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Instructions: The time allotted for the examination is 180 minutes. You may answer in either
English or French. No written material may be brought into the examination, but a simple
calculator may be used if necessary. Full marks may be obtained with complete answers to
four questions. The final mark will be based on the best four solutions.
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Some formulae

Definition 1 The moment-generating and cumulant-generating functions of a real-valued ran-
dom variable X are

MX(t) = E
(

etX
)

, KX(t) = log MX(t), t ∈ T ,

where T = {t ∈ R : MX(t) < ∞}.

Definition 2 A Bernoulli random variable with parameter p ∈ (0, 1) has probability mass
function

f(x; p) = px(1 − p)1−x, x ∈ {0, 1}.

Definition 3 A geometric random variable with parameter p ∈ (0, 1) has probability mass
function

f(x; p) = (1 − p)x−1p, x ∈ {1, 2, . . .}.

Definition 4 A Poisson variable with parameter λ > 0 has probability mass function

f(x; λ) =
λx

x!
e−λ, x ∈ {0, 1, . . .}.

Definition 5 A normal (or Gaussian) random variable X ∼ N (µ, σ2) has probability density
function

f(x; µ, σ2) =
1

σ
φ

(

x − µ

σ

)

, x ∈ R, µ ∈ R, σ2 > 0,

where φ(u) = (2π)−1/2e−u2/2 for u ∈ R, and we also define Φ(x) =
∫ x

−∞
φ(u) du.

Definition 6 A gamma random variable with shape parameter α > 0 and rate parameter
β > 0, X ∼ Gamma(α, β), has mean α/β and probability density function

f(x; α, β) =

⎧

⎪

⎨

⎪

⎩

βα

Γ(α)
xα−1e−βx, x ≥ 0,

0, x < 0,

where Γ(α + 1) = αΓ(α), Γ(α) = (α − 1)! when α is a positive integer, and Γ(1/2) =
√

π.

Definition 7 An exponential random variable X with rate parameter β, X ∼ exp(β), has the
gamma distribution with α = 1.

Definition 8 A chi-squared random variable V with ν degrees of freedom, V ∼ χ2
ν, has the

gamma distribution with α = ν/2 and β = 1/2, and can be expressed as V
D
= Z2

1 + · · · + Z2
ν ,

where Z1, . . . , Zν
iid∼ N (0, 1).
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