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Homework Solution Week 4

1. We show that |λ| > ‖A‖ ⇒ λ ∈ ρ(A). Suppose |λ| > ‖A‖. We observe that

(A− λI)u = v ⇐⇒ u =
1

λ
(Au− v) =: Tvu.

Moreover, for all u1, u2 ∈ H,

‖Tvu1 − Tvu2‖ =
1

|λ|
‖A(u1 − u2)‖ 6 ‖A‖

|λ|
‖u1 − u2‖ .

Since ‖A‖ /|λ| < 1, it follows that Tv is a contraction. Hence, Tvu = u has unique solution, for any v ∈ H.
That is, λ ∈ ρ(A).

2. Let T = AA∗. Since A is normal we have, for any n ∈ N,

T ∗ = T, ‖T‖ = ‖A‖2 , (AA∗)n = An(A∗)n, (A∗)n = (An)∗.

Using these properties, we find that

‖Tn‖
1
n = ‖(AA∗)n‖

1
n = ‖An(A∗)n‖

1
n = ‖An(An)∗‖

1
n = ‖An‖

2
n ,

hence
rσ(T ) = lim

n→∞
‖Tn‖

1
n = lim

n→∞
‖An‖

2
n = rσ(A)2. (1)

On the other hand, since T = T ∗ we obtain, for any m ∈ N,∥∥T 2m
∥∥1/2m

=
∥∥T 2m−1

T 2m−1∥∥1/2m
=
∥∥T 2m−1

(T 2m−1
)∗
∥∥1/2m

=
∥∥T 2m−1∥∥1/2m−1

.

It follows by induction that
∥∥T 2m

∥∥1/2m
= ‖T‖ for any m ∈ N. Hence,

rσ(T ) = ‖T‖ = ‖A‖2 . (2)

The result follows from (1) and (2).

3. We verify the three properties of a partial order.

Reflexivity: A−A > 0 is trivial.

Transitivity: If A > B and B > C we have, for all u ∈ H,

〈(A− C)u, u〉 = 〈(A−B)u, u〉+ 〈(B − C)u, u〉 > 0,

which shows that A > C.

Antisymmetry: Suppose A > B and B > A. Then, 〈(A−B)u, u〉 > 0 and 〈(B −A)u, u〉 > 0, for all
u ∈ H. It follows that 〈(A−B)u, u〉 = 0, for all u ∈ H. Hence,

‖A−B‖ = sup
‖u‖=1

|〈(A−B)u, u〉| = 0,

which shows that A = B.

4. (a) We have ‖Au‖ = ‖u‖, for all u ∈ `2. Hence, ‖A‖ = 1.

(b) A∗ is the double left shift (u1, u2, u3, . . . ) 7→ (u3, . . . ).

(c) Arguments similar to Problem 5, Week 2, show that

σp(A) = D1(0), σr(A) = ∅, σc(A) = S1,

σp(A
∗) = ∅, σr(A) = D1(0), σc(A) = S1.

(d) Obviously, A = T 2, where T is the right shift introduced in Week 2. However, A is not positive since
〈Au, u〉 = −1 for u = (1, 1,−1, 0, 0, . . . ).
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5. (a) For all u ∈ L2[0, 1],

‖Au‖2L2 =

∫
[0,1]
|a(x)u(x)|2 dx 6 ‖a‖2L∞‖u‖2L2 ,

hence A is bounded and ‖A‖ 6 ‖a‖L∞ .
On the other hand, taking ε > 0 and E = {x ∈ [0, 1] ; |a(x)| > ‖a‖L∞ − ε}, it follows by definition of

‖a‖L∞ that |E| > 0. Letting u(x) = |E|−1/2χE(x), we obtain ‖u‖ = 1 and

‖Au‖2L2 = |E|−1

∫
E
|a(x)|2 dx > (‖a‖L∞ − ε)2.

Since this inequality holds for any ε > 0, we conclude that ‖A‖ = ‖a‖L∞ .

(b) If a > 0 a.e., A is positive and its square root is the operator S : L2[0, 1] → L2[0, 1] defined by

(Su)(x) =
√
a(x)u(x), a.e. x ∈ [0, 1].

(c) (i) Seeking u ∈ L2[0, 1] \ {0} and λ ∈ C such that Au = λu amounts to finding λ ∈ C and u ∈ L2[0, 1],
such that

[a(x)− λ]u(x) = 0, a.e. x ∈ [0, 1] and u(x) 6≡ 0, a.e. x ∈ [0, 1].

It follows that σp(A) =
{
λ ∈ C ; |{a(x) = λ}| > 0

}
.

(ii) If λ ∈ σr(A), then λ satisfies λ 6∈ σp(A) and λ̄ ∈ σp(A∗). Since (A∗u)(x) = a(x)u(x), this means that

|{a(x) = λ}| = 0 and |{a(x) = λ̄}| > 0, a contradiction. Hence, σr(A) = ∅.
(iii) We show that

(A) ∃ε > 0 s.t. |{|a(x)− λ| < ε}| = 0 =⇒ λ ∈ ρ(A);
(B) ∀ε > 0, |{|a(x)− λ| < ε}| > 0 =⇒ λ 6∈ ρ(A).

Firstly, given any v ∈ L2[0, 1] and λ 6∈ σp(A), solving (A− λ)u = v for u ∈ L2[0, 1] yields

u(x) =
1

a(x)− λ
v(x), a.e. x ∈ [0, 1]. (3)

(A) Let ε > 0 such that |a(x) − λ| > ε, a.e. x ∈ [0, 1]. In particular, λ 6∈ σp(A). Then (3) defines on
L2[0, 1] a bounded multiplication operator v 7→ (A− λ)−1v, with∥∥(A− λ)−1v

∥∥2
=

∥∥∥∥ 1

a(·)− λ
v

∥∥∥∥2

=

∫ 1

0

1

|a(x)− λ|2
|v(x)|2 dx 6 ε−2 ‖v‖2 =⇒

∥∥(A− λ)−1
∥∥ 6 ε−1.

Hence, λ ∈ ρ(A).

(B) Taking ε = 1/n, we deduce from the assumption: for all n > 1, there exists Ωn ⊂ [0, 1] such that
|Ωn| > 0 and

|a(x)− λ| < 1

n
, ∀x ∈ [0, 1].

Consider now vn = χΩn , n > 1. It follows that

‖vn‖2 = |Ωn| and
∥∥(A− λ)−1vn

∥∥2
=

∫
Ωn

1

|a(x)− λ|2
|dx > n2|Ωn|, ∀n > 1.

Hence, ∥∥(A− λ)−1vn
∥∥

‖vn‖
> n, ∀n > 1.

This shows that (A− λ)−1 is unbounded, and thus λ 6∈ ρ(A).


