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Homework Solution Week 2

1. (a) Write u = Pu+ u′, v = Pv + v′, with u′, v′ ∈ M⊥. Then

⟨Pu, v⟩ =
〈
Pu, Pv + v′

〉
= ⟨Pu, Pv⟩ =

〈
Pu+ u′, Pv

〉
= ⟨u, Pv⟩ .

(b) First, rgeP ⊂ M by definition of P . To show that M ⊂ rgeP , consider u ∈ M . Then, for any
u′ ∈ M⊥, we have P (u+ u′) = Pu = u, hence u ∈ rgeP .

Next, M⊥ ⊂ kerP by definition of P . To show that kerP ⊂ M⊥, take u ∈ kerP and write it as
u = Pu+ u′, with u′ ∈ M⊥. Then, Pu = 0 ⇒ u = u′ ∈ M⊥.

(c) Writing the unique decomposition u = Pu+ u′, with u′ ∈ M⊥, we see that indeed (I − P )u = u′, the
second component of u.

(d) We first suppose that M ⊂ N and prove that PQ = QP = P . Consider u ∈ H. Write u = uM + uM⊥

the projection into M and M⊥ and further project the perpendicular part into N,N⊥, i.e.

u = uM + uM⊥ = uM + (uM⊥)N + (uM⊥)N⊥

Observe that (uM⊥)N ∈ M⊥. Otherwise, one can further decompose

u = uM + uM⊥ = uM + [(uM⊥)N ]M︸ ︷︷ ︸
∈M

+ [(uM⊥)N ]M⊥ + (uM⊥)N⊥︸ ︷︷ ︸
∈M⊥

By uniqueness of the orthogonal projection,

uM = uM + [(uM⊥)N ]M ⇒ [(uM⊥)N ]M = 0

It follows that

PQu = PQ (uM + (uM⊥)N + (uM⊥)N⊥) = P (uM + (uM⊥)N ) = uM = Pu

Similarly,

QPu = QP (uM + uM⊥) = Q (uM ) = uM = Pu

Conversely, suppose that PQ = QP = P . Then, for any u ∈ M , we have

QPu = Pu = u,

showing that u ∈ rgeQ = N . Hence, M ⊂ N .

(e) PQ = 0 ⇐⇒ ⟨PQu, v⟩ = 0 ∀u, v ∈ H ⇐⇒ ⟨Qu,Pv⟩ = 0 ∀u, v ∈ H ⇐⇒ ImP ⊥ ImQ ⇐⇒
⟨QPu, v⟩ = 0 ∀u, v ∈ H.

(f) First suppose M ⊂ N . For u ∈ H, write u = v + v′, with v ∈ N and v′ ∈ N⊥ ⊂ M⊥. Then, by (d),

⟨Pu, u⟩ =
〈
Pv, v + v′

〉
= ⟨Pv, v⟩ , ⟨Qu, u⟩ =

〈
v, v + v′

〉
= ⟨v, v⟩ = ∥v∥2 .

It follows that

⟨Pu, u⟩ − ⟨Qu, u⟩ = ⟨Pv, v⟩ − ∥v∥2 ⩽ 0.

We prove the converse by contraposition. Suppose that M ̸⊂ N . Then there exists u ∈ M \ N . It
follows that (I −Q)u ̸= 0. Hence,

∥u∥2 = ∥Qu∥2 + ∥(I −Q)u∥2 > ∥Qu∥2 = ⟨Qu,Qu⟩ = ⟨Qu, u⟩ .

On the other hand, since u ∈ M , we have ∥u∥2 = ⟨Pu, Pu⟩ = ⟨Pu, u⟩. We deduce that ⟨Pu, u⟩ > ⟨Qu, u⟩,
as expected.

2. That any projection is symmetric and idempotent is trivial.
Conversely, suppose that P : H → H is bounded, symmetric and idempotent. We will prove that P is

the orthogonal projection onto M := rgeP .
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Firstly, M is a closed subspace. Indeed, suppose Pun → v ∈ H, for some sequence (un) ⊂ H. Then,
by continuity and idempotence, we find that

Pv = lim
n→∞

PPun = lim
n→∞

Pun = v,

showing that v ∈ M .
Next, let u ∈ H. By the symmetry of P ,

∀v ∈ M, ⟨u− Pu, v⟩ = ⟨u, v⟩ − ⟨Pu, v⟩ = ⟨u, v⟩ − ⟨u, Pv⟩ = ⟨u, v⟩ − ⟨u, v⟩ = 0.

This shows that u− Pu ∈ M⊥ for all u ∈ H. By uniqueness of the orthogonal decomposition, it follows
that P is indeed the orthogonal projection onto M .

3. Writing u = v + λw, we have by hypothesis that

0 = ⟨T (v + λw), v + λw⟩ = λ ⟨Tw, v⟩+ λ̄ ⟨Tv,w⟩ .
Using the special values λ = i and λ = 1, we obtain

⟨Tv,w⟩ = ⟨Tw, v⟩ , ∀v, w ∈ H, and ⟨Tv,w⟩ = −⟨Tw, v⟩ , ∀v, w ∈ H,

respectively. It follows that ⟨Tv,w⟩ = 0, for all v, w ∈ H. Letting w = Tv, we deduce that ∥Tv∥2 = 0,
for all v ∈ H, hence T = 0.

A counterexample in the real case is given by H = R2 and T a rotation by π/2 around 0.

4. Since kerA∗ is a closed subspace of M , it suffices to show that [kerA∗]⊥ = rgeA. To do so, we deduce
from

⟨Au, v⟩ = ⟨u,A∗v⟩ , ∀u, v ∈ H,

that v ∈ rgeA⊥ if and only if v ∈ kerA∗. Hence, using the hint,

rgeA⊥ = kerA∗ =⇒ rgeA = [rgeA⊥]⊥ = [kerA∗]⊥.

5. (a) For u = (u1, u2, . . . ) ∈ ℓ2, we have

∥Su∥2 =
∑
n⩾2

|un|2 = ∥u∥2 − |u1|2 ⩽ ∥u∥2 .

Since ∥S(0, 1, 0, 0, . . . )∥ = 1, it follows that ∥S∥ = 1. Furthermore, ∥Tu∥2 = ∥u∥2, hence ∥T∥ = 1.

(b) We have

⟨Su, v⟩ =
∑
n⩾1

un+1vn =
∑
n⩾2

unvn−1 = ⟨u, Tv⟩ , ∀u, v ∈ H.

Hence, S∗ = T and T ∗ = S∗∗ = S.

(c) First, solving Su = λu, we find that λ ∈ C is an eigenvalue with eigenvector u = (u1, u2, . . . ) ∈ ℓ2 if
|λ| < 1 and un+1 = λnu1, n ⩾ 1, u1 ̸= 0. Since |λ| = 1 ⇒ u ̸∈ ℓ2, it follows that

σp(S) = {λ ∈ C ; |λ| < 1} =: D1(0).

On the other hand, Tu = λu yields un−1 = λun, n ⩾ 2, 0 = λu1. It follows that λ = 0 or u1 = 0. In
both cases we find u = 0, hence σp(T ) = ∅.

Now, since S∗ = T and T ∗ = S, we deduce that

σr(S) = ∅, σr(T ) = D1(0).

Furthermore, since ∥S∥ = ∥T∥ = 1, σ(S) and σ(T ) are compact subsets of D1(0). It follows that

D1(0) = σp(S) ⊂ σ(S) ⊂ D1(0),

hence σ(S) = D1(0), and we conclude that σc(S) = σ(S) \ σp(S) ∪ σr(S) = ∂D1(0) = S1. Finally, it

follows similarly from D1(0) = σr(T ) ⊂ σ(T ) ⊂ D1(0) that σ(T ) = D1(0) and σc(T ) = S1.


