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Foreword

These notes are based on the semester project of Yann Péquignot, Théorie spectrale et évolution en
mécanique quantique, which was supervised by Prof. Boris Buffoni and myself at EPFL (Lausanne)
in 2008. I am especially indebted to Yann for the exceptional quality of his work, and his permission
to use it as teaching material.

The goal of the course is to provide a straightforward but comprehensive proof of the spectral
theorem for unbounded selfadjoint operators in Hilbert spaces, and some applications to elementary
quantum mechanics. The main focus will be on the decomposition of a selfadjoint operator onto its
family of spectral projections. Some elements of functional calculus will also be given.

We will start in Chapter 1 by some recalls about bounded operators in Hilbert spaces and their
spectra, as well as important properties of projections and positive operators, which will play a crucial
role in the main proofs. Chapter 2 will be devoted to the proof of the spectral theorem for bounded
selfadjoint operators, while Chapter 3 will present the extension to the unbounded case. In Chapter 4
we will apply the spectral theorem to discuss Stone’s theorem, which characterizes strongly continuous
one-parameter groups of unitary transformations of the Hilbert space. After a brief exposition of the
main concepts of quantum mechanics formulated in the Hilbert space framework, we will use Stone’s
theorem to define the operators representing the energy and the momentum of a quantum particle.

The original work, as well as the present version, are based on classic books which are listed in the
Bibliography. However, considerable effort is made here to present a unified and self-contained theory.
The student with basic knowledge of functional analysis in Hilbert spaces should be sufficiently
equipped to read these notes. Of course, as always in mathematics, we can only recommend very
active reading (doing the exercises, reproducing the proofs mentally and on paper, etc.) in order to
get familiar with the theory.

As I am translating this work to English and adding extra material and exercises, I of course take
full responsibility should there be any mistakes or imprecisions in the text.

Delft, February 2015



Terminology We shall speak of unbounded operators when referring to general, not necessarily
bounded, operators. The price to pay for this abuse of terminology is that bounded operators become
a special case of unbounded operators ! But we prefer to live with this rather than repeatedly using
the awkward phrase ‘general, not necessarily bounded, operators’.

The notion of selfadjointness for unbounded operators requires a careful definition (in particular
the definition of the domain of the adjoint operator), while for a bounded operator A acting in a
Hilbert space H, it only amounts to requiring that A be symmetric, i.e. that 〈Au, v〉 = 〈u,Av〉, for all
u, v ∈ H. If A is unbounded, it is also called symmetric provided the previous relation holds for all
u, v in the domain of A. Throughout the course we shall reserve the term selfadjoint for unbounded
operators, while bounded selfadjoint operators will merely be called symmetric.



Chapter 1

Preliminary notions

We start by recalling elements of the theory of linear operators acting in a Hilbert spaceH. We present
some basic results about bounded linear operators and some elementary properties of orthogonal
projections.

1.1 Hilbert spaces

In these notes we will consider Hilbert spaces over the field C of complex scalars. The definition of
Hilbert space is as follows.

Definition 1.1.1 A pre-Hilbert spaceH is a complex vector space endowed with an inner product
〈·, ·〉 : H → C satisfying

(i) for all u ∈ H, 〈u, u〉 > 0, and 〈u, u〉 = 0 if and only if u = 0;

(ii) for all u, v, w ∈ H, 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉;

(iii) for all u, v ∈ H and all λ ∈ C, 〈λu, v〉 = λ 〈u, v〉;

(iv) for all u, v ∈ H, 〈u, v〉 = 〈v, u〉.

H is called a Hilbert space if it is a Banach space for the norm ‖u‖ :=
√
〈u, u〉, i.e. if the metric

space (H, d), with d(u, v) := ‖u− v‖, is complete. �

We shall use the notations of Definition 1.1.1 throughout the text without further mention. We
recall, without proof, the following fundamental property of the Hilbert norm.

1



2 CHAPTER 1. PRELIMINARY NOTIONS

Theorem 1.1.2 (Cauchy-Schwarz Inequality) For all u, v ∈ H, there holds

| 〈u, v〉 | 6 ‖u‖ ‖v‖ .

A typical example of Hilbert space is the following.

Example 1.1.3 (The Hilbert space L2[0, 1]) Consider the set of functions u : [0, 1] → C such
that ∫

[0,1]

|u(x)|2 dx <∞,

where the integral is taken with respect to the Lebesgue measure on [0, 1]. We define an equivalence
relation by

u ∼ v iff u = v almost everywhere.

We denote by L2[0, 1] the set of equivalence classes obtained in this way. This is a (complex) Hilbert
space for the following operations:

(λu)(x) = λu(x), (λ ∈ C)

(u+ v)(x) = u(x) + v(x),

〈u, v〉 =

∫
[0,1]

u(x)v(x) dx,

where u, v denote any elements of their respective equivalence classes.
The corresponding norm is given by

‖u‖ =

(∫
[0,1]

|u(x)|2 dx

)1/2

and the Cauchy-Schwarz inequality takes the form∫
[0,1]

uv dx 6

(∫
[0,1]

|u|2 dx

)1/2(∫
[0,1]

|v|2 dx

)1/2

. �

In fact, Example 1.1.3 is generic, in the sense that all infinite-dimensional separable Hilbert spaces
are isomorphic to L2[0, 1].

The Cartesian product H × H has a natural Hilbert space structure given by the following
operations:

λ(u1, v1) = (λu1, λv1),

(u1, v1) + (u2, v2) = (u1 + u2, v1 + v2),〈〈〈
(u1, v1), (u2, v2)

〉〉〉
= 〈u1, u2〉+ 〈v1, v2〉 ,
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for all (u1, v1), (u2, v2) ∈ H×H and all λ ∈ C. The metric topology induced by the inner product of
H×H coincides with the product topology inherited from H.

1.2 Linear operators

In these notes we are interested in linear operators between Hilbert spaces H1 and H2, that is,
mappings A : H1 → H2 which preserve the vector space structures of H1 and H2. In the first part we
will consider linear operators which are bounded, i.e. continuous, and so also preserve the topology.
Then we will deal with general, unbounded, operators.

We start by recalling the basic notions of the theory of linear operators in the more general
framework of operators A : X1 → X2 acting between two Banach spaces X1 and X2.

Definition 1.2.1 A linear operator A from X1 to X2 is a mapping A : X1 → X2 such that:

(i) for all u, v ∈ X1, A(u+ v) = A(u) + A(v);

(ii) for all λ ∈ C and all u ∈ X1, A(λu) = λA(u).

We shall merely write Au for the image A(u) of the element u ∈ X1. The range of A is the subspace
of X2 defined as

rgeA = {Au ; u ∈ X1},
and the kernel of A is the subspace of X1 defined as

kerA = {u ∈ X1 ; Au = 0}.

If there is a constant C > 0 such that

‖Au‖X2
6 C ‖u‖X1

for all u ∈ X1, (1.2.1)

we say that A is bounded. The norm of A ∈ B(X1,X2) is defined as the infimum of all C > 0
satisfying (1.2.1) and can be characterized as (Problem 1.2)

‖A‖B(X1,X2) = sup
‖u‖X1=1

‖Au‖X2
= sup
‖u‖X161

‖Au‖X2
. (1.2.2)

The set B(X1,X2) of bounded operators from X1 to X2, endowed with the norm ‖·‖B(X1,X2), is a
Banach space for the operations:

(A+B)u = Au+Bu for all A,B ∈ B(X1,X2), u ∈ X1;
(λA)u = λAu for all A ∈ B(X1,X2), λ ∈ C, u ∈ X1.

We shall simply write ‖u‖ , ‖Au‖ , ‖A‖ when there is no risk of confusion. �
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Remark 1.2.2 (a) The above definitions can be made when X1 and X2 are merely normed vector
spaces. The space of bounded operators B(X1,X2) is a Banach space for the norm ‖·‖B(X1,X2)

defined as in (1.2.2), provided that the target space X2 is Banach. Note that the bounded
linear operators from X1 to X2 are precisely those linear operators which are continuous with
respect to the topologies of X1 and X2, induced by the norms ‖·‖X1

and ‖·‖X2
, respectively.

(b) In these notes we shall be mainly concerned with Hilbert spaces, and especially the case where
H := X1 = X2. Then we shall simply write B(H) instead of B(H,H). If A,B ∈ B(H), we then
have ‖AB‖ 6 ‖A‖ ‖B‖.

In the context of Banach spaces, we now recall a fundamental result due to Banach and Steinhaus.
The proof can be found e.g. in [Fri82, Kre78, RSN90, Wei80].

Theorem 1.2.3 (Uniform Boundedness Principle) Consider a sequence (An)n∈N of bounded
operators acting between Banach spaces X1,X2. If, for all u ∈ X1, we have

sup
n∈N
‖Anu‖X2

<∞,

then there holds
sup
n∈N
‖An‖B(X1,X2) <∞.

Remark 1.2.4 In Theorem 1.2.3, one can merely assume that X2 is a normed vector space; com-
pleteness is not needed in the proof.

Definition 1.2.5 Let (An)n∈N ⊂ B(X1,X2) be a sequence of bounded linear operators.

(i) If there is an operator A ∈ B(X1,X2) such that limn→∞ ‖An − A‖B(X1,X2) = 0, we say that the
sequence (An)n∈N converges (in operator norm) to A.

(ii) If, for all u ∈ X1, the limit limn→∞Anu exists in X2, we say that the sequence (An)n∈N is
stronlgy convergent. The mapping u 7→ limn→∞Anu is then clearly a linear operator from
X1 to X2. �

Corollary 1.2.6 Let (An)n∈N ⊂ B(X1,X2). Suppose (An)n∈N is strongly convergent and let A : X1 →
X2 be the operator defined by u 7→ limn→∞Anu. Then A ∈ B(X1,X2).

Proof. For all u ∈ X1, it follows by continuity of the norm (Problem 1.1) that

lim
n→∞

‖Anu‖ = ‖Au‖ exists.
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Therefore the sequence (‖Anu‖)n∈N is bounded for all u ∈ X1. It then follows from the Uniform
Boundedness Principle that (‖An‖)n∈N is bounded by a constant C > 0. Thus, for all u ∈ X1,

‖Au‖ = lim
n→∞

‖Anu‖ 6 C ‖u‖ ,

and so A is bounded. �

We next recall another fundamental result in the context of two Banach spaces X1,X2. The
graph of a linear operator A : X1 → X2 is defined as the subspace

GA = {(u,Au) ; u ∈ X1} ⊆ X1 ×X2.

A natural norm on X1 ×X2 is given by

‖(u, v)‖ = ‖u‖+ ‖v‖ .

Note, however, that all product norms 1 are equivalent, so your favorite choice is good enough.

In Problem 1.3, we will prove the following theorem, which is a consequence of the bounded
inverse theorem.

Theorem 1.2.7 (Closed Graph Theorem) A : X1 → X2 is bounded if and only if GA is a closed
subset of X1 ×X2.

A (continuous) linear functional on the Hilbert space H is an element of the dual space
of H, H∗ = B(H,C). The linear functionals on a Hilbert space are characterized by the following
theorem due to F. Riesz, the proof of which can be found e.g. in [Fri82, p. 206] or [Kre78, p. 188].

Theorem 1.2.8 (Riesz’s Representation Theorem) Let H be a Hilbert space. For any u0 ∈ H,
the formula

f(u) = 〈u, u0〉 ∀u ∈ H, (1.2.3)

defines a linear functional on H, with ‖f‖ = ‖u0‖. Conversely, for any linear functional f on H,
there exists a unique u0 ∈ H such that (1.2.3) holds.

We complete this section by recalling some spectral properties of linear operators. The funda-
mental problem motivating the definition of the spectrum is the following. Let X be a normed vector
space and A ∈ B(X ). For which values of λ ∈ C does the equation

(A− λI)u = v (1.2.4)

1‖(·, ·)‖ is a product norm on X1 ×X2 iff ‖(u, 0)‖ = ‖u‖X1
∀u ∈ X1 and ‖(0, v)‖ = ‖v‖X2

∀v ∈ X2.
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have a unique solution u ∈ X , for any given v ∈ X ?
Firstly, the solution will be unique if ker(A − λI) = {0}, i.e. if λ is not an eigenvalue of A.

Furthermore, there will be a solution for any v ∈ X provided rge(A − λI) = X . Relaxing slightly
the latter condition (we only require that (1.2.4) can be solved for v in a dense subspace of X ), the
solution to this problem can be stated by the introduction of the resolvent set of A.

Definition 1.2.9 Let A ∈ B(X ) be a bounded linear operator acting in a complex normed vector
space X 6= {0}, and I : X → X be the identity. The resolvent set ρ(A) of A is the set of all
complex numbers λ such that ker(A−λI) = {0}, rge(A−λI) is dense in X and the inverse operator
(A− λI)−1 : rge(A− λI)→ X is bounded. The spectrum σ(A) of A is defined as σ(A) = C \ ρ(A).
It can be decomposed as

σ(A) = σp(A) ∪ σc(A) ∪ σr(A), (1.2.5)

where the sets σp(A), σc(A), σr(A) are pairwise disjoint subsets of C defined as follows:

(i) λ ∈ σp(A) iff ker(A− λI) 6= {0}, i.e. λ is an eigenvalue of A;

(ii) λ ∈ σc(A) iff ker(A− λI) = {0} and rge(A− λI) is dense in X but (A− λI)−1 is not bounded;

(iii) λ ∈ σr(A) iff ker(A− λI) = {0} but rge(A− λI) is not dense in X .

The sets σp(A), σc(A) and σr(A) are respectively called the point spectrum, the continuous
spectrum and the residual spectrum. �

Remark 1.2.10 (a) The requirement that (A− λI)−1 be bounded is to ensure that, if λ ∈ ρ(A),
the solution u of (1.2.4) depends continuously on the data v.

(b) We will see in problem 1.4 that, if X is Banach, then λ ∈ ρ(A) iff (A− λI) is a bijection.

We now collect without proof some important properties of the spectrum; see e.g. [Kre78].

Theorem 1.2.11 Let A ∈ B(X ) with X 6= {0} a complex Banach space. Then the spectrum σ(A)
of A is a compact non-empty subset of C. Furthermore,

σ(A) ⊆
{
λ ∈ C ; |λ| 6 ‖A‖

}
.

Definition 1.2.12 The number rσ(A) = sup
λ∈σ(A)

|λ| is called the spectral radius of A. �

Theorem 1.2.13 (Spectral Radius Theorem) Let A ∈ B(X ) with X 6= {0} a complex Banach

space. Then the limit limn→∞ ‖An‖1/n exists and we have

rσ(A) = inf
n>1
‖An‖1/n = lim

n→∞
‖An‖1/n .
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1.3 Orthogonal projections

An orthogonal projection is a bounded linear transformation of the Hilbert space H that maps the
whole space onto a closed linear subspace, parallelly to the directions orthogonal to this subspace.
The essence of the Spectral Theorem is to decompose a selfadjoint operator as a linear combination
of orthogonal projections, so these will play a prominent role throughout the course.

Definition 1.3.1 (a) Two elements u, v ∈ H are orthogonal if 〈u, v〉 = 0.

(b) Given a subspace M ⊆ H, an element u ∈ H is orthogonal to M if u is orthogonal to all
elements of M .

(c) A subspace N ⊆ H is orthogonal to M if each element of N is orthogonal to M .

(d) The orthogonal complement M⊥ of M is the closed subspace

M⊥ = {u ∈ H ; 〈u, v〉 = 0 for all v ∈M} ⊆ H.

We shall sometimes write u ⊥ v, u ⊥M or N ⊥M , to denote orthogonality.

The following theorem will allow us to define the notion of orthogonal projection. Its proof can
be found e.g. in [Wei80, p. 31] or [Kre78, p. 146].

Theorem 1.3.2 Let M be a closed subspace of the Hilbert space H. For all u ∈ H, there exists a
unique v ∈M and a unique w ∈M⊥ such that u = v + w. That is,

H = M ⊕M⊥.

Definition 1.3.3 If M is a closed subspace of the Hilbert space H, the orthogonal projection
or simply projection onto M is the bounded operator defined by Pu = v for all u ∈ H, where
u = v + w is the unique decomposition of u with v ∈M and w ∈M⊥. �

Note that it follows immediately from the definition that M = rgeP , M⊥ = kerP , and that
I − P is the projection onto M⊥.

Proposition 1.3.4 Let P be the orthogonal projection onto a closed subspace M of H. Then:

(a) P 2 = P ;

(b) 〈Pu, u〉 > 0 for all u ∈ H, with equality if and only if u ∈M⊥;

(c) for all u, v ∈ H, 〈Pu, v〉 = 〈u, Pv〉;
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(d) if P 6= 0 then ‖P‖ = 1.

Proof. We shall write u = v + w as in Theorem 1.3.2 throughout the proof.
Then Pu = v ∈ M , and the decomposition of Pu according to Theorem 1.3.2 is simply Pu = v.

That is, PPu = v, which proves (a).
To prove (b), observe that 〈Pu, u〉 = 〈v, v + w〉 = 〈v, v〉 = ‖v‖2.
To prove (c), write 〈Pu, u〉 = 〈v, v + w〉 = 〈v, v〉 = 〈v + w, v〉 = 〈u, Pu〉.
To prove (d), note that ‖u‖2 = ‖v‖2 + ‖w‖2 implies ‖v‖ 6 ‖u‖, hence ‖P‖ 6 1. Furthermore,

if P 6= 0 then M 6= {0} and we can find u0 ∈ M with ‖u0‖ = 1. Hence, ‖Pu0‖ = ‖u0‖ = 1 and
‖P‖ = sup‖u‖=1 ‖Pu‖ > ‖Pu0‖ = 1. �

The following additional properties will be proved in the problems.

Theorem 1.3.5 Let M and N be closed subspaces of the Hilbert space H. Denote by P and Q the
associated projections. Then one has:

(a) M ⊆ N if and only if PQ = QP = P ;

(b) M ⊆ N if and only if 〈Pu, u〉 6 〈Qu, u〉 for all u ∈ H;

(c) PQ = 0⇔ QP = 0⇔M ⊥ N .

1.4 Symmetric operators

Symmetric operators on the Hilbert space are bounded operators having a peculiar behaviour with
respect to the inner product. They are often referred to as ‘selfadjoint’ in the literature. However we
shall reserve the term selfadjoint for the extension of the notion of symmetric operator to unbounded
operators, where the definition of the adjoint operator requires extra care.

Definition 1.4.1 Consider a bounded operator A on the Hilbert space H. The adjoint A∗ ∈ B(H)
of A is defined by

〈Au, v〉 = 〈u,A∗v〉 , for all u, v ∈ H. (1.4.1)

The operator A is called symmetric if A = A∗. We shall merely call symmetric operator a
bounded symmetric operator. �

We now verify that this definition makes sense.

Theorem 1.4.2 The relation (1.4.1) defines a unique operator A∗ ∈ B(H), satisfying ‖A∗‖ = ‖A‖.
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Proof. Fix v ∈ H and define fv(u) = 〈Au, v〉, u ∈ H. Since A is bounded, fv ∈ H∗ with ‖fv‖ 6
‖A‖ ‖v‖. Hence, by Theorem 1.2.8, there exists a unique v∗ ∈ H such that fv(u) = 〈u, v∗〉, for all
u ∈ H. Letting A∗v := v∗, we recover (1.4.1) and it is easy to check that this defines a linear operator
A∗ : H → H. Furthermore, by Theorem 1.2.8,

‖A∗v‖ = ‖fv‖ 6 ‖A‖ ‖v‖ , ∀v ∈ H,

showing that A∗ ∈ B(H) and ‖A∗‖ 6 ‖A‖. Conversely, using again Theorem 1.2.8,

‖A∗‖ = sup
v 6=0

‖A∗v‖
‖v‖

= sup
v 6=0

‖fv‖
‖v‖

= sup
v 6=0

sup
u6=0

| 〈Au, v〉 |
‖v‖ ‖u‖

= sup
u,v 6=0

| 〈Au, v〉 |
‖u‖ ‖v‖

> sup
u,Au 6=0

| 〈Au,Au〉 |
‖u‖ ‖Au‖

= sup
u,Au 6=0

‖Au‖2

‖u‖ ‖Au‖
= sup

u6=0

‖Au‖
‖u‖

= ‖A‖ .

Hence, ‖A∗‖ = ‖A‖. �

We now collect some basic properties of the adjoint operator. The proofs can be found e.g. in
[Fri82] or [Kre78].

Proposition 1.4.3 Consider two bounded linear operators A,B : H → H and any scalar λ ∈ C.
Then we have:

(a) (A+B)∗ = A∗ +B∗;

(b) (AB)∗ = B∗A∗;

(c) (λA)∗ = λA∗;

(d) A∗∗ = A;

(e) 0∗ = 0 and I∗ = I;

(f) ‖A∗A‖ = ‖AA∗‖ = ‖A‖2;

(g) if A−1 ∈ B(H) then A∗ is invertible, (A∗)−1 ∈ B(H) and (A∗)−1 = (A−1)∗.

The following lemma is a fundamental structural result about the adjoint operator.

Lemma 1.4.4 Consider a bounded operator A : H → H. Then

H = kerA∗ ⊕ rgeA.
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Proof. See Problem 1.12. �

The following characterization of the residual spectrum is often useful to study the spectrum of
an operator (see Problem 1.16).

Proposition 1.4.5 The residual spectrum σr(T ) of a bounded operator T : H → H can be charac-
terized as

σr(T ) = {λ ∈ C ; λ 6∈ σp(T ), λ ∈ σp(T ∗)}.

Proof. We apply Lemma 1.4.4 with A = T − λI. By definition of σr(T ) we have, using Proposi-
tion 1.4.3 (a) and (c),

λ ∈ σr(T ) ⇐⇒ T − λI is injective but rge(T − λI) ( H
⇐⇒ ker(T − λI) = {0}, ker(T ∗ − λI) 6= {0},

which proves the proposition. �

The numerical range of a bounded operator A is the set

nr(A) := {〈Au, u〉 ; u ∈ H, ‖u‖ = 1} ⊂ C.

For instance, the numerical range of 0 is {0} and the numerical range of I is {1}. For general
projections, we have the following result.

Proposition 1.4.6 Let P 6∈ {0, I} be an orthogonal projection. Then nr(P ) = [0, 1].

Proof. Firstly, if ‖u‖ = 1,

0 6 〈Pu, u〉 =
〈
P 2u, u

〉
= 〈Pu, Pu〉 = ‖Pu‖2 6 ‖u‖2 = 1,

showing that nr(P ) ⊂ [0, 1].
Conversely, consider a number t ∈ [0, 1]. Let v ∈ rgeP,w ∈ kerP with ‖v‖ = ‖w‖ = 1, and

define ut := tv +
√

1− t2w. Then,

‖ut‖ = 1 and 〈Put, ut〉 =
〈
tv, tv +

√
1− t2w

〉
= t2,

showing that t2 ∈ nr(P ). Hence, [0, 1] ⊂ nr(P ). �

Proposition 1.4.7 An operator A ∈ B(H) is symmetric if and only if nr(A) ⊂ R.
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Proof. If A is symmetric then 〈Au, u〉 = 〈u,Au〉 = 〈Au, u〉 for all u ∈ H. Conversely, if 〈Au, u〉 is
real for all u ∈ H, we have 〈Au, u〉 = 〈A∗u, u〉 and so

〈(A− A∗)u, u〉 = 0 for all u ∈ H.

It now follows by Problem 1.13 that A− A∗ = 0. �

Remark 1.4.8 Note that it is essential for the ‘if’ part that H be complex. Indeed, in a real Hilbert
space, the numerical range of any operator is real. (See also in Problem 1.13 why the last part of
the above argument fails when H is real.)

Theorem 1.4.9 Consider a symmetric operator S on the Hilbert space H. Then

‖S‖ = sup
‖u‖=1

|〈Su, u〉| .

Proof. Let s := sup
‖u‖=1

|〈Su, u〉|. If ‖u‖ = 1, then

|〈Su, u〉| 6 ‖Su‖ ‖u‖ = ‖Su‖ 6 ‖S‖ ‖u‖ = ‖S‖ .

Hence, s 6 ‖S‖.
To prove the converse inequality, take v ∈ H such that Sv 6= 0 (if no such v exists the result is

trivial) and consider u = λ−1Sv, where λ = (‖Sv‖ / ‖v‖)1/2. Then, using the polarization identity,

‖Sv‖2 = 〈S(λv), u〉 =
1

4
(〈S(λv + u), λv + u〉 − 〈S(λv − u), λv − u〉)

6
s

4

(
‖λv + u‖2 + ‖λv − u‖2) =

s

2

(
‖λv‖2 + ‖u‖2)

=
s

2

(
λ2 ‖v‖2 +

1

λ2
‖Sv‖2

)
= s ‖v‖ ‖Sv‖ .

Hence, ‖Sv‖ 6 s ‖v‖ and it follows that ‖S‖ 6 s. �

The following results will be proved in the problems.

Theorem 1.4.10 Let S be a symmetric operator on H. Then σ(S) ⊂ R.

Definition 1.4.11 Let S be a symmetric operator on H. The lower bound and upper bound of
S are respectively defined as

m = inf
‖u‖=1

〈Su, u〉 and M = sup
‖u‖=1

〈Su, u〉 .

Remark that, by Theorem 1.4.9, ‖S‖ = max{|m| , |M |}. �
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Theorem 1.4.12 Let S be a symmetric operator on H and let m,M be as in Definition 1.4.11.
Then σ(S) is real. In fact, we have

σ(S) ⊂ [m,M ] and m,M ∈ σ(S).

Corollary 1.4.13 Let S be a symmetric operator on H. The spectral radius of S, introduced in
Definition 1.2.12, satisfies rσ(S) = ‖S‖.

Corollary 1.4.14 Let S be a symmetric operator on H. Then σr(S) = ø.

Proof. This follows from Proposition 1.4.5 and the fact that σ(S) ⊂ R. �

1.5 Positive operators

Our description of positive operators here essentially follows [Fri82].

Definition 1.5.1 A symmetric operator S : H → H is called positive, denoted S > 0, if

〈Su, u〉 > 0 for all u ∈ H.

We shall call positive operator a symmetric positive operator. For S, T : H → H symmetric, if
S − T > 0 we say S is larger than T or T is smaller than S, and we write S > T or T 6 S. �

It is an exercise to show that 6 defines a partial order on symmetric operators.

We shall now endeavour to define the square root of a positive operator. This requires several
technical steps.

Lemma 1.5.2 Let P : H → H be a positive operator. There exists a sequence (Pn)∞n=1 of operators
which are real polynomials2 in P , such that the partial sums

(∑n
k=1 P

2
k

)∞
n=1

strongly converge to P :

Pu =
∞∑
n=1

P 2
nu, u ∈ H.

2A real polynomial is a polynomial with real coefficients.
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Proof. If P = 0, the statement is trivial. Suppose P 6= 0 and define by induction the sequence of
operators

B1 = 1
‖P‖P, Bn+1 = Bn −B2

n, n = 1, 2, . . . .

Each Bn is a real polynomial in P and so is symmetric by Problem 1.8. We now prove by induction
that

0 6 Bn 6 I for all n > 1. (1.5.1)

For n = 1, it follows from the positivity of P that, for all u ∈ H,

〈B1u, u〉 =
1

‖P‖
〈Pu, u〉 > 0,

and so B1 > 0. Moreover, for all u ∈ H,

〈(I −B1)u, u〉 = 〈u, u〉 − 〈B1u, u〉 = 〈u, u〉 − 1

‖P‖
〈Pu, u〉 > 0,

since 〈Pu, u〉 6 ‖P‖ ‖u‖2 by Cauchy-Schwarz. Suppose then that (1.5.1) holds for some m > 1 and
let us show that it holds for m+ 1. For all u ∈ H, since Bm > 0 we have, on the one hand,〈

Bm(I −Bm)2u, u
〉

= 〈Bm(I −Bm)u, (I −Bm)u〉 > 0,

and on the other, since Bm 6 I,〈
B2
m(I −Bm)u, u

〉
= 〈(I −Bm)Bmu,Bmu〉 > 0.

Hence Bm(I −Bm)2 > 0 et B2
m(I −Bm) > 0. Therefore,

Bm+1 = Bm −B2
m

= Bm(I −Bm)2 +B2
m(I −Bm) > 0.

Furthermore, since Bm 6 I, we have

I −Bm+1 = (I −Bm) +B2
m > 0.

This conclude the proof of (1.5.1).

Let us now observe that
n∑
k=1

B2
k = B1 −Bn+1, n > 1. (1.5.2)
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Together with (1.5.1), this implies
n∑
k=1

B2
k 6 B1, n > 1.

Therefore, for all u ∈ H,
n∑
k=1

〈Bku,Bku〉 6 〈B1u, u〉 , n > 1.

It follows that
∑∞

n=1 ‖Bnu‖2 <∞ and so limn→∞ ‖Bnu‖ = 0. Hence, by (1.5.2),

lim
n→∞

∥∥∥B1u−
n∑
k=1

B2
ku
∥∥∥ = lim

n→∞
‖Bn+1u‖ = 0.

On setting Pn :=
√
‖P‖Bn, n > 1, the sequence (Pn)∞n=1 does the job. �

Corollary 1.5.3 Let P and Q be positive operators. If PQ = QP then PQ is positive.

Proof. Consider the sequence (Pn)∞n=1 given by Lemma 1.5.2 for P . As each Pn is a polynomial in
P , we have PnQ = QPn for all n > 1. Thus, for all u ∈ H, it follows from the continuity of the inner
product that

〈PQu, u〉 =
∞∑
n=1

〈
P 2
nQu, u

〉
=
∞∑
n=1

〈PnQPnu, u〉 =
∞∑
n=1

〈QPnu, Pnu〉 > 0,

by positivity of Q. �

Corollary 1.5.4 Consider a sequence of symmetric operators (Sn)∞n=1 and suppose there is a sym-
metric operator T such that:

(i) if 1 6 m 6 n then Sm 6 Sn (increasing sequence);

(ii) for all m,n > 1, SmSn = SnSm;

(iii) for all n > 1, TSn = SnT ;

(iv) for all n > 1, Sn 6 T (upper bound).

Then (Sn)∞n=1 converges strongly to a symmetric operator S.
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Proof. Consider the operators Pn = T − Sn. Each Pn is positive by (iv) and the sequence (Pn)∞n=1 is
decreasing by (i). Indeed, if 1 6 m 6 n then Pm − Pn = Sn − Sm > 0. Moreover, by (ii) and (iii),
PnPm = PmPn for all m,n > 1. Hence, Corollary 1.5.3 ensures that, if 1 6 m 6 n then

Pm(Pm − Pn) > 0 and (Pm − Pn)Pn > 0.

We deduce that 〈
P 2
mu, u

〉
> 〈PmPnu, u〉 >

〈
P 2
nu, u

〉
> 0, 1 6 m 6 n, u ∈ H. (1.5.3)

Therefore, (〈P 2
nu, u〉)

∞
n=1 is a decreasing sequence of non-negative numbers. Let α ∈ R+ be its limit.

By (1.5.3) we have, for all 1 6 m 6 n:

0 6 〈PmPnu, u〉 − α 6
〈
P 2
mu, u

〉
− α, u ∈ H.

It follows from the above identities that

lim
n,m→∞

〈PmPnu, u〉 = lim
m→∞

〈
P 2
mu, u

〉
, u ∈ H.

Hence, for all u ∈ H:

‖Snu− Smu‖2 = ‖Pmu− Pnu‖2

=
〈
(Pm − Pn)2u, u

〉
=
〈
P 2
mu, u

〉
+
〈
P 2
nu, u

〉
− 2 〈PmPnu, u〉

m,n→∞−−−−→ 0.

It follows that, for all u ∈ H, (Snu)∞n=1 is a Cauchy sequence in H. It therefore has a limit, which
we denote by Su ∈ H. This defines a linear operator S, which is bounded by Corollary 1.2.6.
Furthermore, S is symmetric. Indeed, by continuity of the inner product (Problem 1.1),

〈Su, v〉 =
〈

lim
n→∞

Snu, v
〉

= lim
n→∞

〈Snu, v〉 = lim
n→∞

〈u, Snv〉 =
〈
u, lim

n→∞
Snv
〉

= 〈u, Sv〉 , u, v ∈ H.

The proof is complete. �

We now introduce the important notion of the square root of a positive operator.

Definition 1.5.5 Let P be a positive operator. A square root of P is a symmetric operator R
such that R2 = P . �

Theorem 1.5.6 Let P be a positive operator. There exists a unique positive square root R of P .
Furthermore, R commutes with any bounded operator which commutes with P .
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Proof. The proof is in two steps.

1. Existence. We need only show that all positive operator P such that P 6 I has a positive
square root. The general case can be deduced from this one by considering P̃ = εP , with ε > 0 such
that ε ‖P‖ 6 1. So suppose that P 6 I and define by induction the sequence of operators

R0 = 0

Rn+1 = Rn +
1

2
(P −R2

n) n = 1, 2, . . . (1.5.4)

Each Rn is a real polynomial in P . Therefore, by Problem 1.8, Rn is symmetric and commutes with
any bounded operator which commutes with P . It follows from the identity

I −Rn+1 =
1

2
(I −Rn)2 +

1

2
(I − P ) (1.5.5)

that Rn 6 I for all n > 0. It then follows by subtraction that

Rn+1 −Rn =
1

2
(I −Rn−1)2 − 1

2
(I −Rn)2

=
1

2
(R2

n−1 − 2Rn−1 + 2Rn −R2
n)

=
1

2
[(I −Rn−1) + (I −Rn)](Rn −Rn−1).

Thanks to Corollary 1.5.3, this last identity allows one to show by induction that Rn+1 > Rn for all
n > 0. In particular, since R0 = 0, each Rn is positive. We can then apply Corollary 1.5.4 to the
sequence (Rn)∞n=0: there exists a symmetric operator R such that limn→∞Rnu = Ru for all u ∈ H.
On the other hand, the Uniform Boundedness Principle 1.2.3 yields a constant C > 0 such that
‖Rn‖ 6 C for all n > 1, and so∥∥R2

nu−R2u
∥∥ =

∥∥R2
nu−RnRu+RnRu−R2u

∥∥
6 C ‖Rnu−Ru‖+ ‖Rn(Ru)−R(Ru)‖ n→∞−−−→ 0.

It follows that limn→∞R
2
nu = R2u for all u ∈ H. Therefore, letting n→∞ in (1.5.4), we have

Ru = Ru+
1

2
(P −R2)u for all u ∈ H.

That is, R2 = P . Since each Rn is positive, so is R by continuity of the inner product. Furthermore,
since each Rn commutes with any bounded operator which commutes with P , this also holds for
their limit R.
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2. Uniqueness. Suppose that S is also a positive square root of P . Since P = S2, S commutes
with P and so with R. Pick any u ∈ H and let v = (R− S)u. Then

〈Rv, v〉+ 〈Sv, v〉 = 〈(R + S)(R− S)u, v〉 =
〈
(R2 − S2)u, v

〉
= 0.

Since 〈Rv, v〉 > 0 and 〈Sv, v〉 > 0, it follows that 〈Rv, v〉 = 〈Sv, v〉 = 0. Now consider a positive
square root T of R. By symmetry of T we have

‖Tv‖2 =
〈
T 2v, v

〉
= 〈Rv, v〉 = 0.

Hence Tv = 0 and we conclude that Rv = T (Tv) = 0. By the same argument we get Sv = 0.
Finally,

‖Ru− Su‖2 =
〈
(R− S)2u, u

〉
= 〈(R− S)v, u〉 = 0,

that is Ru = Su. Since u is arbitrary, we conclude that R = S. �

Lemma 1.5.7 Let S and T be symmetric operators such that ST = TS and S2 = T 2. Denote by P
the projection onto L = ker(S − T ). We then have the following properties.

(a) Any bounded operator which commutes with S − T commutes with P .

(b) If Su = 0 then Pu = u.

(c) P (S + T ) = S + T and P (S − T ) = 0.

Proof. Let B be a bounded operator which commutes with S − T . We observe that, if v ∈ L then
Bv ∈ L since (S−T )Bv = B(S−T )v = 0. Hence BPu ∈ L for all u ∈ H. Therefore, PBPu = BPu
for all u ∈ H, in other words PBP = BP . By Problem 1.10, the adjoint B∗ also commutes with
S − T . Hence B∗P = PB∗P , and it follows that

PB = (B∗P )∗ = (PB∗P )∗ = PBP = BP.

This proves (a).
Now suppose that Su = 0 for some u ∈ H. Then

‖Tu‖2 =
〈
T 2u, u

〉
=
〈
S2u, u

〉
= ‖Su‖2 = 0,

and so Tu = 0. Therefore, (S − T )u = 0 as well and u ∈ L. It follows that Pu = u, proving (b).
To prove (c), observe that, since S and T commute we have, for all u ∈ H,

(S − T )(S + T )u = (S2 − T 2)u = 0.
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Hence (S+T )u ∈ L, and so P (S+T ) = S+T . To prove the last statement, observe that (S−T )P = 0
by definition of P and that S and T commute with P by part (a). This concludes the proof. �

We are now in a position to prove the following lemma, which will play a crucial role in the
spectral decomposition of bounded symmetric operators.

Definition 1.5.8 For a symmetric operator S, we denote by |S| the unique positive square root of
S2. We shall call it the absolute value of S. Note that one has |S|S = S |S| and |S| > 0, for any
symmetric operator S. �

Lemma 1.5.9 Let S be a symmetric operator. The projection E+ onto ker(S−|S|) has the following
properties.

(a) Every bounded operator which commutes with S commutes with E+.

(b) If Su = 0 then E+u = u.

(c) SE+ > 0 and S(I − E+) 6 0.

Proof. Let C be bounded operator which commutes with S. Since CS2 = SCS = S2C, C also
commutes with S2. Then, by Theorem 1.5.6, C commutes with |S| and so commutes with S − |S|.
Hence, by Lemma 1.5.7 (a), C commutes with E+. This proves (a).

Part (b) follows directly from Lemma 1.5.7 (b).
We now prove (c). By Lemma 1.5.7 (c) and the fact that S and |S| commute with E+, we have

SE+ = |S|E+. (1.5.6)

We then deduce from Corollary 1.5.3 that SE+ > 0. On the other hand, by Lemma 1.5.7 (c),

SE+ + |S|E+ = S + |S|.

Together with (1.5.6), this yields

S(I − E+) = −(I − E+) |S| . (1.5.7)

But |S| also commutes with I − E+ and so again by Corollary 1.5.3 we have S(I − E+) 6 0. The
proof is complete. �

A good mental picture of Lemma 1.5.9 is obtained from the following definition.
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Definition 1.5.10 Let S be a symmetric operator and E+ be the projection onto ker(S−|S|). The
operator S+ = SE+ is called the positive part of S, while S− = S(I − E+) is called the negative
part of S. �

As S and |S| commute with S − |S|, Lemma 1.5.7 (a) ensures that both commute with E+ as
well. It therefore follows from (1.5.6) that

E+S = SE+ = |S|E+ = E+ |S| .

Then, using (1.5.7), one obtains

S+ = 1
2
(S + |S|) and S− = S − S+ = 1

2
(S − |S|).

Problems

1. Show that the inner product of a Hilbert space is continuous in each variable, and that the
norm is a continuous function.

2. Show that the norm ‖A‖B(X1,X2) of an operator A ∈ B(X1,X2) can be defined equivalently by
(1.2.2).

3. Prove that a linear operator A : X1 → X2 is bounded if and only if its graph GA is a closed
subset of X1 ×X2, where X1,X2 are Banach spaces.

4. Let A ∈ B(X ) and λ ∈ C, as in Definition 1.2.9. Show that, if X is a Banach space and
λ ∈ ρ(A), then (A− λI)−1 is defined on the whole space X .
Hint: Use the result proved in Problem 1.3.

5. Prove Theorem 1.3.5.

6. Show that a bounded operator P : H → H is a projection if and only if it is symmetric and
idempotent (i.e. P 2 = P ).

7. Prove Proposition 1.4.6.

8. Prove that, if S is a symmetric operator on H, then any real polynomial in S is also symmetric.

9. Let S be a symmetric operator on H, and B a bounded operator on H. Show that T = B∗SB
is symmetric.
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10. Let S be a symmetric operator onH, B a bounded operator onH. First suppose that SB = BS
and show that SB∗ = B∗S. Then, if both S and B are symmetric, show that SB is symmetric
if and only if SB = BS.

11. Consider a sequence (Sn)n>1 of symmetric operators, such that Sn → S in B(H) as n → ∞.
Show that S is symmetric.
Hint: Apply the triangle inequality to ‖S − S∗‖.

12. Prove Lemma 1.4.4.
Hint: (Prove and) use the fact that X⊥⊥ = X for any subspace X ⊂ H.

13. For T ∈ B(H), prove that
〈Tu, u〉 = 0 ∀u ∈ H =⇒ T = 0.

Note that it is essential here that H be complex. Find a counterexample in the real case.
Hint: Write u = v + λw and use special values of λ ∈ C.

14. On `2, let A be the multiplication operator defined by (Au)n = θnun, where (θn)n>1 ⊂ C is a
given bounded sequence. Show that A is bounded, σp(A) = (θn) and σ(A) = (θn).
Determine under which condition A is symmetric.
Recall: `2 is the Hilbert space of all complex sequences (u1, u2, . . . ) such that

∑
n>1 |un|2 <∞,

endowed with the inner product 〈u, v〉 =
∑

n>1 unvn.

15. Find an operator T : C[0, 1]→ C[0, 1] such that σ(T ) = [a, b], with a < b given.

16. We define two operators S, T : `2 → `2 by

(Su)n = un+1, n > 1 (left shift); (Tu)1 = 0, (Tu)n = un−1, n > 2 (right shift).

(a) Show that S and T are bounded. Compute ‖S‖ and ‖T‖.
(b) Find S∗ and T ∗.

(c) Find σp(S), σr(S) and σc(S).

17. Find a Hilbert space H and a sequence of operators (An)n∈N ⊂ B(H) which converges strongly
but not in operator norm.

18. Show that the multiplication operator X : L2[0, 1]→ L2[0, 1] defined by

(Xu)(x) = xu(x), x ∈ [0, 1],

is a bounded symmetric operator without eigenvalues. Find the spectrum of X.
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19. Let S : H → H be bounded and symmetric. Prove that all the eigenvalues (if any) of S are
real. Show that eigenvectors of S corresponding to distinct eigenvalues are orthogonal.

20. Deduce Corollary 1.4.13 from Theorem 1.2.13.

21. Show that the relation > introduced in Definition 1.5.1 defines a partial order among the
symmetric operators on H.
Recall: A partial order is a binary relation which is reflexive, transitive and antisymmetric.
Hint: Use Theorem 1.4.9.

22. Let A : `2 → `2 be defined by (u1, u2, . . . ) 7→ (0, 0, u1, u2, . . . ). Show that A is bounded and
compute its norm. Is A symmetric? Find B : `2 → `2 such that A = B2.

23. Consider the operator A : L2[0, 1]→ L2[0, 1] defined by

(Au)(x) = a(x)u(x), x ∈ [0, 1],

where a ∈ L∞[0, 1]. Show that:

(a) σp(A) =
{
λ ∈ C ;

∣∣{x ∈ [0, 1] ; a(x) = λ}
∣∣ > 0

}
;

(b) σr(A) = ø;

(c) σ(A) = essrge(a).

Here, |E| is the Lebesgue measure of a Borel set E ⊂ [0, 1], and essrge(a) is the essential range
of a, defined as

essrge(a) =
{
λ ∈ C ; for all ε > 0 :

∣∣{x ∈ [0, 1] ; |a(x)− λ| < ε}
∣∣ > 0

}
.

Find a condition on a for A to be positive and, in this case, find the square root of A.





Chapter 2

The spectral decomposition of symmetric
bounded operators

The goal of this chapter is to present the proof of the spectral theorem for (bounded) symmetric
operators. The main idea is that a symmetric operator A can always be represented as a sum of
projections, indexed by a real parameter running through σ(A). In general, due to the presence of
continuous spectrum, this representation involves a continuous sum, viz. a Riemann-Stieltjes integral.
The projections are uniquely determined by A in the form of a spectral family. In the first part of the
chapter we define the integral with respect to a general spectral family. Then we prove the spectral
theorem, following [Fri82].

2.1 Integration with respect to a spectral family

We start with the definition of a spectral family.

Definition 2.1.1 A spectral family on H is a mapping E : R → B(H), denoted (Eλ)λ∈R and
satisfying the following properties.

(i) Eλ is a projection for all λ ∈ R.

(ii) If λ < µ, then Eλ 6 Eµ.

(iii) The family (Eλ)λ∈R is strongly left-continuous, i.e.

lim
λ↗µ

Eλu = Eµu, for all µ ∈ R, u ∈ H.

(iv) There exist m,M ∈ R such that Eλ = 0 for all λ < m and Eλ = I for all λ > M .

23
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Two numbers m,M ∈ R satisfying (iv) are respectively called a lower bound and an upper bound
of the spectral family. �

We consider a spectral family (Eλ)λ∈R with bounds m,M ∈ R. Let f be a continuous real-valued
function defined on [m,M ]. We now fix 0 < ε < 1 and extend f continuously to [m,M + ε]. We
denote this extension by f . Let Π be an arbitrary partition of [m,M + ε], i.e. a finite sequence of
numbers (λk)

n
k=0 such that

m = λ0 < λ1 < · · · < λn−1 < λn = M + ε.

We call size of the partition Π the number |Π| defined as

|Π| = max
k=1,...,n

λk − λk−1.

We then choose real numbers µ1, . . . , µk such that

µk ∈ [λk−1, λk] for each k = 1, · · · , n,

and form the sum

SΠ =
n∑
k=1

f(µk)(Eλk − Eλk−1
).

The following lemma ensures that SΠ converges in B(H) as |Π| → 0, for any partition Π of [m,M+ε].

Lemma 2.1.2 Consider (Eλ)λ∈R a spectral family with bounds m,M ∈ R, and f : [m,M ] → R a
continuous function. Let 0 < ε < 1 and f : [m,M + ε]→ R a continuous extension of f . There is a
unique bounded operator S such that, for all η > 0 there exists δ > 0 such that for any partition Π
of [m,M + ε] satisfying |Π| 6 δ, one has

‖SΠ − S‖ 6 η.

Furthermore, the operator S is independent of the extension chosen for f , of the choice of ε, and of
the choice of the µks.

Proof. Fix η > 0 arbitrary. Since f is uniformly continuous on the compact interval [m,M+ε], there
exists δη > 0 such that

for all λ, λ′ ∈ [m,M + ε], |λ− λ′| 6 δη =⇒ |f(λ)− f(λ′)| 6 η

2
. (2.1.1)

Part 1. We start by showing that, for any partitions Π and Π′ of [m,M + ε],

|Π| , |Π′| 6 δη =⇒ ‖SΠ − SΠ′‖ 6 η, (2.1.2)
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independently of the points µk chosen to construct the sums SΠ and SΠ′ .
Let us write Π = (λk)

n
k=0 and fix µ1, . . . , µn with µi ∈ [λi−1, λi] for all i = 1, . . . , n. We form a

partition Π = (λ̄j)
n̄
j=0 as the union of Π and Π′. We denote by 0 = k0 < k1 < · · · < kj < kn = n̄ the

subsequence of indices satisfying λ̄ki = λi for i = 0, . . . , n.
We then pick up numbers

µ̄i ∈ [λ̄i−1, λ̄i] i = 1, · · · , kn.

The sum associated with Π and the µ̄js is given by

SΠ =
n∑
i=1

ki∑
j=ki−1+1

f(µ̄j)(Eλ̄j − Eλ̄j−1
).

Since, for all i = 1, . . . , n,

ki∑
j=ki−1+1

Eλ̄j − Eλ̄j−1
= Eλ̄ki − Eλ̄ki−1

= Eλi − Eλi−1
,

we can write SΠ as

SΠ =
n∑
i=1

ki∑
j=ki−1+1

f(µi)(Eλ̄j − Eλ̄j−1
).

Since |Π| < δη, it now follows from (2.1.1) that, for all i = 1, . . . , n and all j = ki−1 + 1, . . . , ki,

|µi − µ̄j| 6 λi − λi−1 6 δη =⇒ |f(µi)− f(µ̄j)| 6
η

2
.

Moreover, since Em = 0 and EM+ε = I we have, for all u ∈ H such that ‖u‖ = 1:

|〈(SΠ − SΠ)u, u〉| =

∣∣∣∣∣
n∑
i=1

ki∑
j=ki−1+1

[f(µi)− f(µ̄j)]
〈
(Eλ̄j − Eλ̄j−1

)u, u
〉 ∣∣∣∣∣

6
n∑
i=1

ki∑
j=ki−1+1

|f(µi)− f(µ̄j)|
〈
(Eλ̄j − Eλ̄j−1

)u, u
〉

6
η

2

〈
n∑
i=1

ki∑
j=ki−1+1

(Eλ̄j − Eλ̄j−1
)u, u

〉
=
η

2
〈(EM+ε − Em)u, u〉 =

η

2
‖u‖2 =

η

2
.
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Since f is real-valued, SΠ and SΠ are symmetric operators. Hence, by Theorem 1.4.9, ‖SΠ − SΠ‖ 6
η
2
.

Similarly we have ‖SΠ′ − SΠ‖ 6
η
2

and so

‖SΠ − SΠ′‖ 6 ‖SΠ − SΠ‖+ ‖SΠ − SΠ′‖ 6 η,

as advertised.

Part 2. Let us now consider a sequence (Πn)∞n=1 of partitions of [m,M+ε] such that limn→∞ |Πn| = 0.
The operators (SΠn)∞n=1 then form a Cauchy sequence in B(H). Indeed, there is an N > 1 such that
|Πn| 6 δη for all n > N . Hence, by (2.1.2), for all n, n′ > N there holds

∥∥SΠn − SΠn′

∥∥ 6 η. Since
B(H) is complete, the sequence (SΠn)∞n=1 has a limit S ∈ B(H). In particular, there exists Nη > 1
such that |ΠNη | 6 δ η

2
and

∥∥SΠNη
− S

∥∥ 6 η
2
. Therefore, in view of (2.1.2), any partition Π smaller

than δ η
2

satisfies

‖SΠ − S‖ 6
∥∥SΠ − SΠNη

∥∥+
∥∥SΠNη

− S
∥∥ 6 η.

The limit S does not depend on the extension of f , neither on ε, for Eλ−Eµ = 0 for all M < µ < λ.
Furthermore, it is clear from Part 1 that the limit does not depend on the choice of the points µk. �

Thanks to Lemma 2.1.2, we can now make the following definition.

Definition 2.1.3 Consider a spectral family (Eλ)λ∈R with bounds m,M ∈ R and f : [m,M ] → R
continuous. The limit operator S ∈ B(H) obtained from Lemma 2.1.2 is called the integral of f
with respect to the spectral family (Eλ)λ∈R. It is written

S =

∫ M+

m

f(λ) dEλ.

For a continuous f : [m,M ]→ C, we define the integral of f with respect to (Eλ)λ∈R by

∫ M+

m

f(λ) dEλ =

∫ M+

m

<f(λ) dEλ + i

∫ M+

m

=f(λ) dEλ. �

Observe that, for any spectral family (Eλ)λ∈R, one has

∫ M+

m

dEλ = EM+ − Em = I.
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2.2 The spectral theorem for symmetric operators

We are now ready to prove the spectral theorem for bounded symmetric operators.

Theorem 2.2.1 (Spectral Theorem I) Let S be a bounded symmetric operator. There exists a
unique spectral family (Eλ)λ∈R with the following properties.

(a) Every bounded operator which commutes with S commutes with Eλ, for all λ ∈ R.

(b) For all u ∈ H there exists

Eµ+u = lim
λ↘µ

Eλu.

(c) The lower and upper bounds m,M of S are respectively lower and upper bounds for (Eλ)λ∈R.

(d) The operator S has the representation

S =

∫ M+

m

λ dEλ.

The family (Eλ)λ∈R is called the spectral family of S.

Proof. For all λ ∈ R, let E+(λ) be the projection onto ker[(S − λI) − |S − λI|], which was studied
in Lemma 1.5.9. Observe that E+(λ) is uniquely determined in this way. We will show that the
projections Eλ = I − E+(λ) form a spectral family satisfying (a)–(d).

Since E+(λ) commutes with all bounded operators which commute with S, this is also true for
Eλ. Hence, (a) is readily satisfied. In particular, EµEλ = EλEµ for all µ, λ ∈ R.

Le us now show that, if λ < µ then Eλ 6 Eµ, i.e. part (ii) of Definition 2.1.1 holds. Suppose
λ < µ and let P = Eλ(I − Eµ). We will show that P = 0. Firstly, we have

EλP = P, (I − Eµ)P = P. (2.2.1)

Moreover, by definition of Eλ and Eµ, Lemma 1.5.9 implies that

(S − λI)Eλ = (S − λI)(I − E+(λ)) 6 0, (S − µI)(I − Eµ) = (S − µI)E+(µ) > 0. (2.2.2)

Choosing u ∈ H and letting v = Pu, it follows from (2.2.1) that

Eλv = EλPu = Pu = v.
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Similarly, (I − Eµ)v = v. Therefore, by (2.2.2),

〈(S − λI)v, v〉 = 〈(S − λI)Eλv, v〉 6 0,

〈(S − µI)v, v〉 = 〈(S − µI)(I − Eµ)v, v〉 > 0.

We deduce that
(µ− λ) 〈v, v〉 = 〈(S − λI)v, v〉 − 〈(S − µI)v, v〉 6 0.

However, since µ > λ, we must have Pu = v = 0. Since u is arbitrary, we have shown that P = 0.
By definition of P , this means that Eλ = EλEµ which, by Theorem 1.3.5, is equivalent to Eλ 6 Eµ.
The family (Eλ)λ∈R therefore satisfies condition (ii) of Definition 2.1.1.

We now show that (Eλ)λ∈R satisfies (b). Let u ∈ H. Since Eλ 6 Eµ for λ < µ, 〈Eλu, u〉 is a
positive non-decreasing function of λ. Therefore, for all µ ∈ R, it has a limit from the left:

lim
λ↗µ
〈Eλu, u〉 = sup

λ<µ
〈Eλu, u〉 = lµ.

Hence, for all η > 0 there exists δ > 0 such that 0 < µ− λ < δ implies lµ− 〈Eλu, u〉 < 1
2
η. It follows

that, for µ− δ < λ < ν < µ, EλEν = Eλ =⇒

‖Eνu− Eλu‖2 =
〈
(Eν − Eλ)2u, u

〉
= 〈(Eν − Eλ)u, u〉 6 |〈Eνu, u〉 − lµ|+ |lµ − 〈Eλu, u〉| < η.

Therefore, since H is complete, an argument similar to Part 1 in the proof of Lemma 2.1.2 shows
that

lim
λ↗µ

Eλu = Eµ−u exists for all u ∈ H.

Similarly, for all u ∈ H, the limit
lim
λ↘µ

Eλu = Eµ+u

exists as well. This proves (b) and half of part (iii) of Definition 2.1.1.
We now complete the proof of part (iii) of Definition 2.1.1, i.e. we show that (Eλ)λ∈R is strongly

left-continuous. If λ < µ, we write E∆ = Eµ − Eλ and we have

EµE∆ = E∆ et (I − Eλ)E∆ = Eµ − Eλ − EλEµ + E2
λ = E∆. (2.2.3)

Using (2.2.2), E∆ > 0, and the fact that a composition of commuting positive operators is positive
(Corollary 1.5.3),

(S − µI)E∆ = (S − µI)EµE∆ 6 0,

(S − λI)E∆ = (S − λI)(I − Eλ)E∆ > 0.
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In consequence, we have the following inequalities

λE∆ 6 SE∆ 6 µE∆ if λ < µ. (2.2.4)

Consider now the operator E∆0 = Eµ − Eµ− . We want to show that E∆0 = 0. Observe that, for all
u ∈ H,

lim
λ↗µ

E∆u = E∆0u.

Thus, letting λ↗ µ in (2.2.4), we get

µE∆0 6 SE∆0 6 µE∆0 .

It follows by antisymmetry of 6 that

(S − µI)E∆0 = 0.

Let us now fix u ∈ H and set v = E∆0u, so that (S − µI)v = 0 and, by part (c) of Lemma 1.5.9, we
have

EµE∆0u = Eµv = (I − E+(µ))v = 0.

Finally, it follows from (2.2.3) that

E∆0u = lim
λ↗µ

E∆u = lim
λ↗µ

EµE∆u = EµE∆0u = 0.

Since u ∈ H is arbitrary, we have indeed shown that E∆0 = 0.
Let us now prove part (c), thereby showing that (Eλ)λ∈R satisfies condition (iv) of Definition 2.1.1.

Suppose by contradiction that λ < m and Eλ 6= 0. Then there exists u ∈ H such that Eλu 6= 0 and
we let v = Eλu. We can suppose that ‖v‖ = 1, and we obtain from (2.2.2) that

〈Sv, v〉 − λ = 〈(S − λI)v, v〉 = 〈(S − λI)Eλu, u〉 6 0.

Therefore, by definition of the lower bound of S,

m 6 〈Sv, v〉 6 λ,

a contradiction. Hence Eλ = 0 for all λ < m. Suppose now by contradiction that λ > M and Eλ 6= I.
Then there is u ∈ H such that w = (I − Eλ)u 6= 0. We can again suppose that ‖w‖ = 1. Hence, by
(2.2.2),

〈Sw,w〉 − λ = 〈(S − λI)w,w〉 = 〈(S − λI)(I − Eλ)u, u〉 > 0.

Therefore, by definition of the upper bound of S,

λ 6 〈Sw,w〉 6M,
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a contradiction. Hence Eλ = I for all λ > M .
We finally prove part (d). For a small ε > 0, consider a sequence of partitions (Πj)

∞
j=1, denoted

as
Πj : m = λj0 < λj1 < · · · < λjnj−1 < λjnj = M + ε,

and satisfying limj→∞ |Πj| = 0. For all j > 1 and all k = 1, . . . , nj, writing E∆j
k

= Eλjk
− Eλjk−1

, it

follows from (2.2.4) that
λjk−1E∆j

k
6 SE∆j

k
6 λjkE∆j

k
.

Hence, for fixed j > 1, since
∑nj

k=1 E∆j
k

= I, summation over k = 1, . . . , nj yields

SΠj 6 S 6 S̃Πj ,

where the sum SΠj is taken over the partition Πj, with the function f(λ) = λ and the choice of

µjk = λjk−1, while S̃Πj is computed with µ̃jk = λjk. Hence, letting j →∞, Lemma 2.1.2 gives∫ M+

m

λ dEλ 6 S 6
∫ M+

m

λ dEλ =⇒ S =

∫ M+

m

λ dEλ.

It remains to prove the uniqueness of the spectral family of S. This will be done in the problems
using the following lemma. �

Lemma 2.2.2 Consider a symmetric operator S and let (Eλ)λ∈R be a corresponding spectral family
satisfying parts (a) to (d) of the theorem. For any real polynomial p, there holds

p(S) =

∫ M+

m

p(λ) dEλ.

Proof. We need only show that the conclusion holds for any monomial p(λ) = λl with l > 0. We
already know that this is true for l = 0, and the theorem gives the result for l = 1. We prove the
result by induction, assuming it holds for p(λ) = λl and inferring it holds for p(λ) = λl+1. Fix
0 < η < 1 arbitrary. Using the theorem and the induction hypothesis, there exists δ > 0 such that,
for any partition Π = (λk)

n
k=0 satisfying |Π| 6 δ, there holds

‖S −
∑n

k=1 λkE∆k
‖ 6 η and

∥∥Sl −∑n
k=1 λ

l
kE∆k

∥∥ 6 η,

where E∆k
= Eλk − Eλk−1

. Let us write T =
∑n

k=1 λkE∆k
and T (l) =

∑n
k=1 λ

l
kE∆k

. For all k,

E2
∆k

= E2
λk
− 2EλkEλk−1

+ E2
λk−1

= E∆k
,
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while for all i 6= j,

E∆i
E∆j

= EλiEλj − EλiEλj−1
− Eλi−1

Eλj + Eλi−1
Eλj−1

= 0.

It follows that T (l)T =
∑n

k=1 λ
l+1
k E∆k

= T (l+1). Using∥∥SlT − Sl+1
∥∥ 6 ∥∥Sl∥∥ ‖T − S‖ 6 ‖S‖l η,∥∥ST (l) − Sl+1
∥∥ 6 ‖S‖∥∥T (l) − Sl

∥∥ 6 ‖S‖ η,
and ∥∥Sl+1 − SlT − T (l)S + T (l)T

∥∥ =
∥∥(Sl − T (l)

)
(S − T )

∥∥
6
∥∥Sl − T (l)

∥∥ ‖S − T‖ 6 η2,

we deduce that∥∥T (l+1) − Sl+1
∥∥ =

∥∥(Sl+1 − SlT − T (l)S + T (l)T ) + (SlT − Sl+1) + (ST (l) − Sl+1)
∥∥

6 η2 + ‖S‖l η + ‖S‖ η.

Hence, by Lemma 2.1.2,

Sl+1 =

∫ M+

m

λl+1 dEλ,

which concludes the proof. �

Corollary 2.2.3 Let S be a symmetric operator and (Eλ)λ∈R a corresponding spectral family satis-
fying parts (a) to (d) of the theorem. For all u, v ∈ H and all real polynomial p, we have

〈p(S)u, v〉 =

∫ M+ε

m

p(λ) d〈Eλu, v〉 ∀ε > 0. (2.2.5)

Proof. See Problem 2.1. �

The right-hand side of (2.2.5) is a Riemann-Stieltjes integral (cf. Appendix A). For all u ∈ H the
function λ 7→ 〈Eλu, u〉 is non-decreasing and so, in particular, of bounded variations in [m,M + ε].
Its total variation in [m,M + ε] is equal to ‖u‖2. Furthermore, the value of the right-hand side does
not depend on ε. This follows again from the fact that, for λ > µ > M , Eλ − Eµ = 0.
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2.3 Further properties of the spectral family

We conclude this chapter by discussing the relation between the spectral family of a symmetric op-
erator S and the two components of its spectrum, σp(S) and σc(S). Notice that, by Corollary 1.4.14,
σr(S) = ø for any symmetric operator S.

Theorem 2.3.1 Let S be a symmetric operator and (Eλ)λ∈R the corresponding spectral family. The
real number λ0 is an eigenvalue of S if and only if the mapping λ 7→ Eλ is discontinuous at λ = λ0

(i.e. Eλ0 6= Eλ+0 ). In this case,

ker(S − λ0I) = rge(Eλ+0 − Eλ0). (2.3.1)

Proof. See Problem 2.6. �

The next result completes our discussion by a remarkable characterization of the resolvent set.

Theorem 2.3.2 Let S be a symmetric operator and (Eλ)λ∈R the corresponding spectral family. Then
a real number λ0 belongs to the resolvent set ρ(S) of S if and only if there exists ε > 0 such that the
mapping λ 7→ Eλ is constant on the interval [λ0 − ε, λ0 + ε].
We call such a λ0 a point of constancy of (Eλ)λ∈R.

Our final result follows immediately from the two previous theorems, and Corollary 1.4.14

Corollary 2.3.3 Let S be a symmetric operator and (Eλ)λ∈R the corresponding spectral family. A
real number λ0 belongs to the continuous spectrum σc(S) of S if and only if λ0 is neither a point of
constancy, nor a point of discontinuity of (Eλ)λ∈R.

Problems

1. Prove Corollary 2.2.3.
Hint: Use Lemma 2.2.2 and Theorem A.2.1.

2. Prove the uniqueness of the spectral family in Theorem 2.2.1.
Hint: Use the Weierstrass approximation theorem, Corollary 2.2.3 and Theorems A.3.3 and
A.3.4.
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3. We consider again the operator X : L2(0, 1)→ L2(0, 1), (Xu)(x) = xu(x). In Problem 1.18 we
showed that σ(X) = σc(X) = [0, 1]. Prove that the spectral family (Eλ)λ∈R of X is given by

Eλu =


0 if λ 6 0,
χ[0,λ]u if λ ∈ (0, 1],
u if λ > 1,

where χ[0,λ] is the characteristic function of the interval [0, λ].
Hint: Start by showing that |X − λI| is the operator Tλ : L2(0, 1) → L2(0, 1) defined by
(Tλu)(x) = |x− λ|u(x), x ∈ [0, 1]. Then find the corresponding projection E+(λ) appearing in
the proof of Theorem 2.2.1.

4. From Theorems 2.2.1, 2.3.1 and 2.3.2, deduce the structure of the spectral family and the
spectral decomposition (a) of a (finite-dimensional) Hermitian matrix, (b) of a compact operator
having infinitely many eigenvalues.

5. Verify that the spectral family obtained in Problem 2.3 satisfies the conclusions of Theo-
rems 2.3.1 and 2.3.2.

6. The goal of this problem is to prove Theorem 2.3.1. First, the whole proof can be reduced to
checking (2.3.1). Explain why. Then, to prove (2.3.1), one can proceed as follows.

(a) To prove that ker(S − λ0I) ⊃ rge(Eλ+0 − Eλ0), use inequality (2.2.4).

(b) The other inclusion is more involved. We need to show that, if u ∈ ker(S − λ0I) then
F0u = u, where we have put F0 = Eλ+0 − Eλ0 — explain why this is enough. To do this,

use Corollary 2.2.3 with p(λ) = (λ−λ0)2 to prove that 〈Eλ0−εu, u〉 = 〈u− Eλ0+εu, u〉 = 0,
for any ε > 0.

7. In this problem we shall prove Theorem 2.3.2. We will use the fact that λ0 ∈ ρ(S) if and only
if there exists γ > 0 such that

‖(S − λ0I)u‖ > γ ‖u‖ , u ∈ H. (2.3.2)

(a) To prove that the constancy condition implies λ0 ∈ ρ(S), use Corollary 2.2.3 with p(λ) =
(λ− λ0)2, and (2.3.2).

(b) To show that λ0 is a point of constancy if it is in the resolvent set, proceed by contradiction
using again (2.3.2) and Corollary 2.2.3, with p(λ) = (λ− λ0)2 and a suitably chosen u.
Hint: The identities EλEµ = EµEλ = Eλ, λ 6 µ, can be useful here.





Chapter 3

The spectral decomposition of selfadjoint
operators

In this chapter we will extend the spectral theorem to general (unbounded) selfadjoint operators.
We start by introducing the properties of unbounded operators that will be relevant to our analysis.

3.1 Unbounded linear operators

Some natural operators in a Hilbert space H fail to be bounded. Those are typically only defined on
a subspace of H, called their domain.

Definition 3.1.1 Let H be a Hilbert space. A linear operator (or simply operator) in H is a
mapping T : DT ⊆ H → H satisfying:

(i) DT is a subspace of H called the domain of T ;

(ii) for all u, v ∈ DT ,

T (u+ v) = Tu+ Tv;

(iii) for all λ ∈ C and all u ∈ DT ,

T (λu) = λTu. �

We also adapt in the obvious way the notions of range and kernel. Let T be a linear operator
acting in H. Its range is defined as

rge(T ) = {Tu ; u ∈ DT},

35
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and its kernel as
ker(T ) = {u ∈ DT ; Tu = 0}.

Note that, unlike the kernel of a bounded operator, this is not a closed subspace in general.

We say that T : DT ⊆ H → H is bounded (on DT ) if there is a constant C > 0 such that, for all
u ∈ DT ,

‖Tu‖ 6 C ‖u‖ . (3.1.1)

Consider two operators T and T ′ in H, with respective domains DT and DT ′ . If

DT ⊆ DT ′ and Tu = T ′u for all u ∈ DT ,

we say that T ′ is an extension of T , and we write

T ⊆ T ′ or T ′ ⊇ T.

This is easily seen to define a partial order on the operators of H. In particular, two operators are
equal (T = T ′, i.e. T ⊆ T ′ and T ⊇ T ′) if and only if DT = DT ′ and Tu = T ′u for all u ∈ DT .

Proposition 3.1.2 Consider an operator T : DT ⊆ H → H satisfying (3.1.1) on DT . Then there
exists a unique linear extension of T to DT , still denoted T : DT → H. Furthermore, this extension
satisfies (3.1.1) on DT .

Proof. Suppose T satisfies (3.1.1) on DT , let u ∈ DT and consider a sequence (un) ⊂ DT such that
un → u. Since

‖Tun − Tum‖ = ‖T (un − um)‖ 6 C ‖un − um‖ → 0, n,m→∞,

the sequence (Tun) is Cauchy in H. Let us denote by Tu its limit. This defines a linear extension
of T to DT (still denoted T ). It is clear that the extension is unique by uniqueness of the limit.
Furthermore, since un satisfies (3.1.1) for all n ∈ N, passing to the limit yields (3.1.1) on DT . �

Remark 3.1.3 By the same argument, one shows that a linear functional that is bounded on a
subspace can be extended uniquely to a bounded linear functional on the closure of this subspace.

If DT is dense in H, we say that T is densely defined. Proposition 3.1.2 implies that any
bounded densely defined operator can be extended to an operator in B(H).

Similarly to the bounded case, we define the graph of an operator T : DT ⊆ H → H as

GT = {(x, Tx) ; x ∈ DT} ⊂ H ×H,
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and we equip the product Hilbert space H×H with the natural inner product inherited from H:〈〈〈
(u, v), (u′, v′)

〉〉〉
:= 〈u, u′〉+ 〈v, v′〉 , (u, v), (u′, v′) ∈ H.

If T1 and T2 are linear operators, then obviously T1 ⊆ T2 is equivalent to GT1 ⊆ GT2 .

Definition 3.1.4 We say that T is closed if its graph is a closed subset of H×H. �

Consider two linear operators T1 : DT1 ⊆ H → H and T2 : DT2 ⊆ H → H, and a scalar λ ∈ C.
The sum of T1 and T2 is defined as:

T1 + T2 : DT1 ∩DT2 −→ H
u 7−→ T1u+ T2u.

The multiplication of T1 by λ is defined by:

λT1 : DT1 −→ H
u 7−→ λT1u.

Finally, the composition (or product) of T1 and T2 is the operator defined as:

T1T2 : {u ∈ DT2 ; T2u ∈ DT1} −→ H
u 7−→ T1(T2u).

We also introduce the notion of inverse for unbounded operators. If an operator T : DT → H is
one-to-one, we call inverse of T the mapping T−1 defined by:

T−1 : rge(T ) −→ H
Tu 7−→ u.

Observe that rge(T−1) = DT . Furthermore, if T is one-to-one, there holds

TT−1 ⊆ I and T−1T ⊆ I.

Definition 3.1.5 We define the resolvent set ρ(T ) of T as the set of all complex numbers λ such
that T −λI is a bijection from DT onto H, with a bounded inverse. The (point/continuous/residual)
spectrum is then defined exactly as in the bounded case; see Definition 1.2.9. �

Note that for a complex number λ to belong to ρ(T ) several conditions must be met, which
in some cases are not independent. For instance, if T is closed it follows from the Closed Graph
Theorem that, if T − λI is a bijection from DT onto H then its inverse is automatically bounded.
For other relations, see Problem 3.2.
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3.2 The adjoint operator

We shall now extend the notion of an adjoint operator to unbounded operators having a dense
domain. In the case of a bounded T , recall that the adjoint T ∗ of T was merely defined by

〈Tu, v〉 = 〈u, T ∗v〉 for all u, v ∈ H. (3.2.1)

This definition relies on the fact that, for all v ∈ H, the mapping

u 7→ 〈Tu, v〉 (3.2.2)

is a continuous linear functional on H. Then the Riesz Representation Theorem 1.2.8 yields a unique
v∗ ∈ H such that 〈Tu, v〉 = 〈u, v∗〉, for all u ∈ H.

In case T is not bounded, the definition of the adjoint is less straightforward. Indeed, the mapping
(3.2.2) can a priori be defined only on DT . Then, in general, it will not be bounded on DT for all
v ∈ H. Furthermore, even if (3.2.2) is bounded for some v, then if DT is not dense there will be
several possible continuous extensions to H and so, by Riesz, several points v∗ ∈ H satisfying

〈Tu, v〉 = 〈u, v∗〉 for all u ∈ DT .

These considerations lead naturally to the following definition.

Definition 3.2.1 Consider a densely defined operator T : DT ⊆ H → H. The domain of the
adjoint T ∗ of T is defined as

DT ∗ = {v ∈ H ; there exists C > 0 s.t. |〈Tu, v〉| 6 C ‖u‖ for all u ∈ DT} .

Now for all v ∈ DT ∗ , since DT is dense in H, Remark 3.1.3 yields a unique continuous extension to
H of the functional u 7→ 〈Tu, v〉. Then, for all v ∈ DT ∗ , the Riesz Representation Theorem 1.2.8
allows us to define T ∗v as the unique element of H satisfying

〈Tu, v〉 = 〈u, T ∗v〉 for all u ∈ DT . �

We now show that DT ∗ is a subspace and T ∗ is linear. Let u1, u2 ∈ DT ∗ and λ1, λ2 ∈ C. Then
indeed, for all u ∈ DT , we have

〈Tu, λ1u1 + λ2u2〉 = λ1 〈Tu, u1〉+ λ2 〈Tu, u2〉
= λ1 〈u, T ∗u1〉+ λ2 〈u, T ∗u2〉
= 〈u, λ1T

∗u1 + λ2T
∗u2〉 .



3.2. THE ADJOINT OPERATOR 39

It follows that λ1u1 + λ2u2 ∈ DT ∗ and

T ∗(λ1u1 + λ2u2) = λ1T
∗u1 + λ2T

∗u2.

Note that, at this stage, we do not know whether DT ∗ is trivial or not. The next lemma ensures that
DT ∗ 6= {0} if rge(T ) is not dense in H.

By definition, a densely defined operator T satisfies the fundamental relation

〈Tu, v〉 = 〈u, T ∗v〉 for all u ∈ DT and all v ∈ DT ∗ . (3.2.3)

The following result extends Lemma 1.4.4 to unbounded operators.

Lemma 3.2.2 Let T : DT ⊆ H → H be densely defined. Then

H = ker(T ∗)⊕ rge(T ).

Proof. We will prove that rge(T )⊥ = ker(T ∗). In particular, ker(T ∗) is closed. Then the result
follows, as in the bounded case, from the identity M⊥⊥ = M , satisfied by any subspace M ⊆ H.

Let v ∈ ker(T ∗). By (3.2.3), it follows that v ∈ DT ∗ and 〈Tu, v〉 = 0 for all u ∈ DT . Hence,
v ∈ rge(T )⊥. Conversely, let v ∈ rge(T )⊥. Then 〈Tu, v〉 = 0 for all u ∈ DT . We deduce that v ∈ DT ∗

and

〈u, T ∗v〉 = 0 for all u ∈ DT . (3.2.4)

Now let u ∈ H. Since DT is dense, there exists a sequence (un)∞n=1 ⊂ DT such that un → u. Hence,
by (3.2.4), we have

〈u, T ∗v〉 = lim
n→∞

〈un, T ∗v〉 = 0.

We conclude that 〈u, T ∗v〉 = 0 for all u ∈ H. Thus, v ∈ ker(T ∗). �

The following proposition gives a fundamental property of the adjoint.

Proposition 3.2.3 Let T : DT ⊆ H → H be densely defined. Then T ∗ is closed.

Proof. Consider a sequence (un, T
∗un)∞n=1 in the graph of T ∗ which converges to a point (u, v) ∈ H×H.

Let us show that u ∈ DT ∗ and v = T ∗u. It follows from

‖(un, T ∗un)− (u, v)‖2
H×H = 〈un − u, un − u〉+ 〈T ∗un − v, T ∗un − v〉

= ‖un − u‖2 + ‖T ∗un − v‖2
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that un → u and T ∗un → v as n→∞. Then, by the continuity of the inner product, for all w ∈ DT :

〈Tw, u〉 = lim
n→∞

〈Tw, un〉 = lim
n→∞

〈w, T ∗un〉 = 〈w, v〉 .

Hence, w 7→ 〈Tw, u〉 is bounded on DT , u ∈ DT ∗ and 〈w, T ∗u〉 = 〈Tw, u〉 = 〈w, v〉. Since DT is
dense and 〈w, T ∗u− v〉 = 0 for any w ∈ DT , we conclude that T ∗u = v. �

The adjoint operator also enjoys the following elementary properties.

Properties 3.2.4 Consider two densely defined operators T1 : DT1 → H, T2 : DT1 → H, and λ ∈ C.
Then:

(a) (λT )∗ = λT ∗;

(b) if DT1+T2 is dense, then T ∗1 + T ∗2 ⊆ (T1 + T2)∗;

(c) if DT2T1 is dense, then T ∗1 T
∗
2 ⊆ (T2T1)∗;

(d) if T1 ⊆ T2, then T ∗1 ⊇ T ∗2 .

3.3 Commutativity and reduction

We define here what it means for a bounded operator to commute with an unbounded operator.

Definition 3.3.1 Consider a bounded operator B and an operator A : DA ⊂ H → H. We say that
B commutes with A, and we write B`A, if

BA ⊆ AB.

Explicitly, BA ⊆ AB means that DA ⊆ {u ∈ H ; Bu ∈ DA} and BAu = ABu for all u ∈ DA. �

More generally, the commutativity between two unbounded selfadjoint operators will be defined
later through the commutativity of their respective spectral families. This is the notion of commu-
tativity which is required by quantum mechanics.

Lemma 3.3.2 Let P be a projection, Q = I − P the projection onto the orthogonal complement of
rgeP , and A be any operator acting in H. If P`A, then the closed subspaces rgeP and rgeQ reduce
the operator A in the sense that, on the one hand,

PAP = AP and QAQ = AQ,

and, on the other hand,
A = AP + AQ.
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Proof. Since P`A, i.e. PA ⊆ AP , we have

PAP = (PA)P ⊆ (AP )P = AP,

and since the operators PAP and AP have same domain,

PAP = AP.

Furthermore, since

QA = (I − P )A = A− PA ⊆ A− AP = A(I − P ),

i.e. Q`A, we obtain similarly that QAQ = AQ. On the other hand, we have

A = (P +Q)A = PA+QA ⊆ AP + AQ ⊆ A(P +Q) = A,

and so

A = AP + AQ.

�

3.4 More on operator graphs

We define two linear operators U,V : H×H → H×H by

U(u, v) = (v, u) and V(u, v) = (v,−u), (u, v) ∈ H ×H.

They are Hilbert space automorphisms of H × H (i.e. they are bijective and preserve the inner
product). Furthermore, they satisfy the following identities, where I denotes the identity on H×H:

UV = −VU and −V2 = U2 = I.

The following observation will be useful.

Lemma 3.4.1 Let T be a densely defined operator in H. The graphs of T and T ∗ satisfy

GT ∗ =
(
VGT

)⊥
or, equivalently, VGT = (GT ∗)

⊥.
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Proof. For all u ∈ DT and all v ∈ DT ∗ we have

〈Tu, v〉 = 〈u, T ∗v〉 ,

which can be written as 〈〈〈
V(u, Tu), (v, T ∗v)

〉〉〉
= 0. (3.4.1)

Hence, we already remark that any element of GT ∗ is orthogonal to VGT . Now the proof is in two
steps.

GT ∗ ⊆
(
VGT

)⊥
. Consider (w, T ∗w) ∈ GT ∗ and a sequence (un, vn)∞n=1 ⊂ VGT which converges to

(u, v) ∈ VGT = VGT . It then follows from (3.4.1) that〈〈〈
(u, v), (w, T ∗w)

〉〉〉
= lim

n→∞

〈〈〈
(un, vn), (v, T ∗v)

〉〉〉
= 0.

Hence, (w, T ∗w) ∈
(
V GT

)⊥
.(

VGT

)⊥ ⊆ GT ∗. Let (u, v) ∈
(
VGT

)⊥
. Then, in particular, for all w ∈ DT ,

0 =
〈〈〈
V(w, Tw), (u, v)

〉〉〉
= 〈Tw, u〉 − 〈w, v〉 . (3.4.2)

Therefore, the mapping w 7→ 〈Tw, u〉 coincides on DT with the linear functional w 7→ 〈w, v〉, which
is bounded on H. Hence, u ∈ DT ∗ and T ∗u = v, i.e. (u, v) ∈ GT ∗ . �

For closed operators, the previous lemma has the following important consequence.

Theorem 3.4.2 Let T be a closed operator with dense domain. Then the domain of T ∗ is also dense
in H, and so T ∗∗ = (T ∗)∗ does exist. Furthermore, T ∗∗ = T .

Proof. Let

h ∈
(
DT ∗

)⊥
. (3.4.3)

We will prove that h = 0. Since V is unitary, it follows from Lemma 3.4.1 that

GT = GT = V2GT = V
(
GT ∗

)⊥
=
(
VGT ∗

)⊥
. (3.4.4)

Hence,
H×H = GT ⊕VGT ∗ ,

so there is a unique uh ∈ DT and a unique vh ∈ DT ∗ such that

(0, h) = (uh, Tuh) + (T ∗vh,−vh),
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that is,

0 = uh + T ∗vh, h = Tuh − vh.

Combining these equations, we obtain

‖vh‖2 = 〈vh, vh〉 = 〈vh, Tuh〉 = 〈T ∗vh, uh〉 = −〈T ∗vh, T ∗vh〉 = −‖T ∗vh‖2 ,

so that vh = 0. Returning to the above equations, we deduce that uh = 0 and h = Tuh = 0. Hence,
DT ∗ is dense in H, and T ∗∗ exists.

Now, applying Lemma 3.4.1 to T ∗ instead of T , (3.4.4) yields

GT ∗∗ =
(
VGT ∗

)⊥
= GT . (3.4.5)

Hence, T ∗∗ = T . �

The next theorem will play an important role in the proof of the spectral theorem for selfadjoint
operators.

Theorem 3.4.3 Let T be a closed operator with dense domain. The operators

B = (I + T ∗T )−1 and C = T (I + T ∗T )−1

are defined and bounded on H, with

‖B‖ 6 1 and ‖C‖ 6 1.

Furthermore, B is symmetric and positive.

Proof. Since T is closed and densely defined, it follows from (3.4.4) that GT and VGT ∗ are orthogonal
complements in H×H. Hence, for all h ∈ H, there is a unique uh ∈ DT and a unique vh ∈ DT ∗ such
that

(h, 0) = (uh, Tuh) + (T ∗vh,−vh), (3.4.6)

or, by components, {
h = uh + T ∗vh,
0 = Tuh − vh.

This first observation allows us to define two linear maps B and C by

Bh = uh and Ch = vh.
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These operators are defined on H, and satisfy{
I = B + T ∗C,
0 = TB− C,

from which we deduce that

C = TB and I = B + T ∗TB = (I + T ∗T )B. (3.4.7)

Furthermore, the two terms in the right-hand side of (3.4.6) are orthogonal, so

‖h‖2 = ‖(h, 0)‖2
H×H = ‖(uh, Tuh)‖2

H×H + ‖(T ∗vh,−vh)‖2
H×H

= ‖uh‖2 + ‖Tuh‖2 + ‖T ∗vh‖2 + ‖vh‖2 .

Therefore,
‖Bh‖2 + ‖Ch‖2 = ‖uh‖2 + ‖vh‖2 6 ‖h‖2 ,

and it follows that
‖B‖ 6 1 and ‖C‖ 6 1.

We now observe that, for any u in the domain of T ∗T ,

〈(I + T ∗T )u, u〉 = 〈u, u〉+ 〈Tu, Tu〉 > 〈u, u〉 = ‖u‖2 > 0.

Hence, if (I + T ∗T )u = 0 then u = 0. This shows that I + T ∗T is one-to-one and so has an inverse
(I+T ∗T )−1. But now the right identity in (3.4.7) implies that rge(I+T ∗T ) = H, and it follows that

B = (I + T ∗T )−1.

Finally, B is symmetric and positive. Indeed, for all u, v ∈ H,

〈Bu, v〉 = 〈Bu, (I + T ∗T )Bv〉 = 〈Bu,Bv〉+ 〈Bu, T ∗TBv〉
= 〈Bu,Bv〉+ 〈T ∗TBu,Bv〉 = 〈(I + T ∗T )Bu,Bv〉 = 〈u,Bv〉 .

Furthermore, for all u ∈ H,

〈Bu, u〉 = 〈Bu, (I + T ∗T )Bu〉 = 〈Bu,Bu〉+ 〈TBu, TBu〉 = ‖Bu‖2 + ‖TBu‖2 > 0.

This concludes the proof. �

A useful corollary of Theorem 3.4.3 will be stated in the next section.
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3.5 Symmetric and selfadjoint operators

We will now introduce the terms symmetric and selfadjoint in the framework of unbounded operators.
The two notions coincide for bounded operators.

Definition 3.5.1 We call symmetric an operator T : DT ⊆ H → H such that DT is dense in H
and

T ⊆ T ∗. �

Proposition 3.5.2 An operator T : DT ⊆ H → H is symmetric if and only if DT is dense and

〈Tu, v〉 = 〈u, Tv〉 for all u, v ∈ DT . (3.5.1)

Proof. If T is symmetric then DT is dense, DT ⊂ DT ∗ and T ∗v = Tv for all u ∈ DT . Since,
〈Tu, v〉 = 〈u, T ∗v〉 for all u ∈ DT and v ∈ DT ∗ , in particular (3.5.1) holds.

Conversely, suppose that DT is dense and (3.5.1) holds. Let v ∈ DT . Then (3.5.1) implies that
the linear functional u 7→ 〈Tu, v〉 is bounded on DT , hence v ∈ DT ∗ . Thus, DT ⊆ DT ∗ . Furthermore,
by definition of T ∗, we deduce from (3.5.1) that 〈u, T ∗v − Tv〉 = 0 for all u ∈ DT . Since DT is dense,
it follows that T ∗v − Tv = 0. This shows that T ∗ indeed coincides with T on DT . �

Definition 3.5.3 An operator T is said to be closable provided the closure of its graph is the graph
of an operator. This operator is then called the closure of T , denoted T :

GT = GT . �

Remark 3.5.4 Let T be a symmetric operator. Then the domain of T ∗ is dense in H. Indeed,

H = DT ⊆ DT ∗ ⊆ H.

Hence, T ∗∗ is well defined. The operator T ∗∗ is a closed extension of T since, by Lemma 3.4.1,

GT ∗∗ =
(
VGT ∗

)⊥
= V2GT = GT ⊇ GT . (3.5.2)

Thus, T is closable, with T = T ∗∗. (As will be seen in Problem 3.4, this relation between closure
and adjoint also holds for non-symmetric operators, whenever T ∗ is densely defined.)

Furthermore, T ∗∗ is symmetric. Indeed, T ⊆ T ∗∗ implies that DT ∗∗ is dense. Moreover, since
T ⊆ T ∗, it follows by Theorem 3.4.2 that

T ∗∗ ⊆ T ∗ = (T ∗)∗∗ = (T ∗∗)∗.
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If B ∈ B(H) is symmetric in the sense of Definition 3.5.1, then it is symmetric in the sense of
bounded operators, i.e. B∗ = B. However, for a general densely defined operator T , being symmetric
does not imply T ∗ = T .

Definition 3.5.5 An operator T : DT ⊆ H → H is called selfadjoint if DT is dense in H and

T = T ∗. �

It follows immediately from Proposition 3.2.3 that a selfadjoint operator is closed. Remark 3.5.4
shows that any symmetric operator has closed symmetric extensions. However, a symmetric operator
T (even closed) does not necessarily possess a selfadjoint extension. If it does, the inclusions

T ⊆ A = A∗ ⊆ T ∗

indicate where a selfadjoint extension is to be found.
A symmetric operator T is called maximal symmetric if it has no proper symmetric extension,

i.e. if there is no symmetric operator S such that T ⊆ S and T 6= S. Observe that any selfadjoint A
is maximal symmetric. Indeed,

A ⊆ T and T ⊆ T ∗

implies
A ⊆ T ⊆ T ∗ ⊆ A∗ = A,

and so T = A.
We say that a symmetric operator A is essentially selfadjoint if A is selfadjoint. The proof of

the next theorem can be found in [Wei80, p. 108].

Theorem 3.5.6 A symmetric operator A is essentially selfadjoint if and only if the subspaces
rge(A± iI) are dense in H.

We conclude this section with the following corollary of Theorem 3.4.3.

Corollary 3.5.7 If A is selfadjoint, then the operators B = (I + A2)−1 and C = AB given by
Theorem 3.4.3 have the following additional properties:

(a) B(DA) = DA3;

(b) B`A, i.e. BA ⊆ AB;

(c) CB = BC;

(d) any operator T ∈ B(H) such that T`A satisfies TB = BT .
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Proof. Let us first prove that B(DA) = DA3 . Since (I + A2)B = I and DA−C = DA,

u ∈ DA =⇒ (A− C)u = Au− ABu
= A(I − B)u

= A
(
(I + A2)B− B

)
u

= A3Bu.

Hence, B(DA) ⊆ DA3 . Conversely, if v ∈ DA3 ⊆ DA2 = DB−1 , then

u = B−1v = (I + A2)v ∈ DA.

This shows that v ∈ B(DA). Hence, DA3 ⊆ B(DA).
We now show that BA ⊆ AB. Let u ∈ DA. Then Bu ∈ DA3 , ABu ∈ DA2 and we have

ABu = B(I + A2)ABu = BA(I + A2)Bu = BAu.

It follows that
BC = (BA)B ⊆ (AB)B = CB,

and, since BC is defined everywhere, BC = CB.
Finally, for T ∈ H such that T`A, we have in particular that

TA2 ⊆ ATA ⊆ A2T, (3.5.3)

and so
TB−1 = T (I + A2) ⊆ (I + A2)T = B−1T. (3.5.4)

It also follows from (3.5.3) that, if u ∈ DA2 then TA2u = A2Tu, and so Tu ∈ DA2 . Consider u ∈ DA

arbitrary. By part (a), Bu ∈ DA3 ⊆ DA2 and so TBu ∈ DA2 = DB−1 . It then follows by (3.5.4) that

TBu = BB−1TBu = BTB−1Bu = BTu.

Since DA is dense in H and since TB and BT are continuous, it follows that TB = BT . �

3.6 Integration with respect to a spectral family

In this section we extend the notion of spectral family in a natural way to deal with unbounded
operators and, using Lebesgue integration, we define the integral with respect to a spectral family
for a large class of functions.
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Definition 3.6.1 A spectral family on H is a mapping E : R → B(H), denoted (Eλ)λ∈R which
satisfies (i)–(iii) of Definition 2.1.1 and, instead of property (iv) of Definition 2.1.1,

(iv)’ for all u ∈ H:
lim

λ→−∞
Eλu = 0 and lim

λ→∞
Eλu = u. �

The following preliminary result was essentially proved during the proof of the spectral theorem
for bounded symmetric operators.

Lemma 3.6.2 Let E : R→ B(H) satisfy parts (i) and (ii) of Definition 2.1.1. Then for all µ ∈ R,
there exist projections Eµ− and Eµ+ such that, for all u ∈ H,

lim
λ↗µ

Eλu = Eµ−u and lim
λ↘µ

Eλu = Eµ+u.

Now consider a spectral family (Eλ)λ∈R. For all u ∈ R, the function

Fu : R −→ R,
λ 7−→ Fu(λ) := 〈Eλu, u〉 = ‖Eλu‖2 ,

is non-decreasing, left-continuous, and satisfies

lim
λ→−∞

Fu(λ) = 0 and lim
λ→∞

Fu(λ) = ‖u‖2 .

We can in particular associate to each function Fu the corresponding Lebesgue-Stieltjes measure µFu
which we denote by µ‖Eλu‖2 (cf. Section B.1). We observe that µ‖Eλu‖2 is a finite measure on R, with

µ‖Eλu‖2(R) = Fu(∞)− Fu(−∞) = ‖u‖2 .

We now make the following definition.

Definition 3.6.3 Consider a spectral family (Eλ)λ∈R. We shall say that a function f : R → C is
E-measurable if f is µ‖Eλu‖2-measurable for all u ∈ H. �

The scope of this definition is very large. Indeed, all Lebesgue-measurable functions are E-
measurable for any spectral family E, as can be seen from Theorem B.1.1 and Theorem B.2.1.

To define the integral with respect to a spectral family, we start with a step function t : R→ C,

t =
n∑
k=0

ckχIk ,
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where the ck’s are complex constants and the Ik’s are non-empty pairwise disjoint intervals of one of
the following forms:

(ak, bk), [ak, bk), (ak, bk], [ak, bk].

The integral of t with respect to the spectral family (Eλ)λ∈R is now defined as∫
R
t(λ) dEλ =

n∑
k=0

ckE(Ik),

where

E
(
(a, b)

)
= Eb − Ea+ , E

(
[a, b)

)
= Eb − Ea, E

(
(a, b]

)
= Eb+ − Ea+ , E

(
[a, b]

)
= Eb+ − Ea

if a, b are finite, while
E([a,∞)) = I − Ea, E((−∞, b]) = Eb+ , etc.

For any step function t we have

∥∥∥∫ t(λ) dEλu
∥∥∥2

=

〈
n∑
k=0

ckE(Ik)u,
n∑
j=0

cjE(Ij)u

〉
=

n∑
k=0

n∑
j=0

ckc̄j 〈E(Ik)u,E(Ij)u〉

=
n∑
k=0

|ck|2 〈E(Ik)u, u〉 =

∫
|t(λ)|2 dµ‖Eλu‖2 ,

where the integral in the right-hand side is a Lebesgue-Stieltjes integral (cf. Appendix B). Here and
henceforth, unless otherwise specified, the integrals are taken over R.

Consider now an E-measurable function f : R→ C. By Theorem B.3.1, for all u ∈ H such that
f ∈ L2(R, µ‖Eλu‖2), there is a sequence of step functions (tn)∞n=1 converging to f in L2(R, µ‖Eλu‖2).
This sequence being Cauchy in L2(R, µ‖Eλu‖2) there holds, as n,m→∞,∥∥∥∫ tn(λ) dEλu−

∫
tm(λ) dEλu

∥∥∥2

=

∫
|tn(λ)− tm(λ)|2 dµ‖Eλu‖2 −→ 0.

Therefore, the sequence
( ∫

tn(λ) dEλu
)∞
n=0

is Cauchy in H, hence convergent, and we let∫
f(λ) dEλu = lim

n→∞

∫
tn(λ) dEλu.

This definition is independent of the choice of the sequence (tn)∞n=1, as can be seen by replacing in
the above calculation tm(λ) by another sequence t̃n(λ) converging to f(λ) as n→∞.
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Letting

DE(f) =
{
u ∈ H ; f ∈ L2(R, µ‖Eλu‖2)

}
,

we have thus defined a mapping

E(f) : DE(f) −→ H,

u 7−→
∫
f(λ) dEλu. (3.6.1)

Definition 3.6.4 We denote the linear operator (3.6.1) by
∫
f(λ) dEλ and we call it the integral

of f with respect to (Eλ)λ∈R. �

The following theorem gives the main properties of the integral.

Theorem 3.6.5 Consider a spectral family (Eλ)λ∈R and f : R→ C an E-measurable function.

(a) The domain DE(f) is dense in H.

(b) The operator E(f) is normal, i.e. E(f)E(f)∗ = E(f)∗E(f).

(c) u ∈ DE(f) ⇐⇒ ‖E(f)u‖2 =
∫
|f |2 dµ‖Eλu‖2 <∞.

(d) If f is bounded, then DE(f) = H, E(f) ∈ B(H), and ‖E(f)‖ 6 ess supλ∈R |f(λ)|.

(e) If f(λ) = 1 for all λ ∈ R, then E(f) = I.

(f) For all u ∈ DE(f),

〈E(f)u, u〉 =

∫
f(λ) dµ‖Eλu‖2 .

(g) For a, b ∈ C and any E-measurable function g : R→ C,

aE(f) + bE(g) ⊆ E(af + bg) and DE(f)+E(g) = DE(|f |+|g|).

(h) For any E-measurable function g : R→ C,

E(f)E(g) ⊆ E(fg) and DE(f)E(g) = DE(g) ∩DE(fg);

(i) We have

E(f̄) = E(f)∗ and DE(f)∗ = DE(f).
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(j) For all µ ∈ R,
EµE(f) ⊆ E(f)Eµ,

with equality if f is bounded.

Proof. See Problem 3.10. �

We now observe that, given a bounded symmetric operator A onH, Theorem 2.2.1 yields a unique
spectral family (Eλ)λ∈R in the sense of Definition 2.1.1 — which is, a fortiori, a spectral family in
the sense of Definition 3.6.1 — such that A =

∫
λ dEλ. (For continuous functions, the equivalence

between the present theory of integration and that of Chapter 2 in the case where the spectral family
has finite bounds is studied in Problem 3.11.) Hence, for a bounded symmetric operator A and its
spectral family (Eλ)λ∈R, we can now make the following definition.

Let f : [m,M ] → C be a function whose extension to R by f(λ) = 0 for all λ ∈ R\[m,M ] is
E-measurable. The operator f(A) is defined as

f(A) = E(f) =

∫
f(λ) dEλ.

The functions of A have the following properties.

Theorem 3.6.6 Consider a bounded symmetric operator A and its spectral family (Eλ)λ∈R given
by Theorem 2.2.1. Let f, g : R → C be E-measurable functions such that f(λ) = g(λ) = 0 for all
λ ∈ R\[m,M ]. Then the following holds.

(a) If f is bounded, then f(A) ∈ B(H) and

‖f(A)‖ 6 ess sup
λ∈[m,M ]

|f(λ)| .

(b) If f and g are bounded, then

f(A)g(A) =

∫ M+

m

f(λ)g(λ) dEλ.

(c) f(A)∗ = f̄(A).

(d) Any bounded operator which commutes with A commutes with f(A).

Proof. Parts (a) to (c) are direct consequences of Theorem 3.6.5, and part (d) will be proved in
Problem 3.12. �
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3.7 The spectral theorem for selfadjoint operators

Our proof of the spectral theorem follows that of Riesz and Lorch, as presented in [RSN90]. Another
proof due to von Neumann, based on the Cayley transform, can also be found in [RSN90]. The main
idea in Riesz’s proof is to reduce the problem to the case of bounded symmetric operators by a limit
procedure. With start with the following result.

Lemma 3.7.1 Let

H1,H2, . . . ,Hi, . . .

be a sequence of closed, pairwise orthogonal, subspaces of the Hilbert space H, such that ⊕iHi = H.
We denote by ui the projection of any u ∈ H onto Hi. Consider a sequence

A1, A2, . . . , Ai, . . .

of operators in H such that the restriction Ai|Hi is a bounded symmetric operator mapping Hi into
itself, for all i > 1.

Then there exists a unique selfadjoint operator A : DA ⊆ H → H which coincides with Ai on Hi,
for all i > 1. The domain of A is defined by

DA =
{
u ∈ H ;

∞∑
i=1

‖Aiui‖2 <∞
}

(3.7.1)

and, for all u ∈ DA,

Au =
∞∑
i=1

Aiui. (3.7.2)

Proof. Let us first observe that the operator defined by (3.7.1)–(3.7.2) is linear. Furthermore, DA is
dense in H since, for all u ∈ H and all ε > 0, there exists N > 1 such that∥∥∥∥u− N∑

i=1

ui

∥∥∥∥ < ε,

and clearly
∑N

i=1 ui ∈ DA. Moreover, A is symmetric since, by linearity and continuity of the inner
product, and by the pairwise orthogonality of the His we have, for all u, v ∈ DA,

〈Au, v〉 =
∞∑
i=1

〈Aiui, vi〉 =
∞∑
i=1

〈ui, Aivi〉 = 〈u,Av〉 .
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To prove that A is, in fact, selfadjoint, we need only show that DA = DA∗ . To this end, consider an
arbitrary v ∈ DA∗ . Then, for any u ∈ DA,

〈Au, v〉 = 〈u,A∗v〉 ,

and so
∞∑
i=1

〈Aiui, vi〉 =
∞∑
i=1

〈ui, (A∗v)i〉 .

In particular, for any fixed j > 1, if u ∈ Hj we have u ∈ DA, ui = δi,ju, and the above identity
becomes

〈Aju, vj〉 = 〈u, (A∗v)j〉 .
But Aj is bounded and symmetric on Hj, so we deduce that

〈u, (A∗v)j〉 = 〈Aju, vj〉 = 〈u,Ajvj〉 for all u ∈ Hj,

that is
〈u, (A∗v)j − Ajvj〉 = 0.

Choosing u = (A∗v)j−Ajvj thus yields (A∗v)j = Ajvj for all j > 1. Hence, by Pythagoras’ theorem,

∞∑
i=1

‖Aivi‖2 =
∞∑
i=1

‖(A∗v)i‖2 = ‖A∗v‖2 <∞,

showing that v ∈ DA. Therefore, DA = DA∗ .
To see that A is unique, consider A′ selfadjoint which coincides with Ai on Hi, for all i > 1. Since

A′ is selfadjoint, it is closed, and so well defined at every u ∈ H for which the series

∞∑
i=1

A′ui = lim
n→∞

n∑
i=1

A′ui (3.7.3)

is convergent. Indeed, given u ∈ H, we have that
∑n

i=1 ui ∈ DA′ for all n ∈ N and
∑n

i=1 ui → u as
n→∞. If, moreover, A′

∑n
i=1 ui =

∑n
i=1 A

′ui → v as n→∞, then (u, v) ∈ GA′ and we deduce that
u ∈ DA′ and v = A′u. Since A′ui = Aiui and all terms in (3.7.3) are pairwise orthogonal, the series
is convergent if and only if

∑∞
i=1 ‖Aiui‖

2 <∞. Therefore, DA ⊆ DA′ and, for all u ∈ DA, A′u = Au.
That is, A ⊆ A′. But A is selfadjoint and hence maximal symmetric, so we must have A′ = A. The
proof is complete. �

The operator A constructed in Lemma 3.7.1 is unbounded unless all the operators Ai possess
a common bound. We have thus found a way to construct unbounded selfadjoint operators from
bounded symmetric ones. A remarkable result is that, in fact, any selfadjoint operator can be
decomposed in this way.
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Lemma 3.7.2 Consider a selfadjoint operator A acting in H. There exists a sequence

H1,H2, . . . ,Hi, . . .

of closed, pairwise orthogonal, subspaces of H, such that ⊕iHi = H and the restriction A|Hi is a
bounded symmetric operator mapping Hi into itself, for all i > 1. Moreover, the restriction to Hi of
any bounded operator T such that T`A is a bounded operator mapping Hi into itself, for all i > 1.

Proof. Consider the operators of Theorem 3.4.3:

B = (I + A2)−1 and C = AB = A(I + A2)−1.

B is bounded symmetric and satisfies 0 6 B 6 I. By the spectral theorem for bounded symmetric
operators, B has a unique spectral family (Fλ)λ∈R with bounds 0 and 1, such that

B =

∫ 1+

0

λ dFλ.

We now show that F is continuous at λ = 0, i.e. for all u ∈ H, F0+u = limλ↘0 Fλu = F0u = 0.
We start by recalling that, by Theorem 2.2.1, the strong limit F0+ exists. But for all λ > 0, there
is a sequence (µn)∞n=1 ⊂ R which converges to 0 and such that 0 < µn < λ for all n > 1. Since
FλFµn = Fµn for all n > 1, the boundedness of Fλ then implies, for all u ∈ H,

FλF0+u = lim
n→∞

FλFµnu = lim
n→∞

Fµnu = F0+u.

We now fix 0 < ε < 1 for the rest of the proof. For any partition Π = (λk)
m
k=0 of [0, 1 + ε], we define

SΠ =
m∑
k=1

λk(Fλk − Fλk−1
).

Note that, by Theorem 2.2.1, SΠ → B as |Π| → 0. Since

SΠF0+ =
m∑
k=1

λk(Fλk − Fλk−1
)F0+

= λ1(F0+ − F0) +
m∑
k=2

λk(F0+ − F0+)

= λ1F0+ ,

letting |Π| → 0 we get BF0+ = 0, hence F0+ = 0 (as B is invertible).
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We then define the projections

P1 = F1+ε − F 1
2
, Pi = F 1

i
− F 1

i+1
, i > 2,

and we let Hi = rgePi. We observe that the closed subspaces Hi are pairwise orthogonal and satisfy
⊕iHi = H since PiPj = 0 for i 6= j and

∞∑
i=1

Pi = F1+ε − F0+ = I.

We need to show that the restriction of A to Hi is a bounded symmetric operator mapping Hi

to itself, for all i > 1. By Lemma 3.3.2, if Pi`A, then PiAPi = APi and so A|Hi maps Hi to itself.
Moreover, if APi ∈ B(H), we will have in particular that Hi ⊂ DA and so, for all u, v ∈ Hi,

〈A|Hiu, v〉 = 〈Au, v〉 = 〈u,Av〉 = 〈u,A|Hiv〉 ,

showing that A|Hi is a bounded symmetric operator on Hi.
Thus, we need only show Pi`A and APi ∈ B(H). By Corollary 3.5.7, B`A and CB = BC. By

part (d) of Theorem 3.6.6, C also commutes with all F -measurable functions of B. Consider then
the bounded functions si : [0, 1]→ R defined for all i > 1 by

si(λ) =

{
1
λ

if λ ∈
[

1
i+1
, 1
i

)
,

0 otherwise.

By Theorem 3.6.6,

si(B) =

∫ 1+

0

si(λ) dFλ ∈ B(H)

and

si(B)B = Bsi(B) =

∫ 1+

0

λsi(λ) dFλ =

∫
χ[ 1

i+1
, 1
i
) dFλ = Pi.

It follows that
APi = ABsi(B) = Csi(B),

showing that APi ∈ B(H). On the other hand, since B`A and C`si(B),

PiA = si(B)BA ⊆ si(B)AB = si(B)C = Csi(B) = APi,

that is, Pi`A.
Finally, consider T ∈ B(H) such that T`A. It follows from part (d) of Corollary 3.5.7 that

TB = BT . By Theorem 3.6.6, T commutes with any function of B, and so with each Pi = Bsi(B).
Therefore, we indeed have PiTPi = TPi. This concludes the proof of the lemma. �
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Theorem 3.7.3 (Spectral Theorem II) Let A be a selfadjoint operator. There exists a unique
spectral family (Eλ)λ∈R such that

A =

∫
λ dEλ.

Furthermore, any bounded operator T such that T`A commutes with each Eλ.

We call (Eλ)λ∈R, the spectral family of A.

Proof. By Lemma 3.7.2, there exist pairwise orthogonal closed subspaces

H1,H2, . . . ,Hi, . . .

such that ⊕iHi = H, and for which the restriction Ai of A to Hi is a bounded symmetric operator
on Hi, i = 1, 2, . . . . By the spectral theorem for bounded symmetric operators, there exists for each
i > 1 a unique spectral family (Eλ,i)λ∈R on Hi such that

Ai =

∫ M+
i

mi

λ dEλ,i.

Then, for all λ ∈ R, each Eλ,i is a bounded symmetric operator on Hi. Therefore, extending Eλ,i
by zero on Hj, j 6= i, it follows by Lemma 3.7.1 that there exists a unique selfadjoint operator Eλ
which reduces to Eλ,i in each subspace Hi. Moreover, for all λ ∈ R, the domain of Eλ is H. Indeed,
for all u ∈ H, denoting by ui the projection of u onto Hi, it follows from Pythagoras’ theorem that

m∑
i=1

‖Eλ,iui‖2 6
m∑
i=1

‖ui‖2 =
∥∥∥ m∑
i=1

ui

∥∥∥2

.

Hence, letting m→∞, we get
∞∑
i=1

‖Eλ,iui‖2 6 ‖u‖2 ,

showing that u ∈ DEλ and ‖Eλ‖ 6 1. Eλ is thus a bounded symmetric operator, for all λ ∈ R.
Next we prove that E2

λ = Eλ, so that Eλ is a projection. For all i > 1 we have

E2
λui = E2

λ,iui = Eλ,iui = Eλui.

Hence, the selfadjoint operators E2
λ and Eλ coincide on Hi for all i > 1 and so E2

λ = Eλ.
We now show that, for λ < µ, Eλ 6 Eµ. For any u =

∑∞
i=1 ui ∈ H, using pairwise orthogonality

of Hi and Hj,

〈(Eλ − Eµ)u, u〉 =
〈

(Eλ − Eµ)
∞∑
i=1

ui,

∞∑
j=1

uj

〉
=
∞∑
i=1

〈(Eλ,i − Eµ,i)ui, ui〉 6 0.
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We now prove that the family (Eλ)λ∈R is strongly left-continuous. By Lemma 3.6.2, for all µ ∈ R
the left pointwise limit Eµ− is a projection. We need only show that Eµ− and Eµ coincide on each
Hi. But this is clear since, for all ui ∈ Hi,

Eµ−ui = lim
λ↗µ

Eλui = lim
λ↗µ

Eλ,iui = Eµ,iui = Eµui.

To finish proving that (Eλ)λ∈R is a spectral family, it only remains to show that, for all u ∈ H,

lim
λ→−∞

Eλu = 0 and lim
λ→∞

Eλu = u. (3.7.4)

Let us first recall that, for all i > 1, the spectral family (Eλ,i)λ∈R is bounded by the lower and upper
bounds mi and Mi of Ai. Now fix u ∈ H and consider ε > 0. There exists Nε > 1 such that∥∥∥ ∞∑

i=Nε+1

ui

∥∥∥ 6 ε

and, since ‖Eλ‖ 6 1,

‖Eλu‖ 6
∥∥∥ Nε∑
i=1

Eλ,iui

∥∥∥+
∥∥∥Eλ ∞∑

i=Nε+1

ui

∥∥∥ 6 ∥∥∥ Nε∑
i=1

Eλ,iui

∥∥∥+ ε. (3.7.5)

Putting mε = min16i6Nεmi, we have
∑Nε

i=1Eλ,iui = 0 for all λ 6 mε. It then follows from (3.7.5) that

‖Eλu‖ 6 ε for all λ 6 mε,

showing the first statement of (3.7.4).
On the other hand, for all ε > 0, there exists Nε > 1 such that

∥∥∑∞
i=Nε+1 ui

∥∥ < 1
2
ε and so

‖Eλu− u‖ 6
∥∥∥ Nε∑
i=1

Eλ,nui − ui
∥∥∥+

∥∥∥(Eλ − I)
∞∑

i=Nε+1

ui

∥∥∥
6
∥∥∥ Nε∑
i=1

Eλ,iui − ui
∥∥∥+ 2

∥∥∥ ∞∑
i=Nε+1

ui

∥∥∥
6
∥∥∥ Nε∑
i=1

Eλ,iui − ui
∥∥∥+ ε. (3.7.6)

Hence, letting Mε = max16i6NεMi, we have

Nε∑
i=1

Eλ,iui =
Nε∑
i=1

ui for all λ >Mε,
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and it then follows from (3.7.6) that

‖Eλu− u‖ < ε for all λ >Mε.

This proves the second statement in (3.7.4).
We now show that the spectral family (Eλ)λ∈R satisfies

A =

∫
λ dEλ.

Theorem 3.6.5 ensures that
∫
λ dEλ is a selfadjoint operator since f(λ) = λ is real-valued. By

Lemma 3.7.1 it thus suffices to show that
∫
λ dEλ and A coincide on each Hi. To see this, consider

a sequence of step functions (tj)
∞
j=1 of the form

tj =

nj∑
k=1

cjkχIjk
, j > 1,

which converges to f(λ) = λ in L2(R, µ‖Eλui‖2) as j →∞. Then

∫
λ dEλui = lim

j→∞

∫
tj(λ) dEλui = lim

j→∞

nj∑
k=1

cjkE(Ijk)ui

= lim
j→∞

nj∑
k=1

cjkEi(I
j
k)ui =

∫
λ dEλ,iui

=

∫ M+
i

mi

λ dEλ,iui = Aiui = Aui,

where we have used the fact that if, for instance, I = [a, b], then

E(I)ui = (Eb+ − Ea)ui = (Eb+,i − Ea,i)ui = Ei(I)ui.

Now, consider an operator T ∈ B(H) such that T`A. By Lemma 3.7.2, for each i > 1, the
restriction Ti of T to Hi satisfies Ti ∈ B(Hi). For all i > 1, since Ti commutes with Ai, it follows
by the spectral theorem for bounded symmetric operators that Ti commutes with Eλ,i for all λ ∈ R.
Therefore, for all λ ∈ R and all u ∈ H,

TEλu = T

∞∑
i=1

Eλ,iui =
∞∑
i=1

TiEλ,iui =
∞∑
i=1

Eλ,iTiui = EλTu.
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Finally, to prove uniqueness of (Eλ)λ∈R, consider two spectral families (Eλ)λ∈R, (Fλ)λ∈R such that

A =

∫
λ dEλ =

∫
λ dFλ.

Letting Xi := rge(Ei − Ei−1), i ∈ Z, we have H = ⊕iXi. Since A = F (f) (with f(λ) = λ),
Theorem 3.6.5 (j) and the previous paragraph imply that Fµ commutes with Eλ for all µ, λ ∈ R. It
then follows from Lemma 3.3.2 that, for all λ ∈ R and all i ∈ Z, Ẽλ,i := Eλ|Xi and F̃λ,i := Fλ|Xi are
projections mapping Xi into itself. Furthermore, for all i ∈ Z, (Ẽλ,i)λ∈R and (F̃λ,i)λ∈R are spectral
families acting in Xi and such that

A|Xi =

∫
λ dẼλ,i =

∫
λ dF̃λ,i.

By uniqueness of the spectral family in Spectral Theorem I, it follows that Ẽλ,i = F̃λ,i, for all λ ∈ R
and all i ∈ Z. �

Definition 3.7.4 Similarly to the case of bounded symmetric operators, thanks to Theorem 3.7.3
we can now define a function of any selfadjoint operator A. Let (Eλ)λ∈R be the spectral family of A.
For any E-measurable function f , we write

f(A) = E(f) =

∫
f(λ) dEλ. �

Problems

1. Consider an operator T : DT ⊂ H → H, and suppose that T is bounded on DT , in the sense
that there is a constant C > 0 such that ‖Tu‖ 6 C ‖u‖ , u ∈ DT . Show that T can be extended
to a bounded linear operator on H.

2. Let S : DS ⊂ H → H be a one-to-one operator. Consider the following additional properties:

(i) S is closed.

(ii) rgeS is dense.

(iii) rgeS is closed.

(iv) There is a constant C such that ‖Su‖ > C ‖u‖ for all u ∈ DS.

(a) Prove that (i)–(iii) imply (iv). Hint: Apply the Closed Graph Theorem to S−1.
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(b) Prove that (ii)–(iv) imply (i).

(c) Prove that (i) and (iv) imply (iii).

3. Prove that, if T−1, T ∗ and (T−1)∗ exist, then (T ∗)−1 also exists, and (T−1)∗ = (T ∗)−1.

4. (a) Show that a densely defined operator T is closable if and only if T ∗ is densely defined, in
which case T = T ∗∗.

(b) Prove that, if a densely defined operator T is closable, then
(
T
)∗

= T ∗.

5. We define an operator T on L2(R) by (Tu)(x) = φ(x)u(x), where φ : R → C is a bounded
function. Show that T is bounded and compute its norm. Find T ∗. Under what condition is
T = T ∗? If S is defined by (Su)(x) = ψ(x)u(x) with ψ : R→ C bounded, find TS and (TS)∗.

6. For T defined as in the previous problem, suppose now limx→∞ |φ(x)| =∞. What is the domain
of definition of T? Show that T is unbounded and find T ∗.

7. Let H = L2(0, 1) and consider the differential operator D1 : DD1 ⊂ H → H defined by

D1 := i
d

dx
, DD1 :=

{
u ∈ AC[0, 1] ; u′ ∈ L2(0, 1) and u(0) = u(1) = 0

}
.

Recall: AC[0, 1] is the space of absolutely continuous functions in [0, 1]; see [KF80, Sec. 33].
The Lebesgue version of the fundamental theorem of calculus states the following:
? If f ∈ AC[0, 1] then it is differentiable a.e. in [0, 1], f ′ ∈ L1(0, 1) and f(x) = f(0)+

∫ x
0
f ′(y) dy.

? If g ∈ L1(0, 1) and f(x) =
∫ x

0
g(y) dy, then f ∈ AC[0, 1] and f ′ = g a.e.

(a) Show that D1 is unbounded and symmetric.

(b) Prove that the adjoint D1
∗ of D1 is given by

D1
∗ = i

d

dx
, DD1

∗ = D :=
{
u ∈ AC[0, 1] ; u′ ∈ L2(0, 1)

}
.

Hint: To prove that DD1
∗ ⊂ D, consider v ∈ DD1

∗ and make clever use of the relation
〈D1u, v〉 = 〈u,D∗1v〉, for a well chosen u ∈ DD1 (constructed using v and D∗1v).

(c) Prove that D1
∗∗ = D1.

(d) Now consider H = L2(R) and the operator D2 : DD2 ⊂ H → H defined by D2 := i d
dx

and

DD2 :=
{
u ∈ L2(R) ; u′ ∈ L2(R) and u ∈ AC[a, b] for any −∞ < a < b <∞

}
.

Prove that D2 is selfadjoint.
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8. Let again H = L2(0, 1) and consider now D3 : DD3 ⊂ H → H defined by

D3 := i
d

dx
, DD3 := C1

c (0, 1).

(a) Show that D3 is unbounded.

(b) Prove that the adjoint D3
∗ of D3 exists and is given by

D3
∗ = i

d

dx
, DD3

∗ =
{
u ∈ AC[0, 1] ; u′ ∈ L2(0, 1)

}
.

(c) Observe the inclusion relations between DD3 ,DD3
∗ and DD1 ,DD1

∗ .

(d) Prove that the closure D3 of D3 is given by

D3 = i
d

dx
, DD3

=
{
u ∈ AC[0, 1] ; u′ ∈ L2[0, 1] and u(0) = u(1) = 0

}
.

9. Consider the multiplication operator in H = L2(R) defined by

(Xu)(x) := xu(x), DX :=
{
u ∈ L2(R) ; xu(x) ∈ L2(R)

}
.

Show that X is an unbounded selfadjoint operator. Find its spectrum and its spectral family.

10. Prove Theorem 3.6.5.

11. Show that, given a spectral family (Eλ)λ∈R with finite lower and upper bounds m < M , the
integral of any continuous function f : [m,M ] → C in the sense of Definition 3.6.4 coincides
with that of Definition 2.1.3.

12. Prove part (d) of Theorem 3.6.6.





Chapter 4

Applications to quantum mechanics

In this chapter we will define and study elementary properties of the basic observables of the quantum
mechanical particle on the real line: energy, position, momentum. In quantum mechanics, physical
observables are represented by selfadjoint operators acting in a Hilbert spaceH, the elements of which
represent the possible states of the system. The fundamental postulates of quantum mechanics will
be formulated in Section 4.2.

As usual in physics, but perhaps even more in quantum mechanics, an important role is played
by the symmetries of the system. Indeed, by Noether’s theorem, each symmetry group gives rise
to a conserved physical quantity. Some of the most important symmetries of quantum mechanical
systems can be expressed by the action on the Hilbert space H of one-parameter unitary groups.

4.1 Representation of one-parameter unitary groups

An operator U : H → H is called unitary if it is surjective and, for all u, v ∈ H,

〈Uu, Uv〉 = 〈u, v〉 .

It then follows easily that ‖U‖ = 1, and that U is invertible with U−1 = U∗ (Problem 4.1).

Definition 4.1.1 We call one-parameter unitary group a mapping U : R → B(H) such that
U(t) ≡ Ut is unitary for all t ∈ R, with

U0 = I and UtUs = Ut+s for all t, s ∈ R.

A one-parameter unitary group is said to be strongly continuous if, for all u ∈ H, the mapping
t 7→ Utu is continuous on R. �
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It follows directly from the definition that a one-parameter unitary group (Ut)t∈R satisfies

U−t = (Ut)
∗ = (Ut)

−1.

We also observe that if (Ut)t∈R is weakly continuous, in the sense that, for all u, v ∈ H, t 7→ 〈Utu, v〉
is continuous on R, then (Ut)t∈R is in fact strongly continuous (Problem 4.2). We now define the
central object of the theory of one-parameter unitary groups.

Definition 4.1.2 Let (Ut)t∈R be a strongly continuous one-parameter unitary group. The infinites-
imal generator of (Ut)t∈R is the operator G defined on the domain

DG =
{
u ∈ H ; lim

t→0

1

t
(Ut − I)u exists

}
by

Gu = lim
t→0

1

t
(Ut − I)u. �

The following result is a first step towards the characterization of strongly continuous (one-
parameter) unitary groups.

Theorem 4.1.3 Let A be a selfadjoint operator acting in H and (Eλ)λ∈R be its spectral family. Then

Ut = eitA =

∫
eitλ dEλ, t ∈ R, (4.1.1)

defines a strongly continuous unitary group with infinitesimal generator iA. Furthermore, if u ∈ DA

then Utu ∈ DA for all t ∈ R.

Proof. Since the function f(λ) = eitλ is bounded on R for all t ∈ R, it follows by Theorem 3.6.5 that,
for all t ∈ R, Ut ∈ B(H) and

U∗t =

∫
eitλ dEλ =

∫
e−itλ dEλ = U−t.

Hence, by Theorem 3.6.5,

U∗t Ut = U−tUt =

∫
e−itλeitλ dEλ =

∫
1 dEλ = I.

Thus, every Ut is unitary. Moreover, using again Theorem 3.6.5,

UtUs =

∫
eitλeisλ dEλ =

∫
ei(t+s)λ dEλ = Ut+s for all t, s ∈ R.
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Therefore, (Ut)t∈R is a one-parameter unitary group. We now show that it is strongly continuous.
Since for all x, y ∈ R we have ∣∣eix − eiy

∣∣ = 2
∣∣∣ sin x− y

2

∣∣∣,
it follows by Theorem 3.6.5 that, for any given u ∈ H and all s, t ∈ R,

‖Utu− Usu‖2 =
∥∥∥∫ (eitλ − eisλ) dEλu

∥∥∥2

=

∫ ∣∣eitλ − eisλ
∣∣2 dµ‖Eλu‖2 = 4

∫ ∣∣∣∣sin (t− s)λ
2

∣∣∣∣2 dµ‖Eλu‖2 .

But since ∣∣∣∣sin (t− s)λ
2

∣∣∣∣2 6 1 and lim
s→t

∣∣∣∣sin (t− s)λ
2

∣∣∣∣2 = 0,

it follows by dominated convergence (Theorem B.2.5) that

lim
s→t
‖Utu− Usu‖ = 0,

showing that (Ut)t∈R is indeed strongly continuous.
Let us now show that the infinitesimal generator G of (Ut)t∈R is equal to iA. We first observe

that, for all u ∈ DA and all t 6= 0,∥∥∥[1

t
(Ut − I)− iA

]
u
∥∥∥2

=

∫ ∣∣∣1
t
(eitλ − 1)− iλ

∣∣∣2 dµ‖Eλu‖2 .

But since

lim
t→0

1

t
(eitλ − 1) = iλ,

it follows that

lim
t→0

∣∣∣1
t
(eitλ − 1)− iλ

∣∣∣2 = 0. (4.1.2)

On the other hand, by the mean-value theorem, |1
t
(eitλ − 1)| 6 |λ|, and so∣∣∣1

t
(eitλ − 1)− iλ

∣∣∣2 6 (|λ|+ |λ|)2 = 4λ2. (4.1.3)

Moreover, the function 4λ2 is µ‖Eλu‖2-integrable for any u ∈ DA since, by Theorem 3.6.5 (c),∫
λ2 dµ‖Eλu‖2 = ‖Au‖2 <∞.

It therefore follows from (4.1.2), (4.1.3) and the dominated convergence theorem that, for all u ∈ DA,

lim
t→0

∥∥∥[1

t
(Ut − I)− iA

]
u
∥∥∥2

= lim
t→0

∫ ∣∣∣1
t
(eitλ − 1)− iλ

∣∣∣2 dµ‖Eλu‖2 = 0,
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and so

Gu = lim
t→0

1

t
(Ut − I)u = iAu for all u ∈ DA,

showing that G ⊇ iA. To see that G = iA, it remains to show that DG ⊆ DA. To this end, consider
u ∈ DG, i.e. u ∈ H such that the limit

lim
t→0

1

t
(Ut − I)u exists.

In this case we have

‖Gu‖2 = lim
t→0

∥∥∥1

t
(Ut − I)u

∥∥∥2

= lim
t→0

∥∥∥∥∫ 1

t
(eitλ − 1) dEλu

∥∥∥∥2

= lim
t→0

∫ ∣∣∣1
t
(eitλ − 1)

∣∣∣2 dµ‖Eλu‖2 .

Now, since

lim
t→0

∣∣∣1
t
(eitλ − 1)

∣∣∣2 = λ2,

it follows by Fatou’s lemma (Theorem B.2.4) that∫
λ2 dµ‖Eλu‖2 6 lim inf

t→0

∫ ∣∣∣1
t
(eitλ − 1)

∣∣∣2 dµ‖Eλu‖2 = ‖Gu‖2 .

By Theorem 3.6.5 (c), this shows that u ∈ DA.
We finally show that, if u ∈ DA then Utu ∈ DA for all t ∈ R. First, by Theorem 3.6.5 (h),

EλUt = UtEλ for all t ∈ R and all λ ∈ R. Hence, since every Ut is unitary, we have for all λ ∈ R and
all t ∈ R that

‖EλUtu‖2 = 〈EλUtu,EλUtu〉 = 〈UtEλu, UtEλu〉 = ‖Eλu‖2 .

It follows that ∫
λ2dµ‖Eλ(Utu)‖2 =

∫
λ2dµ‖Eλu‖2 <∞,

and so Utu ∈ DA, which concludes the proof of the theorem. �

The next theorem, due to Marshall H. Stone, shows that, in fact, any strongly continuous one-
parameter unitary group is of the form (4.1.1), for a uniquely defined selfadjoint A.

Theorem 4.1.4 (Stone’s Theorem) Let (Ut)t∈R be a strongly continuous one-parameter unitary
group. There exists a unique selfadjoint operator A such that

Ut = eitA for all t ∈ R.

Furthermore, Ut`A for all t ∈ R.

Proof. See Problem 4.3. �



4.2. A GLIMPSE OF QUANTUM MECHANICS 67

4.2 A glimpse of quantum mechanics

A self-contained exposition of the theory of quantum mechanics would largely exceed the scope of
these notes. We refer the interested reader to the classic works [Dir58, Mes99, VN55]. Let us just
mention that quantum mechanics typically describes microscopic systems, in the order of atomic
length scales and below. At this level, the description of physical systems cannot rely any more on
the macroscopic concepts we experience in our everyday lives. In fact, atoms and subatomic particles
turn out to have very peculiar properties when we try to express them in terms of our macroscopic
perception of the world. For instance, a most striking feature is that it is not possible in general to
assign a precise position in space to a quantum mechanical particle, nor a precise speed (or rather
momentum = mass · speed). The Heisenberg uncertainty principle, which is one of the cornerstones of
quantum mechanics, indeed states that the respective standard deviations ∆q and ∆p of the position
q and the momentum p of a particle satisfy

∆q∆p > ~/2 (4.2.1)

where ~ = h/2π is the reduced Planck constant, with the Planck constant h ' 6.626 ·10−34 J · s. And
this is not a matter of ‘not being able to’ measure things more precisely, but rather a fundamental
obstruction of Nature. In fact, as we shall see below, this restriction is due to the status of physical
observables in quantum theory. The constant h is named after Max Planck, who was the first
to propose a physical model in which electromagnetic radiation could only be emitted as integer
multiples — called quanta — of the fundamental unit h (1900). In fact, Planck introduced this
assumption as a trick to resolve an apparent paradox in the description of the black-body radiation,
and did not himself believe in this ‘quantized’ emission process in real physical terms. The corpuscular
nature of light was later fully assumed by Einstein in his work on the photoelectric effect (1905) which
owed him the Nobel prize in physics in 1921.1

We shall soon see that the conceptual framework of quantum mechanics is in sharp contrast
with that of classical mechanics. In classical mechanics, the observables of a point-like particle are
(smooth) functions f(q,p), where (q,p) ∈ R3 × R3 are the position and the momentum of the
particle. For example, the Hamiltonian (energy)

H(q,p) =
p · p
2m

+ V (q)

describes a particle in a potential field V : R3 → R. It emerged from various attempts to obtain a
satisfactory theory of atoms at the beginning of the last century (most notably from the works of
Max Planck, Albert Einstein, Niels Bohr, Werner Heisenberg, Erwin Schrödinger, Max Born, Pascual
Jordan, Wolfgang Pauli and Paul Dirac) that this classical description of the world dramatically fails

1Ironically, Einstein later became one of the fiercest opponents of quantum physics.
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to account for microscopic phenomena, such as the very stability of atoms2, and their emitting of
light only at certain universal discrete frequencies (Balmer series). To cut a long story short, on the
one hand Heisenberg realized that atomic observables were best represented by (infinite) matrices, a
theory now referred to as matrix mechanics (1925). A stunning consequence of this new paradigm
is that the product of quantum observables is non-commutative. We shall see that this results in
particular in the famous uncertainty principle mentioned above. On the other hand, Schrödinger
derived a theory describing the evolution of a quantum particle through a ‘wave function’,3 therefore
known as wave mechanics (1926). It should be noted that Schrödinger’s theory is a dynamical one,
where the central equation — known as the Schrödinger equation — governs the time evolution of the
wave function. On the other hand, Heisenberg’s matrix mechanics only describes the stationary states
of the system. Apart from this difference, the complete equivalence of the two theories was proved
mathematically by Dirac shortly thereafter4 and is presented in his famous book The Principles of
Quantum Mechanics (1930) [Dir58].

Thus, following three decades of intense creative work from a bunch of brilliant theoretical physi-
cists, a new coherent theory was finally born. And it very soon turned out that a natural math-
ematical framework to describe the theory was that of (unbounded) operators acting in a Hilbert
space. A complete set of axioms for the new physics was formulated by von Neumann in Mathemat-
ical Foundations of Quantum Mechanics (1932) [VN55], while parts of the mathematical theory was
developed independently by Marshall H. Stone in his great book Linear Transformations in Hilbert
Space (1932) [Sto32]. We shall now state the basic postulates of quantum mechanics in this Hilbert
space formalism.

The basic postulates of quantum mechanics

The following postulates pertain to quantum systems, that is, systems which are best described by
the laws of quantum mechanics, which rely crucially on the notion of measurement device. Indeed,
since we don’t have any macroscopic intuition of quantum systems, the only thing the theory de-
scribes/predicts is the results of measurements performed on the system under given experimental
conditions. The so-called ‘Copenhagen interpretation’ of quantum mechanics — largely personified
by Bohr — pushed this new paradigm so far as to claim that it is irrelevant to attempt any in-
terpretation of the theory in terms of elements of physical reality (a notion that was the object of

2According to Newtonian mechanics and Maxwell’s theory of electromagnetics, the electron radiating electromag-
netic energy while orbiting about the nucleus would very quickly collapse to it.

3The idea of representing a particle as an oscillatory phenomenon was motivated by earlier considerations from
Einstein and de Broglie, pointing that both light and matter can behave either like waves or like particles depending
on the experimental setting, the now famous ‘wave/particle duality’.

4This is at least the official version, see the Handout for an interesting discussion on the history and equivalence
of the two theories.
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intense debates, notably between Einstein and Bohr), outside the scope of measurement devices.
For instance, there exists no such thing as the position of an electron, so long as the electron is not
detected experimentally by an external observer (another notion prone to vast philosophical debate) !

Postulate I At any given time, a (pure)5 state of the system is represented by a vector ψ 6= 0 of
a complex separable Hilbert space H. Furthermore, for all c ∈ C\{0}, the vector cψ represents the
same state as ψ. Thus, the states of the system are in one-to-one correspondence with the rays

{cψ ; c ∈ C} ⊆ H, ψ ∈ H\{0},

or, equivalently, with the orthogonal projections Pψ onto these one-dimensional subspaces.

Postulate II An observable of the system is a selfadjoint operator A acting in H.

Postulate III The result of a measurement of A can only be a real number λ ∈ σ(A).

Postulate IV If the system is in state ψ, then the probability of finding a value in the (Borel)
set Λ ⊂ R when measuring A is given by

Probψ{meas. of A ∈ Λ} =
µ‖Eλψ‖2(Λ)

‖ψ‖2 , (4.2.2)

where (Eλ)λ∈R is the spectral family of A.

Postulate V The time evolution of the system is unitary. Denoting by ψt ∈ H the state of the
system at time t ∈ R, this means that ‖ψt‖ = ‖ψt0‖ for any t ∈ R and any initial time t0 ∈ R.

Postulate VI If the system is in state ψ, then immediately after a measurement of A yielding an
eigenvalue λ ∈ σp(A) the system is in state Pλψ, where Pλ is the projector onto the eigenspace
corresponding to λ.

Remark 4.2.1 By Postulate IV, the mean value of A, calculated over a large number of systems
all prepared in state ψ, is given by

〈A〉ψ =
〈Aψ,ψ〉
‖ψ‖2 =

∫
R λ dµ‖Eλψ‖2

‖ψ‖2 . (4.2.3)

5There is also a notion of mixed state, which will not be addressed in these notes.
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Remark 4.2.2 If the vector ψ is normalized so that ‖ψ‖ = 1, formulas (4.2.2) and (4.2.3) take
the simple forms

Probψ{meas. of A ∈ Λ} = µ‖Eλψ‖2(Λ) (4.2.4)

and

〈A〉ψ =

∫
λ dµ‖Eλψ‖2 . (4.2.5)

Note that, in this case, µ‖Eλψ‖2 is a probability measure on R, as

1 = ‖ψ‖2 =

∫
dµ‖Eλψ‖2 .

Then, in particular, for any λ ∈ R,

Probψ{meas. of A = λ} = µ‖Eλψ‖2({λ})
= 〈(Eλ+ − Eλ)ψ, ψ〉

=

{
0 if λ 6∈ σp(A),

〈Pλψ, ψ〉 if λ ∈ σp(A),

where Pλ is the projector onto the eigenspace corresponding to λ. In the special case when λ ∈ σp(A)
and the corresponding eigenspace is one-dimensional and spanned by a normalized φλ, one recovers
the classical textbook formula

Probψ{meas. of A = λ} =
〈
〈ψ, φλ〉φλ, ψ

〉
= 〈ψ, φλ〉 〈φλ, ψ〉
= |〈φλ, ψ〉|2.

Finally, Postulate V ensures that, if ‖ψ0‖ = 1 then ‖ψt‖ = 1 and µ‖Eλψt‖2 remains a probability
measure for all times t ∈ R.

Time evolution: Stone’s theorem and the existence of dynamics

We say that a quantum system with state space H is invariant under time translations if its
evolution in time is governed by a strongly continuous one-parameter unitary group (Ut)t∈R on H.
That is, if the system at time t = 0 is in the initial state ψ0, then its state at time t is

ψt = Utψ0.
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Hence, the evolution is unitary and Postulate V is indeed satisfied.6

To see that the system is indeed insensitive to time translations, observe that the evolution from
state ψt0 to state ψt1 is given by

ψt1 = Ut1ψ0 = Ut1U
−1
t0
Ut0ψ0 = Ut1U−t0ψt0 = Ut1−t0ψt0 ,

and so depends only on the elapsed time t1− t0, and not on the initial time t0. Thus, if one translates
the origin of time, this translation disappears in the difference, so the evolution is identical in the
new time frame.

Now, Stone’s theorem ensures that there exists an infinitesimal generator G of the group (Ut)t∈R,
such that iG is selfadjoint. We recall that the domain of G is given by

DG =
{
ψ ∈ H ; lim

t→0

1

t
(Ut − I)ψ exists

}
,

and that

Gψ = lim
t→0

1

t
(Ut − I)ψ for all ψ ∈ DG.

We define the selfadjoint Hamiltonian H by

H = i~G.

This operator represents the energy of the system.

By Theorem 4.1.3, if ψ ∈ DG = DH then Utψ ∈ DH for all t ∈ R. Therefore, given any initial
state ψ0 ∈ DH , we have for all t ∈ R

∂tψt = lim
ε→0

1

ε
(ψt+ε − ψt) = lim

ε→0

1

ε
(Uε − I)ψt = Gψt = − i

~
Hψt.

That is,

i~∂tψt = Hψt.

This is the Schrödinger equation corresponding to the Hamiltonian H. Thus, by Stone’s theorem,
to determine the dynamics of the system, it is equivalent to know the unitary group (Ut)t∈R or the
Hamiltonian H.

We now verify that, if the system is invariant under time translations then the energy is
a constant of the motion, i.e. that the mean value of H does not change under the time evolution

6The more difficult case when the system is not invariant under time translations is described by two-parameter
unitary groups and will not be discussed here.
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of the system.7 Indeed, by Stone’s theorem, UtHψ = HUtψ for all ψ ∈ DH . Hence, if ψ0 ∈ DH is
normalized, we have for all t ∈ R

〈H〉ψt = 〈ψt, Hψt〉 = 〈Utψ0, HUtψ0〉 = 〈Utψ0, UtHψ0〉 = 〈ψ0, Hψ0〉 = 〈H〉ψ0
.

In view of Remark 4.2.2, the only exact values of the energy of a system that can be measured
in a laboratory are the eigenvalues of the Hamiltonian H. The corresponding eigenvectors are
called bound states. This is the surprising discovery physicists from the early 20th century made
by studying spectral rays of light emission by atoms, and observing only discrete sets of frequencies
(characteristic of each atom). It is thus of utmost importance in the framework of quantum mechanics
to understand the spectral structure of Hamiltonians describing atomic systems. A thorough analysis
of this issue can be found in [RS]. (In Volume I a proof of Stone’s theorem can be found, as well as
interesting historical remarks about the mathematical formalization of quantum mechanics.) Basic
examples of Hamiltonians will be given at the end of the next section.

4.3 The quantum particle on R
The quantum particle on the real line R is the system characterized by the following properties.

(A) To any (Borel) set ∆ ⊆ R one can associate a measurement device, i.e. an observable P∆ called
particle detector, taking the value 0 or 1 depending on whether the particle is in ∆ or not,
respectively.

(B) The set of all operators P∆, for ∆ ⊆ R, forms a family of pairwise commuting selfadjoint
operators.

(C) To every a ∈ R one can associate a translation of the detectors

τaP∆ = P∆−a, where ∆− a = {x ∈ R ; x+ a ∈ ∆}.

Equivalently (see below), the translation can be interpreted as acting on the system rather
than on the detectors:

Uaψ = ψa, ψ ∈ H.

(D) The only observables commuting with all the P∆ are functions of them.

A natural choice of separable Hilbert space satisfying these properties is L2(R). Then the state
of the system at any time is given by a so-called wave function 0 6= ψ ∈ L2(R), and the detector
P∆ is defined as (

P∆ψ
)
(x) = χ∆(x)ψ(x), ψ ∈ H, a.e. x ∈ R.

7This conservation principle is an instance, in the quantum setting, of Noether’s theorem.
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Interpretation of the wave function ψ, observable position

For any ∆ ⊆ R, the probability of finding the particle in a normalized state ψ in ∆ is the mean value
of the observable P∆. By Remark 4.2.1, it is given by

〈P∆〉ψ = 〈P∆ψ, ψ〉 =

∫
∆

|ψ(x)|2 dx.

Therefore, the function |ψ(x)|2 is interpreted as the density of probability of observing the particle
in state ψ.

The observable position is then naturally represented by the multiplication operator

(Xψ)(x) = xψ(x)

on the domain
DX = {ψ ∈ L2(R) ; xψ(x) ∈ L2(R)}.

Indeed, in view of the above probabilistic interpretation of |ψ(x)|2, the mean value of the position of
the particle in state ψ is then the expectation value of the probability measure |ψ(x)|2 dx,∫

R
x|ψ(x)|2 dx = 〈Xψ,ψ〉 .

Physically, it represents the ‘averaged position’ of the particle, when the measurement of position is
performed on a large number of copies of the system in the same state ψ. The selfadjoint operator
X is therefore called position operator.

Observable momentum

In a similar way to how we associated the Hamiltonian operator to the group of time translations,
we shall now apply Stone’s theorem to obtain the momentum operator as the infinitesimal generator
of space translations on the line.

To each translation a ∈ R, we associate a transformation acting on the states of the system as
mentioned in assumption (C) above. This transformation is explicitly given by(

Uaψ
)
(x) = ψa(x) = ψ(x− a), x ∈ R. (4.3.1)

It is not difficult to check (see Problem 4.5) that (Ua)a∈R defines a strongly continuous one-parameter
unitary group on L2(R). By Stone’s theorem, there exists a selfadjoint operator A such that

Ua = eiaA, for all a ∈ R.
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Moreover,

iAψ =
d

da

∣∣∣
a=0

Uaψ = lim
a→0

1

a
(Ua − I)ψ, ψ ∈ DA.

Hence, for ψ ∈ DA,

(Aψ)(x) =
1

i
lim
a→0

ψ(x− a)− ψ(x)

a

= −1

i
lim
a→0

ψ(x− a)− ψ(x)

−a

= −1

i

d

dx
ψ(x),

and DA is precisely the subspace of all ψ such that ψ′(x) exists and belongs to L2(R).

For reasons of physical dimensions, the momentum operator P is thus defined by

DP = DA =
{
u ∈ L2(R) ; u ∈ AC[a, b] for any −∞ < a < b <∞ and u′ ∈ L2(R)

}
and

(Pψ)(x) =
~
i

d

dx
ψ(x), x ∈ R.

Hence,

Ua = e−
i
~aP , for all a ∈ R.

Commutation relation and uncertainty principle

For the particle in a normalized state ψ, given an observable represented by a selfadjoint operator
A, we define the variance of A by

varψ(A) =
〈

[A− 〈A〉ψ I]2
〉
ψ

=

∫
R

[
A− 〈A〉ψ I

]2
ψ(x)ψ(x) dx

(where 〈·〉ψ is the mean value defined in Remark 4.2.1) and its standard deviation by

∆ψ(A) =
√

varψ(A).

The following theorem is of fundamental importance in the algebraic structure of quantum me-
chanics. It will be proved in Problem 4.8.



4.3. THE QUANTUM PARTICLE ON R 75

Theorem 4.3.1 Let A and B be selfadjoint operators acting in the Hilbert space L2(R). Then the
commutator C = AB −BA satisfies

| 〈C〉ψ | 6 2∆ψ(A)∆ψ(B),

for all ψ ∈ DC.

We will see in Problem 4.7 that the position and momentum operators satisfy the Heisenberg
commutation relation

XP − PX = i~I, (4.3.2)

where I is the identity operator on the domain D(XP − PX) = D(XP ) ∩D(PX). We then have
the following immediate corollary of Theorem 4.3.1.

Corollary 4.3.2 (Heisenberg’s Uncertainty Principle) The position and momentum operators
of the quantum particle on the real line satisfy

∆ψ(X)∆ψ(P ) >
~
2
.

Particle in a potential

The quantum Hamiltonian for the particle in a potential field V : R→ R is constructed by replacing
the classical momentum p by ~

i
d

dx
in the total mechanical energy E = p2

2m
+ V (x), where m is the

mass of the particle. This yields

(Hψ)(x) = − ~2

2m

d2

dx2
ψ(x) + V (x)ψ(x), ψ ∈ DH . (4.3.3)

The Schrödinger equation then becomes

i~∂tψt(x) = − ~2

2m

∂2

∂x2
ψt(x) + V (x)ψt(x).

To solve it, one can seek a solution in the form of a standing wave ψt(x) = e−
i
~Etϕ(x), which yields

the stationary Schrödinger equation for ϕ:

Eϕ = − ~2

2m

d2

dx2
ϕ(x) + V (x)ϕ(x),

where E ∈ R is therefore an eigenvalue of the Hamiltonian H, and ϕ a corresponding eigenvector.8

8Note that the same Ansatz yields the stationary Schrödinger equation Eϕ = Hϕ for any time-independent
Hamiltonian H.
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The spectral theory of Schrödinger operators of the form (4.3.3) is very well known. In the
typical case of a continuous attractive potential V < 0, with lim|x|→∞ V (x) = 0, the spectrum of H
consists of a finite number of negative isolated eigenvalues of multiplicity one, and the continuous
spectrum σc(H) = [0,∞). But many other scenarios can occur, as discussed e.g. in [RS]. For
instance, in three dimensions, the Hamiltonian of the electron in the hydrogen atom is

Hψ = − ~2

2m
∆ψ + V (|x|)ψ, where V (|x|) = − e2

4πε0|x|
, x ∈ R3.

Here e is the electric charge of the electron, ε0 is the vacuum electric permittivity, and |x| is the dis-
tance of the electron to the (fixed) nucleus. In this case there are infinitely many negative eigenvalues
(∝ −1/n2, n = 1, 2, . . . ) corresponding to the bound states of the electron.

In the present one-dimensional case, even though it does not belong to L2(R), it is instructive
to study a solution in the form of a plane wave ϕ(x) = eikx for k ∈ R. Then our standing wave
becomes

ψt(x) = ei(kx−ωt), where ω = E/~.

Some simple properties of plane wave solutions will be studied in Problem 4.9, in the case where V
is a ‘potential barrier’, notably displaying the famous tunnel effect.

Problems

1. We say that U : H → H is unitary if 〈Uu, Uv〉 = 〈u, v〉 for all u, v ∈ H. Show that a unitary
operator U : H → H satisfies: (a) ‖U‖ = 1; (b) U is invertible with U−1 = U∗ unitary. Then
show that, in fact, U ∈ B(H) is unitary if and only if UU∗ = U∗U = I.

2. Show that a weakly continuous one-parameter unitary group is strongly continuous.

3. Prove Theorem 4.1.4.

Strategy: Let A := −iG where G is the infinitesimal generator of (Ut)t∈R, and consider the set
D of all finite linear combinations of elements of the form

uφ =

∫
R
φ(t)Utu dt,

for u ∈ H and φ ∈ C∞0 (R) (see Appendix C for the meaning of this integral). The theorem is
then proved in three steps.

(i) Using the results of Section C.2, show that D is dense in H, and contained in DA.
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(ii) Show that A is symmetric and, in fact, essentially selfadjoint (use Theorem 3.5.6 for this).

(iii) By differentiating ‖(Ut − eitĀ)u‖2 with respect to t, show that Ut = eitĀ. Conclude.

4. Using (??) and the spectral family of the position operator X obtained in Problem 3.9, recover
the statement that the probability of finding the particle in a normalized state ψ in the interval
∆ = [a, b] is given by

∫ b
a
|ψ(x)|2 dx.

5. Show that the group of translations acting on L2(R) as defined in (4.3.1) is a strongly continuous
one-parameter unitary group.

6. Prove that the domain DP of the momentum operator P given by Stone’s theorem coincides
with the domain DD2 in Problem 3.7 (d), i.e. that P = −~D2.

7. Prove (4.3.2).

8. Prove Theorem 4.3.1.
Hint: First show that C = ST − TS where S = A− 〈A〉ψ and T = B − 〈B〉ψ.

9. Consider the stationary Schrödinger equation with a potential barrier defined in three regions
of R by: (A) V (x) = 0 for x < 0, (B) V (x) = V0 > 0 for 0 6 x 6 a, (C) V (x) = 0 for x > a.
Seek solutions in the three regions with the same given energy E > 0, E 6= V0, in the following
forms:

ϕA(x) = Are
ikAx + Ale

−ikAx,

ϕB(x) = Bre
ikBx +Ble

−ikBx,

ϕC(x) = Cre
ikCx + Cle

−ikCx,

with kA, kB, kC to be determined as functions of E. The indices ‘r’ and ‘l’ stand for the direction
of the velocity vector of each wave component, respectively ‘right’ and ‘left’.

Now the global solution is obtained by ‘gluing’ together the solutions ϕA, ϕB, ϕC . Find the
relations between the coefficients so that the global solution is continuous everywhere, as well
as its derivative.

Tunnel effect: We define the transmission coefficient t and the reflection coefficient
r as follows. Consider the solution for which Ar = 1 (particle coming from the left), Al = r
(reflection), Cl = 0 (no particle coming from the right), and Cr = t (transmission). The
number |t|2 is the probability for the particle to be transmitted through the barrier and |s|2
the probability of it being reflected by the barrier. Find the explicit expressions of t and r, in
terms of kA, kB, kC and a. Verify that |t|2 + |r|2 = 1 (conservation of the particle).
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Now discuss the two cases E < V0 and E > V0. Decide if the particle is always transmitted
or always reflected in each case. How do the results contrast with the situation of a classical
particle with the same energy?



Appendix A

The Riemann-Stieltjes integral

In this appendix we will extend the Riemann integral to measures generated by functions of ‘bounded
variation’.

A.1 Functions of bounded variation

Let [a, b] ⊂ R be a non-empty compact interval. A partition Π of [a, b] is a finite sequence of
numbers (λk)

n
k=0 such that

a = λ0 < λ1 < · · · < λn = b.

The size of Π is the positive number

|Π| := max
k=1,...,n

λk − λk−1.

We denote P[a, b] the set of all partitions of [a, b].
A function φ : [a, b] → R is said to have bounded variation if there exists a constant C > 0

such that
n∑
k=1

|φ(λk)− φ(λk−1)| 6 C,

for any partition Π = (λk)
n
k=0 ∈ P[a, b]. If φ has bounded variation in [a, b] we define for all x, y ∈ [a, b]

such that x < y the total variation of φ in [x, y] as the positive number

V y
x (φ) := sup

Π∈P[x,y]

n∑
k=1

|φ(λk)− φ(λk−1)| .

The functions of bounded variation in [a, b] form a vector space, denoted BV [a, b].

The following theorems are proved in [KF80], pp. 329 and 330.
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Theorem A.1.1 Let φ ∈ BV [a, b]. If a < c < d 6 b then

V d
a (φ) = V c

a (φ) + V d
c (φ).

Theorem A.1.2 Let φ ∈ BV [a, b]. If φ is left-continuous at a point x0 ∈ [a, b], then the function
x 7→ V x

a (φ) is also left-continuous at x0.

A.2 Definition of the integral

Let us now consider a continuous function f : [a, b] → R and a function of bounded variation
φ ∈ BV [a, b]. For any partition Π = (λk)

n
k=0 and any real numbers

µk ∈ [λk, λk−1], k = 1, . . . , n,

we let

SΠ =
n∑
k=1

f(µk)
(
φ(λk)− φ(λk−1)

)
.

Theorem A.2.1 Let f : [a, b] → R continuous and φ ∈ BV [a, b]. There exists a unique number
I ∈ R satisfying: for all ε > 0 there exists δ > 0 such that if Π is a partition of [a, b] satisfying
|Π| < δ, then

|SΠ − I| < ε.

Furthermore, the number I is independent of the choice of points µk.

Proof. Let ε > 0. Since f continuous in a compact set, it is uniformly continuous. So there exists δε
such that for all x, y ∈ [a, b] |x− y| < δε =⇒

|f(x)− f(y)| 6 ε

2V b
a (φ)

,

where V b
a (φ) is the total variation of φ in [a, b].

Let us now show that for any two partitions Π,Π′ ∈ P[a, b] we have

|Π| , |Π′| < δε =⇒ |SΠ − SΠ′ | 6 ε, (A.2.1)

independently of the choice of points µk used to compute the partial sums SΠ et SΠ′ . We denote by
(λk)

n
k=0 the partition Π and we consider the partition Π = Π ∪ Π′, which we index as follows:

λ̄0 = λ0 < λ̄1 < · · · < λ̄k1 = λ1 < λ̄k1+1 < · · · < λ̄k2 = λ2 < e · · · e < λ̄kn = λn.
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Fixing arbitrarily µi ∈ [λi, λi−1], k = 1, . . . , n, and µ̄j ∈ [λ̄j, λ̄j−1], j = 1, . . . , kn, we have

SΠ =
n∑
i=1

ki∑
j=ki−1+1

f(µ̄j)
[
φ(λ̄j)− φ(λ̄j−1)

]
.

Furthermore, since for all i = 1, . . . , n

ki∑
j=ki−1+1

φ(λ̄j)− φ(λ̄j−1) = φ(λ̄ki)− φ(λ̄ki−1
) = φ(λi)− φ(λi−1),

we can write SΠ as

SΠ =
n∑
i=1

ki∑
j=ki−1+1

f(µi)
[
φ(λ̄j)− φ(λ̄j−1)

]
.

Since |Π| < δε, we now have that, for all i = 1, . . . , n and all j = ki−1 + 1, . . . , ki,

|µ̄j − µi| < λi − λi−1 < δε =⇒ |f(µ̄j)− f(µi)| <
ε

2V b
a (φ)

.

Therefore,

|SΠ − SΠ| 6
n∑
i=1

ki∑
j=ki−1+1

|f(µ̄j)− f(µi)|
∣∣φ(λ̄j)− φ(λ̄j−1)

∣∣
6

ε

2V b
a (φ)

kn∑
j=1

∣∣φ(λ̄j)− φ(λ̄j−1)
∣∣ 6 ε

2
.

Similarly, we also have |SΠ′ − SΠ| 6 ε/2. Thus, as expected,

|SΠ − SΠ′ | 6 |SΠ − SΠ|+ |SΠ − SΠ′| 6 ε.

Let us now consider a sequence of partitions (Πn)∞n=1 satisfying limn→∞ |Πn| = 0. There exists
M > 1 such that |Πn| < δε for all n >M . It then follows from (A.2.1) that |SΠn − SΠm| < ε, for all
n,m > M . Hence (SΠn)∞n=1 is a Cauchy sequence in R. So there exists I ∈ R and N > 1 such that
|SΠN − I| < ε/2. Finally, by (A.2.1), any partition Π smaller than δε/2 satisfies

|SΠ − I| 6 |SΠ − SΠN |+ |SΠN − I| 6 ε.

This concludes the proof of the theorem. �

The limit I in Theorem A.2.1 is called the Riemann-Stieltjes integral of f with respect to φ.
We denote it as ∫ b

a

f(x) dφ(x) ore merely as

∫ b

a

f dφ.
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A.3 Some properties of the Riemann-Stieltjes integral

The following elementary properties are direct consequences of the definition and of Theorem A.2.1.

Properties A.3.1 Consider two continuous functions f, g : [a, b] → R, two functions of bounded
variation φ, ψ ∈ BV [a, b], c ∈ (a, b) and α ∈ R. Then there holds:

(a)
∫ b
a
f dφ =

∫ c
a
f dφ+

∫ b
c
f dφ;

(b)
∫ b
a
αf dφ = α

∫ b
a
f dφ;

(c)
∫ b
a
(f + g) dφ =

∫ b
a
f dφ+

∫ b
a
g dφ;

(d)
∫ b
a
f dφ+

∫ b
a
f dψ =

∫ b
a
f d(φ+ ψ). �

We next state the integral form of the mean-value theorem for Riemann-Stieltjes integrals.

Theorem A.3.2 Consider φ ∈ BV [a, b] and f : [a, b]→ R continuous. Then∣∣∣∣∫ b

a

f dφ

∣∣∣∣ 6 sup
x∈[a,b]

|f(x)|V b
a (φ).

Proof. Let Π = (λk)
n
k=0 be a partition of [a, b]. Then∣∣∣∣∣

n∑
k=1

f(λk)
[
φ(λk)− φ(λk−1)

]∣∣∣∣∣ 6 sup
x∈[a,b]

|f(x)|
n∑
k=1

|φ(λk)− φ(λk−1)| 6 sup
x∈[a,b]

|f(x)|V b
a (φ).

The result follows by considering a sequence of partitions, the size of which converges to zero. �

Here is now the analogue of the uniform convergence theorem for Riemann integrals.

Theorem A.3.3 Let φ ∈ BV [a, b] and consider a sequence (fn)∞n=1 of real continuous functions
defined on [a, b], converging uniformly to a function f . Then there holds

lim
n→∞

∫ b

a

fn dφ =

∫ b

a

f dφ.

Proof. Let us first observe that, since f is continuous, its Riemann-Stieltjes integral w.r.t. φ exists.
Now consider ε > 0 arbitrary. Since (fn)∞n=1 converges uniformly to f , there exists N > 1 such that,
for all n > N ,

sup
x∈[a,b]

|fn(x)− f(x)| 6 ε

V b
a (φ)

.
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Then take a seqeunce of partitions (Πm)∞m=1 of [a, b] such that limm→∞ |Πm| = 0. Denoting by
(λmk )lmk=1 partition Πm we have, for all n > N and all m > 1,∣∣∣ lm∑

k=1

fn(λmk )
[
φ(λmk )− φ(λmk−1)

]
−

lm∑
k=1

f(λmk )
[
φ(λmk )− φ(λmk−1)

]∣∣∣
6

lm∑
k=1

|fn(λmk )− f(λmk )|
∣∣φ(λmk )− φ(λmk−1)

∣∣
6 sup

x∈[a,b]

|fn(x)− f(x)|V b
a (φ) 6 ε.

For any fixed n > N , we let m→∞ and we get, thanks to Theorem A.2.1,∣∣∣∣∫ b

a

fn dφ−
∫ b

a

f dφ

∣∣∣∣ 6 ε.

�

The following theorem is used in Chapter 2.

Theorem A.3.4 Let φ ∈ BV [a, b] and suppose that φ is left-continuous in [a, b]. If, for any contin-
uous function f : [a, b]→ R, there holds ∫ b

a

f dφ = 0,

then φ(x) = φ(a) for all x ∈ [a, b].

Proof. Fix x0 ∈ (a, b) and choose N ∈ N so that x0 − 1/N > a. For any n > N , we define a
continuous function fn : [a, b]→ R by

fn(x) =


1 if x ∈ [a, x0 − 1

n
],

−nx+ nt if x ∈ [x0 − 1
n
, x0],

0 if x ∈ [x0, b].

Then, for all n > N ,

0 =

∫ b

a

fn dφ =

∫ x0− 1
n

a

1 dφ+

∫ x0

x0− 1
n

(−nx+ nx0) dφ(x) +

∫ b

x0

0 dφ

= φ(x0 − 1
n
)− φ(a) +

∫ x0

x0− 1
n

(−nx+ nx0) dφ(x). (A.3.1)
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However by Theorem A.3.2 we have, for all n > N ,

0 6

∣∣∣∣∣
∫ x0

x0− 1
n

(−nx+ nx0) dφ(x)

∣∣∣∣∣ 6 V x0
x0− 1

n

(φ).

Furthermore, by Theorem A.1.1 we can express the total variation of φ in [x0 − 1
n
, x0] as

V x0
x0− 1

n

(φ) = V x0
a (φ)− V x0− 1

n
a (φ).

Since φ is left-continuous, Theorem A.1.2 yields

lim
n→∞

V x0
x0− 1

n

(φ) = V x0
a (φ)− lim

n→∞
V
x0− 1

n
a (φ) = 0.

Thus,

lim
n→∞

∫ x0

x0− 1
n

(−nx+ nx0) dφ(x) = 0.

Hence, letting n→∞ in (A.3.1), the left continuity of φ implies that

0 = lim
n→∞

φ(x0 − 1
n
)− φ(a) = φ(x0)− φ(a).

Since x0 ∈ (a, b) is arbitrary, we have proved that φ(x) = φ(a) for all x ∈ [a, b), and it follows that

φ(b) = lim
x↗b

φ(x) = φ(a),

which finishes the proof. �



Appendix B

The Lebesgue-Stieltjes integral

B.1 Lebesgue-Stieltjes measures

A measure can be associated with any non-decreasing left-continuous function F : R → R in the
following way. Write F (λ+) = limµ↘λ F (µ) for all λ ∈ R. The following theorem guarantees the
existence of a measure µF defined on the Borel sets B of R such that

µF [a, b) = F (b)− F (a)

µF (a, b] = F (b+)− F (a+)

µF (a, b) = F (b)− F (a+)

for any a, b ∈ R with a < b, and
µF [a, b] = F (b+)− F (a),

for a, b ∈ R with a 6 b. The total mass of µF is given by

µF (R) = F (∞)− F (−∞)

and can be finite or infinite.

Theorem B.1.1 Consider an non-decreasing left-continuous function F : R → R. There exists a
unique measure µF defined on B such that µF [a, b) = F (b)− F (a) for any a, b ∈ R with a < b.

Proof. See [SS05, p. 282]. �

We call Lebesgue-Stieltjes measure associated to F the measure µF . This measure can be
extended to a complete measure on the σ-algebra ΣF ⊃ B of all µF -measurable sets.
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Remark B.1.2 Any measure µ on B which is finite on bounded intervals is, in fact, a Lebesgue-
Stieltjes measure. Indeed µ = µF , where

F (x) :=


−µ[−x, 0) if x < 0,
0 if x = 0,
µ[0, x) if x > 0,

is non-decreasing and left-continuous. See [SS05, p. 282] for details.

In the remainder of this section, F will always denote an non-decreasing left-continuous function.

B.2 The Lebesgue-Stieltjes integral

The Lebesgue-Stieltjes integral with respect to F is merely defined as the Lebesgue integral associated
with the measure µF . We shall briefly recall here one possible construction in the context of interest
to these notes. We essentially follow [KF80], where more details can be found.

The first step is to define the integral of simple functions, i.e. functions of the form

s =
∞∑
k=1

ckχAk , (B.2.1)

where χA denotes the characteristic function of A, the sets Ak are µF -measurable and pairwise
disjoint, and the numbers ck ∈ R, k > 1, are distincts. Then s is called Lebesgue-Stieltjes integrable
with respect to F if the series

∞∑
k=1

ckµF (Ak)

is absolutely convergent. In this case the Lebesgue-Stieltjes integral of s with respect to F is defined
as ∫

s dµF =
∞∑
k=1

ckµF (Ak).

Hence, the definition of the integral for simple functions is quite straightforward. To extend it to
general measurable functions, one then benefits from the following theorem. Recall that a function
f : R→ R is called measurable if

f−1(A) is measurable for any measurable set A.

Theorem B.2.1 A function f is µF -measurable if and only if there exists a sequence (sn)∞n=1 of
simple functions converging uniformly to f .
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Definition B.2.2 A µF -measurable function f is called Lebesgue-Stieltjes integrable with re-
spect to F , or simply µF -integrable, if there is a sequence (sn)∞n=1 of µF -integrable simple functions
which converges uniformly to f . In this case we call Lebesgue-Stieltjes integral with respect
to F of the function f the limit ∫

f dµF = lim
n→∞

∫
A

sndµF .

One shows in particular that the above limit exists, is finite, and does not depend on the choice of
the sequence of simple functions (sn)∞n=1, see [KF80, p. 296] for more details.

For a complex function f : R → C, writing f = g + ih with g = <f and h = =f , we say that f
is Lebesgue-Stieltjes integrable with respect to F if both g and h are. In this case, the integral of f
is simply defined as ∫

f dµF =

∫
g dµF + i

∫
h dµF .

The following theorem ensures that the Riemann–Stieltjes integral and the Lebesgue–Stieltjes integral
coincide for continuous functions.

Theorem B.2.3 Let f : [a, b]→ R be a continuous function and F : R→ R be non-decreasing and
left-continuous. Then ∫ b

a

f dF =

∫
[a,b)

f dµF .

Proof. Consider a sequence (Πn)∞n=1 of partitions of [a, b] given as

Πn : a = λn0 < λn1 < · · · < λnmn−1 < λnmn = b,

and such that limn→∞ |Πn| = 0. For all n > 1 we define a simple function ψn : [a, b)→ R by

ψn(x) = f(λnk) if x ∈ [λnk , λ
n
k−1), for k = 0, . . . ,mn − 1.

Each ψn is µF -integrable over [a, b) and it follows from the uniform continuity of f that the sequence
(ψn)∞n=1 converges uniformly to f . Furthermore,

SΠn =

∫
[a,b)

ψn dµF

and so, letting n→∞, Theorem A.2.1 implies that∫ b

a

f dF =

∫
[a,b)

f dµF .

�
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We now state, without proofs, some important convergence results. We say that a sequence of
functions (fn)∞n=1 converges µF -almost everywhere to a function f , and we simply write fn → f
a.e. if the context is clear, provided there exists a µF -measurable set N such that µF (N) = 0 and

lim
n→∞

fn(x) = f(x) for all x ∈ R\N.

Similarly, any pointwise property holding everywhere except on a set N such that µF (N) = 0 will
be said to hold µF -almost everywhere, or merely almost everywhere if the context is clear.

Theorem B.2.4 (Fatou’s Lemma) Let (fn)∞n=1 be a sequence of µF -measurable functions such that
fn > 0 a.e. for all n > 1. If fn → f a.e. then∫

f dµF 6 lim inf
n→∞

∫
fn dµF .

The proof of this result can be found on p. 61 of [SS05].

Theorem B.2.5 (Dominated Convergence) Let (fn)∞n=1 be a sequence of µF -measurable func-
tions such that fn → f a.e. If there exists a µF -integrable function g such that |fn| 6 g for all n > 1,
then

lim
n→∞

∫
|fn − f | dµF = 0

and so

lim
n→∞

∫
fn dµF =

∫
f dµF .

The proof of this result can be found on p. 67 of [SS05]. An equivalent formulation is given on p. 303
of [KF80].

B.3 The Hilbert space L2(R, µF )

The space L2(R, µF ) is defined similarly to the case where µF is the Lebesgue measure on R. It
consists of equivalence classes of functions µF -measurable f : R→ C such that |f |2 is µF -integrable
over R, the equivalence relation being given by

f ∼µF g ⇐⇒ f = g µF -a.e.

Endowed with the inner product

〈f, g〉L2(R,µF ) =

∫
fḡ dµF , f, g ∈ L2(R, µF ),
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it is a Hilbert space.

The definition of the integral with respect to a spectral family in Chapter 3 is based on the
following result. A proof can be found in [Wei80, p. 25]. It can also be deduced from the proof of
the separability of L2(R) in [SS05, p. 160].

We call step function a function t : R→ C that can be written as

t =
n∑
k=0

ckχIk

for a finite number of non-empty pairwise disjoint intervals Ik ⊆ R of the form

(ak, bk), [ak, bk), (ak, bk] or [ak, bk],

and corresponding constants ck ∈ C.

Theorem B.3.1 Step functions are dense in L2(R, µF ).





Appendix C

The Banach space-valued Riemann
integral

Throughout this appendix we consider a Banach space X and a continuous function F : [a, b] → X
where a, b ∈ R with a < b.

C.1 Definition and existence

The function F being continuous, it is uniformly continuous over the compact interval [a, b]. That
is, for all ε > 0, there exists δ > 0 such that, for all t, s ∈ [a, b],

|t− s| < δ =⇒ ‖F (t)− F (s)‖ < ε.

On the other hand, F : [a, b]→ X is bounded, that is,

sup
t∈[a,b]

‖F (t)‖ <∞.

In fact, this supremum is achieved at some point in [a, b].
In perfect analogy with the real-valued Riemann integral, for any partition Π of [a, b],

Π : a = λ0 < λ1 < · · · < λm−1 < λm = b,

and any sequence of points
µk ∈ [λk−1, λk], k = 1, . . . ,m,

we consider the sum

SΠ =
m∑
k=1

(λk − λk−1)F (µk).
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Theorem C.1.1 Let F : [a, b] → X be continuous. There exists a unique Y ∈ X such that, for all
ε > 0, there exists δ > 0 such that, for any partition Π of [a, b] satisfying |Π| < δ, we have

‖SΠ − Y ‖ < ε.

The element Y ∈ X given by Theorem C.1.1 is called the Riemann integral of F over [a, b],
and we write

Y =

∫ b

a

F (t) dt.

The proof of this result is virtually identical to those of Theorem A.2.1 and Lemma 2.1.2. We
therefore leave as an easy revision exercise the obvious changes of notation required.

The integral defined by Theorem C.1.1 is of course linear. That is, if F,G : [a, b] → X are
continuous and α, β ∈ R, then∫ b

a

(
αF (t) + βG(t)

)
dt = α

∫ b

a

F (t) dt+

∫ b

a

βG(t) dt.

Furthermore, it is easily seen that ∥∥∥∥∫ b

a

F (t) dt

∥∥∥∥ 6 ∫ ‖F (t)‖ dt.

C.2 Some useful results

Lemma C.2.1 Let T ∈ B(X ) and F : [a, b]→ X continuous. The composition T ◦ F is continuous
and we have

T

∫ b

a

F (t) dt =

∫ b

a

TF (t) dt.

Proof. The continuity of the composition follows from

‖TF (t)− TF (s)‖ = ‖T (F (t)− F (s)‖ 6 ‖T‖ ‖F (t)− F (s)‖ .

Consider now a sequence (Πn)∞n=1 of partitions of [a, b], given as

Πn : a = λn0 < λn1 < · · · < λnmn−1 < λnmn = b,

and such that limn→∞ |Πn| = 0. We then have

TSΠn = T

mn∑
k=1

(λnk − λnk−1)F (λnk) =
mn∑
k=1

(λnk − λnk−1)TF (λnk),

and so by continuity of T and Theorem C.1.1, the result follows by letting n→∞. �
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Theorem C.2.2 Let φ : [a, b] → R and F : [a, b] → X be continuous functions. The product φF
defined by φF (t) = φ(t)F (t) is continuous and we have∥∥∥∫ φ(t)F (t) dt

∥∥∥ ≤ ∫ |φ(t)| dt sup
s∈[a,b]

‖F (s)‖ .

Proof. The continuity of φF follows from

‖φ(t)F (t)− φ(s)F (s)‖ 6 ‖φ(t)F (t)− φ(s)F (t)‖+ ‖φ(s)F (t)− φ(s)F (s)‖
6 |φ(t)− φ(s)| ‖F (t)‖+ |φ(s)| ‖F (t)− F (s)‖ .

Consider now a sequence (Πn)∞n=1 of partitions of [a, b], given as

Πn : a = λn0 < λn1 < · · · < λnmn−1 < λnmn = b,

and such that limn→∞ |Πn| = 0. We then have

∥∥SΠn

∥∥ =
∥∥∥ mn∑
k=1

(λnk − λnk−1)φ(λnk)F (λnk)
∥∥∥ 6 mn∑

k=1

(λnk − λnk−1) |φ(λnk)| ‖F (λnk)‖

6
mn∑
k=1

(λnk − λnk−1) |φ(λnk)| sup
s∈[a,b]

‖F (s)‖ ,

and so letting n→∞ the result follows by continuity of the norm, by Theorem C.1.1, and the fact
that

lim
n→∞

mn∑
k=1

(λnk − λnk−1) |φ(λnk)| =
∫ b

a

|φ(t)| dt.

�

Finally, we have the following uniform convergence theorem.

Theorem C.2.3 Consider a sequence (Fn)∞n=1 of continuous functions Fn : [a, b] → X and a con-
tinuous function F : [a, b] → X . Suppose (Fn)∞n=1 converges uniformly to F . That is, for all ε > 0
there exists N > 1 such that

n > N =⇒ sup
s∈[a,b]

‖Fn(s)− F (s)‖ < ε.

Then we have

lim
n→∞

∫ b

a

Fn(t) dt =

∫ b

a

F (t) dt.
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Proof. Applying Theorem C.2.2 to φ(s) ≡ 1, we have, for all n > 1,∥∥∥∫ b

a

Fn(t) dt−
∫ b

a

F (t) dt
∥∥∥ 6 (b− a) sup

t∈[a,b]

‖Fn(s)− F (s)‖ .

The result then follows from the uniform convergence of (Fn)∞n=1 to F . �
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