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Foreword

These notes are based on the semester project of Yann Péquignot, Théorie spectrale et évolution en
mécanique quantique, which was supervised by Prof. Boris Buffoni and myself at EPFL (Lausanne)
in 2008. I am especially indebted to Yann for the exceptional quality of his work, and his permission
to use it as teaching material.

The goal of the course is to provide a straightforward but comprehensive proof of the spectral
theorem for unbounded selfadjoint operators in Hilbert spaces, and some applications to elementary
quantum mechanics. The main focus will be on the decomposition of a selfadjoint operator onto its
family of spectral projections. Some elements of functional calculus will also be given.

We will start in Chapter 1 by some recalls about bounded operators in Hilbert spaces and their
spectra, as well as important properties of projections and positive operators, which will play a crucial
role in the main proofs. Chapter 2 will be devoted to the proof of the spectral theorem for bounded
selfadjoint operators, while Chapter 3 will present the extension to the unbounded case. In Chapter 4
we will apply the spectral theorem to discuss Stone’s theorem, which characterizes strongly continuous
one-parameter groups of unitary transformations of the Hilbert space. After a brief exposition of the
main concepts of quantum mechanics formulated in the Hilbert space framework, we will use Stone’s
theorem to define the operators representing the energy and the momentum of a quantum particle.

The original work, as well as the present version, are based on classic books which are listed in the
Bibliography. However, considerable effort is made here to present a unified and self-contained theory.
The student with basic knowledge of functional analysis in Hilbert spaces should be sufficiently
equipped to read these notes. Of course, as always in mathematics, we can only recommend very
active reading (doing the exercises, reproducing the proofs mentally and on paper, etc.) in order to
get familiar with the theory.

As I am translating this work to English and adding extra material and exercises, I of course take
full responsibility should there be any mistakes or imprecisions in the text.

Delft, February 2015



Terminology We shall speak of unbounded operators when referring to general, not necessarily
bounded, operators. The price to pay for this abuse of terminology is that bounded operators become
a special case of unbounded operators! But we prefer to live with this rather than repeatedly using
the awkward phrase ‘general, not necessarily bounded, operators’.

The notion of selfadjointness for unbounded operators requires a careful definition (in particular
the definition of the domain of the adjoint operator), while for a bounded operator A acting in a
Hilbert space H, it only amounts to requiring that A be symmetric, i.e. that (Au,v) = (u, Av), for all
u,v € H. If A is unbounded, it is also called symmetric provided the previous relation holds for all
u,v in the domain of A. Throughout the course we shall reserve the term selfadjoint for unbounded
operators, while bounded selfadjoint operators will merely be called symmetric.



Chapter 1

Preliminary notions

We start by recalling elements of the theory of linear operators acting in a Hilbert space H. We present
some basic results about bounded linear operators and some elementary properties of orthogonal
projections.

1.1 Hilbert spaces

In these notes we will consider Hilbert spaces over the field C of complex scalars. The definition of
Hilbert space is as follows.

Definition 1.1.1 A pre-Hilbert space H is a complex vector space endowed with an inner product
(-,-) : H — C satistying

(i) for all w € H, (u,u) >0, and (u,u) = 0 if and only if u = 0;
(ii) for all u,v,w € H, (u+ v, w) = (u, w) + (v, w);

(iii) for all u,v € H and all A € C, (Mu,v) = A (u,v);

(iv) for all u,v € H, (u,v) = (v, u).

H is called a Hilbert space if it is a Banach space for the norm ||u|| := /(u,w), i.e. if the metric
space (H,d), with d(u,v) := ||u — v||, is complete. ¢

We shall use the notations of Definition 1.1.1 throughout the text without further mention. We
recall, without proof, the following fundamental property of the Hilbert norm.

1
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Theorem 1.1.2 (Cauchy-Schwarz Inequality) For all u,v € H, there holds
| (w0 [ <l [v]]-
A typical example of Hilbert space is the following.

Example 1.1.3 (The Hilbert space L?[0,1]) Consider the set of functions u : [0,1] — C such

that
/ lu(z)|? dr < oo,
[0.1]

where the integral is taken with respect to the Lebesgue measure on [0, 1]. We define an equivalence
relation by
u~wv iff w=wv almost everywhere.

We denote by L?[0,1] the set of equivalence classes obtained in this way. This is a (complex) Hilbert
space for the following operations:

(A )(w)z () (AéC)

(u+v)(z) =ulx)+v

/[011 .

where u, v denote any elements of their respective equivalence classes.
The corresponding norm is given by

= ( /[ } o)) "

and the Cauchy-Schwarz inequality takes the form

1/2 1/2
/ wodr < </ \u]de) (/ ]v|2dx> |
[0,1] [0,1] [0,1]

In fact, Example 1.1.3 is generic, in the sense that all infinite-dimensional separable Hilbert spaces
are isomorphic to L?[0, 1].

The Cartesian product H x H has a natural Hilbert space structure given by the following
operations:

(ul, Ul) ()\Ul, )\Ul)
(w1, v1) + (ug,v2) = (w1 + ug, v1 + v2),
) =

((Ub?)l ) (ug, v2) (u1,u2) + (v1,v2),
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for all (uq,vy1), (ug,v2) € H x H and all A € C. The metric topology induced by the inner product of
‘H x H coincides with the product topology inherited from H.

1.2 Linear operators

In these notes we are interested in linear operators between Hilbert spaces H; and Hs, that is,
mappings A : H; — Hs which preserve the vector space structures of H; and H,. In the first part we
will consider linear operators which are bounded, i.e. continuous, and so also preserve the topology.
Then we will deal with general, unbounded, operators.

We start by recalling the basic notions of the theory of linear operators in the more general
framework of operators A : X1 — X5 acting between two Banach spaces X7 and Xs.

Definition 1.2.1 A linear operator A from X; to X5 is a mapping A : X7 — A5 such that:
(i) for all u,v € X, A(u+v) = A(u) + A(v);
(i) for all A € C and all u € X}, A(A\u) = AA(u).

We shall merely write Au for the image A(u) of the element u € &}. The range of A is the subspace
of X5 defined as
rge A = {Au; u e Xy},

and the kernel of A is the subspace of A} defined as
ker A = {u € &;; Au = 0}.
If there is a constant C > 0 such that
[Aully, < Cllully, forall u € Ay, (1.2.1)

we say that A is bounded. The norm of A € B(&}, &,) is defined as the infimum of all C' > 0
satisfying (1.2.1) and can be characterized as (Problem 1.2)

Al g, 2y = sup [[Aully, = sup [[Aully, . (1.2.2)

ull, =1 lull , <1

The set B(X1, X2) of bounded operators from A} to A, endowed with the norm ||-|[5y, x,). 15 &
Banach space for the operations:

(A+ B)u = Au+ Bu for all A, B € B(X), &), u € Xy
(AM)u = NAu for all A € B(X1,X,), A€ C, u € A.

We shall simply write [|ul|, ||Au||, ||A|| when there is no risk of confusion. ¢
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Remark 1.2.2 (a) The above definitions can be made when X; and &» are merely normed vector
spaces. The space of bounded operators B(X1, A2) is a Banach space for the norm |[|-[| 54, v,
defined as in (1.2.2), provided that the target space X, is Banach. Note that the bounded
linear operators from &} to X, are precisely those linear operators which are continuous with
respect to the topologies of A} and Ay, induced by the norms |[|-|[,, and [-[| y,, respectively.

(b) In these notes we shall be mainly concerned with Hilbert spaces, and especially the case where
H := X; = X,. Then we shall simply write B(H) instead of B(H,H). If A, B € B(H), we then
have [|AB|| < [ Al [ B]-

In the context of Banach spaces, we now recall a fundamental result due to Banach and Steinhaus.
The proof can be found e.g. in [Fri82, Kre78, RSNIO, Weis0].

Theorem 1.2.3 (Uniform Boundedness Principle) Consider a sequence (A,)nen of bounded
operators acting between Banach spaces Xy, Xo. If, for all u € Xy, we have

sup ||Anu||/,\',2 < 00,
neN

then there holds
Sup 1Al g, 2y < 00

Remark 1.2.4 In Theorem 1.2.3, one can merely assume that A5 is a normed vector space; com-
pleteness is not needed in the proof.

Definition 1.2.5 Let (A,,)neny C B(&), Xs) be a sequence of bounded linear operators.

(i) If there is an operator A € B(X;, X3) such that lim, oo |4, — Al gy, x,) = 0, We say that the
sequence (A, ),en converges (in operator norm) to A.

(i) If, for all u € A&j, the limit lim,,_,., A,u exists in Ay, we say that the sequence (A,)nen is
stronlgy convergent. The mapping u — lim, .., A,u is then clearly a linear operator from
Xl to XQ. ‘

Corollary 1.2.6 Let (A,)nen C B(X1, Xs). Suppose (Ap)nen is strongly convergent and let A @ Xy —
Xy be the operator defined by u — lim,, o Ayu. Then A € B(X, Xs).

Proof. For all u € Xy, it follows by continuity of the norm (Problem 1.1) that

lim ||A,ul| = ||Au|| exists.
n—oo
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Therefore the sequence (||A,u||)nen is bounded for all uw € &j. It then follows from the Uniform
Boundedness Principle that (||A,||)nen is bounded by a constant C' > 0. Thus, for all u € A7,

] = tim (| Al < O]
and so A is bounded. O

We next recall another fundamental result in the context of two Banach spaces A}, X5. The
graph of a linear operator A : X} — A’ is defined as the subspace

Ga={(u,Au);ue X1} C A x X,
A natural norm on X} x &5 is given by

[[(w, )|l = [lull + vl

1

Note, however, that all product norms * are equivalent, so your favorite choice is good enough.

In Problem 1.3, we will prove the following theorem, which is a consequence of the bounded
inverse theorem.

Theorem 1.2.7 (Closed Graph Theorem) A: X} — X, is bounded if and only if G 4 is a closed
subset of Xy x Xs.

A (continuous) linear functional on the Hilbert space H is an element of the dual space
of H, H* = B(H,C). The linear functionals on a Hilbert space are characterized by the following
theorem due to F. Riesz, the proof of which can be found e.g. in [Fri82, p. 206] or [[Kre78, p. 188].

Theorem 1.2.8 (Riesz’s Representation Theorem) Let H be a Hilbert space. For any ug € H,
the formula

f(u) = (u,ug) Vu e H, (1.2.3)

defines a linear functional on H, with || f|| = ||ug||. Conversely, for any linear functional f on H,
there ezists a unique ug € H such that (1.2.3) holds.

We complete this section by recalling some spectral properties of linear operators. The funda-
mental problem motivating the definition of the spectrum is the following. Let X be a normed vector
space and A € B(X'). For which values of A\ € C does the equation

(A= M)u=v (1.2.4)

YJ(-, )| is a product norm on X; x X iff ||(u,0)|| = ||ulx, Yu € X1 and [|(0,)]| = ||v]|x, Vv € Xa.
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have a unique solution u € X', for any given v € X' 7

Firstly, the solution will be unique if ker(A — AI) = {0}, i.e. if A is not an eigenvalue of A.
Furthermore, there will be a solution for any v € X provided rge(4A — A\) = X. Relaxing slightly
the latter condition (we only require that (1.2.4) can be solved for v in a dense subspace of X), the
solution to this problem can be stated by the introduction of the resolvent set of A.

Definition 1.2.9 Let A € B(X) be a bounded linear operator acting in a complex normed vector
space X # {0}, and I : X — X be the identity. The resolvent set p(A) of A is the set of all
complex numbers A such that ker(A — ) = {0}, rge(A — AI) is dense in X and the inverse operator
(A—=XI)"':rge(A— M) — X is bounded. The spectrum o(A) of A is defined as o(A) = C\ p(A).
It can be decomposed as

0(A) =0,(A)Uo.(A)Uo.(A), (1.2.5)

where the sets 0,(A),0.(A), 0,(A) are pairwise disjoint subsets of C defined as follows:
(i) A € 0,(A) iff ker(A — A1) # {0}, i.e. A is an eigenvalue of A;
(i) A € o.(A) iff ker(A — XI) = {0} and rge(A — AI) is dense in X but (A — AI)~! is not bounded;
(iii) A € 0,.(A) iff ker(A — AI) = {0} but rge(A — A\I) is not dense in X.

The sets 0,(A), 0.(A) and 0,(A) are respectively called the point spectrum, the continuous
spectrum and the residual spectrum. ¢

Remark 1.2.10 (a) The requirement that (A — AI)~! be bounded is to ensure that, if A € p(A),
the solution u of (1.2.4) depends continuously on the data wv.

(b) We will see in problem 1.4 that, if X is Banach, then A € p(A) iff (A — AI) is a bijection.
We now collect without proof some important properties of the spectrum; see e.g. [[Kre78].

Theorem 1.2.11 Let A € B(X) with X # {0} a complex Banach space. Then the spectrum o(A)
of A is a compact non-empty subset of C. Furthermore,

o(A) S {AeC; A< 4]}

Definition 1.2.12 The number r,(A) = sup |}A| is called the spectral radius of A. ¢
A€o (A)

Theorem 1.2.13 (Spectral Radius Theorem) Let A € B(X) with X # {0} a complex Banach

1/n

space. Then the limit lim,_, ||A™]|" exists and we have

ro(A) = inf [|A™|Y" = lim [|A"]*".
n=1 n—oo
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1.3 Orthogonal projections

An orthogonal projection is a bounded linear transformation of the Hilbert space H that maps the
whole space onto a closed linear subspace, parallelly to the directions orthogonal to this subspace.
The essence of the Spectral Theorem is to decompose a selfadjoint operator as a linear combination
of orthogonal projections, so these will play a prominent role throughout the course.

Definition 1.3.1 (a) Two elements u,v € H are orthogonal if (u,v) = 0.

(b) Given a subspace M C #H, an element v € H is orthogonal to M if u is orthogonal to all
elements of M.

(c¢) A subspace N C H is orthogonal to M if each element of N is orthogonal to M.
(d) The orthogonal complement M~ of M is the closed subspace
M+ ={uecH; (uv)=0forallveM}CH.
We shall sometimes write v L v, w L. M or N L M, to denote orthogonality.

The following theorem will allow us to define the notion of orthogonal projection. Its proof can
be found e.g. in [Wei80, p. 31] or [Kre78, p. 146].

Theorem 1.3.2 Let M be a closed subspace of the Hilbert space H. For all uw € H, there exists a
unique v € M and a unique w € M+ such that w = v +w. That is,

H=MaoM".

Definition 1.3.3 If M is a closed subspace of the Hilbert space H, the orthogonal projection
or simply projection onto M is the bounded operator defined by Pu = v for all u € H, where
u = v + w is the unique decomposition of v with v € M and w € M*. ¢

Note that it follows immediately from the definition that M = rge P, M+ = ker P, and that
I — P is the projection onto M*.

Proposition 1.3.4 Let P be the orthogonal projection onto a closed subspace M of H. Then:
(a) P®= P;
(b) (Pu,u) =0 for all u € H, with equality if and only if u € M*;
(c) for all u,v € H, (Pu,v) = (u, Pv);
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(d) if P %0 then ||P|| = 1.

Proof. We shall write v = v + w as in Theorem 1.3.2 throughout the proof.

Then Pu=wv € M, and the decomposition of Pu according to Theorem 1.3.2 is simply Pu = v.
That is, PPu = v, which proves (a).

To prove (b), observe that (Pu,u) = (v,v+ w) = (v,v) = |[v]|*.

To prove (c), write (Pu,u) = (v,v + w) = (v,v) = (v 4+ w,v) = (u, Pu).

To prove (d), note that |lul|* = ||v||* + ||w||* implies |[v|| < ||lu||, hence ||P|| < 1. Furthermore,
if P # 0 then M # {0} and we can find ug € M with ||ug|]| = 1. Hence, ||Pug|| = |lug|]] = 1 and
[Pl = supyy=1 [|Pull = || Puoll = 1. 0

The following additional properties will be proved in the problems.

Theorem 1.3.5 Let M and N be closed subspaces of the Hilbert space H. Denote by P and ) the
associated projections. Then one has:

(a) M C N if and only if PQQ = QP = P;
(b) M C N if and only if (Pu,u) < (Qu,u) for all u € H;
(c) PQ=0<QP=0< M L N.

1.4 Symmetric operators

Symmetric operators on the Hilbert space are bounded operators having a peculiar behaviour with
respect to the inner product. They are often referred to as ‘selfadjoint’ in the literature. However we
shall reserve the term selfadjoint for the extension of the notion of symmetric operator to unbounded
operators, where the definition of the adjoint operator requires extra care.

Definition 1.4.1 Consider a bounded operator A on the Hilbert space H. The adjoint A* € B(H)
of A is defined by
(Au,v) = (u, A"v), for all u,v € H. (1.4.1)

The operator A is called symmetric if A = A*. We shall merely call symmetric operator a
bounded symmetric operator. ¢

We now verify that this definition makes sense.

Theorem 1.4.2 The relation (1.4.1) defines a unique operator A* € B(H), satisfying ||A*|| = || A]|.
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Proof. Fix v € H and define f,(u) = (Au,v), u € H. Since A is bounded, f, € H* with || f,| <
|All [|[v||. Hence, by Theorem 1.2.8, there exists a unique v* € H such that f,(u) = (u,v*), for all
u € H. Letting A*v := v*, we recover (1.4.1) and it is easy to check that this defines a linear operator
A* : H — H. Furthermore, by Theorem 1.2.8,

[A™ ]| = I foll < Al Yo e H,

showing that A* € B(#H) and ||A*|| < ||A]|. Conversely, using again Theorem 1.2.8,

A* A A
4] = sup A g UEN A (A ) |
P Ll w0 [l w0 wzo 0l llull  wozo lull (vl
Au, Au Aull? Au
> sup LAGAW] [EI— VI Ry
Hence, [|A*[[ = [|A]]. .

We now collect some basic properties of the adjoint operator. The proofs can be found e.g. in
[EFTi82] or [Kre78].

Proposition 1.4.3 Consider two bounded linear operators A, B : H — H and any scalar A € C.
Then we have:

(a) (A+ B)* = A* + B,
(b) (AB)* = B*A*;
(c) (VA = \A*;
(d) A = A;
(e) 0 =0 and I* = I;
(f) 1A=A] = | AA*| = ||AI%;
(g) if A=t € B(H) then A* is invertible, (A*)™' € B(H) and (A*)~' = (A~1)*.
The following lemma is a fundamental structural result about the adjoint operator.

Lemma 1.4.4 Consider a bounded operator A : H — H. Then

H = ker A* @ rge A.
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Proof. See Problem 1.12. O

The following characterization of the residual spectrum is often useful to study the spectrum of
an operator (see Problem 1.16).

Proposition 1.4.5 The residual spectrum o.(T) of a bounded operator T : H — H can be charac-
terized as

0.(T)={NeC; Ago,(T), A€ 0,(T*)}.

Proof. We apply Lemma 1.4.4 with A = T — Al. By definition of ¢,(7T") we have, using Proposi-
tion 1.4.3 (a) and (c),

A€o, (T) <= T — M is injective but rge(T' — \I) C H
<= ker(T — ) = {0}, ker(T* — XI) # {0},

which proves the proposition. U
The numerical range of a bounded operator A is the set
nr(A) = {(Au,u) ; u e H, |ul| =1} C C.

For instance, the numerical range of 0 is {0} and the numerical range of I is {1}. For general
projections, we have the following result.

Proposition 1.4.6 Let P ¢ {0,1} be an orthogonal projection. Then nr(P) = [0, 1].
Proof. Firstly, if ||ul| = 1,
0 < (Pu,u) = (P*u,u)y = (Pu, Pu) = | Pul® < |lu))® =1,
showing that nr(P) C [0, 1].
Conversely, consider a number ¢ € [0,1]. Let v € rge P,w € ker P with ||v|| = |[w| = 1, and
define u; := tv + /1 — t?w. Then,
|lw]| =1 and (Puy,u) = <tv,tv +V1-— t2w> = 1%

showing that t* € nr(P). Hence, [0,1] C nr(P). O

Proposition 1.4.7 An operator A € B(H) is symmetric if and only if nr(A) C R.
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Proof. 1t A is symmetric then (Au,u) = (u, Au) = (Au,u) for all u € H. Conversely, if (Au,u) is
real for all u € H, we have (Au,u) = (A*u,u) and so

((A—A%u,u) =0 forall u € H.
It now follows by Problem 1.13 that A — A* = 0. U

Remark 1.4.8 Note that it is essential for the ‘if’ part that H be complex. Indeed, in a real Hilbert
space, the numerical range of any operator is real. (See also in Problem 1.13 why the last part of
the above argument fails when # is real.)

Theorem 1.4.9 Consider a symmetric operator S on the Hilbert space H. Then
15[l = sup [(Su,u)].

[Jul|=1

Proof. Let s := sup [(Su,u)|. If ||u]| = 1, then

Jul=1
[(Su, w)| < [[Sull lull = [|Sull < IS lull = S]]

Hence, s < ||S]].
To prove the converse inequality, take v € H such that Sv # 0 (if no such v exists the result is
trivial) and consider u = A~1Sv, where A\ = (||Sv|| /||v||)!/%. Then, using the polarization identity,

le ((S(A\v+u), \v+u) — (S(Av —u), \v —u))
(I +ull* + Ao = u]]*) = (||AU||2 + ull)

S
_ (vnvu L ||Sv||)=s||vr|||5v||.

Hence, ||Sv|| < s|jv|| and it follows that ||S|| < s. O

I150]1” = (S(w), u) =

S

e~ |

The following results will be proved in the problems.
Theorem 1.4.10 Let S be a symmetric operator on H. Then o(S) C R.

Definition 1.4.11 Let S be a symmetric operator on H. The lower bound and upper bound of
S are respectively defined as

m = inf (Su,u) and M = sup (Su,u).

flull=1 llull=1

Remark that, by Theorem 1.4.9, ||S|| = max{|m|,|M|}. ¢
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Theorem 1.4.12 Let S be a symmetric operator on H and let m, M be as in Definition 1.4.11.
Then o(S) is real. In fact, we have

o(S) C [m,M] and m,M € o(95).

Corollary 1.4.13 Let S be a symmetric operator on H. The spectral radius of S, introduced in
Definition 1.2.12, satisfies ro(S) = ||S]|.

Corollary 1.4.14 Let S be a symmetric operator on H. Then o,.(S) = @.

Proof. This follows from Proposition 1.4.5 and the fact that o(S) C R. O

1.5 Positive operators

Our description of positive operators here essentially follows [Fri82].

Definition 1.5.1 A symmetric operator S : H — H is called positive, denoted S > 0, if
(Su,u) >0 for all u € H.

We shall call positive operator a symmetric positive operator. For S, T : H — H symmetric, if
S —T >0 we say S is larger than T or T is smaller than S, and we write S > T or T'< S. 4

It is an exercise to show that < defines a partial order on symmetric operators.

We shall now endeavour to define the square root of a positive operator. This requires several
technical steps.

Lemma 1.5.2 Let P : H — H be a positive operator. There exists a sequence (P,)2, of operators
which are real polynomials® in P, such that the partial sums (22:1 sz)ZO:1 strongly converge to P:

Pu = ZPfu, u€H.
n=1

2A real polynomial is a polynomial with real coefficients.
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Proof. If P = 0, the statement is trivial. Suppose P # 0 and define by induction the sequence of

operators
B 1P, BnJrl:Bn_BZ, n=12....

LT

Each B, is a real polynomial in P and so is symmetric by Problem 1.8. We now prove by induction
that
0<B,<I foralln>1. (1.5.1)

For n =1, it follows from the positivity of P that, for all u € H,

1
(Biu,u) = —— (Pu,u) > 0,
1Pl

and so By > 0. Moreover, for all u € H,

(T = Byyu,u) = (1) — (Byu, u) = (u,u) — ﬁ (Pu,u) > 0,

since (Pu,u) < ||P|| ||u|®> by Cauchy-Schwarz. Suppose then that (1.5.1) holds for some m > 1 and
let us show that it holds for m + 1. For all u € H, since B, > 0 we have, on the one hand,

(Bi(I — Bp)?u,u) = (Bn(I — Bn)u, (I — Bp)u) = 0,
and on the other, since B,, < I,
(B2(I — Bp)u,u) = (I = Bu)Bpu, Byu) > 0.
Hence B,,(I — B,,)? > 0 et B2 (I — B,,) = 0. Therefore,

Bpmi1 = B, — B2,
= B, (I — B,,)* + B%(I — B,,) > 0.

Furthermore, since B,, < I, we have

2 >0.

m

I—Bpna=I—-B,)+B

This conclude the proof of (1.5.1).
Let us now observe that

Bf =B, — Bny1, n>1. (1.5.2)
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Together with (1.5.1), this implies

Therefore, for all u € H,

3

(Byu, Byu) < (Biu,u), n
k=1

It follows that >°°° || B,ul” < co and so lim,, ., || Byu| = 0. Hence, by (1.5.2),

WV
—_

Jim B = 3 B = Jim, 1Bl =0
k=1
On setting P, := /|| P||Bn, n = 1, the sequence (F,)>2; does the job. d

Corollary 1.5.3 Let P and Q) be positive operators. If PQ = QP then PQ is positive.

Proof. Consider the sequence (P,)?; given by Lemma 1.5.2 for P. As each P, is a polynomial in
P, we have P,QQ = QP, for all n > 1. Thus, for all u € H, it follows from the continuity of the inner
product that

(PQu, u) i PQQu,u> = i (P,QP,u,u) i (QPu, Pyu) >0,
n=1 n=1 n=1

by positivity of Q. O

Corollary 1.5.4 Consider a sequence of symmetric operators (S,)5, and suppose there is a sym-
metric operator I such that:

(i) if 1 <m < nthen S, < S, (increasing sequence);
(i) for all m,n > 1, S,,S, = S,Sm;
(111) for allm > 1, TS, = S,T;

() for alln > 1, S, <T (upper bound).

Then (S,)22, converges strongly to a symmetric operator S.
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Proof. Consider the operators P, =T — S,,. Each P, is positive by (iv) and the sequence (P,)%2, is

decreasing by (i). Indeed, if 1 < m < n then P, — P, = S, — S,, = 0. Moreover, by (ii) and (iii),
P,P,, = P, P, for all m,n > 1. Hence, Corollary 1.5.3 ensures that, if 1 < m < n then

P.(P,—P,) >0 and (P,—P,)P,>0.
We deduce that
(Pau,u) = (PnPyu,u) > (Piu,u) 20, 1<m<n, ueH. (1.5.3)

Therefore, ((P2u,u)),-, is a decreasing sequence of non-negative numbers. Let a € R, be its limit.
By (1.5.3) we have, for all 1 <m < n:

O<<PmPnU>U>—Oé<<P,iU,u>—a, u e H.
It follows from the above identities that

lim (P,Pu,u) = lim (Plu,u), u€™H.

n,m—00 m—r0o0

Hence, for all u € H:

|| S — SmuH2 = || Ppu — PnUH2
= {(Py — Pn)*u,u)
= <P§Lu, u> + <P§u, u> — 2(P, Pyu,u)

m,n—00

0.

It follows that, for all u € H, (S,u)$2, is a Cauchy sequence in H. It therefore has a limit, which

n=1
we denote by Su € H. This defines a linear operator S, which is bounded by Corollary 1.2.6.
Furthermore, S is symmetric. Indeed, by continuity of the inner product (Problem 1.1),

(Su,v) = <lim Snu,v> = lim (S,u,v) = lim (u, S,v) = <u, nll_)IElo Snv> = (u,Sv), wu,v € H.

n—o00 n—00 n—o0
The proof is complete. O

We now introduce the important notion of the square root of a positive operator.

Definition 1.5.5 Let P be a positive operator. A square root of P is a symmetric operator R
such that R = P. ¢

Theorem 1.5.6 Let P be a positive operator. There exists a unique positive square root R of P.
Furthermore, R commutes with any bounded operator which commutes with P.
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Proof. The proof is in two steps.

1. Existence. We need only show that all positive operator P such that P < [ has a positive
square root. The general case can be deduced from this one by considering P = ¢ P, with € > 0 such
that € ||P|| < 1. So suppose that P < I and define by induction the sequence of operators

Ry=0

1
Ry an+§(P—R§) n=12... (1.5.4)

Each R, is a real polynomial in P. Therefore, by Problem 1.8, R,, is symmetric and commutes with
any bounded operator which commutes with P. It follows from the identity

1 1
I — Ry = 5(I—Rn)?+ 5(I—P) (1.5.5)

that R, < [ for all n > 0. It then follows by subtraction that

1 1
Rn-‘rl - Rn - 5([ - Rn—l)2 - 5(1 - Rn)z
1
= 5(33,1 — 2R, 1 +2R, — R?)

_ %[(1 Ry 1)+ (I = R)]|(Rn — Ru1).

Thanks to Corollary 1.5.3, this last identity allows one to show by induction that R, .; > R, for all
n > 0. In particular, since Ry = 0, each R, is positive. We can then apply Corollary 1.5.4 to the
sequence (R,)> ,: there exists a symmetric operator R such that lim, . R,u = Ru for all u € H.
On the other hand, the Uniform Boundedness Principle 1.2.3 yields a constant C' > 0 such that
|R.|| < C for all n > 1, and so

|Rou — R*ul| = ||Rou — RyRu + R, Ru — R*ul|
< C'||Rpu — Ru|| + ||Rn(Ru) — R(Ru)|| === 0.

It follows that lim,, o, R2u = R?u for all u € H. Therefore, letting n — oo in (1.5.4), we have
1
Ru = Ru + §(P — RYHu forall u € H.
That is, R? = P. Since each R, is positive, so is R by continuity of the inner product. Furthermore,

since each R, commutes with any bounded operator which commutes with P, this also holds for
their limit R.
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2. Uniqueness. Suppose that S is also a positive square root of P. Since P = S?, S commutes
with P and so with R. Pick any v € H and let v = (R — S)u. Then

(Rv,v) + (Sv,v) = (R + S)(R — S)u,v) = ((R* — 5*)u,v) = 0.

Since (Rv,v) > 0 and (Sv,v) > 0, it follows that (Rv,v) = (Sv,v) = 0. Now consider a positive
square root T of R. By symmetry of T" we have

| Tv||* = (T?v,v) = (Rv,v) = 0.

Hence Twv = 0 and we conclude that Rv = T(Twv) = 0. By the same argument we get Sv = 0.

Finally,
1Ry — Sul|* = ((R = 8)*u,u) = (R = S)v,u) =0,

that is Ru = Swu. Since u is arbitrary, we conclude that R = S. O

Lemma 1.5.7 Let S and T be symmetric operators such that ST =TS and S* = T?. Denote by P
the projection onto L = ker(S — T'). We then have the following properties.

(a) Any bounded operator which commutes with S — T commutes with P.
(b) If Su=0 then Pu = u.
(¢c) PIS+T)=S5S4+T and P(S—T) =0.

Proof. Let B be a bounded operator which commutes with S —T. We observe that, if v € L then
Bv € Lsince (S—T)Bv = B(S—T)v =0. Hence BPu € L for all u € H. Therefore, PBPu = BPu
for all w € H, in other words PBP = BP. By Problem 1.10, the adjoint B* also commutes with
S —T. Hence B*P = PB*P, and it follows that

PB = (B*P)* = (PB*P)* = PBP = BP.

This proves (a).
Now suppose that Su = 0 for some u € H. Then

| Tul|? = (T*u,u)y = (S*u,u) = |Sul|* = 0,

and so Tu = 0. Therefore, (S —T)u =0 as well and u € L. It follows that Pu = u, proving (b).
To prove (c), observe that, since S and T" commute we have, for all u € H,

(S—T)(S+T)u=(S*—T*)u=0.
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Hence (S+T)u € L, and so P(S+T) = S+T. To prove the last statement, observe that (S—T7T)P =0
by definition of P and that S and T' commute with P by part (a). This concludes the proof. O

We are now in a position to prove the following lemma, which will play a crucial role in the
spectral decomposition of bounded symmetric operators.

Definition 1.5.8 For a symmetric operator S, we denote by |S| the unique positive square root of
S%. We shall call it the absolute value of S. Note that one has |S| S = S|S| and |S| > 0, for any
symmetric operator S. ¢

Lemma 1.5.9 Let S be a symmetric operator. The projection E onto ker(S —|S|) has the following
properties.

(a) Every bounded operator which commutes with S commutes with E. .
(b) If Su=0 then E u = u.

(¢) SEL >0 and S(I — E;) <0.

Proof. Let C be bounded operator which commutes with S. Since C'S? = SCS = S2C, C also
commutes with S?. Then, by Theorem 1.5.6, C' commutes with |S| and so commutes with S — |S].
Hence, by Lemma 1.5.7 (a), C' commutes with E,. This proves (a).

Part (b) follows directly from Lemma 1.5.7 (b).

We now prove (c). By Lemma 1.5.7 (¢) and the fact that S and |S| commute with F,, we have

SE, =|S|E;. (1.5.6)
We then deduce from Corollary 1.5.3 that SE, > 0. On the other hand, by Lemma 1.5.7 (c),
SE, +|S|Ey =5S5+]|9].
Together with (1.5.6), this yields
S(I—-FE.)=—(I—-E)|S|. (1.5.7)

But |S| also commutes with I — E, and so again by Corollary 1.5.3 we have S(I — Ey) < 0. The
proof is complete. O

A good mental picture of Lemma 1.5.9 is obtained from the following definition.
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Definition 1.5.10 Let S be a symmetric operator and E be the projection onto ker(S —|S|). The
operator Sy = SF, is called the positive part of S, while S_ = S(I — E,) is called the negative
part of S. ¢

As S and |S| commute with S — |S|, Lemma 1.5.7 (a) ensures that both commute with E, as
well. It therefore follows from (1.5.6) that

E+S - SE+ - |S|E+ - E+ |S| .
Then, using (1.5.7), one obtains

S, =1(S+S) and S_=8—8, =1S—|9).

Problems

1. Show that the inner product of a Hilbert space is continuous in each variable, and that the
norm is a continuous function.

2. Show that the norm HAHB(XLXQ) of an operator A € B(AX}, X)) can be defined equivalently by
(1.2.2).

3. Prove that a linear operator A : X1 — A5 is bounded if and only if its graph G, is a closed
subset of A} x Xy, where Xy, X, are Banach spaces.

4. Let A € B(X) and A € C, as in Definition 1.2.9. Show that, if X’ is a Banach space and
A € p(A), then (A — AI)~! is defined on the whole space X.
Hint: Use the result proved in Problem 1.3.

5. Prove Theorem 1.3.5.

6. Show that a bounded operator P : H — H is a projection if and only if it is symmetric and
idempotent (i.e. P? = P).

7. Prove Proposition 1.4.6.
8. Prove that, if S is a symmetric operator on H, then any real polynomial in S is also symmetric.

9. Let S be a symmetric operator on H, and B a bounded operator on H. Show that T'= B*SB
is symmetric.
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10.

11.

12.

13.

14.

15.

16.

17.

18.
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Let S be a symmetric operator on ‘H, B a bounded operator on H. First suppose that SB = BS
and show that SB* = B*S. Then, if both S and B are symmetric, show that SB is symmetric
if and only if SB = BS.

Consider a sequence (S,),>1 of symmetric operators, such that S,, — S in B(H) as n — oc.
Show that S is symmetric.
Hint: Apply the triangle inequality to [|.S — S*||.

Prove Lemma 1.4.4. o
Hint: (Prove and) use the fact that X+ = X for any subspace X C H.

For T' € B(*H), prove that
(Tu,u) =0VueH = T =0.

Note that it is essential here that H be complex. Find a counterexample in the real case.
Hint: Write u = v + Aw and use special values of A € C.

On £% let A be the multiplication operator defined by (Au), = 6,u,, where (6,),>1 C C is a
given bounded sequence. Show that A is bounded, o,(A) = (6,,) and o(A) = (6,,).

Determine under which condition A is symmetric.

Recall: £* is the Hilbert space of all complex sequences (uy, uy, ... ) such that Y~ -, u,|* < oo,
endowed with the inner product (u,v) = -, u,Up.

Find an operator T": C|0, 1] — C10, 1] such that o(T") = [a, b], with a < b given.
We define two operators S, T : (> — (* by
(Su)p = ups1, n =1 (left shift); (Tu); =0, (Tw), =u,_1, n =2 (right shift).

(a) Show that S and 7" are bounded. Compute ||S|| and ||7|.
(b) Find S* and T™.
(c) Find 0,(5),0.(5) and o.(S5).

Find a Hilbert space H and a sequence of operators (A, )neny C B(#H) which converges strongly
but not in operator norm.

Show that the multiplication operator X : L?[0, 1] — L?[0, 1] defined by
(Xu)(x) = zu(z), = €]0,1],

is a bounded symmetric operator without eigenvalues. Find the spectrum of X.
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Let S : H — H be bounded and symmetric. Prove that all the eigenvalues (if any) of S are
real. Show that eigenvectors of S corresponding to distinct eigenvalues are orthogonal.

Deduce Corollary 1.4.13 from Theorem 1.2.13.

Show that the relation > introduced in Definition 1.5.1 defines a partial order among the
symmetric operators on H.

Recall: A partial order is a binary relation which is reflexive, transitive and antisymmetric.
Hint: Use Theorem 1.4.9.

Let A : ¢ — (? be defined by (uy,us,...) = (0,0,u,us,...). Show that A is bounded and
compute its norm. Is A symmetric? Find B : ¢ — ¢? such that A = B2,

Consider the operator A : L?[0, 1] — L?[0, 1] defined by
(Au)(z) = a(z)u(z), = <[0,1],
where a € L*[0, 1]. Show that:

(a) 0,(A) ={AeC; [{z €0,1]; a(z) = \}| > 0};
(b) o,(A) = 0;
(¢) o(A) = essrge(a).

Here, | E| is the Lebesgue measure of a Borel set E C [0, 1], and essrge(a) is the essential range
of a, defined as

essrge(a) = {A € C; forall e > 0: [{z € [0,1]; |a(z) — A| < €}| > 0}.

Find a condition on a for A to be positive and, in this case, find the square root of A.






Chapter 2

The spectral decomposition of symmetric
bounded operators

The goal of this chapter is to present the proof of the spectral theorem for (bounded) symmetric
operators. The main idea is that a symmetric operator A can always be represented as a sum of
projections, indexed by a real parameter running through o(A). In general, due to the presence of
continuous spectrum, this representation involves a continuous sum, viz. a Riemann-Stieltjes integral.
The projections are uniquely determined by A in the form of a spectral family. In the first part of the
chapter we define the integral with respect to a general spectral family. Then we prove the spectral
theorem, following [Fri82].

2.1 Integration with respect to a spectral family
We start with the definition of a spectral family.

Definition 2.1.1 A spectral family on # is a mapping F : R — B(H), denoted (E))xer and
satisfying the following properties.

(i) E, is a projection for all A € R.
(ii) If X < p, then E) < E,,.
(iii) The family (E))xcr is strongly left-continuous, i.e.

lim Fyu = E,u, forall pecR, uecH.
A

(iv) There exist m, M € R such that Ey\ =0 for all A < m and E) = I for all A > M.

23
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Two numbers m, M € R satisfying (iv) are respectively called a lower bound and an upper bound
of the spectral family. ¢

We consider a spectral family (E)) er with bounds m, M € R. Let f be a continuous real-valued
function defined on [m, M]. We now fix 0 < ¢ < 1 and extend f continuously to [m, M + ¢]. We
denote this extension by f. Let II be an arbitrary partition of [m, M + €|, i.e. a finite sequence of
numbers (A;)}_, such that

m=X <M< <1<\, =M +e.
We call size of the partition IT the number |II| defined as

III| = max A\ — A\p_1.
k=1,....n

-----

We then choose real numbers 1, ..., such that
pr € [M_1,Ai] foreach k=1,--- n,

and form the sum

S = Z f(:uk)(EAk - E)\k—l)'

k=1

The following lemma ensures that Sy converges in B(#H) as |II| — 0, for any partition II of [m, M +¢].

Lemma 2.1.2 Consider (E))xer a spectral family with bounds m, M € R, and f : [m,M] - R a
continuous function. Let 0 < e <1 and f : [m, M + €] — R a continuous extension of f. There is a
unique bounded operator S such that, for all n > 0 there exists § > 0 such that for any partition I1
of [m, M + €| satisfying |II| < 0, one has

1S = S| <.

Furthermore, the operator S is independent of the extension chosen for f, of the choice of €, and of
the choice of the gs.

Proof. Fix n > 0 arbitrary. Since f is uniformly continuous on the compact interval [m, M +¢], there
exists 9, > 0 such that

for all \, X € [m, M +¢], |A=X| <6, = |f(\) = fF(N)| <

N3

(2.1.1)

Part 1. We start by showing that, for any partitions II and II' of [m, M + €],

1, 1) < 6, = [|Su — Swll <, (2.1.2)
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independently of the points p; chosen to construct the sums Sy and Syy.

Let us write IT = (A\g)f_, and fix pq, ..., p, with pg; € [Ni—1, A] for all ¢ = 1,...,n. We form a
partition IT = (\; )i—o as the union of IT and II". We denote by 0 = ko < ky < --- < k; < k, = 0 the
subsequence of indices satisfying Ay, = \; for i = 0,...,n.

We then pick up numbers

ﬂi € [j\iflaj\i] ’l = 1, e 7kn-

The sum associated with IT and the fi;s is given by

S SE - B )

1=1 j=k;—1+1
Since, for all i =1,... n,
ki
Z Ej‘j o Ej‘jfl - E;\ki o Ej\ki_l = Ex, — B\,
Jj=ki—1+1

we can write St as

Si=3" S fu)(Es, - B, ).

1=1 j=k;_1+1

Since |II| < 6, it now follows from (2.1.1) that, for alli =1,...,nand all j = k;_1 + 1,... k;,

i — i < Ni— N1 <6 = | f () — f(75)] <

N3

Moreover, since F,, = 0 and Fy 4. = I we have, for all v € ‘H such that |ju|| = 1:

n ki
(St — Sp)u, u) FE)]((Bx, = Ex,_,)u, u)
=1 ] kl 1+1
n ki
/’LJ | < E)\ )ua u>
i=1 j=k;_ 1+1

<
|
—_
<.
Il
T
7
,_.
+
—
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Since f is real-valued, Sy and Si are symmetric operators. Hence, by Theorem 1.4.9, ||Si — Sq| < 7.
Similarly we have ||S — S| < 4 and so

150 = Sl < 151 = Sgll + (157 = Sl <,

as advertised.

Part 2. Let us now consider a sequence (I1,,)°° ; of partitions of [m, M +-¢| such that lim,, ,, |IL,| = 0.
The operators (Sm,, )52 ; then form a Cauchy sequence in B(#H). Indeed, there is an N > 1 such that
IIL,| < 6, for all n > N. Hence, by (2.1.2), for all n,n’ > N there holds HSHn — Snn,” < n. Since
B(H) is complete, the sequence (St,)n>; has a limit S € B(H). In particular, there exists NV, > 1

n=1
such that |IIy,| < d2 and HSHM7 — S|| < £. Therefore, in view of (2.1.2), any partition IT smaller
than dx satisfies

IS =S < |[Sn = Sy, || +[|Sty, =S| <.

The limit S does not depend on the extension of f, neither on ¢, for £\ — E, = 0 for all M < p < A
Furthermore, it is clear from Part 1 that the limit does not depend on the choice of the points u;. [

Thanks to Lemma 2.1.2, we can now make the following definition.

Definition 2.1.3 Consider a spectral family (E))xeg with bounds m, M € R and f : [m, M| — R
continuous. The limit operator S € B(H) obtained from Lemma 2.1.2 is called the integral of f
with respect to the spectral family (F)),cg. It is written

S— /M+f()\) dEs.

For a continuous f : [m, M] — C, we define the integral of f with respect to (E))aer by
M+ M+ M+

FO)dEy = RF(N) dEA+i/ Sf(N) dEs.

m m m

Observe that, for any spectral family (E))\ecr, one has

M+
/ dEy = Ey+ — B, = 1.

m
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2.2 The spectral theorem for symmetric operators

We are now ready to prove the spectral theorem for bounded symmetric operators.

Theorem 2.2.1 (Spectral Theorem I) Let S be a bounded symmetric operator. There exists a
unique spectral family (E))xer with the following properties.

(a) Every bounded operator which commutes with S commutes with E, for all A € R.
(b) For all u € H there exists
E, +u = lim Eyu.
AN

(¢) The lower and upper bounds m, M of S are respectively lower and upper bounds for (E))er-

(d) The operator S has the representation

M+
S:/ AdE).

m

The family (Ex)aer is called the spectral family of S.

Proof. For all A € R, let E,()\) be the projection onto ker[(S — AI) — |S — AI|], which was studied
in Lemma 1.5.9. Observe that E,(\) is uniquely determined in this way. We will show that the
projections E\ = I — E()) form a spectral family satisfying (a)—(d).

Since E4(A) commutes with all bounded operators which commute with S, this is also true for
E\. Hence, (a) is readily satisfied. In particular, £,E\ = E\E, for all u, A € R.

Le us now show that, if A < p then E\ < E,, i.e. part (ii) of Definition 2.1.1 holds. Suppose
A < pand let P = E\(I — E,). We will show that P = 0. Firstly, we have

E\P =P, (I-E,)P=P (2.2.1)
Moreover, by definition of £y and E,, Lemma 1.5.9 implies that
(S=AE\=(S—=X)(I—-EL(N) <0, (S—pl)(I—-E,) =(S—pul)Ey(pn) >20. (222
Choosing u € H and letting v = Pu, it follows from (2.2.1) that

Eyv=FE\Pu= Pu=nv.
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Similarly, (I — E,)v = v. Therefore, by (2.2.2),

(S — A)v,v)
((S = pl)v,v)

(S = A)Ey\v,v) <0,
(S = pI)(I — EyJo,0) > 0.

We deduce that
(k= A) (v,0) = (S = Al)v,v) = ((§ — pl)v,v) <O.
However, since p > A, we must have Pu = v = 0. Since u is arbitrary, we have shown that P = 0.
By definition of P, this means that E\ = E\E, which, by Theorem 1.3.5, is equivalent to F\ < E,.
The family (E))xer therefore satisfies condition (ii) of Definition 2.1.1.
We now show that (E))xer satisfies (b). Let u € H. Since E) < E, for A < p, (E)u,u) is a
positive non-decreasing function of A\. Therefore, for all ;1 € R, it has a limit from the left:

lim (E\u,u) = sup (Eu,u) = 1,.
A A<p

Hence, for all n > 0 there exists § > 0 such that 0 < p— A < 6 implies I, — (Exu, u) < 3n. It follows
that, for y —d < A<v<u, EAE, = F, =

|E,u — Eyul|® = ((E, — BEy)*u,u) = ((BE, — E\)u,u) < [(Byu,u) — 1] + |1, — (Bxu, u)| <.

Therefore, since ‘H is complete, an argument similar to Part 1 in the proof of Lemma 2.1.2 shows
that

lim Fyu = E,-u exists for all u € H.
A

Similarly, for all u € H, the limit

lim Ey\u = FE
Al{‘I}L AU pt U

exists as well. This proves (b) and half of part (iii) of Definition 2.1.1.
We now complete the proof of part (iii) of Definition 2.1.1, i.e. we show that (E))\er is strongly
left-continuous. If A < p, we write FA = E, — E and we have

E,Ex=Ex et (I—FE\Ex=E,—E\— E\E,+ E} = Ea. (2.2.3)

Using (2.2.2), EA > 0, and the fact that a composition of commuting positive operators is positive
(Corollary 1.5.3),

(S —pl)Ex = (S — pl)EEa <0,
(S —A)Ex = (S — M)(I — Ey)Ea > 0.
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In consequence, we have the following inequalities

Consider now the operator Ea, = £, — E,-. We want to show that I/, = 0. Observe that, for all
u € H,

lim Fau = Eaju.
A

Thus, letting A 7 p in (2.2.4), we get
pEA, < SEA, < pEn,.
It follows by antisymmetry of < that
(S — pl)Ea, = 0.

Let us now fix u € H and set v = Ea,u, so that (S — pf)v = 0 and, by part (c) of Lemma 1.5.9, we
have

E,Enju=E,=(I—E;(u)v=0.
Finally, it follows from (2.2.3) that

Engu = lim Eau = lim B, Fau = E,Ex,u = 0.
by A

Since v € H is arbitrary, we have indeed shown that Ex, = 0.

Let us now prove part (c), thereby showing that (E))aer satisfies condition (iv) of Definition 2.1.1.
Suppose by contradiction that A < m and E) # 0. Then there exists u € H such that Eyu # 0 and
we let v = E\u. We can suppose that ||v|| = 1, and we obtain from (2.2.2) that

(Sv,v) = A= ((S = MN)v,v) = (S — M) E\u,u) < 0.
Therefore, by definition of the lower bound of S,
m < (Sv,v) < A,

a contradiction. Hence E, = 0 for all A < m. Suppose now by contradiction that A > M and E) # I.
Then there is u € H such that w = (I — E))u # 0. We can again suppose that ||w| = 1. Hence, by
(2.2.2),

(Sw,w) — A= {((S = A)w,w) = (S =N )(I — E))u,u) > 0.

Therefore, by definition of the upper bound of S,
A< (Sw,w) < M,
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a contradiction. Hence E\ = I for all A > M.
We finally prove part (d). For a small ¢ > 0, consider a sequence of partitions (II;)%°
as

521, denoted

O m=XN<XM<-- <N _, <N =M+s
and satisfying lim; ,. |II;| = 0. For all j > 1 and all kK = 1,...,n;, writing EA?; = E)\i —-FE,, it

k—1
follows from (2.2.4) that .

Hence, for fixed j > 1, since szzl N = [, summation over k = 1,...,n; yields
k

St <5 < Sny,

where the sum Sp, is taken over the partltlon II;, with the function f(A) = X and the choice of
uk = )\k 1, while SH is computed with 1], = )\J Hence letting 7 — oo, Lemma 2.1.2 gives

M+ M+ M+
/ )\dE)\<S</ ANE, = S:/ AdE).

m m m

It remains to prove the uniqueness of the spectral family of S. This will be done in the problems
using the following lemma. O

Lemma 2.2.2 Consider a symmetric operator S and let (Ey\)xer be a corresponding spectral family
satisfying parts (a) to (d) of the theorem. For any real polynomial p, there holds

p(S) = / p(N) dEj.

m

Proof. We need only show that the conclusion holds for any monomial p(A) = A with [ > 0. We
already know that this is true for [ = 0, and the theorem gives the result for [ = 1. We prove the
result by induction, assuming it holds for p(A) = A and inferring it holds for p(\) = A*!. Fix
0 < n < 1 arbitrary. Using the theorem and the induction hypothesis, there exists 6 > 0 such that,
for any partition IT = (\g)}_, satisfying |II| < 4, there holds

||S - Z::l )‘kEAkH < n and HSl - Zzzl )\i:EAk H < n
where Ea, = E), — Ey,_,. Let us write T = "}, \iEa, and TO =370 AL Ex,. For all k,

Eik = Efk — 2B, E\,_, + Efkfl = Fa,,
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while for all 7 # j,
EnEn, = E)\Ey\, — ExE\,_, — E\,_,E\, + E\,_,E\,_, = 0.
It follows that TOT =" A-HEA, = T+, Using
IS'T — S < ||S' IT — SI < 1S,

|STO = ST < ISIH|TO = S| < 1811,

and

|5 = ST — TOS + TOT|| = || (8" = T) (S — T)||
<||s' = TO| |5 - T < 2.

we deduce that

HT(H—l) . SH—IH — H(SH—I o SZT o T(I)S+T(Z)T) + (SZT - SH—I) 4 (ST(I) o Sl-‘rl)H
<+ (1S n + 115 -

Hence, by Lemma 2.1.2,
M+
S = / XHLAE,

which concludes the proof. U

Corollary 2.2.3 Let S be a symmetric operator and (E))xer a corresponding spectral family satis-
fying parts (a) to (d) of the theorem. For all u,v € H and all real polynomial p, we have

M+-e

(p(S)u,v) = / p(\) d(E\u,v) Ve > 0. (2.2.5)

m

Proof. See Problem 2.1. O

The right-hand side of (2.2.5) is a Riemann-Stieltjes integral (cf. Appendix A). For all u € H the
function A — (E,\u,u) is non-decreasing and so, in particular, of bounded variations in [m, M + &].
Its total variation in [m, M + €] is equal to ||u*. Furthermore, the value of the right-hand side does
not depend on €. This follows again from the fact that, for A > u > M, F\ — £, = 0.
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2.3 Further properties of the spectral family

We conclude this chapter by discussing the relation between the spectral family of a symmetric op-
erator S and the two components of its spectrum, 0,(S) and o.(5). Notice that, by Corollary 1.4.14,
0-(S) = @ for any symmetric operator S.

Theorem 2.3.1 Let S be a symmetric operator and (E))er the corresponding spectral family. The
real number Xy is an eigenvalue of S if and only if the mapping A\ — E) is discontinuous at A = \g
(i.e. Ex, # Ey+ ). In this case,

ker(S — Aol) =rge(Eys — Ey)- (2.3.1)
Proof. See Problem 2.6. U

The next result completes our discussion by a remarkable characterization of the resolvent set.

Theorem 2.3.2 Let S be a symmetric operator and (E\)er the corresponding spectral family. Then
a real number Ay belongs to the resolvent set p(S) of S if and only if there exists € > 0 such that the
mapping A — Ey is constant on the interval [Ag — €, \g + €].

We call such a Ay a point of constancy of (Ey)xer-

Our final result follows immediately from the two previous theorems, and Corollary 1.4.14

Corollary 2.3.3 Let S be a symmetric operator and (Ey)xer the corresponding spectral family. A
real number Ay belongs to the continuous spectrum o.(S) of S if and only if Ny is neither a point of
constancy, nor a point of discontinuity of (E\)er-

Problems

1. Prove Corollary 2.2.3.
Hint: Use Lemma 2.2.2 and Theorem A.2.1.

2. Prove the uniqueness of the spectral family in Theorem 2.2.1.
Hint: Use the Weierstrass approximation theorem, Corollary 2.2.3 and Theorems A.3.3 and
A.3.4.
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We consider again the operator X : L?(0,1) — L?(0,1), (Xu)(x) = zu(z). In Problem 1.18 we
showed that o(X) = 0.(X) = [0, 1]. Prove that the spectral family (E))er of X is given by

0 if A<0,
Eyu = X[o\ U if \e (0, 1],
u it A>1,

where X0,y is the characteristic function of the interval [0, A].

Hint: Start by showing that |X — M| is the operator T : L*(0,1) — L?(0,1) defined by
(Thu)(z) = |z — Au(z), = € [0,1]. Then find the corresponding projection E()) appearing in
the proof of Theorem 2.2.1.

From Theorems 2.2.1, 2.3.1 and 2.3.2, deduce the structure of the spectral family and the
spectral decomposition (a) of a (finite-dimensional) Hermitian matrix, (b) of a compact operator
having infinitely many eigenvalues.

Verify that the spectral family obtained in Problem 2.3 satisfies the conclusions of Theo-
rems 2.3.1 and 2.3.2.

The goal of this problem is to prove Theorem 2.3.1. First, the whole proof can be reduced to
checking (2.3.1). Explain why. Then, to prove (2.3.1), one can proceed as follows.

(a) To prove that ker(S — Aol) D rge(E,+ — Ej,), use inequality (2.2.4).

(b) The other inclusion is more involved. We need to show that, if u € ker(S — A\g/) then
Fou = u, where we have put Fy = Exa“ — E), — explain why this is enough. To do this,
use Corollary 2.2.3 with p(A) = (A — X\g)? to prove that (E\,_.u,u) = (u — Ey,eu,u) = 0,
for any € > 0.

In this problem we shall prove Theorem 2.3.2. We will use the fact that Ay € p(.S) if and only
if there exists v > 0 such that

1S = XoD)ull =7 flull, uweH. (2.3.2)
(a) To prove that the constancy condition implies A\ € p(5), use Corollary 2.2.3 with p(\) =
(A —Xo)?, and (2.3.2).

(b) To show that \g is a point of constancy if it is in the resolvent set, proceed by contradiction
using again (2.3.2) and Corollary 2.2.3, with p(A) = (A — X\g)? and a suitably chosen w.
Hint: The identities F\E, = E,F\ = Ey, A < u, can be useful here.






Chapter 3

The spectral decomposition of selfadjoint
operators

In this chapter we will extend the spectral theorem to general (unbounded) selfadjoint operators.
We start by introducing the properties of unbounded operators that will be relevant to our analysis.

3.1 Unbounded linear operators

Some natural operators in a Hilbert space H fail to be bounded. Those are typically only defined on
a subspace of H, called their domain.

Definition 3.1.1 Let H be a Hilbert space. A linear operator (or simply operator) in H is a
mapping 1" : D C H — H satisfying:

(i) D7 is a subspace of H called the domain of T}

(ii) for all u,v € D,
T(u+v)=Tu+ Tv;

(iii) for all A € C and all u € D,
T(Au) = NTu.

We also adapt in the obvious way the notions of range and kernel. Let 71" be a linear operator
acting in ‘H. Its range is defined as

rge(T) = {Tu; u € Dr},

35
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and its kernel as
ker(T) = {u € ©7; Tu = 0}.

Note that, unlike the kernel of a bounded operator, this is not a closed subspace in general.

We say that T : ©7 C H — H is bounded (on D7) if there is a constant C' > 0 such that, for all
u € Dy,
[Tul] < Cllul- (3.1.1)

Consider two operators 7" and 7" in H, with respective domains ® and Dp. If
Dr CDp and Tu=T'u forall ue€ Dr,
we say that 7" is an extension of T', and we write
TCT orT' DT.

This is easily seen to define a partial order on the operators of H. In particular, two operators are
equal (T'=T',ie. T CT and T 2O T") if and only if D7 = Dy and Tu = T'u for all u € D.

Proposition 3.1.2 Consider an operator T': D7 C H — H satisfying (3.1.1) on Dr. Then there
exists a unique linear extension of T' to D, still denoted T': D — H. Furthermore, this extension
satisfies (3.1.1) on Dr.

Proof. Suppose T satisfies (3.1.1) on D, let u € D7 and consider a sequence (u,,) C D7 such that
U, — u. Since

[Tun = Tuml| = 1T (tn — um)|| < C'lltn — tnl| =0,  n,m — oo,

the sequence (Tw,) is Cauchy in H. Let us denote by T'w its limit. This defines a linear extension
of T to D (still denoted T'). It is clear that the extension is unique by uniqueness of the limit.
Furthermore, since w,, satisfies (3.1.1) for all n € N, passing to the limit yields (3.1.1) on Dr. O

Remark 3.1.3 By the same argument, one shows that a linear functional that is bounded on a
subspace can be extended uniquely to a bounded linear functional on the closure of this subspace.

If ®r is dense in H, we say that T is densely defined. Proposition 3.1.2 implies that any
bounded densely defined operator can be extended to an operator in B(H).

Similarly to the bounded case, we define the graph of an operator T : ®r C H — H as

Gr={(z,Tz); x € ®Or} CH X H,
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and we equip the product Hilbert space H x H with the natural inner product inherited from H:
((u,v), (W, 0)) = (u, o) + (v,0),  (u,v), (W, v) € H.

If 77 and 7% are linear operators, then obviously 77 C T is equivalent to G, C G,

Definition 3.1.4 We say that T is closed if its graph is a closed subset of H x H. ¢

Consider two linear operators T : ®p, CH — H and 15 : O, € H — H, and a scalar A € C.
The sum of T} and 75 is defined as:

T1+TQZ©T1QQT2 — H
u+— Tiu + Thu.

The multiplication of 77 by A is defined by:

)\Tl : @Tl — H
u — NTu.

Finally, the composition (or product) of 77 and T is the operator defined as:
T1T2 : {U € ®T2 > TQU < ©T1} — H
Uu+— T1 (TQU)

We also introduce the notion of inverse for unbounded operators. If an operator T : ®p — H is
one-to-one, we call inverse of T' the mapping T~! defined by:

T7':rge(T) — H
Tu+— u.

Observe that rge(7T~1) = D7. Furthermore, if T is one-to-one, there holds

TT'CI and T 'TCI.

Definition 3.1.5 We define the resolvent set p(7") of T" as the set of all complex numbers A such
that T'— AI is a bijection from ®7 onto #H, with a bounded inverse. The (point/continuous/residual)
spectrum is then defined exactly as in the bounded case; see Definition 1.2.9. ¢

Note that for a complex number A\ to belong to p(T) several conditions must be met, which
in some cases are not independent. For instance, if 7" is closed it follows from the Closed Graph
Theorem that, if T"— Al is a bijection from ®7 onto H then its inverse is automatically bounded.
For other relations, see Problem 3.2.
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3.2 The adjoint operator

We shall now extend the notion of an adjoint operator to unbounded operators having a dense
domain. In the case of a bounded T, recall that the adjoint T™* of T was merely defined by

(Tu,v) = (u, T*v) for all u,v € H. (3.2.1)
This definition relies on the fact that, for all v € ‘H, the mapping
u— (Tu,v) (3.2.2)

is a continuous linear functional on H. Then the Riesz Representation Theorem 1.2.8 yields a unique
v* € H such that (T'u,v) = (u,v*), for all u € H.

In case T is not bounded, the definition of the adjoint is less straightforward. Indeed, the mapping
(3.2.2) can a priori be defined only on ©7. Then, in general, it will not be bounded on ©r for all
v € H. Furthermore, even if (3.2.2) is bounded for some v, then if ®7 is not dense there will be
several possible continuous extensions to ‘H and so, by Riesz, several points v* € H satisfying

(Tu,v) = (u,v*) for all u € Dr.
These considerations lead naturally to the following definition.

Definition 3.2.1 Consider a densely defined operator T' : ®7 C H — H. The domain of the
adjoint 7™ of T is defined as

Dr« = {v € H; there exists C' > 0 s.t. |(Tu,v)| < C||lu| for all u € Dr}.

Now for all v € D7+, since D7 is dense in ‘H, Remark 3.1.3 yields a unique continuous extension to
‘H of the functional u +— (Tu,v). Then, for all v € D+, the Riesz Representation Theorem 1.2.8
allows us to define T*v as the unique element of H satisfying

(Tu,vy = (u, T*v) for all u € Dr. ¢

We now show that D7« is a subspace and T* is linear. Let ui,us € D7« and Ay, Ay € C. Then
indeed, for all u € ®7, we have

(T, uy) + Ay (T, uy)
(u, T"ur) + X (u, T us)
= <U, )\1T*U1 -+ )\QT*u2> .

<T'U,, >\1U1 + )\2U2> =

M
M
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It follows that Aju; + Aqug € Dp« and

T* (>\1U1 + )\QUQ) = )\1T*u1 + )\QT*UQ.
Note that, at this stage, we do not know whether ® - is trivial or not. The next lemma ensures that
D« # {0} if rge(T") is not dense in H.

By definition, a densely defined operator T satisfies the fundamental relation
(Tu,v) = (u, T*v) for all u € D7 and all v € Dp-. (3.2.3)

The following result extends Lemma 1.4.4 to unbounded operators.

Lemma 3.2.2 Let T : D7 CH — H be densely defined. Then

H = ker(T") & rge(T).

Proof. We will prove that rge(T)* = ker(T*). In particular, ker(7T™) is closed. Then the result
follows, as in the bounded case, from the identity M+ = M, satisfied by any subspace M C H.
Let v € ker(7*). By (3.2.3), it follows that v € D« and (Tu,v) = 0 for all u € D7. Hence,
v € rge(T)*. Conversely, let v € rge(T)*. Then (Tu,v) = 0 for all u € D7. We deduce that v € Dp-
and
(u, T*v) = 0 for all u € Dr. (3.2.4)

Now let u € ‘H. Since D7 is dense, there exists a sequence (u,)> ; C Dy such that u, — u. Hence,
by (3.2.4), we have
(u, T*v) = lim (u,, T"v) = 0.
n—0o0

We conclude that (u, T*v) = 0 for all u € H. Thus, v € ker(7™). O

The following proposition gives a fundamental property of the adjoint.
Proposition 3.2.3 Let T': ©7 C H — H be densely defined. Then T s closed.

Proof. Consider a sequence (u,,, T*u,,)5° ; in the graph of 7* which converges to a point (u,v) € HxH.
Let us show that u € ©7- and v = T*u. It follows from

| (ty, T wy) — (u,v)”ixﬂ = (Up, — Uy Up, — u) + (T U, — v, T u, — v)

= |l — ull* + 1T — o]
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that u,, — v and T™u,, — v as n — o0o. Then, by the continuity of the inner product, for all w € Dr:
(Tw,u) = lim (Tw,u,) = lim (w, T"u,) = (w,v).
n—o0 n—o0

Hence, w — (Tw,u) is bounded on ®r, u € D+ and (w,T*u) = (Tw,u) = (w,v). Since Dy is
dense and (w, T*u — v) = 0 for any w € D, we conclude that T*u = v. O

The adjoint operator also enjoys the following elementary properties.

Properties 3.2.4 Consider two densely defined operators T : O, — H, 15 : D, — H, and A € C.
Then:

(a) (AT)* = AT™;

(b) if D1, 17, is dense, then T} + Ty C (T} + T3)*;
(c) if D, is dense, then 17Ty C (Ty17)%;

(d) if Ty C Ty, then T} D T5.

3.3 Commutativity and reduction

We define here what it means for a bounded operator to commute with an unbounded operator.

Definition 3.3.1 Consider a bounded operator B and an operator A : ® 4 C H — H. We say that
B commutes with A, and we write B_A, if

BA C AB.
Explicitly, BA C AB means that ©4 C {u € H; Bu € D4} and BAu = ABu for all u € D4. ¢

More generally, the commutativity between two unbounded selfadjoint operators will be defined
later through the commutativity of their respective spectral families. This is the notion of commu-
tativity which is required by quantum mechanics.

Lemma 3.3.2 Let P be a projection, () = I — P the projection onto the orthogonal complement of
rge P, and A be any operator acting in H. If P_A, then the closed subspaces rge P and rge (Q reduce
the operator A in the sense that, on the one hand,

PAP =AP and QAQ = AQ,

and, on the other hand,
A= AP+ AQ.
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Proof. Since P_A, i.e. PA C AP, we have
PAP = (PA)P C (AP)P = AP,
and since the operators PAP and AP have same domain,
PAP = AP.

Furthermore, since

QA=(I-P)A=A—-PACA—-AP=A(I-P),
i.,e. Q_A, we obtain similarly that QAQ = AQ. On the other hand, we have

A=(P+Q)A=PA+QAC AP+ AQ C A(P + Q) = A,

and so
A= AP+ AQ.

3.4 More on operator graphs

We define two linear operators U,V : H x H — H x H by
U(u,v) = (v,u) and V(u,v)=(v,—u), (u,v)€ H X H.

They are Hilbert space automorphisms of H x H (i.e. they are bijective and preserve the inner
product). Furthermore, they satisfy the following identities, where I denotes the identity on H x H:

UV=-VU and -V’=U’=L
The following observation will be useful.
Lemma 3.4.1 Let T be a densely defined operator in H. The graphs of T and T* satisfy

Gp = (VG—T)L or, equivalently, VGg = (Gp.)*.
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Proof. For all u € D1 and all v € D+ we have
(Tu,vy = (u, T"v) ,

which can be written as

(V(u,Tu), (v,T*v)) = 0. (3.4.1)
Hence, we already remark that any element of G« is orthogonal to VGr. Now the proof is in two
steps.
Gp- C (VG_T)L. Consider (w, T*w) € G+ and a sequence (un,v,)>>; C VGg which converges to
(u,v) € VG = VGr. It then follows from (3.4.1) that

((u,0), (w, T*w)) = lim {(wn, va), (v, T70)) = 0.

n—oo

Hence, (w,T*w) € (V G_T)J_
(VG_T)L C Gr+. Let (u,v) € (VG_T)L. Then, in particular, for all w € D7,
0= (V(w,Tw), (u,0)) = (Tw,u) - (w,v). (3.4.2)

Therefore, the mapping w — (T'w, u) coincides on D7 with the linear functional w +— (w, v), which
is bounded on H. Hence, u € D« and T*u = v, i.e. (u,v) € Gop-. d

For closed operators, the previous lemma has the following important consequence.

Theorem 3.4.2 Let T be a closed operator with dense domain. Then the domain of T* is also dense
in H, and so T** = (T*)* does exist. Furthermore, T** =T.

Proof. Let
he (@) . (3.4.3)

We will prove that h = 0. Since V is unitary, it follows from Lemma 3.4.1 that
Gr=Gr = V?Gr = V(Gr.)" = (VGr) ™. (3.4.4)

Hence,

HXH:GT@VGT*,

so there is a unique uy, € ®r and a unique v, € Dy« such that

(0,h) = (up, Tup) + (T"vp, —vp),
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that is,
Ozuh—i—T*vh, h:Tuh—vh.

Combining these equations, we obtain
lonll* = (on, on) = (vn, Tun) = (T vn,up) = = (T o, T vn) = — [ T*osl*,

so that v, = 0. Returning to the above equations, we deduce that u; = 0 and h = Tu, = 0. Hence,
D is dense in ‘H, and T™* exists.
Now, applying Lemma 3.4.1 to T* instead of T', (3.4.4) yields

Gre = (VGr)" = Gy (3.4.5)
Hence, T** =T. Il

The next theorem will play an important role in the proof of the spectral theorem for selfadjoint
operators.

Theorem 3.4.3 Let T be a closed operator with dense domain. The operators
B=U+TT)" and C=T{I+T*T)"*
are defined and bounded on H, with
IBl<1 and C<L.

Furthermore, B is symmetric and positive.

Proof. Since T is closed and densely defined, it follows from (3.4.4) that G and VG« are orthogonal
complements in H x H. Hence, for all h € H, there is a unique u; € ®r and a unique v, € D7« such
that

(h,, 0) = (’U,h, Tuh) + (T*Uh, —Uh), (346)

or, by components,
h = up, + T*Uh,
0= Tuh — Up.

This first observation allows us to define two linear maps B and C by

Bh=wu;, and Ch=uy.
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These operators are defined on H, and satisfy

I =B+ T*C,
0=TB—-C,
from which we deduce that
C=TB and [=B+T7T"TB=(I+T1"T)B. (3.4.7)

Furthermore, the two terms in the right-hand side of (3.4.6) are orthogonal, so

2 2 2 * 2
||h|| = ||(h7 O)H?-txH = ||(uh,Tuh)||HxH + [[(T" v, _Uh)HHxH
= [Junl® + 1 Tunll* + | T*0n | + Jon*

Therefore,
BRI + ICRI* = flunll* + lonll® < |11,

and it follows that
1Bl <1 and [|CJ<1.

We now observe that, for any u in the domain of T*T,
(I + T T)uyu) = (u,u) + (T, Ta) > () = [l > 0.

Hence, if (I +T*T)u = 0 then uw = 0. This shows that I + 7*7T is one-to-one and so has an inverse
(I+T*T)~'. But now the right identity in (3.4.7) implies that rge(I +T*T) = H, and it follows that

B=(I+T"T)"
Finally, B is symmetric and positive. Indeed, for all u,v € H,

(Bu,v) = (Bu, (I + T*T)Bv) = (Bu, Bv) + (Bu, T"TBv)
= (Bu, Bv) + (T"T'Bu, Bv) = (({ + T*T)Bu, Bv) = (u, Bv) .

Furthermore, for all u € H,
(Bu,u) = (Bu, (I + T*T)Bu) = (Bu, Bu) 4+ (T'Bu, TBu) = ||Bu||* + ||TBul|® > 0.
This concludes the proof. O

A useful corollary of Theorem 3.4.3 will be stated in the next section.
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3.5 Symmetric and selfadjoint operators

We will now introduce the terms symmetric and selfadjoint in the framework of unbounded operators.
The two notions coincide for bounded operators.

Definition 3.5.1 We call symmetric an operator T' : ®p7 C H — H such that D is dense in H
and

TCT" &
Proposition 3.5.2 An operator T : O C H — H is symmetric if and only if D1 is dense and
(Tu,v) = (u, Tv) for all u,v € Dr. (3.5.1)

Proof. If T is symmetric then D7 is dense, D7 C Dp+ and T*v = Twv for all u € Dp. Since,
(Tu,v) = (u, T*v) for all u € Dy and v € Dp«, in particular (3.5.1) holds.

Conversely, suppose that D is dense and (3.5.1) holds. Let v € ©7. Then (3.5.1) implies that
the linear functional u +— (T'u,v) is bounded on D7, hence v € Dp+. Thus, ©7 C Dp+. Furthermore,
by definition of 7™, we deduce from (3.5.1) that (u, T*v — Tv) = 0 for all u € Dr. Since Dy is dense,
it follows that T*v — T'v = 0. This shows that 7™ indeed coincides with 7" on ®Dr. O

Definition 3.5.3 An operator 7' is said to be closable provided the closure of its graph is the graph
of an operator. This operator is then called the closure of T', denoted T
Gr =Gy ¢
Remark 3.5.4 Let T be a symmetric operator. Then the domain of 7™ is dense in H. Indeed,
H=9rCDr- CH.
Hence, T** is well defined. The operator T** is a closed extension of T since, by Lemma 3.4.1,

Gre = (VGr:)" = V’Gr = G O Gr. (3.5.2)

Thus, T is closable, with T = T**. (As will be seen in Problem 3.4, this relation between closure
and adjoint also holds for non-symmetric operators, whenever 7™ is densely defined.)

Furthermore, T** is symmetric. Indeed, T" C T™* implies that ® 7« is dense. Moreover, since
T C T, it follows by Theorem 3.4.2 that
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If B € B(#H) is symmetric in the sense of Definition 3.5.1, then it is symmetric in the sense of
bounded operators, i.e. B* = B. However, for a general densely defined operator T', being symmetric
does not imply 7% =T

Definition 3.5.5 An operator T : ®r C H — H is called selfadjoint if D is dense in H and
T=T" ¢

It follows immediately from Proposition 3.2.3 that a selfadjoint operator is closed. Remark 3.5.4
shows that any symmetric operator has closed symmetric extensions. However, a symmetric operator
T (even closed) does not necessarily possess a selfadjoint extension. If it does, the inclusions

TCA=A"CT"

indicate where a selfadjoint extension is to be found.

A symmetric operator T' is called maximal symmetric if it has no proper symmetric extension,
i.e. if there is no symmetric operator S such that T'C S and T # S. Observe that any selfadjoint A
is maximal symmetric. Indeed,

ACT and TCT®

implies

ACTCT" C A = A,

and so T' = A.
We say that a symmetric operator A is essentially selfadjoint if A is selfadjoint. The proof of
the next theorem can be found in [Weig0, p. 108].

Theorem 3.5.6 A symmetric operator A is essentially selfadjoint if and only if the subspaces
rge(A £ il) are dense in H.

We conclude this section with the following corollary of Theorem 3.4.3.

Corollary 3.5.7 If A is selfadjoint, then the operators B = (I + A?)™! and C = AB given by
Theorem 3.4.3 have the following additional properties:

(a) B(Da) =D y3;

(b) BLA, i.e. BAC AB;

(¢c) CB = BC;

(d) any operator T' € B(H) such that T_A satisfies TB = BT.
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Proof. Let us first prove that B(D4) = D 3. Since (I + A?)B =1 and D4 ¢ = D4,

ue®y = (A—Cu= Au— ABu
= A(I —B)u
=A((I + A*)B—B)u
= A*Bu.

Hence, B(D4) C © 43. Conversely, if v € D43 C D 42 = Dp-1, then
u=B"lv=(I+A%*v e Dy,

This shows that v € B(®©4). Hence, ® 43 C B(D4).
We now show that BA C AB. Let u € ® 4. Then Bu € D 43, ABu € © 42 and we have

ABu = B(I + A*)ABu = BA(I + A*)Bu = BAu.

It follows that
BC = (BA)B C (AB)B = CB,

and, since BC is defined everywhere, BC = CB.
Finally, for T' € H such that T'_A, we have in particular that

TA? C ATA C AT, (3.5.3)

and so
TB'=T(I+A*) C(I+A)T =B'T. (3.5.4)

It also follows from (3.5.3) that, if u € D 42 then TA?u = A*T'u, and so Tu € D 42. Consider u € D 4
arbitrary. By part (a), Bu € ® 43 C © 42 and so TBu € D 42 = Dg-1. It then follows by (3.5.4) that

TBu = BB™'TBu = BTB™'Bu = BTw.

Since ® 4 is dense in H and since TB and BT are continuous, it follows that TB = BT'. U

3.6 Integration with respect to a spectral family

In this section we extend the notion of spectral family in a natural way to deal with unbounded
operators and, using Lebesgue integration, we define the integral with respect to a spectral family
for a large class of functions.
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Definition 3.6.1 A spectral family on H is a mapping £ : R — B(H), denoted (E))\eg which
satisfies (i)—(iii) of Definition 2.1.1 and, instead of property (iv) of Definition 2.1.1,
(iv)’ for all u € H:

lim Eyu=0 and lim Fyu=u. ¢

A——o00 A—00

The following preliminary result was essentially proved during the proof of the spectral theorem
for bounded symmetric operators.

Lemma 3.6.2 Let E : R — B(H) satisfy parts (i) and (ii) of Definition 2.1.1. Then for all i € R,
there exist projections E,~ and E,+ such that, for all u € H,

lim Fyu = E,- lim Fyu = E,+u.
/\1}% \U ~u and /\1{1}2 U U
Now consider a spectral family (E))\er. For all u € R, the function

F,:R— R,
A— F,(N) == (Ehu,u) = ]|E,\u||2,
is non-decreasing, left-continuous, and satisfies

lim F,(A)=0 and lim E,(\) = |jull”.
— 00

A——00

We can in particular associate to each function F), the corresponding Lebesgue-Stieltjes measure pip,
which we denote by y 5,2 (cf. Section B.1). We observe that 5,2 is a finite measure on R, with

My Eyu?(R) = Fu(00) = Fu(—00) = [|u*.
We now make the following definition.

Definition 3.6.3 Consider a spectral family (E))xcr. We shall say that a function f: R — C is
E-measurable if f is MHEwuz—measurable forallu e H. ¢

The scope of this definition is very large. Indeed, all Lebesgue-measurable functions are FE-
measurable for any spectral family E, as can be seen from Theorem B.1.1 and Theorem B.2.1.
To define the integral with respect to a spectral family, we start with a step function ¢t : R — C,

t= Z CkX1Iy»
k=0
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where the ¢;’s are complex constants and the I,’s are non-empty pairwise disjoint intervals of one of
the following forms:

(ak7 bk:)7 [alm bk:)a (ak7 bk]a [alm bk] .
The integral of ¢ with respect to the spectral family (F))xer is now defined as

n

/t(A) dE\ =) aBE(I),

k=0
where
E((a,b)) = By — Ey+, E([a,b)) = E, — E,, E((a,b]) = Ey+ — Ep+,  E([a,b]) = By — E,

if a, b are finite, while
E([a,0))=1—-E,, FE((—c0,b])= Ey+, etc.

For any step function ¢t we have

H/ dEAUH —< B (Iy)u, Y c;E(1; > chc] (Ip)u, B(L;)u)
J=0 k=0 j=0
= z_:|ck|2 (E(Ik)u, u) =/|t(A)|2 SITIPRAES

where the integral in the right-hand side is a Lebesgue-Stieltjes integral (cf. Appendix B). Here and
henceforth, unless otherwise specified, the integrals are taken over R.

Consider now an F-measurable function f : R — C. By Theorem B.3.1, for all u € H such that
f € L*(R, jug,,2), there is a sequence of step functions (t,);2, converging to f in L*(R, f1z, ,2)-

This sequence being Cauchy in L?(R, u”Esz) there holds, as n, m — oo,

H/tn()\)dE/\u—/ dE,\uH —/|t N dpy gz — 0.

Therefore, the sequence ( [ ta(A dEAu) is Cauchy in H, hence convergent, and we let

/f(A) dEyu = lim [ t,(\) dE\u.

n—oo

This definition is independent of the choice of the sequence (¢,)2° , as can be seen by replacing in
the above calculation ¢,,(A\) by another sequence t,(\) converging to f(A) as n — co.
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Letting
Dey) = {U S S Lz(]KMHEw”?)},

we have thus defined a mapping
E(f) : :DE(f) — H,

" — / £V dBsu. (3.6.1)

Definition 3.6.4 We denote the linear operator (3.6.1) by [ f(\)dE) and we call it the integral
of f with respect to (E))\cr. ¢

The following theorem gives the main properties of the integral.

Theorem 3.6.5 Consider a spectral family (E))xer and f : R — C an E-measurable function.
(a) The domain D gy is dense in H.
(b) The operator E(f) is normal, i.e. E(f)E(f)* = E(f)*E(f).
(c) e Dy = Bl = [ 17 Ay < oo,
(d) If f is bounded, then Dy = H, E(f) € B(H), and ||E(f)| < esssupyeg |f(A)].
(e) If f(A\) =1 for all N € R, then E(f) =1.
(f) For all u € Dy,
() = [ 1) duge

(9) For a,b € C and any E-measurable function g : R — C,
aB(f) +0E(g) C E(af +bg)  and  Dp(s)+p() = Dl +lg)-
(h) For any E-measurable function g : R — C,
E(f)E(9) € E(fg)  and  Dp()ng) = D) N Dr(se);

(i) We have
E(f)=E(f)"  and  Dpg)- =Dy
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(j) For all p € R,
E.E(f) € E(f)E

s

with equality if f is bounded.
Proof. See Problem 3.10. O

We now observe that, given a bounded symmetric operator A on H, Theorem 2.2.1 yields a unique
spectral family (F)),er in the sense of Definition 2.1.1 — which is, a fortiori, a spectral family in
the sense of Definition 3.6.1 — such that A = f AdE). (For continuous functions, the equivalence
between the present theory of integration and that of Chapter 2 in the case where the spectral family
has finite bounds is studied in Problem 3.11.) Hence, for a bounded symmetric operator A and its
spectral family (E))xer, we can now make the following definition.

Let f : [m, M] — C be a function whose extension to R by f(A) = 0 for all A\ € R\[m, M] is
E-measurable. The operator f(A) is defined as

FA) = B(D) = [ 10 dE.
The functions of A have the following properties.

Theorem 3.6.6 Consider a bounded symmetric operator A and its spectral family (E))aer given
by Theorem 2.2.1. Let f,g : R — C be E-measurable functions such that f(\) = g(A) = 0 for all
A € R\[m, M]. Then the following holds.

(a) If f is bounded, then f(A) € B(H) and

[/ (A < esssup [f(A)]-

AE[m,M]

(b) If f and g are bounded, then

(c) F(A)" = f(A).
(d) Any bounded operator which commutes with A commutes with f(A).

Proof. Parts (a) to (c) are direct consequences of Theorem 3.6.5, and part (d) will be proved in
Problem 3.12. 4
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3.7 The spectral theorem for selfadjoint operators

Our proof of the spectral theorem follows that of Riesz and Lorch, as presented in [RSN90]. Another
proof due to von Neumann, based on the Cayley transform, can also be found in [RSN90]. The main
idea in Riesz’s proof is to reduce the problem to the case of bounded symmetric operators by a limit
procedure. With start with the following result.

Lemma 3.7.1 Let
%17%27"'77{1'7"'

be a sequence of closed, pairwise orthogonal, subspaces of the Hilbert space H, such that ©&;H; = H.
We denote by u; the projection of any u € H onto H;. Consider a sequence

Al,Az,...,Ai,...

of operators in H such that the restriction A;|y, is a bounded symmetric operator mapping H; into
itself, for all i > 1.

Then there exists a unique selfadjoint operator A : ® 4 C H — H which coincides with A; on H,;,
for alli > 1. The domain of A is defined by

D, = {u €M > A < oo} (3.7.1)
i=1
and, for all u € D4,
Au=>" A (3.7.2)

Proof. Let us first observe that the operator defined by (3.7.1)—(3.7.2) is linear. Furthermore, © 4 is
dense in H since, for all u € H and all € > 0, there exists N > 1 such that

N

_Zul

and clearly Zfil u; € 4. Moreover, A is symmetric since, by linearity and continuity of the inner
product, and by the pairwise orthogonality of the H;s we have, for all u,v € D 4,

(e 9]

(Au,v) i Ajug, vi) = Z (u;, Ajv;) = (u, Av) .
=1

i=1
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To prove that A is, in fact, selfadjoint, we need only show that ® 4 = © 4+. To this end, consider an
arbitrary v € © 4. Then, for any u € D 4,

(Au,v) = (u, A*v),

and so
o o

Z (Aug, vi) = Z (ug, (A™0);) -
i=1 i=1
In particular, for any fixed j > 1, if u € H; we have u € D4, u; = 0;u, and the above identity
becomes
(Aju, vs) = (u, (A"0);) .
But A; is bounded and symmetric on H;, so we deduce that
(u, (A");) = (Aju, v;) = (u, Aju;) for all u € H;,

that is
(u, (A™); — Ajv;) = 0.

Choosing v = (A*v),; — Ajv; thus yields (A*v); = Ajv; for all j > 1. Hence, by Pythagoras’ theorem,
D Al =D (A% )il|* = | A%0[|* < oo,
i=1 i=1

showing that v € ® 4. Therefore, D4 = D 4«.
To see that A is unique, consider A’ selfadjoint which coincides with A; on H;, for all i > 1. Since
A’ is selfadjoint, it is closed, and so well defined at every u € ‘H for which the series

i Alu; = nh_)rgo i Alug (3.7.3)
i=1 i=1

is convergent. Indeed, given u € H, we have that ) ), u; € D4 forallm € Nand )" u; = u as
n — oo. If, moreover, A’ " u; =Y . A'u; — v as n — oo, then (u,v) € G4 and we deduce that
u € Dy and v = A'u. Since A'u; = A;u; and all terms in (3.7.3) are pairwise orthogonal, the series
is convergent if and only if 32°° || Asu;||* < oo. Therefore, D4 € D 4 and, for all u € D 4, A'u = Au.
That is, A C A’. But A is selfadjoint and hence maximal symmetric, so we must have A’ = A. The
proof is complete. O

The operator A constructed in Lemma 3.7.1 is unbounded unless all the operators A; possess
a common bound. We have thus found a way to construct unbounded selfadjoint operators from
bounded symmetric ones. A remarkable result is that, in fact, any selfadjoint operator can be
decomposed in this way.
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Lemma 3.7.2 Consider a selfadjoint operator A acting in H. There exists a sequence
H17H27"'>Hi7"'

of closed, pairwise orthogonal, subspaces of H, such that &;H; = H and the restriction Aly, is a
bounded symmetric operator mapping H; into itself, for all © = 1. Moreover, the restriction to H; of
any bounded operator T" such that T_A is a bounded operator mapping H; into itself, for all i > 1.

Proof. Consider the operators of Theorem 3.4.3:
B=(I+A%)" and C=AB=A+ A%
B is bounded symmetric and satisfies 0 < B < I. By the spectral theorem for bounded symmetric

operators, B has a unique spectral family (F))xeg with bounds 0 and 1, such that

1+

B :/ AdF).
0

We now show that F' is continuous at A = 0, i.e. for all u € H, Fyru = limy\o F\u = Fou = 0.
We start by recalling that, by Theorem 2.2.1, the strong limit Fy+ exists. But for all A > 0, there
is a sequence (p,)>%; C R which converges to 0 and such that 0 < p, < A for all n > 1. Since
F\F,, = F,, for all n > 1, the boundedness of F then implies, for all u € H,

F/\FQ+U = lim F)\Funu = lim F#nu = F0+U.
n—00 n—00

We now fix 0 < & < 1 for the rest of the proof. For any partition IT = (Ax)7, of [0,1 + €], we define

m

Siu= Y _ M(Fy, — Fyy)-

k=1

Note that, by Theorem 2.2.1, Sy — B as |II| — 0. Since

S(HFVO+ = Z )\k(F/\k - F/\k_1>F0+

k=1
=M (For — Fo) + ) M(For — For)
k=2
= )\1F0+7

letting |II| — 0 we get BFy+ = 0, hence Fo+ = 0 (as B is invertible).
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We then define the projections
P1:F1+5—F%, P=F—-F.1, 122,

i+1
and we let H; = rge P;. We observe that the closed subspaces H; are pairwise orthogonal and satisfy
®;H; = H since P,P; =0 for i # j and

f:Pi:Fl+a_FO+ =1

1=1

We need to show that the restriction of A to H; is a bounded symmetric operator mapping H,;
to itself, for all ¢ > 1. By Lemma 3.3.2, if P,_A, then P, AP, = AP, and so Aly, maps H; to itself.
Moreover, if AP; € B(H), we will have in particular that H; C © 4 and so, for all u,v € H,,

(Aly,u,v) = (Au,v) = (u, Av) = (u, A

Hiv> )

showing that Aly, is a bounded symmetric operator on H;.

Thus, we need only show P,_A and AP, € B(H). By Corollary 3.5.7, B_A and CB = BC. By
part (d) of Theorem 3.6.6, C also commutes with all F-measurable functions of B. Consider then
the bounded functions s; : [0, 1] — R defined for all i > 1 by

1. 11
oy iEAE [ D),
si(A) = { 0 otherwise.
By Theorem 3.6.6,
1+
0

and
1+

5/(B)B = Bs;(B) = /

0 i1

It follows that
showing that AP; € B(H). On the other hand, since B_A and C_s;(B),
P,A =s;B)BA C s;(B)AB = s,(B)C = Cs;(B) = AP,

that is, P;_A.

Finally, consider T" € B(#) such that T_A. Tt follows from part (d) of Corollary 3.5.7 that
TB = BT. By Theorem 3.6.6, T' commutes with any function of B, and so with each P, = Bs;(B).
Therefore, we indeed have P;TP; = T'P;. This concludes the proof of the lemma. O
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Theorem 3.7.3 (Spectral Theorem II) Let A be a selfadjoint operator. There exists a unique
spectral family (E\)aer such that
A= / AdE)y.

Furthermore, any bounded operator T' such that T_A commutes with each E}.
We call (E))aer, the spectral family of A.

Proof. By Lemma 3.7.2, there exist pairwise orthogonal closed subspaces
Hy, Hoy ooy Hy,y -

such that @®;H; = H, and for which the restriction A; of A to H; is a bounded symmetric operator
on H;, i =1,2,.... By the spectral theorem for bounded symmetric operators, there exists for each
i > 1 a unique spectral family (E) ;) er on H; such that

i
A; = / AdEy,.

m;

Then, for all A € R, each E,; is a bounded symmetric operator on H;. Therefore, extending E) ;
by zero on ‘H;, j # 1, it follows by Lemma 3.7.1 that there exists a unique selfadjoint operator F
which reduces to E); in each subspace H;. Moreover, for all A € R, the domain of £ is H. Indeed,
for all u € H, denoting by w; the projection of u onto H,;, it follows from Pythagoras’ theorem that

m m m 2
S Esal® < 3l = | Yo w
i=1 =1 i=1

Hence, letting m — oo, we get

oo
DByl < [l
i=1

showing that u € ©p, and ||E,|| < 1. E, is thus a bounded symmetric operator, for all A € R.
Next we prove that Ef = E), so that E) is a projection. For all i > 1 we have

2 2
E)\Ui = E)\ Ui = E)\ U = E)\ui.

Hence, the selfadjoint operators F% and FE) coincide on H; for all i > 1 and so E% = Ej.
We now show that, for A < p, E,\ < E,. For any uw =), u; € H, using pairwise orthogonality
of H; and H;,

(Bx = Buu,u) = {(Bx = B) Y w35 = D {(Bxi = By ) <0,
=1

=1 7=1
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We now prove that the family (E))aer is strongly left-continuous. By Lemma 3.6.2, for all p € R
the left pointwise limit £~ is a projection. We need only show that F,- and £, coincide on each
H;. But this is clear since, for all u; € H;,

E,—u; = lim Fh\u; = lim K, ,u; = E,;u; = E,u;
pu— Wi AWg A, Wi TR -
A A

To finish proving that (E))aer is a spectral family, it only remains to show that, for all u € H,
lim Fyu=0 and lim Fyu=u. (3.7.4)

A——00 A—00

Let us first recall that, for all ¢ > 1, the spectral family (E) ;)xer is bounded by the lower and upper
bounds m; and M, of A;. Now fix u € H and consider € > 0. There exists N, > 1 such that

oo
| >

i=Ne+1

<e€

and, since ||E,|| <1

|@WHZ&M HZ%M

Putting m. = min;<;<n. m;, we have ZZN;l E\yu; = 0 for all A < m,. It then follows from (3.7.5) that

ﬂ@

1=Ne+

(3.7.5)

|Eul| <€ forall A < m,

showing the first statement of (3.7.4).
On the other hand, for all € > 0, there exists N, > 1 such that H ZZNEH ulH < %e and so

1Exu — u| < ZEA,nui—ui‘—kH(EA—I) S

=1 i=Ne+1

n

M
&
B
£

oo
=1 i=Ne+1

< Z By iu; — u;

Hence, letting M, = maxj<;<n. M;, we have

N¢ N¢
> By =Y u; forall A > M,
=1 =1

+e. (3.7.6)




58 CHAPTER 3. SPECTRAL DECOMPOSITION OF SELFADJOINT OPERATORS

and it then follows from (3.7.6) that
|Exu —ul| < e forall A > M.

This proves the second statement in (3.7.4).
We now show that the spectral family (F))acr satisfies

A= /)\dEA.

Theorem 3.6.5 ensures that [ AdE) is a selfadjoint operator since f(A) = X is real-valued. By
Lemma 3.7.1 it thus suffices to show that f AdFE, and A coincide on each H;. To see this, consider
a sequence of step functions (¢;)32, of the form

nj
k=1
which converges to f(A) = X in L*(R, ptp,,,,2) as j — oo. Then

/ AdByu; = lim [ 4;(\) dByu; = lim ;%E(Ii)ui

j—o0
. H AT, — a1
= lim ;c;EZ(Jk)ul / AdE) ju;
i
= / )\dE/\J‘Ui = Azuz = AU,Z‘,
where we have used the fact that if, for instance, I = [a, b], then
E(I)ul = (Eb+ — Ea)ui = (Eb+,i — Ew)ui = Ez([)uz

Now, consider an operator 7' € B(H) such that T_A. By Lemma 3.7.2, for each i > 1, the
restriction T; of T' to H; satisfies T; € B(H;). For all ¢ > 1, since T; commutes with A;, it follows
by the spectral theorem for bounded symmetric operators that 7; commutes with E) ; for all A € R.
Therefore, for all A € R and all u € H,

TE)\U = Ti E)\J'Ui = i EE)\J'Ui = i E)\’Z'EUZ‘ = E)\Tu
=1 i=1 =1
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Finally, to prove uniqueness of (F))acr, consider two spectral families (E))er, (Fi)rer such that

A:/)\dE,\:/)\dF,\.

Letting X; := rge(E; — E;1), @ € Z, we have H = @;X;. Since A = F(f) (with f(\) = A),
Theorem 3. 6 5 (j) and the previous paragraph imply that F,, commutes with E) for all u, A € R. It
then follows from Lemma 3.3.2 that, for all A € R and all i € Z, E,\z = E,|x, and F,\Z = F\|x, are
projections mapping X; into itself. Furthermore, for all i € Z, (E,\Z) aer and (F )\i)aer are spectral
families acting in X; and such that

A’Xi :/)\dE)\J:/)\dF)\ﬂ

By uniqueness of the spectral family in Spectral Theorem I, it follows that EM = ﬁ’,\,i, forall A e R
and all © € Z. U

Definition 3.7.4 Similarly to the case of bounded symmetric operators, thanks to Theorem 3.7.3
we can now define a function of any selfadjoint operator A. Let (E))aecr be the spectral family of A.
For any E-measurable function f, we write

F(4) = B(f) = / F(V) dEy. ¢

Problems

1. Consider an operator T : ®1r C ‘H — H, and suppose that T" is bounded on ®, in the sense
that there is a constant C' > 0 such that ||Tu|| < C'||lu||, u € D7. Show that T can be extended
to a bounded linear operator on H.

2. Let S:®g CH — H be aone-to-one operator. Consider the following additional properties:

(i) S is closed.
(ii) rgeS is dense.
(iii) rge S is closed.
(iv) There is a constant C' such that ||Sul| = C ||u|| for all u € Dg.

(a) Prove that (i)-(iii) imply (iv). Hint: Apply the Closed Graph Theorem to S~
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(b) Prove that (ii)—(iv) imply (i).
(¢) Prove that (i) and (iv) imply (iii).
Prove that, if 77!, T* and (T1)* exist, then (7*)~! also exists, and (T1)* = (T*)~!
(a) Show that a densely defined operator T' is closable if and only if 7™ is densely defined, in
which case T' = T™*.
(b) Prove that, if a densely defined operator T is closable, then (T)* =T*
We define an operator T on L?(R) by (Tu)(z) = ¢(z)u(x), where ¢ : R — C is a bounded

function. Show that 7" is bounded and compute its norm. Find 7. Under what condition is

T =T*7 If S is defined by (Su)(x) = ¢(x)u(z) with ¢ : R — C bounded, find 7'S and (7'S)*.

For T defined as in the previous problem, suppose now lim, ., |¢(x)| = co. What is the domain
of definition of 7?7 Show that 7" is unbounded and find T™.

Let H = L?(0,1) and consider the differential operator Dy : ®p, C H — H defined by

D, = i%, Dp, = {u e AC[0,1]; v’ € L*(0,1) and u(0) = u(1) = 0}.

Recall: AC|0,1] is the space of absolutely continuous functions in [0, 1]; see [[KI'80, Sec. 33].
The Lebesgue version of the fundamental theorem of calculus states the followmg
«If f € AC[0,1] then it 1s dlfferentlable a.e. in [0,1], f/ € L'(0,1) and f(z )+ [y f
*If g € L'(0,1) and f(z) = [; g(y)dy, then f € AC[0,1] and f' = g a.e.
(a) Show that D is unbounded and symmetric.
(b) Prove that the adjoint D;* of D; is given by

d
D* = i Dpr =D = {ue AC[0,1]; v € L*(0,1)}.

Hint: To prove that ®p,+ C D, consider v € Dp,» and make clever use of the relation
(Dyu,v) = (u, D}v), for a well chosen u € ®p, (constructed using v and Djv).

(c) Prove that D™ = Dy.
(d) Now consider H = L*(R) and the operator Dy : Dp, C H — H defined by D, :=i-L and

Dp, :={u € L*(R); v € L*(R) and u € AC[a,b] for any —oco < a < b < o0} .

Prove that Ds is selfadjoint.
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8. Let again H = L*(0,1) and consider now D3 : ®p, C H — H defined by

(a) Show that D3 is unbounded.
(b) Prove that the adjoint D3* of Dj exists and is given by

d
D3* = i Dp,- = {u e AC[0,1]; v’ € L*(0,1)}.

(c) Observe the inclusion relations between ® p,, ® p,« and Dp,, Dp,*.

(d) Prove that the closure D3 of Ds is given by

Dy = idix, Dp; = {u € AC[0,1]; v’ € L?[0,1] and u(0) = u(1) =0} .

9. Consider the multiplication operator in H = L?*(R) defined by
(Xu)(z) == zu(z), Dx:={ue L’R); zu(z) € L*(R)}.
Show that X is an unbounded selfadjoint operator. Find its spectrum and its spectral family.

10. Prove Theorem 3.6.5.

11. Show that, given a spectral family (E))\er with finite lower and upper bounds m < M, the
integral of any continuous function f : [m, M] — C in the sense of Definition 3.6.4 coincides
with that of Definition 2.1.3.

12.  Prove part (d) of Theorem 3.6.6.






Chapter 4

Applications to quantum mechanics

In this chapter we will define and study elementary properties of the basic observables of the quantum
mechanical particle on the real line: energy, position, momentum. In quantum mechanics, physical
observables are represented by selfadjoint operators acting in a Hilbert space H, the elements of which
represent the possible states of the system. The fundamental postulates of quantum mechanics will
be formulated in Section 4.2.

As usual in physics, but perhaps even more in quantum mechanics, an important role is played
by the symmetries of the system. Indeed, by Noether’s theorem, each symmetry group gives rise
to a conserved physical quantity. Some of the most important symmetries of quantum mechanical
systems can be expressed by the action on the Hilbert space H of one-parameter unitary groups.

4.1 Representation of one-parameter unitary groups
An operator U : H — H is called unitary if it is surjective and, for all u,v € H,

(Uu,Uv) = (u,v).
It then follows easily that ||U|| = 1, and that U is invertible with U~! = U* (Problem 4.1).

Definition 4.1.1 We call one-parameter unitary group a mapping U : R — B(H) such that
U(t) = Uy is unitary for all ¢ € R, with

Uy=1 and UlUs=Us, forallt,seR.

A one-parameter unitary group is said to be strongly continuous if, for all v € H, the mapping
t — Uu is continuous on R. ¢

63
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It follows directly from the definition that a one-parameter unitary group (Uy)cr satisfies
U_t — (Ut)* - (Ut)_l.

We also observe that if (U;)scr is weakly continuous, in the sense that, for all u,v € H, t — (Uyu, v)
is continuous on R, then (Uy)ier is in fact strongly continuous (Problem 4.2). We now define the
central object of the theory of one-parameter unitary groups.

Definition 4.1.2 Let (U;)cr be a strongly continuous one-parameter unitary group. The infinites-
imal generator of (U;)cg is the operator G defined on the domain

1 :
Do = {u cH; 15% ¥<Ut —DNu ex1sts}

1

The following result is a first step towards the characterization of strongly continuous (one-
parameter) unitary groups.

Theorem 4.1.3 Let A be a selfadjoint operator acting in H and (E))xer be its spectral family. Then
U, = e = /e“A dE,, teR, (4.1.1)

defines a strongly continuous unitary group with infinitesimal generator iA. Furthermore, if u € © 4
then Uyju € ® 4 for allt € R.

Proof. Since the function f(\) = ¢ is bounded on R for all ¢ € R, it follows by Theorem 3.6.5 that,
for all t € R, U; € B(H) and

Uy = / e dE, = / e MNAE, = U_,.
Hence, by Theorem 3.6.5,
UU, =U_ U, = / e MM AE) = / 1dEy = 1.
Thus, every Uy is unitary. Moreover, using again Theorem 3.6.5,

UU, = / N E, = / N AE, = U, forallt,seR.
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Therefore, (U;)ier is a one-parameter unitary group. We now show that it is strongly continuous.
Since for all =,y € R we have

Y

‘em - ely| = 2‘ sin

it follows by Theorem 3.6.5 that, for any given v € H and all s,t € R,

2

i zs i i . (t — 8))\
U = Usul|* = H/ e dEAU /‘GM dﬂllmll2 _4/ Sl SR
But since ) )
t—s)A t—s)A
sin (t=s) <1 and lim [sin s) =0,
2 s—t 2

it follows by dominated convergence (Theorem B.2.5) that
lim || Uyu — Usul| = 0,
s—t

showing that (U;)cr is indeed strongly continuous.

Let us now show that the infinitesimal generator G of (U;);er is equal to iA. We first observe
that, for all u € ®4 and all ¢ # 0,

1 (12
I[Fwe=n-ifu] = [ e R
But since
lim — (e — 1) =4,
t—0 ¢
it follows that ) )
lim ‘—(e”A 1) - i)\’ —0. (4.1.2)
t—0 1|t

On the other hand, by the mean-value theorem, |}(e"* — 1)| < |A[, and so
1. 2
\Z(eztA 1) - m\ < (A2 = 402, (4.1.3)

Moreover, the function 4\? is 1) Ewuz—integrable for any u € © 4 since, by Theorem 3.6.5 (c),
2
It therefore follows from (4.1.2), (4.1.3) and the dominated convergence theorem that, for all u € D 4,

1
hmH[;(Ut s —zA

t—0

— hm/ ‘ t “»\ - 2)\ d/,LHE u” O

t—0
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and so ]
Gu = lim — (Ut DNu=1iAu for all u € D4,

t—0 t
showing that G D 7A. To see that G = i A, it remains to show that D5 C © 4. To this end, consider
u € D¢, i.e. u € H such that the limit

1
lim — (Ut INu  exists.
t—0 ¢

In this case we have

2 . 1 2_ . 1 Gt it
Gl = i |2 = | = | [ e~ vy ama = im [ 2 0] e
Now, since
lim‘ (e 1)‘ =\
t—0 | ¢

it follows by Fatou’s lemma (Theorem B.2.4) that

By Theorem 3.6.5 (c), this shows that u € © 4.

We finally show that, if u € D4 then Uyu € D4 for all t € R. First, by Theorem 3.6.5 (h),
E\U, = U,E) for all t € R and all A € R. Hence, since every U, is unitary, we have for all A € R and
all £ € R that

| E\Uw||* = (ExUgu, ExUpu) = (U;Exu, UyEsu) = || Exul|® .

It follows that
2 o 2
/A Ay gy w2 = /A dpy gy < 00,

and so Uyu € ® 4, which concludes the proof of the theorem. Il

The next theorem, due to Marshall H. Stone, shows that, in fact, any strongly continuous one-
parameter unitary group is of the form (4.1.1), for a uniquely defined selfadjoint A.

Theorem 4.1.4 (Stone’s Theorem) Let (U;)wcr be a strongly continuous one-parameter unitary
group. There exists a unique selfadjoint operator A such that

U, = e for allt € R.
Furthermore, U;_A for all t € R.

Proof. See Problem 4.3. O
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4.2 A glimpse of quantum mechanics

A self-contained exposition of the theory of quantum mechanics would largely exceed the scope of
these notes. We refer the interested reader to the classic works [Dir58, Mes99, VN55]. Let us just
mention that quantum mechanics typically describes microscopic systems, in the order of atomic
length scales and below. At this level, the description of physical systems cannot rely any more on
the macroscopic concepts we experience in our everyday lives. In fact, atoms and subatomic particles
turn out to have very peculiar properties when we try to express them in terms of our macroscopic
perception of the world. For instance, a most striking feature is that it is not possible in general to
assign a precise position in space to a quantum mechanical particle, nor a precise speed (or rather
momentum = mass - speed). The Heisenberg uncertainty principle, which is one of the cornerstones of
quantum mechanics, indeed states that the respective standard deviations Aq and Ap of the position
q and the momentum p of a particle satisfy

AgAp > h/2 (4.2.1)

where i = h/27 is the reduced Planck constant, with the Planck constant h ~ 6.626-1073* J-s. And
this is not a matter of ‘not being able to’ measure things more precisely, but rather a fundamental
obstruction of Nature. In fact, as we shall see below, this restriction is due to the status of physical
observables in quantum theory. The constant h is named after Max Planck, who was the first
to propose a physical model in which electromagnetic radiation could only be emitted as integer
multiples — called quanta — of the fundamental unit A (1900). In fact, Planck introduced this
assumption as a trick to resolve an apparent paradox in the description of the black-body radiation,
and did not himself believe in this ‘quantized’ emission process in real physical terms. The corpuscular
nature of light was later fully assumed by Einstein in his work on the photoelectric effect (1905) which
owed him the Nobel prize in physics in 1921.

We shall soon see that the conceptual framework of quantum mechanics is in sharp contrast
with that of classical mechanics. In classical mechanics, the observables of a point-like particle are
(smooth) functions f(q,p), where (q,p) € R® x R?® are the position and the momentum of the
particle. For example, the Hamiltonian (energy)

p-p
H(q,p) =~ =+ V(q)
describes a particle in a potential field V : R? — R. It emerged from various attempts to obtain a
satisfactory theory of atoms at the beginning of the last century (most notably from the works of
Max Planck, Albert Einstein, Niels Bohr, Werner Heisenberg, Erwin Schrodinger, Max Born, Pascual
Jordan, Wolfgang Pauli and Paul Dirac) that this classical description of the world dramatically fails

Tronically, Einstein later became one of the fiercest opponents of quantum physics.
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to account for microscopic phenomena, such as the very stability of atoms?, and their emitting of
light only at certain universal discrete frequencies (Balmer series). To cut a long story short, on the
one hand Heisenberg realized that atomic observables were best represented by (infinite) matrices, a
theory now referred to as matriz mechanics (1925). A stunning consequence of this new paradigm
is that the product of quantum observables is non-commutative. We shall see that this results in
particular in the famous uncertainty principle mentioned above. On the other hand, Schrédinger
derived a theory describing the evolution of a quantum particle through a ‘wave function’,® therefore
known as wave mechanics (1926). It should be noted that Schrédinger’s theory is a dynamical one,
where the central equation — known as the Schrodinger equation — governs the time evolution of the
wave function. On the other hand, Heisenberg’s matrix mechanics only describes the stationary states
of the system. Apart from this difference, the complete equivalence of the two theories was proved
mathematically by Dirac shortly thereafter* and is presented in his famous book The Principles of
Quantum Mechanics (1930) [Dir58].

Thus, following three decades of intense creative work from a bunch of brilliant theoretical physi-
cists, a new coherent theory was finally born. And it very soon turned out that a natural math-
ematical framework to describe the theory was that of (unbounded) operators acting in a Hilbert
space. A complete set of axioms for the new physics was formulated by von Neumann in Mathemat-
ical Foundations of Quantum Mechanics (1932) [VN55], while parts of the mathematical theory was
developed independently by Marshall H. Stone in his great book Linear Transformations in Hilbert
Space (1932) [Sto32]. We shall now state the basic postulates of quantum mechanics in this Hilbert
space formalism.

The basic postulates of quantum mechanics

The following postulates pertain to quantum systems, that is, systems which are best described by
the laws of quantum mechanics, which rely crucially on the notion of measurement device. Indeed,
since we don’t have any macroscopic intuition of quantum systems, the only thing the theory de-
scribes/predicts is the results of measurements performed on the system under given experimental
conditions. The so-called ‘Copenhagen interpretation’ of quantum mechanics — largely personified
by Bohr — pushed this new paradigm so far as to claim that it is irrelevant to attempt any in-
terpretation of the theory in terms of elements of physical reality (a notion that was the object of

2According to Newtonian mechanics and Maxwell’s theory of electromagnetics, the electron radiating electromag-
netic energy while orbiting about the nucleus would very quickly collapse to it.

3The idea of representing a particle as an oscillatory phenomenon was motivated by earlier considerations from
Einstein and de Broglie, pointing that both light and matter can behave either like waves or like particles depending
on the experimental setting, the now famous ‘wave/particle duality’.

4This is at least the official version, see the Handout for an interesting discussion on the history and equivalence
of the two theories.
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intense debates, notably between Einstein and Bohr), outside the scope of measurement devices.
For instance, there exists no such thing as the position of an electron, so long as the electron is not
detected experimentally by an external observer (another notion prone to vast philosophical debate) !

Postulate I At any given time, a (pure)® state of the system is represented by a vector ¢ # 0 of
a complex separable Hilbert space H. Furthermore, for all ¢ € C\{0}, the vector ¢ty represents the
same state as 1. Thus, the states of the system are in one-to-one correspondence with the rays

{c;ce CYCH, »eH\{0}
or, equivalently, with the orthogonal projections P onto these one-dimensional subspaces.
Postulate IT An observable of the system is a selfadjoint operator A acting in H.
Postulate IIT The result of a measurement of A can only be a real number \ € o(A).

Postulate IV If the system is in state v, then the probability of finding a value in the (Borel)
set A C R when measuring A is given by

a2 (D)

Prob,{meas. of A € A} = e

, (4.2.2)

where (FE))acr is the spectral family of A.

Postulate V The time evolution of the system is unitary. Denoting by v; € H the state of the
system at time ¢ € R, this means that ||¢;|| = ||14,]| for any ¢ € R and any initial time ¢, € R.

Postulate VI If the system is in state ¢, then immediately after a measurement of A yielding an
eigenvalue \ € 0,(A) the system is in state Pyi, where P, is the projector onto the eigenspace
corresponding to .

Remark 4.2.1 By Postulate IV, the mean value of A, calculated over a large number of systems
all prepared in state 1, is given by

(A, ) Jp Ay g2
Ay, = L8 Ul 423
e =i ol 423)

5There is also a notion of mixed state, which will not be addressed in these notes.
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Remark 4.2.2 If the vector ¢ is normalized so that ||¢)|] = 1, formulas (4.2.2) and (4.2.3) take
the simple forms
Proby{meas. of A € A} = pp 4 2(A) (4.2.4)

and

<mw—/xwwww (4.2.5)

Note that, in this case, Wy Eyyp)2 18 @ probability measure on R, as

1= ||?/)||2 = / dM||E,\1p||2'

Then, in particular, for any A € R,

Proby{meas. of A=A} = 1 ,2({A\})
= ((Ex+ — E\)Y, )

o if A ¢ 0,(A),
(P w) i X € 0y(A),

where P, is the projector onto the eigenspace corresponding to A. In the special case when A € 0,(A)
and the corresponding eigenspace is one-dimensional and spanned by a normalized ¢,, one recovers
the classical textbook formula

Prob,{meas. of A = \} = <<¢a ¢>\>¢,\,¢>
= (1, o) (Dr, ¥)
= [(¢a, ).

Finally, Postulate V ensures that, if [|¢o|| = 1 then |[¢¢|[ = 1 and pp,,, 2 remains a probability
measure for all times ¢ € R.

Time evolution: Stone’s theorem and the existence of dynamics

We say that a quantum system with state space H is invariant under time translations if its
evolution in time is governed by a strongly continuous one-parameter unitary group (U;)ier on H.
That is, if the system at time ¢t = 0 is in the initial state g, then its state at time ¢ is

% = Ut¢0-
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Hence, the evolution is unitary and Postulate V is indeed satisfied.%
To see that the system is indeed insensitive to time translations, observe that the evolution from
state 1y, to state 1y, is given by

@thl = Utlwo = Ut1 UtglUtowo = Ut1 U—towto - Ut1—t0¢t07

and so depends only on the elapsed time t; — ¢y, and not on the initial time ¢,. Thus, if one translates
the origin of time, this translation disappears in the difference, so the evolution is identical in the
new time frame.

Now, Stone’s theorem ensures that there exists an infinitesimal generator G of the group (U;)ier,
such that ¢G is selfadjoint. We recall that the domain of G is given by

Do = {¢ € H; hm (Ut Iy exists},

and that
Gy = hm ( — 1)y for all Y € Dg.

We define the selfadjoint Hamiltonian H by
H =ihG.

This operator represents the energy of the system.
By Theorem 4.1.3, if ¢ € D¢ = Dy then Uy € Dy for all t € R. Therefore, given any initial
state 1y € Dy, we have for all t € R

1 _
Out = lim (4. — ) = lim (U — I}y = Gy = —+

That is,
Zhaﬂbt H1py.

This is the Schrodinger equation corresponding to the Hamiltonian H. Thus, by Stone’s theorem,
to determine the dynamics of the system, it is equivalent to know the unitary group (U;);er or the
Hamiltonian H.

We now verify that, if the system is invariant under time translations then the energy is
a constant of the motion, i.e. that the mean value of H does not change under the time evolution

6The more difficult case when the system is not invariant under time translations is described by two-parameter
unitary groups and will not be discussed here.
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of the system.” Indeed, by Stone’s theorem, U, Hv) = HU;1) for all ¢p € Dpg. Hence, if 1y € Dy is
normalized, we have for all t € R

(H)y, = (U, Hir) = (Uho, HUio) = (Ustho, UtHtbo) = (tho, Hibo) = (H),, -

In view of Remark 4.2.2, the only exact values of the energy of a system that can be measured
in a laboratory are the eigenvalues of the Hamiltonian H. The corresponding eigenvectors are
called bound states. This is the surprising discovery physicists from the early 20th century made
by studying spectral rays of light emission by atoms, and observing only discrete sets of frequencies
(characteristic of each atom). It is thus of utmost importance in the framework of quantum mechanics
to understand the spectral structure of Hamiltonians describing atomic systems. A thorough analysis
of this issue can be found in [RS]. (In Volume I a proof of Stone’s theorem can be found, as well as
interesting historical remarks about the mathematical formalization of quantum mechanics.) Basic
examples of Hamiltonians will be given at the end of the next section.

4.3 The quantum particle on R

The quantum particle on the real line R is the system characterized by the following properties.

(A) To any (Borel) set A C R one can associate a measurement device, i.e. an observable P called
particle detector, taking the value 0 or 1 depending on whether the particle is in A or not,
respectively.

(B) The set of all operators Pa, for A C R, forms a family of pairwise commuting selfadjoint
operators.

(C) To every a € R one can associate a translation of the detectors
TaPAn = Pan_,, where A—a={r€eR;x+acA}.

Equivalently (see below), the translation can be interpreted as acting on the system rather
than on the detectors:

Ush = %o, v €H.

(D) The only observables commuting with all the Pa are functions of them.

A natural choice of separable Hilbert space satisfying these properties is L?*(R). Then the state
of the system at any time is given by a so-called wave function 0 # ¢ € L*(R), and the detector
P is defined as

(Pav)(z) = xa(@)(z), v eMH, ae z€eR.

"This conservation principle is an instance, in the quantum setting, of Noether’s theorem.
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Interpretation of the wave function v, observable position

For any A C R, the probability of finding the particle in a normalized state 1 in A is the mean value
of the observable Pn. By Remark 4.2.1, it is given by

(Pa)y = (Path,¥) = /A v () dz.

Therefore, the function [¢(z)|* is interpreted as the density of probability of observing the particle
in state 1.
The observable position is then naturally represented by the multiplication operator

(X)) (z) = z¢(z)
on the domain
Dx = {¢ € L*(R); 2¢(x) € L*(R)}.

Indeed, in view of the above probabilistic interpretation of |1(z)|?, the mean value of the position of
the particle in state 1) is then the expectation value of the probability measure |¢(z)[* dx,

/R £l () da = (X, ).

Physically, it represents the ‘averaged position’ of the particle, when the measurement of position is
performed on a large number of copies of the system in the same state . The selfadjoint operator
X is therefore called position operator.

Observable momentum

In a similar way to how we associated the Hamiltonian operator to the group of time translations,
we shall now apply Stone’s theorem to obtain the momentum operator as the infinitesimal generator
of space translations on the line.

To each translation a € R, we associate a transformation acting on the states of the system as
mentioned in assumption (C) above. This transformation is explicitly given by

(Uath)(z) = Yu(z) =¢(x —a), z€R. (4.3.1)

It is not difficult to check (see Problem 4.5) that (U,).cr defines a strongly continuous one-parameter
unitary group on L*(R). By Stone’s theorem, there exists a selfadjoint operator A such that

U, =¢“4  forall a € R.
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Moreover,

Hence, for ¢ € 2 4,

and @ 4 is precisely the subspace of all ¥ such that v’(x) exists and belongs to L*(R).

For reasons of physical dimensions, the momentum operator P is thus defined by
Dp=Da={uec L*(R); ue€ ACla,b] for any —0co < a < b < oo and v’ € L*(R)}

and -
2=y

1 dx

(PY)(x) = (x), xeR.

Hence,
U, =e 5" forall a € R.

Commutation relation and uncertainty principle

For the particle in a normalized state v, given an observable represented by a selfadjoint operator
A, we define the variance of A by

vary(4) = (A= (0, 1) = [ [A= (), [0(a)ile) da

(where (-),, is the mean value defined in Remark 4.2.1) and its standard deviation by

Aw(A) = uvarw(A).

The following theorem is of fundamental importance in the algebraic structure of quantum me-
chanics. It will be proved in Problem 4.8.
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Theorem 4.3.1 Let A and B be selfadjoint operators acting in the Hilbert space L*(R). Then the
commutator C = AB — BA satisfies

[(C)y | < 284(A)Ay(B),
for all ¢ € D¢.

We will see in Problem 4.7 that the position and momentum operators satisfy the Heisenberg
commutation relation
XP —PX =1hl, (4.3.2)

where [ is the identity operator on the domain ®(XP — PX) = D(XP) N D(PX). We then have
the following immediate corollary of Theorem 4.3.1.

Corollary 4.3.2 (Heisenberg’s Uncertainty Principle) The position and momentum operators
of the quantum particle on the real line satisfy

Ay(X)Ay(P) >

DO | St

Particle in a potential

The quantum Hamiltonian for the particle in a potential field V : R — R iQS constructed by replacing
the classical momentum p by %% in the total mechanical energy £ = 2~ + V/(z), where m is the
mass of the particle. This yields
h? d2
(HY)(2) = =5 —=5¥() + V(@)d(z), ¥ €Dy (4.3.3)

The Schrodinger equation then becomes

Bdbn(x) = —— Ly (2) + V(@)n(e).

2m Ox?

To solve it, one can seek a solution in the form of a standing wave ;(z) = e~ #

the stationary Schrodinger equation for ¢:
n? d?

Ep = —%@Sﬁ(@ + V(z)p(z),

o(z), which yields

where £ € R is therefore an eigenvalue of the Hamiltonian H, and ¢ a corresponding eigenvector.®

8Note that the same Ansatz yields the stationary Schrédinger equation Ep = H¢ for any time-independent
Hamiltonian H.
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The spectral theory of Schrédinger operators of the form (4.3.3) is very well known. In the
typical case of a continuous attractive potential V' < 0, with limjg_ V' (2) = 0, the spectrum of H
consists of a finite number of negative isolated eigenvalues of multiplicity one, and the continuous
spectrum o.(H) = [0,00). But many other scenarios can occur, as discussed e.g. in [RS]. For
instance, in three dimensions, the Hamiltonian of the electron in the hydrogen atom is

h? e?

HY = ——Ay + V(|x])y, where V(|x]) =

€ R3.
2m x

4reg|x|’

Here e is the electric charge of the electron, € is the vacuum electric permittivity, and |x| is the dis-

tance of the electron to the (fixed) nucleus. In this case there are infinitely many negative eigenvalues
(c —=1/n% n=1,2,...) corresponding to the bound states of the electron.

In the present one-dimensional case, even though it does not belong to L*(R), it is instructive

to study a solution in the form of a plane wave p(z) = e?** for k¥ € R. Then our standing wave

becomes
Yy(z) = **=9 " where w = E/h.

Some simple properties of plane wave solutions will be studied in Problem 4.9, in the case where V'
is a ‘potential barrier’, notably displaying the famous tunnel effect.

Problems

1. We say that U : H — H is unitary if (Uu, Uv) = (u,v) for all u,v € H. Show that a unitary
operator U : H — H satisfies: (a) ||U]| = 1; (b) U is invertible with U~! = U* unitary. Then
show that, in fact, U € B(#) is unitary if and only if UU* = U*U = I.

2. Show that a weakly continuous one-parameter unitary group is strongly continuous.

3. Prove Theorem 4.1.4.

Strategy: Let A := —iG where G is the infinitesimal generator of (U;)cr, and consider the set
® of all finite linear combinations of elements of the form

ud):/]}g(b(t)Utudt,

for u € H and ¢ € C§°(R) (see Appendix C for the meaning of this integral). The theorem is
then proved in three steps.

(i) Using the results of Section C.2, show that D is dense in H, and contained in D 4.
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(ii) Show that A is symmetric and, in fact, essentially selfadjoint (use Theorem 3.5.6 for this).
(iii) By differentiating ||(U; — e“4)u||* with respect to ¢, show that U; = 4. Conclude.

Using (?77?) and the spectral family of the position operator X obtained in Problem 3.9, recover
the statement that the probability of finding the particle in a normalized state 1) in the interval
A = [a,b] is given by [ |v(x)[* dx.

Show that the group of translations acting on L*(R) as defined in (4.3.1) is a strongly continuous
one-parameter unitary group.

Prove that the domain ®p of the momentum operator P given by Stone’s theorem coincides
with the domain ®p, in Problem 3.7 (d), i.e. that P = —hDs.

Prove (4.3.2).

Prove Theorem 4.3.1.

Hint: First show that C = ST —T'S where S = A — (A),, and T'= B — (B),.
Consider the stationary Schrodinger equation with a potential barrier defined in three regions
of R by: (A) V(z)=0forxz <0, (B) V(z)=Vo>0for 0 <z <a, (C)V(z)=0 for z > a.
Seek solutions in the three regions with the same given energy £ > 0, E # Vj, in the following
forms:

pa(x) = AT 4 AjethaT,
¢p(r) = Be*57 4 Bje~*n™,
po(r) = Cpe’e® 4 Cre=er,

with k4, kg, ko to be determined as functions of £. The indices ‘r’ and ‘I’ stand for the direction
of the velocity vector of each wave component, respectively ‘right” and ‘left’.

Now the global solution is obtained by ‘gluing’ together the solutions ¢4, ¢p,¢c. Find the
relations between the coefficients so that the global solution is continuous everywhere, as well
as its derivative.

Tunnel effect: We define the transmission coefficient ¢ and the reflection coefficient
r as follows. Consider the solution for which A, = 1 (particle coming from the left), 4, = r
(reflection), C; = 0 (no particle coming from the right), and C, = t (transmission). The
number |¢|* is the probability for the particle to be transmitted through the barrier and |s|?
the probability of it being reflected by the barrier. Find the explicit expressions of ¢t and r, in
terms of ka, kg, kc and a. Verify that [t|? 4 |r|* = 1 (conservation of the particle).
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Now discuss the two cases £ < Vi and E > V. Decide if the particle is always transmitted
or always reflected in each case. How do the results contrast with the situation of a classical
particle with the same energy?



Appendix A

The Riemann-Stieltjes integral

In this appendix we will extend the Riemann integral to measures generated by functions of ‘bounded
variation’.

A.1 Functions of bounded variation

Let [a,b] C R be a non-empty compact interval. A partition II of [a,b] is a finite sequence of
numbers ()}, such that
a=XN <A <---< A\, =0

The size of II is the positive number

e

We denote Bla, b] the set of all partitions of [a, b].
A function ¢ : [a,b] — R is said to have bounded variation if there exists a constant C' > 0
such that

S 160w) — (1| < C.

for any partition IT = (\,)}_, € Bla, b]. If ¢ has bounded variation in [a, b] we define for all z,y € [a, b]
such that z < y the total variation of ¢ in [z,y] as the positive number

n

VI(¢) = sup Y [6(M) — d(mr)].

Hem[%y} k=1
The functions of bounded variation in [a, b] form a vector space, denoted BV |a,b|.

The following theorems are proved in [[KXF80], pp. 329 and 330.
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Theorem A.1.1 Let ¢ € BV[a,b]. Ifa < c<d<b then
V(9) = Vi(o) + V(9).

Theorem A.1.2 Let ¢ € BV|a,b]. If ¢ is left-continuous at a point xo € [a,b], then the function
x— VZ(9) is also left-continuous at x.

A.2 Definition of the integral

Let us now consider a continuous function f : [a,b] — R and a function of bounded variation
¢ € BV]a,b]. For any partition II = (\x)}_, and any real numbers

Ui € [>\k7/\k—1]7 k:]-?"'7n7

we let

St = Z F k) (6(Ak) — d(Me-1)).

Theorem A.2.1 Let f : [a,b] — R continuous and ¢ € BV]a,b]. There exists a unique number
I € R satisfying: for all ¢ > 0 there exists § > 0 such that if 11 is a partition of [a,b] satisfying
III| <6, then

|SH — ]| < €.

Furthermore, the number I is independent of the choice of points juy.

Proof. Let € > 0. Since f continuous in a compact set, it is uniformly continuous. So there exists .
such that for all z,y € [a,b] |z —y| < 6. =

where V’(¢) is the total variation of ¢ in [a, b].
Let us now show that for any two partitions II, II" € Bla, b] we have

00|, I < 6. = |Su — Sw| <e, (A.2.1)

independently of the choice of points ;. used to compute the partial sums Sy et Spr. We denote by
(Ak)}_, the partition IT and we consider the partition II = IT U ITI", which we index as follows:

M= <A< <Ay =N < A1 << A=A <e--e< A, = Ay
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Fixing arbitrarily u; € [\, \ic1], k=1,...,n, and fi; € [\;, A\j_1], j = 1,..., k,, we have
n ki
St = F(g) [o(N) = ¢(Aj-1)]
=1 j:ki—l“rl
Furthermore, since for all i =1,...,n
k;
> o) = s(N1) = (k) — d(Ak_) = (N) — (A1),
j=ki—1+1
we can write St as
n k;
Sn = Z Z Flua) [o(N) = 6(Aj-1)] -
=1 j=k;_1+1
Since |II] < J., we now have that, foralli=1,... nand all j =k,_1+1,... k;
_ _ €
|:uj - /JJ1| <A — Ao <0 = |f(:uj> - f(:uz)‘ < Q‘Gb(gb)

Therefore,

=1 j=k;_1+1

€

o
- - €
< 2V5(0) ; |p(A;) — d(Aj-1)| < 3

Similarly, we also have | Sy — Si| < €/2. Thus, as expected,
St — S| < |[Su — Sgl + |55 — S| < e

Let us now consider a sequence of partitions (I1,,)$°, satisfying lim,, . |II,| = 0. There exists

M > 1 such that |II,| < 6. for all n > M. It then follows from (A.2.1) that | Sy, — S, | < €, for all
n,m > M. Hence (Sp,)22, is a Cauchy sequence in R. So there exists I € R and N > 1 such that

n=

Sty — I| < /2. Finally, by (A.2.1), any partition IT smaller than J,/, satisfies
Sty v, by y /
|SH—I| < |SH_SHN|+|SHN —I| <€.
This concludes the proof of the theorem. O

The limit I in Theorem A.2.1 is called the Riemann-Stieltjes integral of f with respect to ¢.
We denote it as

b b
/ f(z)de(z) ore merely as / fdo.
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A.3 Some properties of the Riemann-Stieltjes integral

The following elementary properties are direct consequences of the definition and of Theorem A.2.1.

Properties A.3.1 Consider two continuous functions f,g : [a,b] — R, two functions of bounded

variation ¢,v € BV]a,b], ¢ € (a,b) and a € R. Then there holds:
(a) [, fdo=[7fdo+ []fdd:
(b) [Pafde=a [ fde;

() JJ(f +9)do =[] fdo+ [, gdo;
(d) [ fde+ [0 fdv= [ fd(d+1). ¢

We next state the integral form of the mean-value theorem for Riemann-Stieltjes integrals.

Theorem A.3.2 Consider ¢ € BV[a,b] and f : [a,b] — R continuous. Then

qus\ sup 1/(2)|V2(6).

z€[a,b]
Proof. Let I = (A\g)}7_, be a partition of [a,b]. Then

< sup |f(x !ZI(b (M) = d(Me1)| < sup | f(2)| V().

xz€|a,b] z€[a,b]

Z FOW [6(A) = d(Ae-1)]

The result follows by considering a sequence of partitions, the size of which converges to zero. U
Here is now the analogue of the uniform convergence theorem for Riemann integrals.

Theorem A.3.3 Let ¢ € BV]a,b] and consider a sequence (f,)5, of real continuous functions
defined on |a,b], converging uniformly to a function f. Then there holds

lim fnd¢ / 7 do.

Proof. Let us first observe that, since f is continuous, its Riemann-Stieltjes integral w.r.t. ¢ exists.
Now consider ¢ > 0 arbitrary. Since (f,,)22; converges uniformly to f, there exists N > 1 such that,
foralln > N,
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Then take a seqeunce of partitions (IL,,)°_; of [a,b] such that lim,, , |II,,| = 0. Denoting by
()\Z‘)Z";l partition II,, we have, for all n > N and all m > 1,

I

lm
>RGO - 608 )] = D FO [00R) — 6]
k=1

k=1
Im
< 1O = FOMI o) — dA))|
k=1
< s |folz) = F(2)|V(0) < e

For any fixed n > N, we let m — oo and we get, thanks to Theorem A.2.1,
b b
[ o= [ raof <

The following theorem is used in Chapter 2.

Theorem A.3.4 Let ¢ € BV|[a,b] and suppose that ¢ is left-continuous in [a,b]. If, for any contin-
uous function f : |a,b] — R, there holds
b
| ras=o

Proof. Fix xy € (a,b) and choose N € N so that xg — 1/N > a. For any n > N, we define a
continuous function f, : [a,b] — R by

then ¢(x) = ¢(a) for all x € [a,b].

1 if z€la,z— 1],
fa(z) =9 —naz+nt if z€zg— L,z
0 if = € [xo,b].

Then, for all n > N,

Oz/abfndgb:/:o_ildgzﬂr/;o (—nx+nm0)d¢(x)+/b0d¢

1
0~ 5 o

= ¢(zg — %) — ¢(a) + /ID (—nx 4+ nxo) do(x). (A.3.1)

1
l?()—g
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However by Theorem A.3.2 we have, for all n > N,

0 < /xo (—nx + nxo) do(x)| < V;;O_l(gb).

1
To— 7

Furthermore, by Theorem A.1.1 we can express the total variation of ¢ in [y — %, xo] as

VI, () = VEo(g) — Vi7" ().

To— 7

Since ¢ is left-continuous, Theorem A.1.2 yields

lim V0, (¢) = V(9) — lim Vi " () = 0.

n—oo L0 n—o00
Thus,
Zo
lim (—nx 4 nxo) do(x) = 0.
n—00 IBO*%

Hence, letting n — oo in (A.3.1), the left continuity of ¢ implies that

0= lim ¢(xg — ;) — d(a) = d(xo) — ¢(a).

n—oo

Since xy € (a,b) is arbitrary, we have proved that ¢(z) = ¢(a) for all z € [a,b), and it follows that

6(6) = limy 6(2) = o(a),

which finishes the proof. U
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The Lebesgue-Stieltjes integral

B.1 Lebesgue-Stieltjes measures

A measure can be associated with any non-decreasing left-continuous function F' : R — R in the
following way. Write F(AT) = lim,\\ F'(u) for all A € R. The following theorem guarantees the
existence of a measure pp defined on the Borel sets B of R such that

rla.b) = F(b) - F(a)
urla,b] = F(b%) — F(a®)
prla,b) = F(b) — F(a®)

for any a,b € R with a < b, and
luF[a7b] = F(b+) - F(a)7

for a,b € R with a < b. The total mass of up is given by
pr(R) = F(o0) — F(—00)
and can be finite or infinite.

Theorem B.1.1 Consider an non-decreasing left-continuous function F' : R — R. There exists a
unique measure pp defined on B such that upla,b) = F(b) — F(a) for any a,b € R with a < b.

Proof. See [S505, p. 282]. O

We call Lebesgue-Stieltjes measure associated to F' the measure pp. This measure can be
extended to a complete measure on the o-algebra ¥z D B of all pup-measurable sets.
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Remark B.1.2 Any measure p on B which is finite on bounded intervals is, in fact, a Lebesgue-
Stieltjes measure. Indeed p = pp, where

—ul—z,0) if =z <0,
F(z):=< 0 if =0,
p[0, x) if x>0,

is non-decreasing and left-continuous. See [SS05, p. 282] for details.

In the remainder of this section, F' will always denote an non-decreasing left-continuous function.

B.2 The Lebesgue-Stieltjes integral

The Lebesgue-Stieltjes integral with respect to F'is merely defined as the Lebesgue integral associated
with the measure pp. We shall briefly recall here one possible construction in the context of interest
to these notes. We essentially follow [I[<I"80], where more details can be found.

The first step is to define the integral of simple functions, i.e. functions of the form

s = ZCkXAm (B.2.1)
k=1

where x4 denotes the characteristic function of A, the sets A, are pp-measurable and pairwise
disjoint, and the numbers ¢, € R, k > 1, are distincts. Then s is called Lebesgue-Stieltjes integrable

with respect to F' if the series
o

Z Ck,uF(Ak>

k=1
is absolutely convergent. In this case the Lebesgue-Stieltjes integral of s with respect to F' is defined

as .
/5 dpp = Z critr(Ax).
k=1

Hence, the definition of the integral for simple functions is quite straightforward. To extend it to
general measurable functions, one then benefits from the following theorem. Recall that a function
f iR — R is called measurable if

f7'(A) is measurable for any measurable set A.

Theorem B.2.1 A function f is pp-measurable if and only if there exists a sequence (s,)>2, of
simple functions converging uniformly to f.



B.2. THE LEBESGUE-STIELTJES INTEGRAL 87

Definition B.2.2 A pp-measurable function f is called Lebesgue-Stieltjes integrable with re-
spect to F, or simply up-integrable, if there is a sequence (s,)5% ; of pp-integrable simple functions
which converges uniformly to f. In this case we call Lebesgue-Stieltjes integral with respect

to F of the function f the limit
/fd,uF: lim /snd,up.
n— oo A

One shows in particular that the above limit exists, is finite, and does not depend on the choice of

the sequence of simple functions (s,)5°,, see [[XF'80, p. 296] for more details.

For a complex function f: R — C, writing f = g + ih with ¢ = Rf and h = S f, we say that f
is Lebesgue-Stieltjes integrable with respect to F' if both g and h are. In this case, the integral of f

is simply defined as
/fduF:/ngF+i/hdpF.

The following theorem ensures that the Riemann—Stieltjes integral and the Lebesgue—Stieltjes integral
coincide for continuous functions.

Theorem B.2.3 Let f : [a,b] — R be a continuous function and F : R — R be non-decreasing and
left-continuous. Then

b
[rar= | fau
a [a,b)

Proof. Consider a sequence (II,,)22 ; of partitions of [a, b] given as
IL,: a=X\y <A <---<An <A, =D,
and such that lim,_, |II,| = 0. For all n > 1 we define a simple function %, : [a,b) — R by
Yn(x) = f(A,) ifxe [N, A_y), fork=0,...,m,— L

Each 1, is pp-integrable over [a, b) and it follows from the uniform continuity of f that the sequence
()22, converges uniformly to f. Furthermore,

[a,b)

and so, letting n — oo, Theorem A.2.1 implies that

b
/ jar= [ fdur
a [a,b)
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We now state, without proofs, some important convergence results. We say that a sequence of
functions (f,)2, converges pp-almost everywhere to a function f, and we simply write f,, — f
a.e. if the context is clear, provided there exists a pp-measurable set N such that pr(N) = 0 and

lim f,(xz) = f(x) forall z € R\N.

n—oo

Similarly, any pointwise property holding everywhere except on a set N such that pp(N) = 0 will
be said to hold ur-almost everywhere, or merely almost everywhere if the context is clear.

Theorem B.2.4 (Fatou’s Lemma) Let ()%, be a sequence of pp-measurable functions such that
fn=0a.e. foralln>1.If f, — f a.e. then

/fd,uF hmlnf/fnd,up

The proof of this result can be found on p. 61 of [SS05

Theorem B.2.5 (Dominated Convergence) Let ()5, be a sequence of pp-measurable func-
tions such that f, — f a.e. If there exists a pp-integrable function g such that | f,| < g for alln > 1,
then

i [ 12~ | dur =0
n—oo
and so

lim [ f,dpr = / fdpr.
n—oo

The proof of this result can be found on p. 67 of [SS05]. An equivalent formulation is given on p. 303
of [KF80].

B.3 The Hilbert space L*(R, jur)

The space L?(R, ur) is defined similarly to the case where up is the Lebesgue measure on R. Tt
consists of equivalence classes of functions pp-measurable f : R — C such that |f|? is up-integrable
over R, the equivalence relation being given by

[ ~ue g <= f=g9 prae.

Endowed with the inner product

U9 = [ F9r f9.€ LR opr).
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it is a Hilbert space.

The definition of the integral with respect to a spectral family in Chapter 3 is based on the
following result. A proof can be found in [Wei80, p. 25]. It can also be deduced from the proof of
the separability of L?(R) in [SS05, p. 160].

We call step function a function ¢ : R — C that can be written as

t= Z CkX Iy
k=0

for a finite number of non-empty pairwise disjoint intervals I, C R of the form
(ak,bx),  lar,br), (aw,be] or lag, byl
and corresponding constants ¢ € C.

Theorem B.3.1 Step functions are dense in L*(R, ur).






Appendix C

The Banach space-valued Riemann
integral

Throughout this appendix we consider a Banach space X and a continuous function F': [a,b] — X
where a,b € R with a < b.

C.1 Definition and existence

The function F' being continuous, it is uniformly continuous over the compact interval [a,b]. That
is, for all € > 0, there exists ¢ > 0 such that, for all ¢, s € [a, ],

t—s|<d6 = ||F(t)— F(s)]| <e.
On the other hand, F': [a,b] — X is bounded, that is,

sup [|F(t)[| < oo.
t€[a,b]

In fact, this supremum is achieved at some point in [a, b].
In perfect analogy with the real-valued Riemann integral, for any partition II of [a, b],

[I: a=X <M< - <A1 < An=0b,

and any sequence of points
,uke[)\kflv)\kL k:17"'7m7

we consider the sum
m

Sit=>_ (A = Memt) F ().

k=1
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Theorem C.1.1 Let F : [a,b] — X be continuous. There ezists a unique Y € X such that, for all
e > 0, there exists § > 0 such that, for any partition I1 of [a, b] satisfying |II| < 0, we have

1Sn— Y| <e.

The element Y € X given by Theorem C.1.1 is called the Riemann integral of F' over [a, ],
and we write

Yzl%ﬁﬂt

The proof of this result is virtually identical to those of Theorem A.2.1 and Lemma 2.1.2. We
therefore leave as an easy revision exercise the obvious changes of notation required.

The integral defined by Theorem C.1.1 is of course linear. That is, if F,G : [a,b] — X are
continuous and «, 8 € R, then

/b (aF(t) + BG(t)) dt = a/bF(t) dt + /b BG(t) dt.

Furthermore, it is easily seen that
b
| Fw dtH < [1F@ ar

C.2 Some useful results

Lemma C.2.1 Let T € B(X) and F : [a,b] — X continuous. The composition T o F' is continuous
and we have

j[F@azlzT@a.

Proof. The continuity of the composition follows from
ITF(@) ~ TF(s)| = IT(F() - F(s)| < |IT]IF@) — F(s)].
Consider now a sequence (I1,,)5° ; of partitions of [a, b], given as
I, : a=Ay <A/ <--- <A} | <A, =D,

and such that lim,_, |II,| = 0. We then have

mn

TSh, =TY (AF =X )FOD) =Y (M = A )TF(A\),
k=1 k=1

and so by continuity of T" and Theorem C.1.1, the result follows by letting n — oo. O
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Theorem C.2.2 Let ¢ : [a,b] — R and F : [a,b] — X be continuous functions. The product ¢F
defined by ¢F(t) = ¢(t)F(t) is continuous and we have

| [oraa < [row)ar s 1)

Proof. The continuity of ¢F follows from

(&) F(t) — o(s)F(s)|| < @) F () = p(s)F ()] + [|o(s)F(E) — o(s) F(s)]
< () = o) IE @ + o) |1F(8) = F(s)]l -

Consider now a sequence (I1,,)7° ; of partitions of [a, b], given as
I, : a=X\ <Al <--- <X, ;<\, =b,

and such that lim,,_,, |II,| = 0. We then have

< SOO = X O IFOD)

sl = | Z (N = N )OO F ()

mn

<S8 = M) 6] sup [F(s)]]

1 s€[a,b]

and so letting n — oo the result follows by continuity of the norm, by Theorem C.1.1, and the fact
that

My, b
T Y0~ AL [60) = [0 dr
k=1 a

Finally, we have the following uniform convergence theorem.

Theorem C.2.3 Consider a sequence (F,)32, of continuous functions F, : [a,b] — X and a con-
tinuous function F : [a,b] — X. Suppose (F,)%, converges uniformly to F. That is, for all e > 0
there exists N > 1 such that

n>N = sup |F.(s) — F(s)| <e.

s€a,b]

Then we have

n—odo
— a

b b
lim [ F,(t)dt = / F(t)dt.
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Proof. Applying Theorem C.2.2 to ¢(s) = 1, we have, for all n > 1,

H /abFn(t) dt — /abF(t) dtH < (b—a) sup ||F.(s) — F(s)]| .

t€la,b]

The result then follows from the uniform convergence of (F,)7, to F. U
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