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Since e > 0 was arbitrary, this establishes (4) and (4*) and completes the 
proof. I 

We mention the following uniqueness property. 

% = {Ex) is tiie only spectral family on [m, M ] that yields the 
representations (4) and (4*). 

This becomes plausible if we observe that (4*) holds for every 
continuous real-valued function ƒ on [m, M ] and the left-hand side of 
(4*) is defined in a way which does not depend on %. A proof follows 
from a uniqueness theorem for Stieltjes integrals [cf. F. Riesz and B. 
Sz. -Nagy (1955), p. I l l ] ; this theorem states that for any fixed x and 
y, the expression wi\) = {E^x, y) is determined, up to an additive 
constant, by (4*) at its points of continuity and at m - 0 and M. Since 
EM = I, hence (E^x, y) = (x, y), and (E^) is continuous from the right, 
we conclude that w(A) is uniquely determined everywhere. 

I t is not difficult to see that the properties of p{T) listed in 
Theorem 9.9-2 extend to / ( T ) ; for later use we formulate this simple 
fact as 

9.10-2 Theorem (Properties of / ( T ) ) . Theorem 9.9-2 continues to 
hold if p, P l , p2 are replaced by continuous real-valued functions f , fi, f2 
on [m, M ] . 

9.11 Properties of the Spectral Family of a 
Bounded Self-Adjoint Linear Operator 

It is interesting that the spectral family 'S = {En) of a bounded self-
adjoint linear operator T on a Hilbert space H reflects properties of 
the spectrum in a striking and simple fashion. We shall derive results of 
that kind from the definition of % (cf. Sec. 9.8) in combination with the 
spectral representation in Sec. 9.9. 

From Sec. 9.7 we know that if H is finite dimensional, the spectral 
family % = {Ex) has "points of growth" (discontinuities, jumps) pre-
cisely at the eigenvalues of T . In fact £x„^£xo-o? ' 0 if and only if AQ is 
an eigenvalue of T . I t is remarkable, although perhaps not unexpected, 
that this property carries over to the infinite dimensional case: 
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9.11-1 Theorem (Eigenvalues). Let T: H * H be a bounded self-
adjoint linear operator on a complex Hilbert space H and % = (Ex) the 
corresponding spectral family. Then k 1 > E^ has a discontinuity at 
any A = Ao {that is, Ex„5^ Ex„-o) if and only if Ao is an eigenvalue of T. 
In this case, the corresponding eigenspace is 

(1) -N-(T-AoJ) = (£x„-Ex„^o)(H). 

Proof Ao is an eigenvalue of T if and only if > r ( T - Aol) # {0}, so 
that the first statement of the theorem follows immediately from (1). 
Hence it sufiicies to prove (1). We write simply 

Fo = Exo — Ex„- 0 

and prove (1) by first showing that 

(2) Fo{H)<=K{T-\oI) 

and then 

(3) Fo(H)=>.N-(r-Aor). 

Proof of {2): 

Inequality (18) in Sec. 9.8 with A = A o - ^ and ^ = Ao is 

(4) ( A o - ^ ) E ( A o ) g T £ ( A o ) g A o E ( A o ) 

where Ao = ( A Q - A o ] . We.let n >» . Then E(Ao) >Fo, so that 
(4) yields 

AoFoSTFo^AoFo. 

Hence rFo=AoFo, that is, (T-Ao/ )Fo = 0. This proves (2). 

Proof of {3): 

Let jce>r(T-AoJ) . We show that then xeFo(H) , that is, FoX = x 
since F Q is a projection. 
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I f Ao^[m, M ] , then Aoep(T) by 9.2-1. Hence in this case 
J f { T - Ao/) = {0} c Fo{H) since Fo{H) is a vector space. Let AQ Ê [m, M]. 
By assumption, ( T - Ao/)x = 0 . This implies {T-koTj^x = 0 , that is, by 
9.9-1, 

•fc 

(A-Ao)^^iw(A) = 0, w{k) = {E,x,x) 

where a<m and b>M. Here (A-Ao)^SO and A {E),x,x) is 
monotone increasing by 9.7-1. Hence the integral over any subinterval 
of positive length must be zero. In particular, for every e > 0 we must 
have 

0 = ( A - A o ) ^ £ i H ' ( A ) ê £ ' dw{k) = s^{E^-,x, x) 

and 

0^ ( A - A o ) ^ d w ( A ) ë e ' d w ( A ) = e ^ a x , x ) - e ^ ( E , „ , , x , x ) . 

Since e > 0 , f rom this and 9.5-2 we obtain 

( E X „ - E X , x) = 0 hence Exo-eX = 0 

and 

{x - Ex„+eX, x.) = Q hence x - E^^^^x = 0. 

We may thus write 

If we let e i > 0, we obtain x = EoX because A i > E^ is continuous 
from the right. This implies (3), as was noted before. | 

We know that the spectrum of a bounded self-adjoint linear 
operator T lies on the real axis of the complex plane; cf. 9.1-3. Of 
course, the real axis also contains points of the resolvent set p(T). For 
instance, A e p(T) if A is real and A < m or A > M ; cf. 9.2-1. It is quite 
remarkable that all real A ep{T) can be characterized by the behavior 
of the spectral family in a very simple fashion. This theorem will then 
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immediately yield a characterization of points of the continuous spec-
im of T and thus complete our present discussion since the residual 

spectrum of T is empty, by 9.2-4. 

9.11-2 Theorem (Resolvent set). Let T and % = iE^) be as in 
Theorem 9.11-1. Then a real Ao belongs to the resolvent set p(T) of T if 
and only if there is a y>0 such that % = (E^) is constant on the interval 
[Ao-y, A o + r ] . 

Proof. In part (a) we prove that the given condition is sufiicient 
for Ao 6 p(T) and in {b) that it is necessary. In the proof we use 
Theorem 9.1-2 which states that AoS p(T) if and only if there exists a 
7 > 0 such that for all xeH, 

(5) (T -AoI )x | |&7 | | x | | 

(a) Suppose that Ao is real and such that % is constant on 
J = [Ao-T, A o + y ] for some 7 > 0 . By Theorem 9.9-1, 

(6) ( r - A o / ) x f = ( ( T - A o I ) ' x , x > = (A-Ao) 'd (ExX,x) . 

Since % is constant on J, integration over J yields the value zero, and 
for A ^ J we have (A —Ao)^=7^, so that (6) now implies 

[ T - k , I ) x f ^ y ^ d{ExX, x}=y^{x, x). 

Taking square roots, we obtain (5). Hence A Q G p(T) by 9.1-2. 

(b) Conversely, suppose that Ao€ p(T). Then (5) with 
some y > 0 holds for all xeH, so that by (6) and 9.9-1, 

(7) {k~kofd{E,x,x)^y' d{E,x,x). 

We show that we obtain a contradiction if we assume that % is not 
constant on the interval [AQ - y, AQ + y]- In fact, then we can find a 
positive T) < 7 such that E^^+.^ - Ex„-,, 7^ 0 because Ex = E^ for A < ju, 
(cf. 9.7-1). Hence there is a y e H such that 

x = (Ex„+„-Ex„_„)y7^0. 



Specm, n«»r, of Bo..iei Self-Aiioin. Line., 0,e,au,n 

We use this x in (7). Then 

, in Sec 9 7 shows that this is ( E . - E j y = 0 when 
Formula (7) m Sec._9^7 ^ ^ + ^ , hence independent of 

X < Ao - n and ( E . ^ - r, An+ T , ] as the interval of integration m 
A. We may thus take K - [Ao J , , + T , j ^ straightfor-
(7). If A e K, then we obtain (E , x) - ( E E . _ . ) y , y) ^ 
ward calculation, usmg agam (/) m sec. y.i 

( A - A o f d ( E x y > y ) S 7 ' d(E,y, y). 

(A-Ao) 
constant on 
complete. I 

A - f - v l is false and the proof is 
the interval [ A Q - T , A O + 7 J 

TMS .heore . also shows .ha, ^'^y'/^", ,7, ; ' , ! ' : 

a (T) of T if and only i / ^ is continuous at Ao (thus E.„ tx„ 
Tot constant in any neighborhood of Ao on R . 

Problems 

1 . Whal can we conclude from Theorem 9 . H - 1 m the case of a H e r — 

matrix? 

, K T m Theorem 9.11-1 is compact and has i n ^ - ^ - ' V -any ejgenvalu^^ 
what can we conclude about ( E J f rom Theorems 9.11-1 and 9.11 2. 

theorems m the present section. 

4 w e know that if m m Theorem 9.2-1 is positive then T ,s positive. 
H O W does this follow from the spectral representation (1), Sec. . 
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5. We know that the spectrum of a bounded self-adjoint linear operator is 
closed. How does this follow f rom theorems in this section? 

6. Let T: l~ > P be defined by y = (r]j) = Tx where x = ( | j ) , T)y = a^^j 
and (a,) is any real sequence in a finite interval [a, b]. Show that the 
corresponding spectral family (E^) is defined by 

< E , x , y ) = 

7 . (Purepointspectrum) Aboundedself-adjointlinearoperatorT: H > 
H on a Hilbert space H # { 0 } is said to have a pure point spectrum or 
purely discrete spectrum if T has an orthonormal set of eigenvectors 
which is total in H. Illustrate with an example that this does not imply 
crc(T) = 0 (so that this terminology, which is generally used, may 
confuse the beginner for a moment). 

8. Give examples of compact self-adjoint linear operators T: f > I' 
having a pure point spectrum such that the set of the nonzero eigen-
values (a) is a finite point set, (ö) is an infinite point set and the 
corresponding eigenvectors form a dense set in P, (c) is an infinite 
point set and the corresponding eigenvectors span a subspace of such 
that the orthogonal complement of the closure of that subspace is finite 
dimensional, (d) as in (c) but that complement is infinite dimensional. 
In each case find a total orthonormal set of eigenvectors. 

9. (Purely continuous spectrum) A bounded self-adjoint linear operator 
T: H > H on a Hilbert space H 7 ^ { 0 } is said to have a purely 
cotuinuous spectrum if T has no eigenvalues. If T is any bounded 
self-adjoint linear operator on H, show that there is a closed subspace 
V c H which reduces T (cf. Sec. 9.6, Prob. 10) and is such that 
T| = T|v has a pure point spectrum whereas T, = T|^, Z= Y\ has a 
purely continuous spectrum. (This reduction facilitates the investiga-
tion of T; cf. also the remark in Sec. 9.6, Prob. 10.) 

10. What can we say about the spectral families (E^,) and (E;̂ 2) of T i and 
T2 in Prob. 9 in terms of the spectral family (E^) of T? 


