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HOMEWORK SOLUTION WEEK 4

1. We show that |[A| > ||A|| = A € p(A). Suppose || > ||A||. We observe that
1
(A= XN)u=v <= u= X(Au—v) =: Tyu.

Moreover, for all uy,us € H,

1 A
s = Tyl = 13 s )] < ‘w” s — wal]

Since ||A|| /|A| < 1, it follows that T, is a contraction. Hence, T;,u = u has unique solution, for any v € H.
That is, A € p(A).
2. Let T'= AA*. Since A is normal we have, for any n € N,
T* =T, |T|=[A|*, (AA*)"=A"(4")", (4")"=(4")",
Using these properties, we find that
1 1 L 1 2
[T = [I(AAT)" || = A" (A)"[|» = [|A*(A")"([» = [|A™]|=,
hence ) )
ro(T) = lim [|T"|[= = lim [|A"|[" = 7, (A)%. (1)
n—oo n—oo
On the other hand, since T' = T™ we obtain, for any m € N,
om 1/2m . om—1, om—11/2™ . om—1 om—1 1/2m _ om—1 1/2m—1
[T == =y =

1/2m

It follows by induction that ||72" || = ||T|| for any m € N. Hence,

ro(T) = |IT)| = || 4. (2)
The result follows from (1) and (2).

3. We verify the three properties of a partial order.
Reflexivity: A — A > 0 is trivial.
Transitivity: If A > B and B > C we have, for all u € H,
(A= C)u,u) = ((A— B)u,u) + ((B - C)u,u) >0,
which shows that A > C.

Antisymmetry: Suppose A > B and B > A. Then, ((A— B)u,u) > 0 and ((B — A)u,u) > 0, for all
u € H. It follows that (A — B)u,u) =0, for all u € ‘H. Hence,

A - Bl = e [((A = B)u,u)| =0,

which shows that A = B.

4. (a) We have ||Au|| = ||lu||, for all u € £2. Hence, ||A| = 1.

(b) A* is the double left shift (uy,ua,us,...) — (us,...).

(c¢) Arguments similar to Problem 5, Week 2, show that
op(A) = D1(0), o,(A) =0, o.(A) =S,
0p(A*) =0, 0.(A) = D1(0), o.(A) =S".

(d) Obviously, A = T?, where T is the right shift introduced in Week 2. However, A is not positive since
(Au,u) = —1 for u = (1,1,-1,0,0,...).
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5. (a) For all u € L?[0,1],

2 2
[ Aul|z2 =/ la(z)u()|* do < lallZe lulZe,

)

hence A is bounded and ||A|| < ||a||ze-
On the other hand, taking e > 0 and E = {x € [0,1]; |a(x)| > ||a|r~ — €}, it follows by definition of
|a|ze that |E| > 0. Letting u(z) = |E|~Y?xg(x), we obtain |lu| = 1 and

1 AulZ2 = |E| ™ /E la(2)|? dz > ([lal| = — €)*.

Since this inequality holds for any € > 0, we conclude that ||A|| = ||a||fee.
(b) If @ > 0 a.e., A is positive and its square root is the operator S : L2[0,1] — L?[0,1] defined by
(Su)(z) = Va(x)u(z), a.e. x €[0,1].
(c) (i) Seeking u € L?[0,1]\ {0} and A € C such that Au = A\u amounts to finding A € C and u € L?[0, 1],
such that
[a(z) — NJu(z) =0, ae.z€[0,1] and wu(zx)#0, ae z€[0,1].

It follows that o,,(A) = {\ € C; [{a(z) = A}| > 0}.
(ii) If A € 0,(A), then X satisfies A &€ 0,(A) and A € 0,(A*). Since (A*u)(z) = a(z)u(x), this means that
[{a(x) = A\}| = 0 and |{a(x) = A}| > 0, a contradiction. Hence, o,.(4) = 0.
(iii) We show that

(A) Fe > 0s.t. [{la(z) = A <e}| =0 = X € p(4);

(B) Ve >0, {la(z) = Al < e} >0 = A p(d).

Firstly, given any v € L2[0,1] and A & 0,,(A), solving (A — A\)u = v for u € L?[0, 1] yields

1
u(z) = mv(w), a.e. x € [0,1]. (3)
(A) Let € > 0 such that |a(z) — | > ¢, ae. ¢ € [ ] In particular, A € o,(A). Then (3) defines on
L?[0,1] a bounded multiplication operator v ( A)~lo, with
=X = = [ @R <l = (4= x7 <<

Hence, X € p(A).

(B) Taking ¢ = 1/n, we deduce from the assumption: for all n > 1, there exists €, C [0, 1] such that
|€2,| > 0 and

1
la(xz) — Al < e Vz € [0, 1].
Consider now v, = xq,,, n = 1. It follows that
2 -1 2 1 2
vnll” = |2, and A—XN)""u, :/ —————|dx > n*|Q,], Vn=>=1
Jenll? = f0al and (4 =X = | Sl de > il
Hence,
[(A =2~ o]

[[onl
This shows that (A — A)~! is unbounded, and thus A\ & p(A).

>n, Vn>1



