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Homework Solution Week 9

1. (a) Pick any u ∈ C1
c (R) such that u has compact support in (0, 1), ‖u‖ = 1 and ‖u′‖ = A > 0. Define

un(x) := n1/2u(nx), n ∈ N. Then, un ∈ C1
0 (0, 1) because un(0) = n1/2u(0) = 0, un(1) = n1/2u(n) = 0 for

n ≥ 1. Moreover,
‖un‖ = 1 and ‖u′n‖ = An, n ∈ N.

It follows that
‖D3un‖
‖un‖

= An→∞,

which shows that D3 is not bounded.

(b) Since C1
0 (0, 1) is dense in L2[0, 1], D∗3 exists. Furthermore, it follows as for D1 in Problem 3 (a) of

Week 8 that D3 is symmetric. Now, D3 ⊆ D1 ⇒ D∗1 ⊆ D∗3. Letting

D :=
{
u ∈ AC[0, 1] ; u′ ∈ L2[0, 1]

}
,

it follows that D ⊆ DD∗3
. Thus, we only need to show that DD∗3

⊆ D and D∗3v = iv′ for all v ∈ DD∗3
.

Consider v ∈ DD∗3
. Since D∗3v ∈ L2[0, 1] ⊂ L1[0, 1], the function ϕ defined by

ϕ(x) := −i
∫ x

0
D∗3v(y) dy, x ∈ [0, 1],

belongs to AC[0, 1]. It follows that∫ 1

0
u′(−iv) =

〈
iu′, v

〉
= 〈u,D∗3v〉 =

∫ 1

0
uD∗3v =

∫ 1

0
uiϕ′ = −

∫ 1

0
u′iϕ =

∫ 1

0
u′(iϕ̄), ∀u ∈ C1

0 (0, 1).

Hence, by the Du Bois-Reymond Lemma, there exists a constant C ∈ C such that v = −ϕ̄+C ∈ AC[0, 1]

and D∗3v = (iϕ)′ = iv′ ∈ L2[0, 1].

Alternative / more explicit proof : Consider v ∈ DD∗3
and an interval [a, b] ⊂ [0, 1]. We will construct

a sequence of functions (un) ⊂ DD3 such that

u′n(x) −→ δ(x− a)− δ(x− b) (1)

in the sense of distributions, and
‖un − χ[a,b]‖ −→ 0. (2)

It will follow that

〈un, D∗3v〉 =

∫ 1

0
unD∗3v −→

∫ b

a
D∗3v, (3)

v ∈ AC[0, 1] and 〈D3un, v〉 =

∫ 1

0
iu′nv̄ −→ −i(v̄(b)− v̄(a)). (4)

Since 〈D3un, v〉 = 〈un, D∗3v〉 for all n, we will deduce that∫ b

a
D∗3v = −i(v̄(b)− v̄(a)), ∀ 0 < a 6 b < 1,

v ∈ D and D∗3v = iv′.
The remainder of the proof is the construction of the sequence (un) ⊂ C1

0 (0, 1) satisfying (1), (2), (3)

and (4). Consider ϕ ∈ C1
0 (−1, 1), ϕ > 0, such that

∫ 1
−1 ϕ = 1 and let ϕn(x) := nϕ(nx), n ∈ N. Then, for

all t ∈ (0, 1), the function ϕn(x− t) is C1, has support in (t− 1
n , t + 1

n) ⊂ (0, 1) for n large enough, and
satisfies ∫ t+ 1

n

t− 1
n

ϕn(x− t) dx = 1.
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We now define

un(x) :=

∫ x

0

(
ϕn(y − a)− ϕn(y − b)

)
dy.

Since

ϕn(x− t) −→ δ(x− t), n→∞,
in the sense of distributions, the sequence (un) clearly satisfies (1). Furthermore, it is easy to see that
un → χ[a,b] pointwise and (2) follows by dominated convergence. Finally, let us prove (4). Define, for n
large enough,

(Anv)(y) :=

∫ 1

0
ϕn(y − x)v(x) dx, v ∈ L2[0, 1].

If v ∈ C0[0, 1], it is not difficult to prove that Anv → v uniformly on [0, 1]. In particular, Anv → v in
L2[0, 1]. Furthermore, a simple estimate using the definition of An shows that

| 〈Anu, v〉 | 6 ‖u‖ ‖v‖ , ∀u, v ∈ L2[0, 1].

Hence, An ∈ B(L2[0, 1]) with ‖An‖ 6 1. Now, given v ∈ L2[0, 1] and ε > 0, consider vε ∈ C0[0, 1] and
n0 ∈ N such that

‖v − vε‖ <
ε

3
and ‖Anvε − vε‖ <

ε

3
∀n > n0.

Then, for n > n0,

‖Anv − v‖ ≤ ‖An(v − vε)‖+ ‖Anvε − vε‖+ ‖vε − v‖
≤ ‖v − vε‖+ ‖Anvε − vε‖+ ‖vε − v‖
< ε.

This shows that Anv → v in L2[0, 1], for all v ∈ L2[0, 1]. Now, passing to a subsequence if necessary, we
have that

〈D3un, v〉 =

∫ 1

0
iu′nv̄ =

∫ 1

0
i
(
ϕn(x− a)− ϕn(x− b)

)
v̄(x) dx

= i
(
Anv̄(a)−Anv̄(b)

)
−→ −i

(
v̄(b)− v̄(a)

)
, (5)

for almost every a < b in (0, 1). It then from follows from (3) that v ∈ AC[0, 1] and iv′ = D∗3v ∈ L2[0, 1].
Hence, in fact, (5) holds for all a < b in (0, 1), which completes the proof of (4).

2. (a) Recall the notation

E(f) =

∫
f(λ)dEλ

By definition, u ∈ DE(f) if and only if ∫
|f |2 dµ‖Eλu‖2 < +∞

Now, it suffices to prove that

‖E(f)u‖2 =

∫
|f |2 dµ‖Eλu‖2

when u ∈ DE(f).
If f is a step function, the equality is true (see p.49 from the lecture notes). Else, we approximate f by

a sequence of step functions (tn) such that tn → f in L2(R, µ‖Eλu‖2). By definition of E(f)u (see again

p.49), E(f)u = lim
n→+∞

E(tn)u in H. Then∫
|f |2 dµ‖Eλu‖2 = lim

n→∞

∫
|tn(λ)|2 dµ‖Eλu‖2 = lim

n→∞
‖E(tn)u‖2 = ‖E(f)u‖2

(b) Suppose f bounded and let M = ess supR |f |. Then, for all u ∈ H,
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|f |2 dµ‖Eλu‖2 6M2

∫
dµ‖Eλu‖2 = M2 ‖u‖2 .

Hence, by part (a), u ∈ DE(f) and ‖E(f)u‖ 6M ‖u‖. Thus, E(f) ∈ B(H) and ‖E(f)‖ 6M .

(c) E(1)u =

∫
dEλ u = u, ∀u ∈ H.

(d) Let u ∈ DE(f) and consider a sequence of step functions (tj) such that tj → f in L2(R, µ‖Eλu‖2).

Write

tj =

nj∑
k=0

c
(j)
k χ

I
(j)
k

.

Then

〈E(f)u, u〉 = lim
j→∞

〈E(tj)u, u〉 = lim
j→∞

nj∑
k=0

c
(j)
k

〈
E(I

(j)
k )u, u

〉
= lim

j→∞

nj∑
k=0

c
(j)
k

∥∥∥E(I
(j)
k )u

∥∥∥2
= lim

j→∞

∫
tj(λ) dµ‖Eλu‖2 =

∫
f(λ) dµ‖Eλu‖2 .

The last equality follows from the finiteness of the measure,
∫

dµ‖Eλu‖2 = ‖u‖2, which implies that

L1(R, µ‖Eλu‖2) is continuously embedded in L2(R, µ‖Eλu‖2). Explicitly, by Cauchy-Schwarz,∣∣∣ ∫ tj(λ) dµ‖Eλu‖2 −
∫
f(λ) dµ‖Eλu‖2

∣∣∣ 6 ∫ |tj(λ)− f(λ)|dµ‖Eλu‖2

6
(∫
|tj(λ)− f(λ)|2 dµ‖Eλu‖2

)1/2(∫
1 dµ‖Eλu‖2

)1/2
= ‖tj − f‖L2(R,µ‖Eλu‖2 )

‖u‖ → 0, j →∞.

(e) If u ∈ DaE(f)+bE(g) = DE(f) ∩DE(g), then f, g ∈ L2(R, µ‖Eλu‖2) and

aE(f)u+ bE(g)u = a

∫
f dEλu+ b

∫
g dEλu =

∫
(af + bg) dEλu.

Hence af + bg ∈ L2(R, µ‖Eλu‖2), i.e. u ∈ DE(af+bg). It follows that DaE(f)+bE(g) ⊂ DE(af+bg) and
aE(f)u+ bE(g)u = E(af + bg)u, for all u ∈ DaE(f)+bE(g).

We have

f, g ∈ L2(R, µ‖Eλu‖2) ⇐⇒
∫
|f |2 dµ‖Eλu‖2 +

∫
|g|2 dµ‖Eλu‖2 <∞ ⇐⇒

∫
(|f |+ |g|)2 dµ‖Eλu‖2 <∞,

hence DE(f)+E(g) = DE(|f |+|g|).

(f) Let u ∈ DE(f) and consider a sequence of step functions (tj) such that tj → f in L2(R, µ‖Eλu‖2) as

j →∞. Write

tj =

nj∑
k=0

c
(j)
k χ

I
(j)
k

.

By boundedness of Eµ we have, for all u ∈ DE(f),

EµE(f)u = Eµ lim
j→∞

E(fj)u = lim
j→∞

EµE(fj)u = lim
j→∞

Eµ

nj∑
k=0

c
(j)
k E(I

(j)
k )u

= lim
j→∞

nj∑
k=0

c
(j)
k EµE(I

(j)
k )u = lim

j→∞

nj∑
k=0

c
(j)
k E(I

(j)
k )Eµu = E(f)Eµu,

hence u ∈ DE(f)Eµ . This shows that DE(f) = DEµE(f) ⊆ DE(f)Eµ and EµE(f)u = E(f)Eµu for all
u ∈ DEµE(f), i.e. EµE(f) ⊆ E(f)Eµ.
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(g) Proof of the hint : Let u ∈ DE(g) be fixed. We first prove the hint when f(ρ) =
∑n

k=0 ckχIk(ρ) is
a step function with ck 6= 0 and the Ik are non-empty, disjoint, bounded intervals. One has∫ +∞

−∞
|f(ρ)|2 dµ‖EρE(g)u‖2 =

n∑
k=0

|ck|2µ‖EρE(g)u‖2(Ik),

where

µ‖EρE(g)u‖2(I) =


‖EbE(g)u‖2 − ‖EaE(g)u‖2 if I = [a, b),

‖EbE(g)u‖2 − ‖Ea+E(g)u‖2 if I = (a, b),

‖Eb+E(g)u‖2 − ‖Ea+E(g)u‖2 if I = (a, b],

‖Eb+E(g)u‖2 − ‖EaE(g)u‖2 if I = [a, b].

By (f), for any ρ ∈ R, we can write

‖EρE(g)u‖2 = ‖E(g)Eρu‖2
(a)
=

∫ +∞

−∞
|g(λ)|2 dµ‖EλEρu‖2

=

∫
(−∞,ρ)

|g(λ)|2 dµ‖EλEρu‖2 +

∫
[ρ,+∞)

|g(λ)|2 dµ‖EλEρu‖2

=

∫
(−∞,ρ)

|g(λ)|2 dµ‖Eλu‖2 ,

since EλEρ = Emin{λ,ρ}. A similar argument shows that

‖Eρ+Egu‖2 =

∫
(−∞,ρ]

|g(λ)|2 dµ‖Eλu‖2

for any ρ ∈ R. (NB: A singleton does not necessarily have zero measure.) Hence,

µ‖EρE(g)u‖2(I) =

∫
I
|g(λ)|2 dµ‖Eλu‖2

for any interval I and we conclude that∫ +∞

−∞
|f(ρ)|2 dµ‖EρE(g)u‖2 =

n∑
k=0

∫
Ik

|ck|2|g(λ)|2 dµ‖Eλu‖2 =

∫ +∞

−∞
|f(λ)g(λ)|2 dµ‖Eλu‖2 , ∀u ∈ DE(g). (6)

If each ck ≥ 0, then the equality extends to f given by a countable sum f =
∑

k∈N ckχIk of disjoint
intervals using Monotone Convergence. One should note that the integrals in (6) are either both finite or
both infinite, but this is no issue.

Then, as any open set is the countable union of disjoint intervals, the theorem also holds for f = χU
with U open and then for f = χS with S an E-measurable set using the outer regularity of the Stieltjes
measures µ‖EρE(g)u‖2 and µ‖Eλu‖2 . In particular, it also holds when f is a real-valued, nonnegative, simple

function.
If f is a general E-measurable function (say real-valued and non-negative for simplicity, otherwise,

split into real, imaginary, positive and negative parts), it suffices to take (fn) a monotone sequence
0 ≤ fn ≤ fn+1 of simple functions which converges pointwisely µ‖Eλu‖2-almost everywhere to f and

µ‖EρE(g)u‖2-almost everywhere to f to conclude the proof of the hint by Monotone Convergence. For

example, one can set

fn(x) = sup{j2−n : j ∈ Z, j2−n ≤ min{f(x), 2n}

Proof of the equality of domains : The hint and point (a) show that if u ∈ DE(g), then u either
belongs to both DE(f)E(g) ⊂ DE(g) and DE(fg) or to neither of them, i.e.

DE(f)E(g) = DE(g) ∩DE(fg).

This is because either both integrals in (6) are infinite or both are finite.
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Proof of E(f)E(g) ⊆ E(fg) : An argument similar to the proof of the hint, together with point (d),
shows that

〈E(f)E(g)u, u〉 = 〈E(fg)u, u〉 , ∀u ∈ DE(f)E(g). (7)

Furthermore, if u, v ∈ DE(f)E(g), we find that

〈E(f)E(g)u, v〉 = 〈E(fg)u, v〉
as follows. Consider an E-measurable function h and let u, v ∈ DE(h). By the polarization identity (see
Problem 6, Week 2), for all λ ∈ R, we have

〈Eλu, v〉 =
1

4

[
〈Eλ(u+ v), u+ v〉 − 〈Eλ(u− v), u− v〉+ i

(
〈Eλ(u+ iv), u+ iv〉 − 〈Eλ(u− iv), u− iv〉

)]
.

It follows that λ 7→ 〈Eλu, v〉 is a complex-valued function of bounded variations. A corresponding
(complex-valued) Lebesgue-Stieltjes measure can be associated to it. Approximating h by step functions
and using the above identity, one deduces that

〈E(h)u, v〉 =

∫
h(λ) dµ〈Eλu,v〉

=
1

4

[
〈E(h)(u+ v), u+ v〉 − 〈E(h)(u− v), u− v〉

+ i
(
〈E(h)(u+ iv), u+ iv〉 − 〈E(h)(u− iv), u− iv〉

)]
,

where the right-hand side of the first equality is the Lebesgue-Stieltjes integral of h with respect to the
complex-valued measure µ〈Eλu,v〉. Hence, (7) extends to

〈E(f)E(g)u, v〉 = 〈E(fg)u, v〉 , ∀u, v ∈ DE(f)E(g).

Now, if f and g are bounded, then DE(f)E(g) = H and it follows that E(f)E(g)u = E(fg)u. Else, it
suffices to approximate E(f)E(g)u and E(fg)u with

E(f)E(g)u = lim
n→∞

lim
m→∞

E(fn)E(gm)u, E(fg)u = lim
n→∞

lim
m→∞

E(fngm)u, (8)

where (fn) and (gn) are any sequences of bounded functions for which |fn| ≤ f , |gn| ≤ g µ‖Eλu‖2-almost

everywhere and fn → f , gn → g in L2(R, µ‖Eλu‖2). For example, one can take

fn = f · χ[−n,n] ◦ f =

{
f(x), |f(x)| ≤ n
0, |f(x)| > n

and gn = g ·χ[−n,n]◦g. For each fixed n and m, as fn and gm are chosen bounded, one has E(fn)E(gm)u =
E(fngm)u and one gets E(f)E(g)u = E(fg)u at the limit.

The goal now is to prove that the double limits in (8) converges respectively to E(f)E(g)u and E(fg)u,
which is not trivial.

It follows from (a) and (e) that

‖(E(fngm)− E(fg))u‖2 (e)
= ‖E(fngm − fg)u‖2 (a)

=

∫ +∞

−∞
|fn(ρ)gm(ρ)− f(ρ)g(ρ)|2 dµ‖Eρu‖2 ,

which goes to zero as n,m→∞ by the Dominated Convergence Theorem.
Similarly, for each fixed n ∈ N,

lim
m→∞

‖(E(fn)E(gm)− E(fn)E(g))u‖2 ≤ lim
m→∞

‖E(fn)‖2 · ‖(E(gm)− E(g))u‖2 = 0

and

lim
n→∞

‖(E(fn)E(g)− E(f)E(g))u‖2 (e)
= ‖E(fn − f)E(g)u‖2

= lim
n→∞

∫ +∞

−∞
|fn(ρ)− f(ρ)|2 dµ‖EρE(g)u‖2

= lim
n→∞

∫ +∞

−∞
|(fn(λ)− f(λ))g(λ)|2 dµ‖Eλu‖2 = 0.
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(h) Let u ∈ H and un = E(χ[−n,n] ◦ f)u, where

χ[−n,n] ◦ f =

{
1, |f(x)| ≤ n
0, |f(x)| > n

This is well-defined because DE(χ[−n,n]◦f) = H by (b). Moreover, un ∈ DE(f) for all n ∈ N since∫ +∞

−∞
|f(ρ)|2 dµ‖EρE(χ[−n,n]◦f)u‖2 =

∫ +∞

−∞
|f(ρ) · χ[−n,n] ◦ f(ρ)|2 dµ‖Eρu‖2

≤
∫ +∞

−∞
n2 dµ‖Eρu‖2 = n2‖u‖2 < +∞,

where the used the hint from (g) for the first equality.
Finally, un converges to u because

‖un − u‖2 =
∥∥(E(χ[−n,n] ◦ f)− E(1)

)
u
∥∥2 (e)

=
∥∥E(χ[−n,n] ◦ f − 1)u

∥∥2
(a)
=

∫ +∞

−∞
|χ[−n,n] ◦ f(ρ)− 1|2 dµ‖Eρu‖2 ,

which goes to zero as n→∞ thanks to the Dominated Convergence Theorem.

(i) DE(f) = DE(f) by (a). We prove that E(f) = E(f)∗. Let u, v ∈ DE(f) = DE(f). Then

〈
u,E(f)v

〉
=
〈
E(f)v, u

〉
=

∫ +∞

−∞
f(λ) dµ〈Eλv,u〉 =

∫ +∞

−∞
f(λ) dµ〈Eλv,u〉

=

∫ +∞

−∞
f(λ) dµ〈u,Eλv〉 =

∫ +∞

−∞
f(λ) dµ〈Eλu,v〉 = 〈E(f)u, v〉 ,

which proves E(f) ⊆ E(f)∗.
Conversely, let v ∈ DE(f)∗ and consider the sequence (vn) ⊂ DE(f) = DE(f) ⊂ DE(f)∗ defined by

vn = E(χ[−n,n] ◦ f), as in part (h). Then

+∞ > 〈v,E(f)∗v〉 = lim
n→∞

〈vn, E(f)∗v〉 = lim
n→∞

〈E(f)vn, v〉 = lim
n→∞

〈
E(f)E(χ[−n,n] ◦ f)v, v

〉
(g)
= lim

n→∞

〈
E(f · χ[−n,n] ◦ f)v, v

〉
= lim

n→∞

∫ +∞

−∞
|f(ρ) · χ[−n,n] ◦ f(ρ)|2 dµ‖Eρv‖2

=

∫ +∞

−∞
lim
n→∞

|f(ρ) · χ[−n,n] ◦ f(ρ)|2 dµ‖Eρv‖2 =

∫ +∞

−∞
|f(ρ)|2 dµ‖Eρv‖2 ,

where we used the Monotone Convergence Theorem to pass the limit inside the integral. This proves that
v ∈ DE(f). Hence, DE(f)∗ ⊆ DE(f) = DE(f).

(j) By (i), E(f)∗ = E(f). By (g), DE(f)E(f) = DE(f) ∩DE(|f |2) = DE(f)E(f) and E(f)E(f) = E(|f |2) =

E(f)E(f) on this domain.


