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Homework Solution Week 7

1. If T is bounded on DT , consider a sequence (un) ⊂ DT such that un → u ∈ DT . Since

‖Tun − Tum‖ = ‖T (un − um)‖ 6 C ‖un − um‖ → 0, n,m→∞,
the sequence (Tun) is Cauchy in H. Let us denote by Tu its limit. This defines a linear extension of T

to DT . Defining Tu = 0 for u ∈ DT
⊥

and using the decomposition H = DT ⊕ DT
⊥

yields a bounded
extension of T to H.

2. (a) First, by (ii) and (iii), S−1 is defined on DS−1 = rge(S) = rge(S) = H. Then, in view of (i), the
Closed Graph Theorem yields

GS closed =⇒ GS−1 closed =⇒ S−1 bounded,

from which (iv) follows.

(b) Let (un, vn) ∈ GS such that (un, vn)→ (u, v) ∈ H. By (iii), v ∈ rge(S). Let w = S−1v. By (ii) and
(iii), DS−1 = H. Hence, (iv) implies S−1 ∈ B(H). Therefore, w = limS−1vn = limun = u, showing that
v = Su and (u, v) ∈ GS . Thus, GS is closed.

(c) Let vn = Sun ∈ rge(S) such that vn → v ∈ H. By (iv), un := S−1vn defines a Cauchy sequence in
H. Denote by u its limit. Hence, by (i), (un, vn) → (u, v) ∈ GS , so that v = Su ∈ rge(S). Thus, rge(S)
is closed.

Remark : Actually, for (a) and (b), (ii) it not needed. Indeed, for (a), S−1 is defined on the Banach

Space rge(S) = rge(S) by (iii). Hence, the Closed Graph Theorem applies. For (b), one has w = S−1v ∈
DS , hence ||v|| = ||Sw|| ≥ C||w|| = C||S−1v|| and S−1 : DS−1 → DS is bounded which is enough to carry
on the proof as above.

3. Since T ∗ and (T−1)∗ exist, DT and DT−1 are dense in H. Then, ker(T ∗) = rge(T )⊥ = D⊥T−1 = {0}, so
T ∗ is one-to-one. Consider v ∈ D(T ∗)−1 = rge(T ∗). Writing v = T ∗v′, with v′ ∈ DT ∗ , we have

∀u ∈ DT−1 ,
〈
T−1u, v

〉
=
〈
T−1u, T ∗v′

〉
=
〈
TT−1u, v′

〉
=
〈
u, (T ∗)−1v

〉
.

This shows that v ∈ D(T−1)∗ and (T−1)∗v = (T ∗)−1v. Hence, (T ∗)−1 ⊆ (T−1)∗.
Conversely, if v ∈ D(T−1)∗ then〈

T−1u, v
〉

=
〈
u, (T−1)∗v

〉
, ∀u ∈ DT−1 .

Hence, letting u′ = T−1u, we find that

u′ 7→
〈
Tu′, (T−1)∗v

〉
=
〈
u′, v

〉
is bounded on DT = rge(T−1).

It follows that (T−1)∗v ∈ DT ∗ and T ∗(T−1)∗v = v. In particular, v ∈ rge(T ∗) = D(T ∗)−1 . Hence,

D(T−1)∗ ⊆ D(T ∗)−1 , and indeed (T−1)∗ = (T ∗)−1.

5. (a) The (maximal) domain of definition of T is

DT =
{
u ∈ L2(R) ;

∫
R
|φ(x)|2|u(x)|2 dx <∞

}
.

If φ(x) is continuous, then C∞c (R) ⊂ DT and DT is dense.
To see that T is unbounded, let {Ek}k∈N be a family of non-empty, bounded, measurable sets on which

|φ(x)| > k, a.e. x ∈ Ek,

and let

uk = |Ek|−
1
2χEk

(x)
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Then

||uk||L2(R) = |Ek|−
1
2

(∫
Ek

1dx

) 1
2

= 1, ||Tuk||L2(R) = |Ek|−
1
2

(∫
Ek

|φ(x)|2dx
) 1

2

≥ k

and we conclude that T is unbounded.
(b) We will show that DT ∗ = DT and T ∗v = φ̄v, for all v ∈ DT ∗ . First, if v ∈ DT , then u 7→ 〈Tu, v〉 is

bounded. Indeed,

|〈Tu, v〉| =
∣∣∣ ∫

R
φuv̄

∣∣∣ 6 (∫
R
|u|2
)1/2(∫

R
|φv|2

)1/2
= ‖Tv‖ ‖u‖ , ∀u ∈ DT .

Therefore, v ∈ DT ∗ . Furthermore,

〈Tu, v〉 =

∫
R
φuv̄ =

∫
R
uφ̄v = 〈u, φ̄v〉,

showing that T ∗v = φ̄v. Hence, DT ⊆ DT ∗ and T ∗v = φ̄v, for all v ∈ DT .
We now show that DT ∗ ⊆ DT . For v ∈ DT ∗ , we have∫

R
φuv̄ =

∫
R
uT ∗v, ∀u ∈ DT .

Hence,

〈u, φ̄v − T ∗v〉 =

∫
R
u
(
φv̄ − T ∗v) = 0, ∀u ∈ DT .

Since DT is dense in H, it follows that φ̄v − T ∗v = 0, so T ∗v = φ̄v ∈ L2(R). This proves that DT ∗ ⊆ DT

and we conclude that DT ∗ = DT and T ∗v = φ̄v, for all v ∈ DT ∗ .

Remark: We have used the following lemma:

If D is a dense subspace of H and 〈u, v〉 = 0 for all u ∈ D, then v = 0.

Proof: Let (un) ⊂ D such that un → v. Then ‖v‖2 = 〈v, v〉 = lim
n→∞

〈un, v〉 = 0.


