

## HOMEWORK SOLUTION WEEK 8

1. One readily checks that  $\mathbf{U}^* = \mathbf{U}$  and  $\mathbf{V}^* = -\mathbf{V}$ . That  $\mathbf{U}$  and  $\mathbf{V}$  are unitary then follows by observing that  $I = \mathbf{U}^2$  and  $I = -\mathbf{V}^2$ .

2. (a) If  $\bar{T}$  exists, it follows by Proposition 3.2.2 ( $T^*$  is closed) and Theorem 3.4.2 (if  $A$  is closed and densely defined, then  $A^{**} = A$ ) that

$$T^* = \bar{T}^* = (T^*)^{**} = (T^{**})^* = \bar{T}^*.$$

(b) Suppose first that  $\mathfrak{D}_{T^*}$  is dense. Then  $T^{**}$  exists and we find from Lemma 3.4.1 that

$$\mathbf{G}_{T^{**}} = (\mathbf{V}\mathbf{G}_{T^*})^\perp = (\mathbf{V}(\mathbf{V}\bar{\mathbf{G}}_T)^\perp)^\perp = (\mathbf{V}^2\bar{\mathbf{G}}_T)^{\perp\perp} = -\bar{\mathbf{G}}_T = \bar{\mathbf{G}}_T.$$

This shows that  $T$  is closable and  $\bar{T} = T^{**}$ .

Conversely, suppose that  $T$  is closable, i.e. there exists an operator  $\bar{T}$  such that  $\mathbf{G}_{\bar{T}} = \bar{\mathbf{G}}_T$ . Then the same argument as in the first part of the proof of Theorem 3.4.2 (replacing  $T$  by  $\bar{T}$ ) shows that  $\mathfrak{D}_{T^*}$  is dense in  $\mathcal{H}$ . Hence,  $T$  is closable and we deduce that  $\bar{T} = T^{**}$  as above.

3. (a) For  $n \geq 1$ , consider  $u_n : [0, 1] \rightarrow \mathbb{R}$  defined by

$$u_n(x) = \begin{cases} nx, & x \in [0, \frac{1}{n}), \\ 2 - nx, & x \in [\frac{1}{n}, \frac{2}{n}), \\ 0, & x \in [\frac{2}{n}, 1]. \end{cases}$$

Then,  $u_n \in \mathfrak{D}_{D_1}$  for all  $n \geq 1$ , and we find that

$$\|u_n\|^2 = \frac{2}{3n}, \quad \|D_1 u_n\|^2 = 2n \implies \frac{\|D_1 u_n\|}{\|u_n\|} = \sqrt{3n}, \quad n \geq 1.$$

Hence,  $D_1$  is not bounded.

Since  $C_0^1(0, 1) \subset \mathfrak{D}_{D_1}$ , and  $C_0^1(0, 1)$  is dense in  $L^2[0, 1]$ , we have  $\overline{\mathfrak{D}_{D_1}} = L^2[0, 1]$ , so  $D_1$  is densely defined. Now, for  $u, v \in \mathfrak{D}_{D_1}$ , writing  $\frac{d}{dx}(\cdot) \equiv (\cdot)'$ , we have

$$\langle D_1 u, v \rangle - \langle u, D_1 v \rangle = i \int_0^1 u' \bar{v} - \int_0^1 u \bar{iv'} = i \int_0^1 u' \bar{v} + i \int_0^1 u \bar{v'} = i \int_0^1 (u \bar{v})' = i u \bar{v} \Big|_0^1 = 0. \quad (1)$$

Hence,  $D_1$  is symmetric.

(b) Let

$$\mathfrak{D} := \{u \in AC[0, 1]; u' \in L^2[0, 1]\}.$$

We first observe that (1) still holds for  $u \in \mathfrak{D}_{D_1}$  and  $v \in \mathfrak{D}$ . Hence,  $\mathfrak{D} \subseteq \mathfrak{D}_{D_1^*}$  and  $D_1^* v = D_1 v$  for all  $v \in \mathfrak{D}$ . It remains to show that  $\mathfrak{D}_{D_1^*} \subseteq \mathfrak{D}$ . To this aim, let  $v \in \mathfrak{D}_{D_1^*}$  and consider

$$w(x) := \int_0^x D_1^* v(y) dy + C,$$

where  $C \in \mathbb{C}$  is chosen so that

$$\int_0^1 (v(x) + iw(x)) dx = 0. \quad (2)$$

(Note that the functions under the above integrals are in  $L^2[0, 1] \subset L^1[0, 1]$ .) Now, for any  $u \in \mathfrak{D}_{D_1}$ , an integration by parts using  $w' = D_1^* v$  yields

$$\int_0^1 iu' \bar{v} = \langle D_1 u, v \rangle = \langle u, D_1^* v \rangle = \int_0^1 u \bar{D_1^* v} = uw \Big|_0^1 - \int_0^1 u' \bar{w} = i \int_0^1 iu' \bar{w} \implies \int_0^1 u' \bar{(v + iw)} = 0. \quad (3)$$

Letting

$$u(x) := \int_0^x \overline{(v(y) + iw(y))} dy,$$

we have by (2) that

$$u \in AC[0, 1], \quad u(0) = u(1) = 0, \quad u' = v + iw \in L^2[0, 1].$$

Hence,  $u \in \mathfrak{D}_{D_1}$  and (3) yields  $\int_0^1 |v + iw|^2 = 0$ , so that

$$v(x) = -iw(x) = -i \left( \int_0^x D_1^* v(y) dy + C \right), \quad \text{a.e. } x \in [0, 1].$$

It follows that  $v \in AC[0, 1]$  and  $v' = -iD_1^* v \in L^2[0, 1]$ . Hence,  $v \in \mathfrak{D}$ .

(c) Since  $D_1$  is symmetric, we know that  $D_1 \subseteq \overline{D_1} = D_1^{**}$ . Thus, we only need to show that  $\mathfrak{D}_{D_1^{**}} \subseteq \mathfrak{D}_1$ . Let  $u \in \mathfrak{D}_{D_1^{**}}$ . Since  $D_1 \subseteq D_1^* \Rightarrow D_1^{**} \subseteq D_1^*$ , we know that  $u \in AC[0, 1]$ ,  $u' \in L^2[0, 1]$  and  $D_1^{**}u = iu'$ . Hence, for any  $v \in \mathfrak{D}_{D_1^*}$ ,

$$0 = \langle D_1^{**}u, v \rangle - \langle u, D_1^*v \rangle = \int_0^1 iu' \bar{v} - \int_0^1 u \bar{iv'} = iu \bar{v} \Big|_0^1 = i(u(1)\bar{v}(1) - u(0)\bar{v}(0)).$$

Choosing  $v(x) = x$ , we get  $u(1) = 0$ , while  $v(x) = 1 - x$  yields  $u(0) = 0$ . Hence,  $u \in \mathfrak{D}_{D_1}$ .

(d) Firstly, observe that if  $u, u' \in L^2(\mathbb{R})$  then

$$\begin{aligned} | |u(x)|^2 - |u(y)|^2 | &= \left| \int_x^y (|u|^2)'(z) dz \right| = \left| \int_x^y (u' \bar{u} + u \bar{u}')(z) dz \right| \\ &\leq 2 \int_x^y |u' u|(z) dz \leq 2 \left( \int_x^y |u|^2 dz \right)^{1/2} \left( \int_x^y |u'|^2 dz \right)^{1/2} \Rightarrow \\ &\lim_{x, y \rightarrow \pm\infty} |u(x)|^2 - |u(y)|^2 = 0. \end{aligned} \tag{4}$$

Thus, for any sequence  $(x_n) \subset \mathbb{R}$  such that  $|x_n| \rightarrow \infty$ ,  $(|u(x_n)|^2)$  is a Cauchy sequence in  $\mathbb{R}$ , hence convergent. Then (4) implies that there exists a unique  $\ell \geq 0$  such that  $|u(x)|^2 \rightarrow \ell$  as  $|x| \rightarrow \infty$ . Since  $u \in L^2(\mathbb{R})$ , we must have  $\ell = 0$ .

Now, for any  $u, v \in \mathfrak{D}_{D_2}$ , we have

$$\langle D_2 u, v \rangle - \langle u, D_2 v \rangle = \int_{\mathbb{R}} iu' \bar{v} - \int_{\mathbb{R}} u \bar{iv'} = iu \bar{v} \Big|_{-\infty}^{+\infty} = 0.$$

Hence,  $D_2 \subseteq D_2^*$ . To prove that  $D_2$  is selfadjoint, it remains to show that  $\mathfrak{D}_{D_2^*} \subseteq \mathfrak{D}_{D_2}$ . To this aim, consider  $v \in \mathfrak{D}_{D_2^*}$  and a closed interval  $[a, b] \subseteq \mathbb{R}$ . The arguments carried out in part (b) for the interval  $[0, 1]$  can be extended to  $[a, b]$  with obvious modifications. Therefore, the following conclusions hold:  $v \in AC[a, b]$  and  $v' = -iD_1^* v \in L^2[a, b]$ . Since the interval  $[a, b]$  is arbitrary, we indeed have  $v \in \mathfrak{D}_{D_2}$ .