EPFL — Spring 2025 Spectral theory Francgois Genoud

HOMEWORK SOLUTION WEEK 9

1. (a) Pick any u € C}(R) such that u has compact support in (0,1), |u|| = 1 and ||«/|| = A > 0. Define
un () := n'?u(nz), n € N. Then, u, € CA(0,1) because u,(0) = n'/?u(0) = 0, u,(1) = n*/?u(n) = 0 for
n > 1. Moreover,
|lupnl=1 and |u,|| = An, neN.
It follows that
[ Daun |

[

= An — oo,

which shows that D3 is not bounded.

(b) Since C(0,1) is dense in L?[0,1], D} exists. Furthermore, it follows as for D; in Problem 3 (a) of
Week 8 that Ds is symmetric. Now, D3 C Dy = D] C D3. Letting

D :={ue AC[0,1]; v’ € L?[0,1]},

it follows that ® C D ps. Thus, we only need to show that Dp: €D and Djv = i for all v € Dps.
Consider v € D p:. Since Djv € L?[0,1] c L'[0, 1], the function ¢ defined by

ow):=~i [ Dl dn. = ef0.1)
belongs to AC[0,1]. It follows that
1 1 1 1 I
/ v (—iv) = (iv/,v) = (u, D3v) = / uD3v = / iy = / uip = / u'(ig), Vu € C3(0,1).
0 0 0 0 0

Hence, by the Du Bois-Reymond Lemma, there exists a constant C' € C such that v = —p+ C € ACI0, 1]

and Div = (ip) = iv' € L*0,1].

Alternative / more explicit proof : Consider v € D p: and an interval [a, b] C [0, 1]. We will construct
a sequence of functions (u,) C D p, such that

ul(x) — d(x —a) — d(x —b) (1)
in the sense of distributions, and
[t = X{a,p) | — 0 (2)
It will follow that ) ,
{1, D) = /O T / Div, 3)
ve AC[0,1] and (Dsuy,v) = /1 iu, v — —i(0(b) — v(a)). (4)
0

Since (Dsuy,v) = (uy, Div) for all n, we will deduce that

b
/ Div = —i(v(b) —v(a)), VO<a<b<l,

v e D and Djv =iv'.

The remainder of the proof is the construction of the sequence (u,) C C3(0,1) satisfying (1), (2), (3)
and (4). Consider ¢ € C}(—1,1), ¢ > 0, such that f_ll ¢ =1 and let p,(z) := np(nzx), n € N. Then, for
all t € (0,1), the function ¢, (z — t) is C*, has support in (t — %,t + %) C (0,1) for n large enough, and

satisfies
t+1
/ on(x—t)dz = 1.
t_

3=
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We now define .
un () = /0 (n(y = a) = en(y — ) dy.
Since
op(x—1t) — d(z —t), n— oo,
in the sense of distributions, the sequence (u,) clearly satisfies (1). Furthermore, it is easy to see that

Up = X|a,p] POIntwise and (2) follows by dominated convergence. Finally, let us prove (4). Define, for n
large enough,

1
(Apv)(y) = /0 on(y — z)v(z)de, v e L?[0,1].

If v € C°[0,1], it is not difficult to prove that A,v — v uniformly on [0,1]. In particular, A,v — v in
L?[0,1]. Furthermore, a simple estimate using the definition of A,, shows that

(A, ) | <l loll, Va0 € £2[0,1).
Hence, A, € B(L?[0,1]) with ||A,| < 1. Now, given v € L?[0,1] and ¢ > 0, consider v. € C°[0,1] and
no € N such that
lv —ve|| < g and ||Apve —ve|| < % Vn = ng.
Then, for n > ny,
[Anv =[] < [|An(v = vo)l| + [[Anve — vell + [lve — v
<o = el + | Anve — el + [lve — o]
<e.

This shows that A,v — v in L?[0,1], for all v € L?[0,1]. Now, passing to a subsequence if necessary, we
have that

1 1
(D3up,v) = [ iulv= / i(on(z — a) — pn(z — b))v(z) do
0 0
=i(An0(a) — An0(b))
— —i(0(b) — v(a)), (5)

for almost every a < b in (0,1). It then from follows from (3) that v € AC[0,1] and iv' = Djv € L?[0,1].
Hence, in fact, (5) holds for all @ < b in (0, 1), which completes the proof of (4).

2. (a) Recall the notation
B(f) = [ FnaEs
By definition, u € Dy if and only if
/f|2 dpty 2 < +00
Now, it suffices to prove that
Il = [ 17 diy

when u € Dp(p).
If f is a step function, the equality is true (see p.49 from the lecture notes). Else, we approximate f by
a sequence of step functions (¢,,) such that ¢, — f in LQ(R’“IIEWIIQ)‘ By definition of E(f)u (see again

p.49), E(f)u = EIE E(tp)u in H. Then

/‘f’z Aty g2 = nh—%lo/ (M Aty g2 = nh—{go 1E(tn)ull = [|E(f)ul®

(b) Suppose f bounded and let M = esssupg |f|. Then, for all u € H,
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/|f|2 Aty g2 S M2/ dpy gy = M [l
Hence, by part (a), u € Dp(y) and IE(f)u|| < M ||u||. Thus, E(f) € B(H) and ||E(f)|| < M.

(c) E(l)u-/dEAU—u, Yu € H.

(d) Let u € Dp(y) and consider a sequence of step functions (t;) such that t; — f in L2(]R,,uHEw”2).

Write
tj = ZC](CJ)XI](CJ-).
k=0

Then

o ) >_ H () H2

(E(f)u,u) Jhﬁr(r)lo (E(tj)u,u) = JILTOZC < (I )u,u JILIEOZC E(L7)u

= Jim ) iy gy = / FO) gty -

The last equality follows from the finiteness of the measure, [ dby w2 = |u||?, which implies that

L'(R, I E/\uHQ) is continuously embedded in L?(R, g UHQ). Explicitly, by Cauchy-Schwarz,

‘/tj(A) dpty g, 2 —/f(A) /|t3 Nl dpy gy 2
/ 150) = O e )1/2( / 1d““EwH2>1/Q

= |It; = fIILz R [ull =0, j — o0
(

ENAED
(e) If u € Dop(r)+bE(g) = PE(F) N DE(g), then f,g € L?(R, ) Eyulf2) and

aE(f)u—i—bE(g)uza/de,\u+b/ng>\u:/(af+bg) dE\u.

Hence af + bg € LQ(R,M||EW||2), ie. u € Dpuping)- It follows that D,p(r)1eE) C DE(af+bg) and
aB(f)u+bE(g)u = E(af + bg)u, for all u € D,p(f)+bE(g)-
We have

f,9 € PR, pypyu2) < /|f’2d:u||E‘>\u2 +/|9|2dHEw||2 <00 = /(|f| + lg1)? dpypyugz < o0,

hence D p(1)1+E(9) = DE(f|+l9))-

('f) Let u € Dp(y) and consider a sequence of step functions (t;) such that t; — f in L2(]R,/L”EWHQ) as
J — oo. Write

nj
tj = ZC;&J)X[(J»-
k=0 g
By boundedness of E, we have, for all u € Dy,

E E(f)u=E, lim E(fj)u= hm E,E(fj)u= hm EMch ,ij))u

Y k=0
(4) (4) (j)
hmg cp' B B )u = hmE c E,u=E(f)E,u,
jro0 £ k (7y") jmroo k )Eu (f)E,

hence u € Dp(y)g,. This shows that Dy = D, pr) C QE(f)Eu and E,E(f)u = E(f)E,u for all
u € @EME(f), i.e. EuE(f) - E(f)Eu
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(2) Proof of the hint : Let u € D py) be fixed. We first prove the hint when f(p) = >, cexr, (p) is
a step function with ¢ # 0 and the [}, are non-empty, disjoint, bounded intervals. One has

+oo n
/ PO At o, gz = Dokt 1, gy (T
- k=0
where
IEE(g)ul?® — | EoE(g)ul®>  if I = [a,b),
I = |EyE(g)ul® — | Eas E(g)ul®>  if I = (a,b),
5, B> () = 2 2 oo
| Epr E(g)ul|” — | Eayr E(g)ul|” if I = (
1By E(9)ull® — |E.E(g)ul® i I = [a,b].

By (f), for any p € R, we can write

(@ [T
1Bl = 1E@E D [l
_ 2 9
_/(Oop) lg(A)] dﬂEAEpu2+/[p+oo) lg(N)] SN

— [ 19O iy
(foo,p)

since ExEp = Enin{a,p)- A similar argument shows that

HEp-&-EgUH2 = / ‘g()‘)|2dqu,\u||2

(foo,p}

for any p € R. (NB: A singleton does not necessarily have zero measure.) Hence,

2, By () = /1 g1 dpy g, 2

for any interval I and we conclude that

+o0 n +o00
/ f(p)I? dMHEpE(g)u”2 = Z/] lenl? (V)7 d'U’HEAuHQ = / [FN)g(N)]? d/‘HEwHQ? Vu € Dpy). (6)
> k=0 """k

—00

If each ¢, > 0, then the equality extends to f given by a countable sum f = >, crxr, of disjoint
intervals using Monotone Convergence. One should note that the integrals in (6) are either both finite or
both infinite, but this is no issue.

Then, as any open set is the countable union of disjoint intervals, the theorem also holds for f = xy
with U open and then for f = xg with S an E-measurable set using the outer regularity of the Stieltjes
MEASUIES [1 5 p(g)y||? and 1) Byl In particular, it also holds when f is a real-valued, nonnegative, simple
function.

If f is a general E-measurable function (say real-valued and non-negative for simplicity, otherwise,
split into real, imaginary, positive and negative parts), it suffices to take (f,) a monotone sequence
0 < fn < fay1 of simple functions which converges pointwisely a Esz—almost everywhere to f and
1B, B( g)unz—almost everywhere to f to conclude the proof of the hint by Monotone Convergence. For

example, one can set
fal@) = sup{j2™"  j € Z, j27" < min{ f(x),2"}

Proof of the equality of domains : The hint and point (a) show that if u € Dp(,), then u either

belongs to both D g gy C Dp(g) and D rg) or to neither of them, i.e.

g)’

Du(5)Eg) = DE(g) N DE(tg):

This is because either both integrals in (6) are infinite or both are finite.
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Proof of E(f)E(g9) € E(fg) : An argument similar to the proof of the hint, together with point (d),
shows that

(B()E(g)u,u) = (E(fg)u,u), Vu € Dppp()- @
Furthermore, if u,v € Dp(y)E(g), we find that
(E(f)E(g)u,v) = (E(fg)u,v)
as follows. Consider an E-measurable function h and let u,v € Dg(p,). By the polarization identity (see
Problem 6, Week 2), for all A € R, we have

(Eyu,v) = i[(E,\(lH—v),u%—v) — (Ex(u—v),u—v) +i( (Ex(u+iv),u+iv) — (Ex(u—iv),u—iv))].

It follows that A — (F\u,v) is a complex-valued function of bounded variations. A corresponding
(complex-valued) Lebesgue-Stieltjes measure can be associated to it. Approximating h by step functions
and using the above identity, one deduces that

(E(R)u,v) = / BN ity

— i[(E(h)(u+ v),u+v) — (E(h)(u—v),u—v)

+i((E(h)(u+ iv),u+iv) — (B(h)(u—iv),u —iv) )],
where the right-hand side of the first equality is the Lebesgue-Stieltjes integral of h with respect to the
complex-valued measure pug, ). Hence, (7) extends to
<E(f)E(g)’LL,’U> = <E<fg)u7 U> ) \V/’LL,U € QE(f)E(g)
Now, if f and g are bounded, then D g(s g = H and it follows that E(f)E(g)u = E(fg)u. Else, it
suffices to approximate E(f)E(g)u and E(fg)u with
E(f)E(g)u = lim lim E(f,)E(gm)u, E(fg)u= lim lim E(fngm)u, (8)

where (f,,) and (g,) are any sequences of bounded functions for which |f,| < f, |gn] < g 1 Esz—almost
everywhere and f, — f, gn — g in L*(R, “IIEAUIIZ)‘ For example, one can take

o i@, Jf@l<n
In=1 X[—n,n] f {07 |f(a;)|>n

and gn = g*X[—n,n) ©g- For each fixed n and m, as f,, and g,, are chosen bounded, one has E(f,)E(gm)u =
E(fngm)u and one gets E(f)E(g)u = E(fg)u at the limit.

The goal now is to prove that the double limits in (8) converges respectively to E(f)E(g)u and E(fg)u,
which is not trivial.

It follows from (a) and (e) that

“+oo
(B (Fagm) — E(F9) ull® D NEFugm — fo)ul* 2 / Fal0)am(p) — F(0)a() dpry g e

which goes to zero as n, m — oo by the Dominated Convergence Theorem.
Similarly, for each fixed n € N,

i [[(E(fa) E(gm) ~ EG)E(@) ul < Tim B2 - | (E(gu) — E(g)) ull® =0
and

lim [[(E(f.)E(g) — E(H)E(@) ul® 2 |E(f. — £)E(g)ul®”

n—oo

+oo
= nh_ggo - |falp) = f(p)? dMHEpE(g)uHQ
+oo
=l [ IUaO) = FODIOP dpy, = 0.

o0
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(h) Let v € H and u,, = E(X|—pn) © f)u, where

L li@l<n
Mm@ ‘{o, HOE

This is well-defined because Dy of) = H by (b). Moreover, u, € D gy for all n € N since

+00 +oo
/_oo O Ay, mx, ol :/ ) Xtnont © SO A2

—00
ey 201,112

S/ nodpy g 2 =n llul|* < 400,
—0o0

where the used the hint from (g) for the first equality.
Finally, u,, converges to u because

ltn = ul]® = | (B © £) = EQ) > € || B¢y © £ — Vu)®

(@ [T 2
= ‘X[—n,n] o f(p) - 1‘ dM”EpuHQ’

which goes to zero as n — oo thanks to the Dominated Convergence Theorem.

(1) Dpi = Dk by (a). We prove that E(f) = E(f)*. Let u,v € Dpy) = D p(p)- Then

- _ +oo +o0
+o0 oo
— [ W dn = [ OV g = B,

which proves E(f) C E(f)*.

Conversely, let v € Dgy)- and consider the sequence (v,) C SE(?) = Dp) C Dg(y)~ defined by
Vp = E(X[—nn © f), as in part (h). Then

oo > (0, B(f)"v) = lim (v, E(f)"v) = lim (E(f)o,.0)

n—oo
(8)

+oo
\5) . _ . 2
= lim (B(f - X[-nm) © [lv,v) = Jim . 1£(0) - Xi=n,m) © F(P)" Aty 2

+00 +oo
= / nh_{go [£(P) - X[=n,n] © F)? d#||Eva2 = / 1f () dlu’”Epv”Qa

where we used the Monotone Convergence Theorem to pass the limit inside the integral. This proves that
v E QE(f) Hence, QE(f)* C QE(f) = QE(?)

(J) By (i), E(f)" =

= lim (E(f)E(X|—nn © f)v,v)

E(f). By (8), ®piyr() = Pr() N De(s12) = Dpipeg 2nd E(HE(f) = E(|fI?) =
E(f)E(f) on this domain.



