
EPFL – Spring 2025 Spectral theory François Genoud

Homework Solution Week 3

1. (a) Let u ̸= 0 and λ ∈ C satisfy Su = λu. Then,

λ∥u∥2 = ⟨λu, u⟩ = ⟨Su, u⟩ = ⟨u, Su⟩ = ⟨u, λu⟩ = λ̄∥u∥2 =⇒ λ = λ̄.

Furthermore, if µ ̸= λ is another eigenvalue, let v ̸= 0 be a corresponding eigenvector. Then, since µ ∈ R,

⟨u, v⟩ = 1

λ− µ
(λ− µ) ⟨u, v⟩ = 1

λ− µ
(⟨λu, v⟩ − ⟨u, µv⟩) = 1

λ− µ
(⟨Su, v⟩ − ⟨u, Sv⟩) = 0.

(b1) First suppose that λ ∈ ρ(S). Since H is a Banach space, it follows that (S − λI)−1 is well defined
and bounded on H. Consider u ∈ H and v = (S − λI)−1u. We have

∥u∥ = ∥(S − λI)v∥ =
∥∥(S − λI)(S − λI)−1u

∥∥ =
∥∥(S − λI)−1(S − λI)u

∥∥
⩽

∥∥(S − λI)−1
∥∥ ∥(S − λI)u∥ .

Hence, ∥(S − λI)u∥ ⩾
∥∥(S − λI)−1

∥∥−1 ∥u∥, for all u ∈ H.
Conversely, suppose there exists C > 0 such that ∥(S − λI)u∥ ⩾ C ∥u∥, for all u ∈ H. It follows that

ker(S − λI) = {0}. If λ ∈ R, then (S − λI)∗ = S − λI and rge(S − λI) = H (Exercise Sheet 2, Exercise
4). If λ /∈ R, it follows from 1.(a) that λ, λ are not eigenvalues. Hence, ker(S − λI) = ker(S − λI) = {0}.
As (S − λI)∗ = S − λI, we deduce rge(S − λI) = H (Exercise Sheet 2, Exercise 4) as well. Hence, either
λ ∈ ρ(S) or λ ∈ σc(S). To rule out λ ∈ σc(S), we show that rge(S−λI) is closed, hence rge(S−λI) = H.
Let (yn) ⊂ rge(S − λI) be a convergent sequence in H, lim

n→+∞
yn = y ∈ H. Then yn = (S − λI)xn for

some xn ∈ H and

∥yn − ym∥ = ∥(S − λI)(xn − xm)∥ ⩾ C ∥xn − xm∥ ,
showing that (xn) is a Cauchy sequence in H. Let x = lim

n→+∞
xn. It follows by continuity that y =

lim(S − λI)xn = (S − λI)x ∈ rge(S − λI). Hence, λ ∈ ρ(S).

(b2) Trivially equivalent to (b1).

(c) Write λ = λ1 + iλ2 with λ2 ̸= 0 and let u ∈ H. A direct calculation shows that

∥(S − λI)u∥2 = ∥(S − λ1I)u∥2 + |λ2|2 ∥u∥2 ⩾ |λ2|2 ∥u∥2 .

Hence, the result follows from (b1).

(d1) Suppose λ > M . Since

− ⟨(S − λI)u, u⟩ = −⟨Su, u⟩+ λ ⟨u, u⟩ ⩾ (λ−M) ∥u∥2

=⇒ (λ−M) ∥u∥2 ⩽ | ⟨(S − λI)u, u⟩ | ⩽ ∥(S − λI)u∥ ∥u∥ , ∀u ∈ H,

we deduce from (b1) that λ ∈ ρ(S), hence (M,∞) ⊂ ρ(S). A similar argument shows that (−∞,m) ⊂
ρ(S).

(d2) Firstly, if S is positive, we have ∥S∥ = sup∥u∥=1 ⟨Su, u⟩ = M ⩾ m ⩾ 0. By definition of M , there

exists a sequence (un) ⊂ H, with ∥un∥ = 1, such that ⟨Sun, un⟩ = M − δn, with δn ⩾ 0, δn → 0. Then

∥Sun −Mun∥2 = ∥Sun∥2 +M2 ∥un∥2 − 2M ⟨Sun, un⟩
⩽ M2 +M2 − 2M(M − δn) → 0 (n → ∞).

We conclude by (b2) that M ∈ σ(S).
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On the other hand, if S is negative, we have ∥S∥ = sup∥u∥=1 | ⟨Su, u⟩ | = |m| ⩾ |M |. By definition of

m, there exists a sequence (vn) ⊂ H, with ∥vn∥ = 1, such that ⟨Svn, vn⟩ = m+ εn, with εn ⩾ 0, εn → 0.
Then

∥Sun −mun∥2 = ∥Sun∥2 +m2 ∥un∥2 − 2m ⟨Sun, un⟩
⩽ m2 +m2 − 2m(m+ εn) → 0 (n → ∞).

The general case is treated as follows. Let γ > max{|m|, |M |}. To prove that M ∈ σ(S), observe that
m + γ,M + γ are respectively the lower and upper bound of the positive symmetric operator S + γI.
Then the previous argument can be used to show that

∥Sun −Mun∥2 = ∥(S + γI)un − (M + γ)un∥2 → 0.

Similarly, one reduces the proof of m ∈ σ(S) to the case of a negative operator by considering S − γI.

2. For any n ⩾ 1, we have
⟨Snu, v⟩ = ⟨u, Snv⟩ , ∀u, v ∈ H.

By continuity of the inner product, the result follows directly by letting n → ∞.

3. Consider H = ℓ2(C) and the left-shift operator applied m-times Am((u1, u2, ...)) = (um+1, um+2, ...)
i.e. (Am(u))i = um+i for i ≥ 1. Then

lim
m→+∞

Am(u) = 0 ∀u ∈ H

because

lim
m→+∞

||Am(u)− 0|| = lim
m→+∞

+∞∑
i=m+1

|ui|2 = 0 ∀u ∈ H

while ||Am|| = 1 for all m ≥ 1. Hence, Am converges strongly (i.e. ”pointwisely”) to zero, but not in
operator norm.

4. (a) BS = SB =⇒ SB∗ = (BS)∗ = (SB)∗ = B∗S.

(b) If both S and B are symmetric, we have

SB symmetric ⇐⇒ (SB)∗ = SB ⇐⇒ B∗S∗ = SB ⇐⇒ BS = SB.

(c) It follows from (b) that Sn = S ◦ ... ◦ S is symmetric for any n ≥ 1 and S0 = Id is symmetric as well.
Moreover, if A and B ∈ B(H) are symmetric and if λ, µ ∈ R, then

⟨(λA+ µB)u, v⟩ = λ ⟨Au, v⟩+ µ ⟨Bu, v⟩ = λ ⟨u,A∗v⟩+ µ ⟨u,B∗v⟩ = ⟨u, (λA∗ + µB∗)v⟩ ∀u, v ∈ H
so (λA+ µB)∗ = λA∗ + µB∗ by uniqueness of the adjoint operator. If P (x) = anx

n + ...+ a1x+ a0 is a
real polynomial, then P (S) = anS

n + ...+ a1S + a0Id is symmetric given what we’ve just proved.

5. Firstly, for all u ∈ H, ∥Xu∥2 =
∫
[0,1] |x|

2|u(x)|2 dx ⩽
∫
[0,1] |u(x)|

2 = ∥u∥2, hence X ∈ B(H) and

∥X∥ ⩽ 1. Furthermore, for all u, v ∈ H,

⟨Xu, v⟩ =
∫
[0,1]

xu(x)v(x) dx =

∫
[0,1]

u(x)xv(x) dx = ⟨u,Xv⟩ ,

showing that X is symmetric.
Next, for u ∈ L2[0, 1], Xu = λu ⇒ |x − λ||u(x)| = 0 a.e. x ∈ [0, 1] ⇒ u = 0, so X has no eigenvalues.

Since X is symmetric, we also have σr(X) = ∅, so σ(X) = σc(X).
We will now prove that σ(X) = [0, 1]. Firstly, if λ ̸∈ [0, 1], the equation (X − λI)u = v yields

u(x) =
1

x− λ
v(x), ∥u∥2 =

∥∥(X − λI)−1v
∥∥2 = ∫

[0,1]

|v(x)|2

|x− λ|2
dx ⩽ δ−2

λ ∥v∥2 ,

where δλ > 0 is the distance from λ to [0, 1]. Hence, λ ∈ ρ(X) and
∥∥(X − λI)−1

∥∥ ⩽ δ−1
λ . This shows that

σ(X) ⊂ [0, 1].
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To prove the converse inclusion, let λ ∈ [0, 1]. For simplicity, we suppose that λ ∈ (0, 1), but the
argument we present can easily be adapted to the end-points. Since σ(X) = σc(X), either λ ∈ ρ(X),
rge(X − λI) is dense and (X − λI)−1 is bounded, or λ ∈ σc(X), i.e. rge(X − λI) is dense but (X − λI)−1

is unbounded. So we only need to show that (X − λI)−1 is unbounded. To this aim, let un ∈ L2[0, 1] be
the characteristic function of the set [0, 1] \ [λ− 1/n, λ+ 1/n] (for n large enough). We clearly have that
∥un∥ ⩽ 1. On the other hand,∥∥(X − λI)−1un

∥∥2 = ∫
[0,1]\[λ−1/n,λ+1/n]

1

|x− λ|2
dx

is finite for all n (large enough), but
∥∥(X − λI)−1un

∥∥ → ∞ as n → ∞, showing that (X−λI)−1 is indeed
unbounded. Hence, λ ∈ σ(X), and we conclude that σ(X) = [0, 1].

Remarks:

(i) Another way to prove that λ ∈ [0, 1] ⇒ λ ∈ σ(X) is as follows. Let λ ∈ [0, 1]. Suppose by contradiction
that λ ∈ ρ(X). Since H is a Banach space, we know from Problem 4, Week 1, that rge(X − λI) = H.
But this is not true, as v ≡ 1 ̸∈ rge(X − λI), since u(x) = (x− λ)−1 ̸∈ L2[0, 1].

(ii) Even though rge(X−λI) ̸= H, we can see explicitly here that rge(X − λI) = H. For any v ∈ L2[0, 1],
consider ε > 0 and vε defined by vε(x) = v(x) for x ̸∈ (λ− ε, λ+ ε) and vε(x) = 0 for x ∈ (λ− ε, λ+ ε).
One can show two things : vε ∈ rge(X − λI), meaning that (X − λI)u = vε can be solved in L2[0, 1] for
any ε > 0. Second, vε can be made as close as we want to v in L2[0, 1] when ε → 0+.


