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HOMEWORK SOLUTION WEEK 3

1. (a) Let u # 0 and X € C satisfy Su = Au. Then,
Mull? = O, u) = (Su,u) = (u, Su) = (u, \u) = Mjul]> = X=X
Furthermore, if ;1 # A is another eigenvalue, let v # 0 be a corresponding eigenvector. Then, since pu € R,

(1,0 = —— (A — 1) (1, 0) = —— (i, 0) — (1, ) =

P s —(Su,0) — (u,50)) =0,

A—p

(b1) First suppose that A € p(S). Since H is a Banach space, it follows that (S — AI)~! is well defined
and bounded on H. Consider u € H and v = (S — AI)~lu. We have
ul] = [|(S = A)v|| = [|(S = AL)(S = AI) " ul| = |[(S = AI)7H(S — AT)u|
<8 =ADTH IS = ADull
Hence, [|(S — A)ul| > ||(S — AI) 1H_ l|lu||, for all u € H.

Conversely, suppose there exists C' > 0 such that ||(S — A\)u|| = C ||u||, for all u € H. It follows that
ker(S — AI) = {0}. If A € R, then (S — Al)* =S — Al and rge(S — AI) = H (Exercise Sheet 2, Exercise
4). If A ¢ R, it follows from 1.(a) that A, A are not eigenvalues. Hence, ker(S — AI) = ker(S — AI) = {0}.
As (S — MI)* = S — A, we deduce rge(S — M) = H (Exercise Sheet 2, Exercise 4) as well. Hence, either

A€ p(S)or A€ og.(S). Torule out A € o.(5), we show that rge(S — AI) is closed, hence rge(S — ) = H.
Let (yn) C rge(S — AI) be a convergent sequence in H, ll)l}_l Yn =y € H. Then y, = (S — X))z, for
n oo

some x, € H and
lyn = ymll = (S = AD) (2 — 2m) || 2 C |lzn — 2l

showing that (z,) is a Cauchy sequence in H. Let z = hlf ZTpn. It follows by continuity that y =
n—-+0oo

Im(S — M)z, = (S — Al)x € rge(S — AI). Hence, A € p(95).
(b2) Trivially equivalent to (bl).
(c) Write A = A\; + iAo with Ao # 0 and let u € H. A direct calculation shows that
165 = ADul® = [[(S = MDull* + Aol [[ull® > A2l [Jul*.
Hence, the result follows from (bl).
(d1) Suppose A > M. Since
—((S = ADu,u) = — (Su,u) + X (u, u)
= (A= M) |ul* < (S = A)u,u) |

> (A= M) |ul®
< NS = ADull fJull,  Vu € H,

we deduce from (bl) that A € p(S), hence (M, 00) C p(S). A similar argument shows that (—oo,m) C
p(S).

(d2) Firstly, if S is positive, we have |[S|| = supj, =1 (Su,u) = M > m > 0. By definition of M, there
exists a sequence (u,) C H, with ||u,| = 1, such that (Sup,u,) = M — §,, with d,, > 0, J§,, — 0. Then

[ Sun — MunH2 = HSUnH2 +M? ”unHQ — 2M (Sun, un)
< M?* 4+ M?* —2M(M —5,) =0 (n— o0).
We conclude by (b2) that M € o(S).
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On the other hand, if S is negative, we have [|S|| = supjy =1 | (Su,u)| = |m| > [M|. By definition of

m, there exists a sequence (v,) C H, with ||v,|| = 1, such that (Sv,,v,) = m + e,, with e, > 0, &, — 0.
Then

1St = mun|* = | Sun|* + m® [[un]|* = 2m (Sup, uy)
<m?4+m? —2m(m+e,) =0 (n— o).

The general case is treated as follows. Let v > max{|m|, |[M|}. To prove that M € o(S), observe that
m + v, M + ~ are respectively the lower and upper bound of the positive symmetric operator S + ~I.
Then the previous argument can be used to show that

1Stn — Mug||* = (S +3D)un — (M + 7)un > = 0.
Similarly, one reduces the proof of m € o(S) to the case of a negative operator by considering S — 1.
2. For any n > 1, we have
(Snu,v) = (u, Spv), Yu,v € H.
By continuity of the inner product, the result follows directly by letting n — oo.
3. Consider H = (?(C) and the left-shift operator applied m-times A, ((u1,u2,...)) = (Ums1, Umt2,--)
ie. (Am(u))i = umq; for i > 1. Then
lim A,(u)=0 YueH

m—r+00
because
“+oo
. _ . . 2 _
lim ([ A (u) = 0] = lim > JulP=0 VueH
i=m-+1
while ||A,,|| = 1 for all m > 1. Hence, A,, converges strongly (i.e. ”pointwisely”) to zero, but not in

operator norm.

4. (a) BS = SB = SB* = (BS)* = (SB)* = B*S.
(b) If both S and B are symmetric, we have
SB symmetric <= (SB)" =SB <= B*S*=SB <= BS = SB.

(c) It follows from (b) that S™ = So...0 .S is symmetric for any n > 1 and S° = Id is symmetric as well.
Moreover, if A and B € B(#H) are symmetric and if A\, u € R, then
(M + uB)u,v) = A (Au,v) + p (Bu,v) = A (u, A*v) + p (u, Bv) = (u, AA* + uB*)v) Yu,v e H

so (AMA + uB)* = MA* + uB* by uniqueness of the adjoint operator. If P(x) = apz™ + ... + a1z + ag is a
real polynomial, then P(S) = a,S™ + ... + a1.5 + agld is symmetric given what we’ve just proved.

5. Firstly, for all u € H, || Xu|® = [, [el*|u(@)*dz < [, u(@)® = [[u|, hence X € B(H) and
| X|| < 1. Furthermore, for all u,v € H,
(Xu,v) = / zu(z)v(z)de = / u(z)zv(z) de = (u, Xv),
[0,1] [0,1]

showing that X is symmetric.

Next, for u € L?[0,1], Xu = A = |z — MJu(z)| = 0 a.e. z € [0,1] = u = 0, so X has no eigenvalues.
Since X is symmetric, we also have 0,.(X) = ), so 0(X) = 0.(X).

We will now prove that o(X) = [0, 1]. Firstly, if A & [0, 1], the equation (X — Al)u = v yields

1 2 —1,02 / [o(z)? —2,112

v(z), |ul]"=|(X—=X)""v|| = dr < 6,7 ||v]|7,

St Tl = |l = [ de <o
where 0y > 0 is the distance from X to [0,1]. Hence, A € p(X) and |[(X — M)7!|| < 6} !, This shows that
o(X) co,1].

u(x) =
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To prove the converse inclusion, let A € [0,1]. For simplicity, we suppose that A € (0,1), but the
argument we present can easily be adapted to the end-points. Since o(X) = o.(X), either A € p(X),
rge(X — A1) is dense and (X — AI)~! is bounded, or A € 0.(X), i.e. rge(X — AI) is dense but (X — \I)~!
is unbounded. So we only need to show that (X — AI)~! is unbounded. To this aim, let u,, € L?[0,1] be
the characteristic function of the set [0,1] \ [A — 1/n, A + 1/n] (for n large enough). We clearly have that
|lun]| < 1. On the other hand,

2 1
(X = M) u,||” = / ——dz
H | 0\A=1/nA+1/n] [T — A2
is finite for all n (large enough), but ||(X — AI)~uy|| — 0o as n — oo, showing that (X — AJ)~! is indeed
unbounded. Hence, A € o(X), and we conclude that o(X) = [0, 1].

Remarks:

(1) Another way to prove that A € [0,1] = A € o(X) is as follows. Let A € [0, 1]. Suppose by contradiction
that A € p(X). Since H is a Banach space, we know from Problem 4, Week 1, that rge(X — AI) = H.
But this is not true, as v = 1 ¢ rge(X — ), since u(z) = (z — \)~! & L2[0,1].

(ii) Even though rge(X — AI) # H, we can see explicitly here that rge(X — AI) = H. For any v € L?[0, 1],
consider € > 0 and v. defined by v.(z) = v(x) for z € (A —e,A\+¢) and v.(z) =0 for x € (A — e, A + ).
One can show two things : v. € rge(X — AI), meaning that (X — A )u = v. can be solved in L?[0, 1] for
any € > 0. Second, v. can be made as close as we want to v in L?[0,1] when ¢ — 0.



