

HOMEWORK SOLUTION WEEK 3

1. (a) Let $u \neq 0$ and $\lambda \in \mathbb{C}$ satisfy $Su = \lambda u$. Then,

$$\lambda \|u\|^2 = \langle \lambda u, u \rangle = \langle Su, u \rangle = \langle u, Su \rangle = \langle u, \lambda u \rangle = \bar{\lambda} \|u\|^2 \implies \lambda = \bar{\lambda}.$$

Furthermore, if $\mu \neq \lambda$ is another eigenvalue, let $v \neq 0$ be a corresponding eigenvector. Then, since $\mu \in \mathbb{R}$,

$$\langle u, v \rangle = \frac{1}{\lambda - \mu} (\lambda - \mu) \langle u, v \rangle = \frac{1}{\lambda - \mu} (\langle \lambda u, v \rangle - \langle u, \mu v \rangle) = \frac{1}{\lambda - \mu} (\langle Su, v \rangle - \langle u, Sv \rangle) = 0.$$

(b1) First suppose that $\lambda \in \rho(S)$. Since \mathcal{H} is a Banach space, it follows that $(S - \lambda I)^{-1}$ is well defined and bounded on \mathcal{H} . Consider $u \in \mathcal{H}$ and $v = (S - \lambda I)^{-1}u$. We have

$$\begin{aligned} \|u\| &= \|(S - \lambda I)v\| = \|(S - \lambda I)(S - \lambda I)^{-1}u\| = \|(S - \lambda I)^{-1}(S - \lambda I)u\| \\ &\leq \|(S - \lambda I)^{-1}\| \|(S - \lambda I)u\|. \end{aligned}$$

Hence, $\|(S - \lambda I)u\| \geq \|(S - \lambda I)^{-1}\|^{-1} \|u\|$, for all $u \in \mathcal{H}$.

Conversely, suppose there exists $C > 0$ such that $\|(S - \lambda I)u\| \geq C \|u\|$, for all $u \in \mathcal{H}$. It follows that $\ker(S - \lambda I) = \{0\}$. If $\lambda \in \mathbb{R}$, then $(S - \lambda I)^* = S - \lambda I$ and $\text{rge}(S - \lambda I) = \mathcal{H}$ (Exercise Sheet 2, Exercise 4). If $\lambda \notin \mathbb{R}$, it follows from 1.(a) that $\lambda, \bar{\lambda}$ are not eigenvalues. Hence, $\ker(S - \lambda I) = \ker(S - \bar{\lambda} I) = \{0\}$. As $(S - \lambda I)^* = S - \bar{\lambda} I$, we deduce $\text{rge}(S - \bar{\lambda} I) = \mathcal{H}$ (Exercise Sheet 2, Exercise 4) as well. Hence, either $\lambda \in \rho(S)$ or $\lambda \in \sigma_c(S)$. To rule out $\lambda \in \sigma_c(S)$, we show that $\text{rge}(S - \lambda I)$ is closed, hence $\text{rge}(S - \lambda I) = \mathcal{H}$. Let $(y_n) \subset \text{rge}(S - \lambda I)$ be a convergent sequence in \mathcal{H} , $\lim_{n \rightarrow +\infty} y_n = y \in \mathcal{H}$. Then $y_n = (S - \lambda I)x_n$ for some $x_n \in \mathcal{H}$ and

$$\|y_n - y_m\| = \|(S - \lambda I)(x_n - x_m)\| \geq C \|x_n - x_m\|,$$

showing that (x_n) is a Cauchy sequence in \mathcal{H} . Let $x = \lim_{n \rightarrow +\infty} x_n$. It follows by continuity that $y = \lim_{n \rightarrow +\infty} y_n = (S - \lambda I)x \in \text{rge}(S - \lambda I)$. Hence, $\lambda \in \rho(S)$.

(b2) Trivially equivalent to (b1).

(c) Write $\lambda = \lambda_1 + i\lambda_2$ with $\lambda_2 \neq 0$ and let $u \in \mathcal{H}$. A direct calculation shows that

$$\|(S - \lambda I)u\|^2 = \|(S - \lambda_1 I)u\|^2 + |\lambda_2|^2 \|u\|^2 \geq |\lambda_2|^2 \|u\|^2.$$

Hence, the result follows from (b1).

(d1) Suppose $\lambda > M$. Since

$$\begin{aligned} -\langle (S - \lambda I)u, u \rangle &= -\langle Su, u \rangle + \lambda \langle u, u \rangle \geq (\lambda - M) \|u\|^2 \\ \implies (\lambda - M) \|u\|^2 &\leq |\langle (S - \lambda I)u, u \rangle| \leq \|(S - \lambda I)u\| \|u\|, \quad \forall u \in \mathcal{H}, \end{aligned}$$

we deduce from (b1) that $\lambda \in \rho(S)$, hence $(M, \infty) \subset \rho(S)$. A similar argument shows that $(-\infty, m) \subset \rho(S)$.

(d2) Firstly, if S is positive, we have $\|S\| = \sup_{\|u\|=1} \langle Su, u \rangle = M \geq m \geq 0$. By definition of M , there exists a sequence $(u_n) \subset \mathcal{H}$, with $\|u_n\| = 1$, such that $\langle Su_n, u_n \rangle = M - \delta_n$, with $\delta_n \geq 0$, $\delta_n \rightarrow 0$. Then

$$\begin{aligned} \|Su_n - Mu_n\|^2 &= \|Su_n\|^2 + M^2 \|u_n\|^2 - 2M \langle Su_n, u_n \rangle \\ &\leq M^2 + M^2 - 2M(M - \delta_n) \rightarrow 0 \quad (n \rightarrow \infty). \end{aligned}$$

We conclude by (b2) that $M \in \sigma(S)$.

On the other hand, if S is negative, we have $\|S\| = \sup_{\|u\|=1} |\langle Su, u \rangle| = |m| \geq |M|$. By definition of m , there exists a sequence $(v_n) \subset \mathcal{H}$, with $\|v_n\| = 1$, such that $\langle Sv_n, v_n \rangle = m + \varepsilon_n$, with $\varepsilon_n \geq 0$, $\varepsilon_n \rightarrow 0$. Then

$$\begin{aligned} \|Su_n - mu_n\|^2 &= \|Su_n\|^2 + m^2 \|u_n\|^2 - 2m \langle Su_n, u_n \rangle \\ &\leq m^2 + m^2 - 2m(m + \varepsilon_n) \rightarrow 0 \quad (n \rightarrow \infty). \end{aligned}$$

The general case is treated as follows. Let $\gamma > \max\{|m|, |M|\}$. To prove that $M \in \sigma(S)$, observe that $m + \gamma, M + \gamma$ are respectively the lower and upper bound of the positive symmetric operator $S + \gamma I$. Then the previous argument can be used to show that

$$\|Su_n - Mu_n\|^2 = \|(S + \gamma I)u_n - (M + \gamma)u_n\|^2 \rightarrow 0.$$

Similarly, one reduces the proof of $m \in \sigma(S)$ to the case of a negative operator by considering $S - \gamma I$.

2. For any $n \geq 1$, we have

$$\langle S_n u, v \rangle = \langle u, S_n v \rangle, \quad \forall u, v \in \mathcal{H}.$$

By continuity of the inner product, the result follows directly by letting $n \rightarrow \infty$.

3. Consider $\mathcal{H} = \ell^2(\mathbb{C})$ and the left-shift operator applied m -times $A_m((u_1, u_2, \dots)) = (u_{m+1}, u_{m+2}, \dots)$ i.e. $(A_m(u))_i = u_{m+i}$ for $i \geq 1$. Then

$$\lim_{m \rightarrow +\infty} A_m(u) = 0 \quad \forall u \in \mathcal{H}$$

because

$$\lim_{m \rightarrow +\infty} \|A_m(u) - 0\| = \lim_{m \rightarrow +\infty} \sum_{i=m+1}^{+\infty} |u_i|^2 = 0 \quad \forall u \in \mathcal{H}$$

while $\|A_m\| = 1$ for all $m \geq 1$. Hence, A_m converges strongly (i.e. "pointwisely") to zero, but not in operator norm.

4. (a) $BS = SB \implies SB^* = (BS)^* = (SB)^* = B^*S$.

(b) If both S and B are symmetric, we have

$$SB \text{ symmetric} \iff (SB)^* = SB \iff B^*S^* = SB \iff BS = SB.$$

(c) It follows from (b) that $S^n = S \circ \dots \circ S$ is symmetric for any $n \geq 1$ and $S^0 = Id$ is symmetric as well. Moreover, if A and $B \in \mathcal{B}(\mathcal{H})$ are symmetric and if $\lambda, \mu \in \mathbb{R}$, then

$$\langle (\lambda A + \mu B)u, v \rangle = \lambda \langle Au, v \rangle + \mu \langle Bu, v \rangle = \lambda \langle u, A^*v \rangle + \mu \langle u, B^*v \rangle = \langle u, (\lambda A^* + \mu B^*)v \rangle \quad \forall u, v \in \mathcal{H}$$

so $(\lambda A + \mu B)^* = \lambda A^* + \mu B^*$ by uniqueness of the adjoint operator. If $P(x) = a_n x^n + \dots + a_1 x + a_0$ is a real polynomial, then $P(S) = a_n S^n + \dots + a_1 S + a_0 Id$ is symmetric given what we've just proved.

5. Firstly, for all $u \in \mathcal{H}$, $\|Xu\|^2 = \int_{[0,1]} |x|^2 |u(x)|^2 dx \leq \int_{[0,1]} |u(x)|^2 dx = \|u\|^2$, hence $X \in \mathcal{B}(\mathcal{H})$ and $\|X\| \leq 1$. Furthermore, for all $u, v \in \mathcal{H}$,

$$\langle Xu, v \rangle = \int_{[0,1]} xu(x) \overline{v(x)} dx = \int_{[0,1]} u(x) \overline{xv(x)} dx = \langle u, Xv \rangle,$$

showing that X is symmetric.

Next, for $u \in L^2[0,1]$, $Xu = \lambda u \Rightarrow |x - \lambda| |u(x)| = 0$ a.e. $x \in [0,1] \Rightarrow u = 0$, so X has no eigenvalues. Since X is symmetric, we also have $\sigma_r(X) = \emptyset$, so $\sigma(X) = \sigma_c(X)$.

We will now prove that $\sigma(X) = [0, 1]$. Firstly, if $\lambda \notin [0, 1]$, the equation $(X - \lambda I)u = v$ yields

$$u(x) = \frac{1}{x - \lambda} v(x), \quad \|u\|^2 = \|(X - \lambda I)^{-1}v\|^2 = \int_{[0,1]} \frac{|v(x)|^2}{|x - \lambda|^2} dx \leq \delta_\lambda^{-2} \|v\|^2,$$

where $\delta_\lambda > 0$ is the distance from λ to $[0, 1]$. Hence, $\lambda \in \rho(X)$ and $\|(X - \lambda I)^{-1}\| \leq \delta_\lambda^{-1}$. This shows that $\sigma(X) \subset [0, 1]$.

To prove the converse inclusion, let $\lambda \in [0, 1]$. For simplicity, we suppose that $\lambda \in (0, 1)$, but the argument we present can easily be adapted to the end-points. Since $\sigma(X) = \sigma_c(X)$, either $\lambda \in \rho(X)$, $\text{rge}(X - \lambda I)$ is dense and $(X - \lambda I)^{-1}$ is bounded, or $\lambda \in \sigma_c(X)$, i.e. $\text{rge}(X - \lambda I)$ is dense but $(X - \lambda I)^{-1}$ is unbounded. So we only need to show that $(X - \lambda I)^{-1}$ is unbounded. To this aim, let $u_n \in L^2[0, 1]$ be the characteristic function of the set $[0, 1] \setminus [\lambda - 1/n, \lambda + 1/n]$ (for n large enough). We clearly have that $\|u_n\| \leq 1$. On the other hand,

$$\|(X - \lambda I)^{-1}u_n\|^2 = \int_{[0,1] \setminus [\lambda - 1/n, \lambda + 1/n]} \frac{1}{|x - \lambda|^2} dx$$

is finite for all n (large enough), but $\|(X - \lambda I)^{-1}u_n\| \rightarrow \infty$ as $n \rightarrow \infty$, showing that $(X - \lambda I)^{-1}$ is indeed unbounded. Hence, $\lambda \in \sigma(X)$, and we conclude that $\sigma(X) = [0, 1]$.

Remarks:

(i) Another way to prove that $\lambda \in [0, 1] \Rightarrow \lambda \in \sigma(X)$ is as follows. Let $\lambda \in [0, 1]$. Suppose by contradiction that $\lambda \in \rho(X)$. Since \mathcal{H} is a Banach space, we know from Problem 4, Week 1, that $\text{rge}(X - \lambda I) = \mathcal{H}$. But this is not true, as $v \equiv 1 \notin \text{rge}(X - \lambda I)$, since $u(x) = (x - \lambda)^{-1} \notin L^2[0, 1]$.

(ii) Even though $\text{rge}(X - \lambda I) \neq \mathcal{H}$, we can see explicitly here that $\overline{\text{rge}(X - \lambda I)} = \mathcal{H}$. For any $v \in L^2[0, 1]$, consider $\varepsilon > 0$ and v_ε defined by $v_\varepsilon(x) = v(x)$ for $x \notin (\lambda - \varepsilon, \lambda + \varepsilon)$ and $v_\varepsilon(x) = 0$ for $x \in (\lambda - \varepsilon, \lambda + \varepsilon)$. One can show two things : $v_\varepsilon \in \text{rge}(X - \lambda I)$, meaning that $(X - \lambda I)u = v_\varepsilon$ can be solved in $L^2[0, 1]$ for any $\varepsilon > 0$. Second, v_ε can be made as close as we want to v in $L^2[0, 1]$ when $\varepsilon \rightarrow 0^+$.