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-1 Theorem (Eigenvalues). Let T: H — H be a bounded self-

linear operator on a complex Hilbert space H anq €= .(E,\.) the
esponding spectral family. Then A ——> E, has a discontinuity at
A=\ (that is, E,,# Ex,-o) if and only if Ao is an eigenvalue of T.
his case, the corresponding eigenspace is

Since £ > 0 was arbitrary, this establishes (4) and (4¥) and comple
proof. 1

We mention the following uniqueness property.

€=(E,) is the only spectral family on [m, M] that yi

representations (4) and (4%). N(T=2oD) = (Er,— Enyo)(H).

This becomes plausible if we observe that (4*) holds for eve
continuous real-valued function f on [m, M] and the left-hand
(4*) is defined in a way which does not depend on %. A proof
from a uniqueness theorem for Stieltjes integrals [cf. F. Riesz
Sz. -Nagy (1955), p. 111]; this theorem states that for any fixe
y, the expression w(A)=(E,x,y) is determined, up to an
constant, by (4*) at its points of continuity and at m —0 and M
Ey =1, hence (Eumx, y)=(x, y), and (E,) is continuous from th
we conclude that w(A) is uniquely determined everywhere.

Proof. Ao is an eigenvalue of T if and only if N(T—AoI)#{0}, so
¢ the first statement of the theorem follows immediately from (1).
ce it sufficies to prove (1). We write simply

Fo=E,,— Ejx—o
d prove (1) by first showing that

Fo(H)= N(T—Xol)

It is not difficult to see that the properties of p(T)
Theorem 9.9-2 extend to f(T); for later use we formulate this si
fact as
. Fo(H) 2 N(T = Aol).
9.10-2 Theorem (Properties of f(T)). Theorem 9.9-2 con
hold if p, p1, p, are replaced by continuous real-valued function.

on [m, M]. Proof of (2):

1 .
Inequality (18) in Sec. 9.8 with A =)\o—; and p=»Xo 18
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Bounded Self-Adjoint Linear Operator (/\o’“‘:;)E(Ao)é TE(A¢) = AoE(Ao)

e Ag=(Ao—1/n, Ao). We.let n—>. Then E(Ao)— Fo, s0 that

It is interesting that the spectral family €= (E,) of a bound ' R
4) yields

adjoint linear operator T on a Hilbert space H reflects propert
the spectrum in a striking and simple fashion. We shall derive res:
that kind from the definition of € (cf. Sec. 9.8) in combination
spectral representation in Sec. 9.9.

From Sec. 9.7 we know that if H is finite dimensional, the sp
family €=(E,) has “points of growth” (discontinuities, jumps
cisely at the eigenvalues of T. In fact E,,— E,,—o # 0 if and only
an eigenvalue of T. It is remarkable, although perhaps not unexp
that this property carries over to the infinite dimensional case:

AoFo = TFO = )\oFQ.
ce TF,= AoFo, that is, (T —AoI)Fo=0. This proves (2).
Proof of (3):

Let x e N(T—AoI). We show that then x e Fo(H), that is, Fox=x
since F, is a projection.
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If Ao¢[m, M], then Aoep(T) by 9.2-1. Hence in this
N(T—AoI)={0}c Fyo(H) since Fy(H) is a vector space. Let Aq
By assumption, (T — AoI)x = 0. This implies (T—AoI)’x =0,
9.9-1,

mmediately yield a characterization of points of the continuous spec-
rum of T and thus complete our present discussion since the residual
ectrum of T is empty, by 9.2-4.

2 Theorem (Resolvent set). Let T and %¥=(E,) be as in
orem 9.11-1. Then a real Ao belongs to the resolvent set p(T) of T if
d only if there is a y>0 such that €= (E,) is constant on the interval
o= 7> Aot ¥]-

J (A=Xo)*dw(2) =0, w()‘)='

where a<m and b>M. Here (A—10)°=0 and A —— (E,
monotone increasing by 9.7-1. Hence the integral over any sub
of positive length must be zero. In particular, for every £ >0 v
have

Proof. In part (a) we prove that the given condition is sufficient
or Ao€ p(T) and in (b) that it is necessary. In the proof we use
Ayt - Theorem 9.1-2 which states that g€ p(T) if and only if there exists a
0= J A=Ao)?dw(r) = 82,[ dw(A) = e*(BEyy_eX, X) >0 such that for all xe H,

oy I(T = Ao Dx|| = ylx-
and |
(a) Suppose that A, is real and such that € is constant on
J=[Ao— 7, Ao+ v] for some y>0. By Theorem 9.9-1,

b

0= J (A =Xo)*dw(r) = ezj dw(r) = e*(Ix, x) — (EppseXs

ote Ao+e

M

(T = Ao Dx|? ={(T—AoD)*x, x) = J (A= Xo)* d(Eyx, x).

m—0

Since ¢ >0, from this and 9.5-2 we obtain

(Ep—e, x)=0 hence E,,-.x=# ce ¢ is constant on J, integration over J yields the value zero, and
r A¢J we have (A —Ao)°Z y?, so that (6) now implies
and
M
T— Aol Z;ZJ d(Exx, x) = y*(x, x).
(x = Ejy+eX, x)=0 hence x—E) +ex =08 I€ oDxlZy m—0 (Bax, 1) = y{m, %)

We may thus write faking square roots, we obtain (5). Hence A€ p(T) by 9.1-2.

(b) Conversely, suppose that Aqe p(T). Then (5) with

xX= (EAo+e . EAo—s)x-
ome y>0 holds for all x € H, so that by (6) and 9.9-1,

If we let e —— 0, we obtain x = Fyx because A —— E, is conti
from the right. This implies (3), as was noted before. 1

M

J (A = Ao)? d(Exx, x)= yzj d(E,x, x).

m—0 m—0

We know that the spectrum of a bounded self-adjoint |
operator T lies on the real axis of the complex plane; cf. 9.
course, the real axis also contains points of the resolvent set p(T). !
instance, A € p(T) if A is real and A <m or A > M; cf. 9.2-1. It is qu
remarkable that all real A € p(T) can be characterized by the behavior
of the spectral family in a very simple fashion. This theorem will then

We show that we obtain a contradiction if we assume that € is not
ant on the interval [Ao— 7, Ao+ ¥]. In fact, then we can find a
ve 1<y such that E, ., —E,—,#0 because E,=E, for A<pu
. 9.7-1). Hence there is a y € H such that

X = (E)\o""ﬂ - E)\o"n)y #0.



ry of Bounded Self-Adjoint Linear Operators

520 Spectral Theo

We use this x in (7). Then
E%= Ey(Exgtn— EA.,-T.)y-

shows that this is (EA—EA()ly=0d
hence independel
- —Ej,-m)y When A>A°+T" . >
?\<V\¢: mgyat‘}l:ls(i)ignK = E)\on— m, Aot 1] as the interval ofb mts:. i
(7‘). If A € K, then we obtain (Exx, .x) =i(BEx— Eﬁ_“lz, 217)) gyives
ward calculation, using again (7) in Sec. 9.7. Hen

Formula (7) in Sec. 9.7

Aot

n
Aot
E ’ ()\ . )‘0)2 d(Exy, y>§ ’YZ j; . d<EAY7 }’)-
Ao~
se the integral on the righ‘t is positive
) e K. Hence our assumption that € i
++v] is false and the pro

But this impossible becau
fh—kaf =N < v2, where
constant on the interval [Ao— ¥ Ao

complete. 1 i

em also shows that Ao€ o(T) if anfi only if ‘%2
of Ao on R. Since o7(T) =Qby9. -4
discontinuities of € (cf. 9.11-1), we h
pletes our discussion.

This theor
constant in any neighborhood
points of a,(T) correspond'to
the following theorem, which com

i T and %= (E\) be a
- Continuous spectrum). Let .
?1:}111 rser:h;oluleﬂ.( Then a real Ao belongs to the contm_lfzgts s§)
o (e;) of T.if and only if % is continuous at Xo (thus Ex,= Ex—o
n:Jt constant in any neighborhood of Ao on R.

Problems

i f
1. What can we conclude from Theorem 9.11-1 in the case of @

matrix?
1-1 is compact and has infinitely many €

i 9.1
e ) from Theorems 9.11-1and 9

what can we conclude about (Ex
3. Verify that the spectral family in Prob. 7, Sec. 9.9, satisfies the
theorems in the present section.

1 Theorem 9.2-1 is positive then T is po

4. We know that if mi S

How does this follow from the spectral rep
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5. We know that the spectrum of a bounded self-adjoint linear operator is
closed. How does this follow from theorems in this section?

Let T: 1> — [* be defined by y=(m;)=Tx where x=(&), m;=a;§
and (o) is any real sequence in a finite interval [a, b]. Show that the
corresponding spectral family (E,) is defined by

(Exx, y)= ;&,»ﬁi-

7. (Purepointspectrum) A bounded self-adjointlinearoperator T: H —
H on a Hilbert space H# {0} is said to have a pure point spectrum or
purely discrete spectrum if T has an orthonormal set of eigenvectors
which is total in H. Illustrate with an example that this does not imply
d.(T)=@ (so that this terminology, which is generally used, may
confuse the beginner for a moment).

8. Give examples of compact self-adjoint linear operators T: 1> — [*

having a pure point spectrum such that the set of the nonzero eigen-
values (a) is a finite point set, (b) is an infinite point set and the
corresponding eigenvectors form a dense set in %, (c) is an infinite
point set and the corresponding eigenvectors span a subspace of [? such
that the orthogonal complement of the closure of that subspace is finite
dimensional, (d) as in (c¢) but that complement is infinite dimensional.
In each case find a total orthonormal set of eigenvectors.

9. (Purely continuous spectrum) A bounded self-adjoint linear operator

T: H— H on a Hilbert space H#{0} is said to have a purely
continuous spectrum if T has no eigenvalues. If T is any bounded
self-adjoint linear operator on H, show that there is a closed subspace
Y < H which reduces T (cf. Sec. 9.6, Prob. 10) and is such that
T,=T|y has a pure point spectrum whereas To=T|,, Z=Y", has a
purely continuous spectrum. (This reduction facilitates the investiga-
tion of T; cf. also the remark in Sec. 9.6, Prob. 10.)

What can we say about the spectral families (E,,) and (E,,) of T, and
T, in Prob. 9 in terms of the spectral family (E,) of T?



