ω21

}
. (14)

We shall take a less messy and maybe more enlightening route„ first computing the posterior
distribution of µ, then that of θ given both µ and y, and then marginalising the latter over µ.

� Expression (13) shows that the joint density of µ and y is normal with covariance matrix

(
A BT

B C

)
, A = τ2, B = τ21n, C = τ21n1

T

n +D, D = diag(σ2 + v1, . . . , σ
2 + vn).

The Woodbury formula gives

(D + τ21n1
T

n)
−1 = D−1 −D−11n(τ

−2 + 1T

nD
−11n)

−11nD
−1

so with a = 1T

nD
−11n we have

A−BC−1BT = τ2 − τ21T

n{D−1 −D−11n(τ
−2 + 1T

nD
−11n)

−11nD
−1}τ21n

= τ2 − τ4
{
a− a2

τ−2 + a

}

= (τ−2 + a)−1,

which gives var(µ | y), and a simpler calculation using (14) with µ only gives the mean, resulting in

E(µ | y) = µ0/τ
2 +

∑
yj/(σ

2 + vj)

1/τ2 +
∑

1/(σ2 + vj)
, var(µ | y) = 1

1/τ2 +
∑

1/(σ2 + vj)
.

The posterior mean of µ is a weighted average of its prior mean µ0 and of the yj, weighted
according to their precisions. Typically τ2 is taken to be very large, and then E(µ | y) is essentially
a weighted average of the data. Even when vj → 0 for all j there is still posterior uncertainty
about µ, whose variance is σ2/n because y1, . . . , yn is then a random sample from N(µ, σ2).
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Note 2 to Example 75

� To compute the posterior mean and variance of θj we note that the graph structure gives
f(θj | µ, y) = f(θj | µ, yj). This simplifies the computation because we need only compute the
joint distribution of (µ, θj, yj), and this is

N3



13µ0,



τ2 τ2 τ2

τ2 τ2 + σ2 τ2 + σ2

τ2 τ2 + σ2 τ2 + σ2 + vj







from which we obtain θj | µ, yj ∼ N{(yj/vj + µ/σ2)/(1/vj + 1/σ2), (1/vj + 1/σ2)−1}. As

E(θj | y) = E {E(θj | µ, yj)} , var(θj | y) = E {var(θj | µ, yj)}+ var {E(θj | µ, yj)} ,

where the outer expectation and variance are over the distribution of µ given y, we finally obtain

E(θj | y) =
σ2yj + vjE(µ | y)

σ2 + vj
, var(θj | y) =

1 + var(µ | y)/σ2
1/vj + 1/σ2

.

� The posterior mean of θj is a weighted average of yj and E(µ | y), showing shrinkage of yj
towards E(µ | y) by an amount that depends on vj. As vj → 0, E(θj | y) → yj, while as vj → ∞,
E(θj | y) → E(µ | y). This is a characteristic feature of hierarchical models, in which there is a
‘borrowing of strength’ whereby all the data combine to estimate common parameters such as µ,
while estimates of individual parameters such as the θj are shrunk towards common values by
amounts that depend on the precisions vj of the corresponding observations.
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Example: Cardiac surgery data

A 0/47 B 18/148 C 8/119 D 46/810 E 8/211 F 13/196
G 9/148 H 31/215 I 14/207 J 8/97 K 29/256 L 24/360

Mortality rates r/m from cardiac surgery in 12 hospitals (numbers of deaths r out of m operations).

� Hierarchical model:

rj | θj ind∼ B(mj , θj), j = A, . . . , L, θA, . . . , θL | ζ iid∼ f(θ | ζ), ζ ∼ π(ζ).

Conditional on θj, the number of deaths rj at hospital j is binomial with probability θj and
denominator mj, the number of operations, which plays the same role as v−1

j in the normal
example above: when mj is large then a death rate is relatively precisely known.

� Conditional on ζ, the θj are a random sample from a distribution f(θ | ζ), and the prior
distribution for ζ depends on fixed hyperparameters.

� We take βj = log{θj/(1 − θj)} ∼ N(µ, σ2), conditional on ζ = (µ, σ2), and µ ∼ N(0, c2) and
σ2 ∼ IG(a, b), with a = b = 10−3, so σ2 has prior mean one but variance 103, and c = 103,
giving µ prior variance 106.
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Example: Cardiac surgery data

� The joint density is



∏

j

(
mj

rj

)
erjβj(

1 + eβj
)mj

1

(2πσ2)1/2
exp

{
− 1

2σ2
(βj − µ)2

}
× π(µ)π(σ2),

so the full conditional densities for µ and σ2 are normal and inverse gamma.

� We use a Metropolis–Hastings step for β, using a random walk proposal with

β′j ∼ N{βj , d2σ2vj/(σ2 + vj)}, vj =
mj + 1

(rj + 1/2)(mj − rj + 1/2)
,

where we choose d to optimise the algorithm.

� This normal approximation comes from Example 75, taking

β̂j | β ∼ N (β, vj), βj
iid∼ N (µ, σ2),

and then computing βj | β̂j .
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Example: Cardiac surgery data

cardiac.gibbs <- function(data, mu0=0, a=10^(-3), b=10^(-3), c=10^3, R=10^5, d=1)

{ # parameter is mu, sig2, beta

card.update <- function(data, mu0, a, b, c, para)

{

sig2 <- para[2]

beta <- para[-c(1,2)]

n <- length(beta)

mu <- rnorm( 1, (mu0/c^2 + sum(beta)/sig2)/(1/c^2+n/sig2),sqrt(1/(1/c^2+n/sig2)) )

sig2 <- rigamma( a+n/2, b+0.5*sum((beta-mu)^2) )

v <- (data$m+1)/((data$r+0.5)*(data$m-data$r+0.5))

var.beta <- sig2*v/(v+sig2)

beta.prop <- rnorm(n, beta, sd=d*sqrt(var.beta))

acc.prob <- exp( data$r*beta.prop - data$m*log(1+exp(beta.prop)) -

0.5*(beta.prop-mu)^2/sig2 - data$r*beta +

data$m*log(1+exp(beta)) + 0.5*(beta-mu)^2/sig2 )

acc.prob <- pmin(1,acc.prob) # use pmin and ifelse to do all

beta <- ifelse(runif(n)<=acc.prob,beta.prop, beta) # acceptances/rejections at once

c( mu, sig2, beta)

}

rigamma <- function(a, b) 1/rgamma(1, shape=a, rate=b)

logit <- function(p) log(p/(1-p))

out <- matrix(NA, 2+nrow(data), R)

out[, 1] <- c(0, 1, rep(0,nrow(data)))

for(r in 2:R)

out[, r] <- card.update(data, mu0, a, b, c, out[,r-1])

out

}

system.time( cardiac.sim <- cardiac.gibbs(cardiac, R=10^4, d=4) ) # around 3.5 seconds

acc.rate <- function(x) mean((diff(x)!=0))

apply(cardiac.sim,1,acc.rate) # compute acceptance rates for the proposals
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Effect of d

Acceptance probabilities for different values of d:

d 0.1 0.5 1 2 3 5 10 20 30

µ 1 1 1 1 1 1 1 1 1
σ2 1 1 1 1 1 1 1 1 1
β 0.95 0.82 0.7 0.5 0.37 0.25 0.12 0.06 0.05
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Effect of d: d = 0.1
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Taking d = 0.1 makes the acceptance probability too high, so the chain mixes too slowly.
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Effect of d: d = 1
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Taking d = 1 is OK, but theory suggest that the acceptance rate should be around 0.2–0.4, so taking
d ≈ 4 seems somewhat better.
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Effect of d: d = 30
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Taking d = 30 makes the acceptance probability too low, so the chain sticks.
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Example: Cardiac surgery data, effect of shrinkage

Posterior means and 0.95 equitailed credible intervals for separate analyses for each hospital are shown
by hollow circles and dotted lines, while blobs and solid lines show the corresponding quantities for a
hierarchical model. Note the shrinkage (‘borrowing of strength’) of the estimates for the hierarchical
model towards the overall posterior mean rate, shown as the solid vertical line; the hierarchical intervals
are slightly shorter than those for the simpler model.
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Summary

� Graphical representation of dependence relations very useful.

� Hierarchical modelling allows us to fit complex models to data

� Key idea is to treat parameters as coming from a distribution, and to use the data to estimate the
distribution

– Appropriate when exchangeable elements are present

– Not appropriate when we are interested in certain pre-specified parameters or where prior
knowledge distinguishes them

– Example of inappropriate use: economic modelling with countries of Europe treated as
exchangeable

� Can be hard to count the number of parameters: the prior ‘ties together’ some parameters, so
there are ‘really’ fewer—but how many?
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