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HOMEWORK SOLUTION WEEK &

1. One readily checks that U* = U and V* = —V. That U and V are unitary then follows by observing
that I = U? and [ = —V?2,

2. (a) If T exists, it follows by Proposition 3.2.2 (T* is closed) and Theorem 3.4.2 (if A is closed and

densely defined, then A** = A) that

(b) Suppose first that ®7« is dense. Then T™* exists and we find from Lemma 3.4.1 that
Gr. = (VGr)* = (V(VGD))* = (VG = -G =G

This shows that T is closable and T' = T**.

Conversely, suppose that T is closable, i.e. there exists an operator T such that Gr = Gr. Then the
same argument as in the first part of the proof of Theorem 3.4.2 (replacing T' by T') shows that D7+ is
dense in #H. Hence, T is closable and we deduce that T = T** as above.

3. (a) For n > 1, consider u, : [0,1] — R defined by

nx, T € [O,%),
up(x) =¢2—nx, z¢€ [%, %),
0, z € [2,1].

Then, u, € Op, for all n > 1, and we find that

2
2 2
lunll” =5~ [1D1unl” = 2n =

D
IPrenll _ /5, 1.
]

Hence, D; is not bounded.
Since C}(0,1) C Dp,, and C}(0, 1) is dense in L]0, 1], we have D p, = L?[0, 1], so D; is densely defined.
Now, for u,v € ®p,, writing %(-) = (-)’, we have
1

1 1 1 1 1
(Dyu,v) — (u,D1v)y =i | u'v — / uiv’ = ’L/ v+ z/ uv’ = z/ (uv)’ = juv| =0. (1)
0 0 0 0 0

0
Hence, D; is symmetric.

(b) Let
D = {u e AC[0,1]; v’ € L?0,1]}.

We first observe that (1) still holds for u € Dp, and v € ©. Hence, ® C Dp: and Djv = Djv for all
v €. It remains to show that @D; C ®. To this aim, let v € CDDT and consider

w(z) = / Div(y)dy + C,
0
where C' € C is chosen so that ,
/ (0(z) + iw(z)) dz = 0. )
0

(Note that the functions under the above integrals are in L2[0,1] C L'[0,1].) Now, for any u € Dp,, an
integration by parts using w’ = Djv yields

1 1 1 1 1 1
/ iv'v = (Dyu,v) = (u, Div) = / uDjv = uw‘o —/ ' = z/ v = / o' (v+iw) =0. (3)
0 0 0 0 0
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Letting .
ua) = [ Gl + ),
we have by (2) that
u € AC[0,1], u(0)=u(1)=0, o' =wv+iw e L?[0,1].
Hence, u € ®p, and (3) yields fol |v 4+ iw|? = 0, so that

v(z) = —iw(x) = —i(/oz Div(y)dy + C), a.e. x € [0,1].

It follows that v € AC[0,1] and v' = —iDjv € L?[0,1]. Hence, v € D.

(c) Since Dy is symmetric, we know that D1 C D1 = D?*. Thus, we only need to show that Dp:+ C D1.
Let u € Dps. Since Dy C D = D* C Di, we know that u € AC[0,1], v’ € L?[0,1] and Dj*u = iu’.
Hence, for any v € Dpr,

1

1 1
o:<D;*u,u>—<u,D;v>:/0 iu’ﬂ—/o uit? = s = i(u(1)p(1) ~ u(0)2(0).

0
Choosing v(x) = z, we get u(1) = 0, while v(x) = 1 — z yields u(0) = 0. Hence, u € Dp,.
(d) Firstly, observe that if u,u’ € L?(R ) then

Yy
lu(@) [ - Ju(y)?] = ‘/ (Jul?) dz - ‘/ (u'a+ua’)(z)dz(
<2/ |u'u|(z) dz / |u|2dz 1/2</y |u/|2dz)1/2 =

lim _fu(z)]* — [u(y)* = (4)

T,y—>F00
Thus, for any sequence (r,) C R such that |z,| — oo, (Ju(z,)|?) is a Cauchy sequence in R, hence
convergent. Then (4) implies that there exists a unique E > 0 such that |u(z)|?> — ¢ as |x| — oo. Since
u € L*(R), we must have £ = 0.
Now, for any u,v € ®p,, we have
— +o00o
(Dou,v) — (u, Dav) = / iu'v — / wiv' = iu@‘ = 0.

R R —00
Hence, Dy C Dj. To prove that Dj is selfadjoint, it remains to show that Dps C Dp,. To this aim,
consider v € Dp; and a closed interval [a,b] C R. The arguments carried out in part (b) for the interval
[0,1] can be extended to [a,b] with obvious modifications. Therefore, the following conclusions hold:
v € ACla,b] and v = —iD}v € L*[a,b]. Since the interval [a, b] is arbitrary, we indeed have v € Dp,.



