

HOMEWORK SOLUTION WEEK 5

1. (a) $m = M = 0$, $E_\lambda = 0$ for $\lambda \leq 0$ and $E_\lambda = I$ for $\lambda > 0$.

(b) $m = M = 1$, $E_\lambda = 0$ for $\lambda \leq 1$ and $E_\lambda = I$ for $\lambda > 1$.

2. First observe that, for all $\lambda \in \mathbb{R}$,

$$\langle |\cdot - \lambda|u, u \rangle = \int_0^1 |x - \lambda| |u(x)|^2 dx \geq 0, \quad \forall u \in L^2[0, 1].$$

Hence, the operator $T_\lambda : L^2[0, 1] \rightarrow L^2[0, 1]$, $T_\lambda u(x) := |x - \lambda|u(x)$, is positive. Furthermore,

$$T_\lambda^2 u(x) = |x - \lambda|^2 u(x) = (x - \lambda)^2 u(x) = (X - \lambda I)^2 u(x).$$

By uniqueness of the square root, it follows that $T_\lambda = |X - \lambda I|$, for all $\lambda \in \mathbb{R}$.

Now, for all $u \in L^2[0, 1]$ and $x \in [0, 1]$,

$$[(X - \lambda I) - |X - \lambda I|] u(x) = [(x - \lambda) - |x - \lambda|] u(x) = -2(x - \lambda)^- u(x).$$

It follows that

$$\ker [(X - \lambda I) - |X - \lambda I|] = \begin{cases} L^2[0, 1] & \text{if } \lambda \leq 0, \\ \{u \in L^2[0, 1] ; u(x) = 0, \text{ a.e. } x \leq \lambda\} & \text{if } \lambda \in (0, 1], \\ \{0\} & \text{if } \lambda > 1. \end{cases}$$

Hence, the projection $E_+(\lambda)$ onto $\ker [(X - \lambda I) - |X - \lambda I|]$ is given by

$$E_+(\lambda)u = \begin{cases} u & \text{if } \lambda \leq 0, \\ \chi_{(\lambda, 1]} u & \text{if } \lambda \in (0, 1], \\ 0 & \text{if } \lambda > 1. \end{cases}$$

The result now follows by letting $E_\lambda = I - E_+(\lambda)$.

3. Since p is a real polynomial, we know that $p(S)$ is symmetric and that

$$p(S) = \int_m^{M+\varepsilon} p(\lambda) dE_\lambda.$$

We shall now prove that

$$\langle p(S)u, u \rangle = \int_m^{M+\varepsilon} p(\lambda) d\langle E_\lambda u, u \rangle, \quad \forall u \in \mathcal{H}. \quad (1)$$

We first observe that since the function $\lambda \mapsto \langle E_\lambda u, u \rangle$ is increasing, it belongs to $BV[m, M + \varepsilon]$. Indeed, for any partition of $[m, M + \varepsilon]$, $m = \lambda_0 < \lambda_1 < \dots < \lambda_{n-1} < \lambda_n = M + \varepsilon$, we have

$$\begin{aligned} \sum_{k=1}^n |\langle E_{\lambda_k} u, u \rangle - \langle E_{\lambda_{k-1}} u, u \rangle| &= \sum_{k=1}^n \langle E_{\lambda_k} u, u \rangle - \langle E_{\lambda_{k-1}} u, u \rangle = \sum_{k=1}^n \langle (E_{\lambda_k} - E_{\lambda_{k-1}})u, u \rangle \\ &= \left\langle \sum_{k=1}^n (E_{\lambda_k} - E_{\lambda_{k-1}})u, u \right\rangle = \langle (E_{\lambda_n} - E_{\lambda_0})u, u \rangle = \|u\|^2. \end{aligned}$$

Therefore, thanks to Theorem A.2.1, the RHS of (1) is well defined. Now, consider a sequence of partitions $(\Pi_l)_{l=1}^\infty$, denoted as

$$\Pi_l : \quad m = \lambda_0^l < \lambda_1^l < \dots < \lambda_{n_l-1}^l < \lambda_{n_l}^l = M + \varepsilon, \quad l \geq 1.$$

By definition of the Riemann–Stieltjes integral, we have

$$\begin{aligned}\langle p(S)u, u \rangle &= \left\langle \lim_{l \rightarrow \infty} \sum_{k=1}^{n_l} p(\lambda_k^l)(E_{\lambda_k^l} - E_{\lambda_{k-1}^l})u, u \right\rangle \\ &= \lim_{l \rightarrow \infty} \sum_{k=1}^{n_l} p(\lambda_k^l) [\langle E_{\lambda_k^l}u, u \rangle - \langle E_{\lambda_{k-1}^l}u, u \rangle] = \int_m^{M+\varepsilon} p(\lambda) d\langle E_\lambda u, u \rangle.\end{aligned}$$

As for the general case, one has

$$\begin{aligned}\langle p(S)u, v \rangle &= \frac{1}{4} \left[\langle p(S)(u+v), u+v \rangle - \langle p(S)(u-v), u-v \rangle + i(\langle p(S)(u+iv), u+iv \rangle - \langle p(S)(u-iv), u-iv \rangle) \right]. \\ &= \frac{1}{4} \left[\int_m^{M+\varepsilon} p(\lambda) d\langle E_\lambda(u+v), u+v \rangle - \int_m^{M+\varepsilon} p(\lambda) d\langle E_\lambda(u-v), u-v \rangle \right. \\ &\quad \left. + i \left(\int_m^{M+\varepsilon} p(\lambda) d\langle E_\lambda(u+iv), (u+iv) \rangle - \int_m^{M+\varepsilon} p(\lambda) d\langle E_\lambda(u-iv), (u-iv) \rangle \right) \right]\end{aligned}$$

using the Polarization Identity. Similarly, by Polarization Identity, one notes that

$$\lambda \mapsto \langle E_\lambda u, v \rangle = \frac{1}{4} \left[\langle E_\lambda(u+v), u+v \rangle - \langle E_\lambda(u-v), u-v \rangle + i\langle E_\lambda(u+iv), (u+iv) \rangle - i\langle E_\lambda(u-iv), (u-iv) \rangle \right]$$

is a complex linear combination of monotone functions. Hence, $\lambda \mapsto \langle E_\lambda u, v \rangle$ is a complex-valued function of bounded variation, as well as all the other $\lambda \mapsto \langle E_\lambda(u+v), u+v \rangle$ etc... In particular, $d\langle E_\lambda u, v \rangle$, as well as all the other $d\langle E_\lambda(u+v), u+v \rangle$ give rise to well-defined complex-valued Stieltjes-Riemann integrals (see Appendix A in the lecture notes) and one must have

$$\begin{aligned}\frac{1}{4} \left[\int_m^{M+\varepsilon} p(\lambda) d\langle E_\lambda(u+v), u+v \rangle - \int_m^{M+\varepsilon} p(\lambda) d\langle E_\lambda(u-v), u-v \rangle \right. \\ \left. + i \left(\int_m^{M+\varepsilon} p(\lambda) d\langle E_\lambda(u+iv), (u+iv) \rangle - \int_m^{M+\varepsilon} p(\lambda) d\langle E_\lambda(u-iv), (u-iv) \rangle \right) \right] \\ = \int_m^{M+\varepsilon} p(\lambda) d\langle E_\lambda u, v \rangle\end{aligned}$$

using the properties of Stieltjes integration (Properties A.3.1). This leads to the desired equality.

Note that in Appendix B, a Stieltjes-Lebesgue measure μ_ϕ can be defined when ϕ is increasing, e.g. for $\phi(\lambda) = \langle E_\lambda(u+v), u+v \rangle$ etc.... Then we can define

$$\mu\langle E_\lambda u, v \rangle := \frac{1}{4} \left[\mu\langle E_\lambda(u+v), u+v \rangle - \mu\langle E_\lambda(u-v), u-v \rangle + i(\mu\langle E_\lambda(u+iv), (u+iv) \rangle - \mu\langle E_\lambda(u-iv), (u-iv) \rangle) \right]$$

as a 'complex-valued measure'. This is only a definition (measure in the usual sense must be nonnegative) and not a property. But when integrating continuous functions, both the Stieltjes-Riemann and the Stieltjes-Lebesgue integral give the same result.

4. Consider two spectral families $(E_\lambda), (F_\lambda)$ satisfying parts (a) to (d) of Spectral Theorem I. We already know that $E_\lambda = F_\lambda$ for all $\lambda < m$ and $\lambda > M$. Fix $u \in \mathcal{H}$. By (1),

$$\int_m^{M+\varepsilon} p(\lambda) d\langle E_\lambda u, u \rangle = \int_m^{M+\varepsilon} p(\lambda) d\langle F_\lambda u, u \rangle.$$

As a combination of BV functions, $\phi(\lambda) := \langle E_\lambda u, u \rangle - \langle F_\lambda u, u \rangle$ belongs to $BV[m, M+\varepsilon]$, and we have

$$\int_m^{M+\varepsilon} p(\lambda) d\phi(\lambda) = 0,$$

for any real polynomial p . By the Weierstrass approximation theorem, for any $f \in C^0([m, M+\varepsilon], \mathbb{R})$, there is a sequence of real polynomials converging to f in $C^0([m, M+\varepsilon], \mathbb{R})$. It follows from Theorem A.3.3

that

$$\int_m^{M+\varepsilon} f(\lambda) d\phi(\lambda) = 0, \quad \forall f \in C^0([m, M+\varepsilon], \mathbb{R}).$$

Since ϕ is left-continuous and $\phi(m) = 0$, Theorem A.3.4 implies that $\phi \equiv 0$ on $[m, M+\varepsilon]$. It follows that

$$\langle (E_\lambda - F_\lambda)u, u \rangle = 0, \quad \forall \lambda \in \mathbb{R}.$$

Since this holds true for any $u \in \mathcal{H}$, we conclude that $E_\lambda = F_\lambda$, for all $\lambda \in \mathbb{R}$.