

Since $\varepsilon > 0$ was arbitrary, this establishes (4) and (4*) and completes the proof. ■

We mention the following uniqueness property.

$\mathcal{E} = (E_\lambda)$ is the only spectral family on $[m, M]$ that yields the representations (4) and (4*).

This becomes plausible if we observe that (4*) holds for every continuous real-valued function f on $[m, M]$ and the left-hand side of (4*) is defined in a way which does not depend on \mathcal{E} . A proof follows from a uniqueness theorem for Stieltjes integrals [cf. F. Riesz and B. Sz. -Nagy (1955), p. 111]; this theorem states that for any fixed x and y , the expression $w(\lambda) = \langle E_\lambda x, y \rangle$ is determined, up to an additive constant, by (4*) at its points of continuity and at $m = 0$ and M . Since $E_M = I$, hence $\langle E_M x, y \rangle = \langle x, y \rangle$, and (E_λ) is continuous from the right, we conclude that $w(\lambda)$ is uniquely determined everywhere.

It is not difficult to see that the properties of $p(T)$ listed in Theorem 9.9-2 extend to $f(T)$; for later use we formulate this simple fact as

9.10-2 Theorem (Properties of $f(T)$). *Theorem 9.9-2 continues to hold if p, p_1, p_2 are replaced by continuous real-valued functions f, f_1, f_2 on $[m, M]$.*

9.11 Properties of the Spectral Family of a Bounded Self-Adjoint Linear Operator

It is interesting that the spectral family $\mathcal{E} = (E_\lambda)$ of a bounded self-adjoint linear operator T on a Hilbert space H reflects properties of the spectrum in a striking and simple fashion. We shall derive results of that kind from the definition of \mathcal{E} (cf. Sec. 9.8) in combination with the spectral representation in Sec. 9.9.

From Sec. 9.7 we know that if H is finite dimensional, the spectral family $\mathcal{E} = (E_\lambda)$ has “points of growth” (discontinuities, jumps) precisely at the eigenvalues of T . In fact $E_{\lambda_0} - E_{\lambda_0-0} \neq 0$ if and only if λ_0 is an eigenvalue of T . It is remarkable, although perhaps not unexpected, that this property carries over to the infinite dimensional case:

9.11-1 Theorem (Eigenvalues). *Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on a complex Hilbert space H and $\mathcal{E} = (E_\lambda)$ the corresponding spectral family. Then $\lambda \mapsto E_\lambda$ has a discontinuity at any $\lambda = \lambda_0$ (that is, $E_{\lambda_0} \neq E_{\lambda_0-0}$) if and only if λ_0 is an eigenvalue of T . In this case, the corresponding eigenspace is*

$$(1) \quad \mathcal{N}(T - \lambda_0 I) = (E_{\lambda_0} - E_{\lambda_0-0})(H).$$

Proof. λ_0 is an eigenvalue of T if and only if $\mathcal{N}(T - \lambda_0 I) \neq \{0\}$, so that the first statement of the theorem follows immediately from (1). Hence it suffices to prove (1). We write simply

$$F_0 = E_{\lambda_0} - E_{\lambda_0-0}$$

and prove (1) by first showing that

$$(2) \quad F_0(H) \subset \mathcal{N}(T - \lambda_0 I)$$

and then

$$(3) \quad F_0(H) \supset \mathcal{N}(T - \lambda_0 I).$$

Proof of (2):

Inequality (18) in Sec. 9.8 with $\lambda = \lambda_0 - \frac{1}{n}$ and $\mu = \lambda_0$ is

$$(4) \quad \left(\lambda_0 - \frac{1}{n} \right) E(\Delta_0) \leq T E(\Delta_0) \leq \lambda_0 E(\Delta_0)$$

where $\Delta_0 = (\lambda_0 - 1/n, \lambda_0]$. We let $n \rightarrow \infty$. Then $E(\Delta_0) \rightarrow F_0$, so that (4) yields

$$\lambda_0 F_0 \leq T F_0 \leq \lambda_0 F_0.$$

Hence $T F_0 = \lambda_0 F_0$, that is, $(T - \lambda_0 I) F_0 = 0$. This proves (2).

Proof of (3):

Let $x \in \mathcal{N}(T - \lambda_0 I)$. We show that then $x \in F_0(H)$, that is, $F_0 x = x$ since F_0 is a projection.

If $\lambda_0 \notin [m, M]$, then $\lambda_0 \in \rho(T)$ by 9.2-1. Hence in this case $\mathcal{N}(T - \lambda_0 I) = \{0\} \subset F_0(H)$ since $F_0(H)$ is a vector space. Let $\lambda_0 \in [m, M]$. By assumption, $(T - \lambda_0 I)x = 0$. This implies $(T - \lambda_0 I)^2 x = 0$, that is, by 9.9-1,

$$\int_a^b (\lambda - \lambda_0)^2 dw(\lambda) = 0, \quad w(\lambda) = \langle E_\lambda x, x \rangle$$

where $a < m$ and $b > M$. Here $(\lambda - \lambda_0)^2 \geq 0$ and $\lambda \mapsto \langle E_\lambda x, x \rangle$ is monotone increasing by 9.7-1. Hence the integral over any subinterval of positive length must be zero. In particular, for every $\varepsilon > 0$ we must have

$$0 = \int_a^{\lambda_0 - \varepsilon} (\lambda - \lambda_0)^2 dw(\lambda) \geq \varepsilon^2 \int_a^{\lambda_0 - \varepsilon} dw(\lambda) = \varepsilon^2 \langle E_{\lambda_0 - \varepsilon} x, x \rangle$$

and

$$0 = \int_{\lambda_0 + \varepsilon}^b (\lambda - \lambda_0)^2 dw(\lambda) \geq \varepsilon^2 \int_{\lambda_0 + \varepsilon}^b dw(\lambda) = \varepsilon^2 \langle Ix, x \rangle - \varepsilon^2 \langle E_{\lambda_0 + \varepsilon} x, x \rangle.$$

Since $\varepsilon > 0$, from this and 9.5-2 we obtain

$$\langle E_{\lambda_0 - \varepsilon} x, x \rangle = 0 \quad \text{hence} \quad E_{\lambda_0 - \varepsilon} x = 0$$

and

$$\langle x - E_{\lambda_0 + \varepsilon} x, x \rangle = 0 \quad \text{hence} \quad x - E_{\lambda_0 + \varepsilon} x = 0.$$

We may thus write

$$x = (E_{\lambda_0 + \varepsilon} - E_{\lambda_0 - \varepsilon})x.$$

If we let $\varepsilon \rightarrow 0$, we obtain $x = F_0 x$ because $\lambda \mapsto E_\lambda$ is continuous from the right. This implies (3), as was noted before. ■

We know that the spectrum of a bounded self-adjoint linear operator T lies on the real axis of the complex plane; cf. 9.1-3. Of course, the real axis also contains points of the resolvent set $\rho(T)$. For instance, $\lambda \in \rho(T)$ if λ is real and $\lambda < m$ or $\lambda > M$; cf. 9.2-1. It is quite remarkable that *all* real $\lambda \in \rho(T)$ can be characterized by the behavior of the spectral family in a very simple fashion. This theorem will then

immediately yield a characterization of points of the continuous spectrum of T and thus complete our present discussion since the residual spectrum of T is empty, by 9.2-4.

9.11-2 Theorem (Resolvent set). *Let T and $\mathcal{E} = (E_\lambda)$ be as in Theorem 9.11-1. Then a real λ_0 belongs to the resolvent set $\rho(T)$ of T if and only if there is a $\gamma > 0$ such that $\mathcal{E} = (E_\lambda)$ is constant on the interval $[\lambda_0 - \gamma, \lambda_0 + \gamma]$.*

Proof. In part (a) we prove that the given condition is sufficient for $\lambda_0 \in \rho(T)$ and in (b) that it is necessary. In the proof we use Theorem 9.1-2 which states that $\lambda_0 \in \rho(T)$ if and only if there exists a $\gamma > 0$ such that for all $x \in H$,

$$(5) \quad \|(T - \lambda_0 I)x\| \geq \gamma \|x\|.$$

(a) Suppose that λ_0 is real and such that \mathcal{E} is constant on $J = [\lambda_0 - \gamma, \lambda_0 + \gamma]$ for some $\gamma > 0$. By Theorem 9.9-1,

$$(6) \quad \|(T - \lambda_0 I)x\|^2 = \langle (T - \lambda_0 I)^2 x, x \rangle = \int_{m-0}^M (\lambda - \lambda_0)^2 d\langle E_\lambda x, x \rangle.$$

Since \mathcal{E} is constant on J , integration over J yields the value zero, and for $\lambda \notin J$ we have $(\lambda - \lambda_0)^2 \geq \gamma^2$, so that (6) now implies

$$\|(T - \lambda_0 I)x\|^2 \geq \gamma^2 \int_{m-0}^M d\langle E_\lambda x, x \rangle = \gamma^2 \langle x, x \rangle.$$

Taking square roots, we obtain (5). Hence $\lambda_0 \in \rho(T)$ by 9.1-2.

(b) Conversely, suppose that $\lambda_0 \in \rho(T)$. Then (5) with some $\gamma > 0$ holds for all $x \in H$, so that by (6) and 9.9-1,

$$(7) \quad \int_{m-0}^M (\lambda - \lambda_0)^2 d\langle E_\lambda x, x \rangle \geq \gamma^2 \int_{m-0}^M d\langle E_\lambda x, x \rangle.$$

We show that we obtain a contradiction if we assume that \mathcal{E} is not constant on the interval $[\lambda_0 - \gamma, \lambda_0 + \gamma]$. In fact, then we can find a positive $\eta < \gamma$ such that $E_{\lambda_0 + \eta} - E_{\lambda_0 - \eta} \neq 0$ because $E_\lambda \leq E_\mu$ for $\lambda < \mu$ (cf. 9.7-1). Hence there is a $y \in H$ such that

$$x = (E_{\lambda_0 + \eta} - E_{\lambda_0 - \eta})y \neq 0.$$

We use this x in (7). Then

$$E_\lambda x = E_\lambda (E_{\lambda_0+\eta} - E_{\lambda_0-\eta})y.$$

Formula (7) in Sec. 9.7 shows that this is $(E_\lambda - E_\lambda)y = 0$ when $\lambda < \lambda_0 - \eta$ and $(E_{\lambda_0+\eta} - E_{\lambda_0-\eta})y$ when $\lambda > \lambda_0 + \eta$, hence independent of λ . We may thus take $K = [\lambda_0 - \eta, \lambda_0 + \eta]$ as the interval of integration in (7). If $\lambda \in K$, then we obtain $\langle E_\lambda x, x \rangle = \langle (E_\lambda - E_{\lambda_0-\eta})y, y \rangle$ by straightforward calculation, using again (7) in Sec. 9.7. Hence (7) gives

$$\int_{\lambda_0-\eta}^{\lambda_0+\eta} (\lambda - \lambda_0)^2 d\langle E_\lambda y, y \rangle \geq \gamma^2 \int_{\lambda_0-\eta}^{\lambda_0+\eta} d\langle E_\lambda y, y \rangle.$$

But this is impossible because the integral on the right is positive and $(\lambda - \lambda_0)^2 \leq \gamma^2 < \gamma^2$, where $\lambda \in K$. Hence our assumption that \mathcal{E} is not constant on the interval $[\lambda_0 - \eta, \lambda_0 + \eta]$ is false and the proof is complete. ■

This theorem also shows that $\lambda_0 \in \sigma(T)$ if and only if \mathcal{E} is not constant in any neighborhood of λ_0 on \mathbb{R} . Since $\sigma_r(T) = \emptyset$ by 9.2-4 and points of $\sigma_p(T)$ correspond to discontinuities of \mathcal{E} (cf. 9.11-1), we have the following theorem, which completes our discussion.

9.11-3 Theorem (Continuous spectrum). *Let T and $\mathcal{E} = (E_\lambda)$ be as in Theorem 9.11-1. Then a real λ_0 belongs to the continuous spectrum of T if and only if \mathcal{E} is continuous at λ_0 (thus $E_{\lambda_0} = E_{\lambda_0-0}$) and is not constant in any neighborhood of λ_0 on \mathbb{R} .*

Problems

1. What can we conclude from Theorem 9.11-1 in the case of a Hermitian matrix?
2. If T in Theorem 9.11-1 is compact and has infinitely many eigenvalues, what can we conclude about (E_λ) from Theorems 9.11-1 and 9.11-2?
3. Verify that the spectral family in Prob. 7, Sec. 9.9, satisfies the three theorems in the present section.
4. We know that if m in Theorem 9.2-1 is positive then T is positive. How does this follow from the spectral representation (1), Sec. 9.9?

5. We know that the spectrum of a bounded self-adjoint linear operator is closed. How does this follow from theorems in this section?
6. Let $T: l^2 \rightarrow l^2$ be defined by $y = (\eta_j) = Tx$ where $x = (\xi_j)$, $\eta_j = \alpha_j \xi_j$ and (α_j) is any real sequence in a finite interval $[a, b]$. Show that the corresponding spectral family (E_λ) is defined by

$$\langle E_\lambda x, y \rangle = \sum_{\alpha_j \leq \lambda} \xi_j \bar{\eta}_j.$$

7. **(Pure point spectrum)** A bounded self-adjoint linear operator $T: H \rightarrow H$ on a Hilbert space $H \neq \{0\}$ is said to have a *pure point spectrum* or *purely discrete spectrum* if T has an orthonormal set of eigenvectors which is total in H . Illustrate with an example that this does not imply $\sigma_c(T) = \emptyset$ (so that this terminology, which is generally used, may confuse the beginner for a moment).
8. Give examples of compact self-adjoint linear operators $T: l^2 \rightarrow l^2$ having a pure point spectrum such that the set of the nonzero eigenvalues (a) is a finite point set, (b) is an infinite point set and the corresponding eigenvectors form a dense set in l^2 , (c) is an infinite point set and the corresponding eigenvectors span a subspace of l^2 such that the orthogonal complement of the closure of that subspace is finite dimensional, (d) as in (c) but that complement is infinite dimensional. In each case find a total orthonormal set of eigenvectors.
9. **(Purely continuous spectrum)** A bounded self-adjoint linear operator $T: H \rightarrow H$ on a Hilbert space $H \neq \{0\}$ is said to have a *purely continuous spectrum* if T has no eigenvalues. If T is any bounded self-adjoint linear operator on H , show that there is a closed subspace $Y \subset H$ which reduces T (cf. Sec. 9.6, Prob. 10) and is such that $T_1 = T|_Y$ has a pure point spectrum whereas $T_2 = T|_Z$, $Z = Y^\perp$, has a purely continuous spectrum. (This reduction facilitates the investigation of T ; cf. also the remark in Sec. 9.6, Prob. 10.)
10. What can we say about the spectral families (E_{λ_1}) and (E_{λ_2}) of T_1 and T_2 in Prob. 9 in terms of the spectral family (E_λ) of T ?