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Homework Solution Week 1

1. Let v ∈ H and un → u in H, n → ∞. Then, by Cauchy-Schwarz,

| ⟨un, v⟩ − ⟨u, v⟩ | = | ⟨un − u, v⟩ | ⩽ ∥un − u∥ ∥v∥ → 0, n → ∞,

showing that u 7→ ⟨u, v⟩ is continuous. That v 7→ ⟨u, v⟩ is also continuous now follows from this result

and the identity ⟨u, v⟩ = ⟨v, u⟩.
On the other hand, if un → u in H, n → ∞, the triangle inequality implies that

| ∥un∥ − ∥u∥ | ⩽ ∥un − u∥ → 0, n → ∞,

showing that u 7→ ∥u∥ is continuous.

2. We define

∥A∥B(H1,H2)
:= inf ΩA, ΩA := {C ⩾ 0 ; ∥Au∥H2

⩽ C ∥u∥H1
∀u ∈ H1}.

On the other hand, we let

SA := sup
u∈H1\{0}

∥Au∥H2

∥u∥H1

.

We will prove that ∥A∥ = SA. We drop the indices from the norms to simplify the notation.
Firstly, by definition of SA, we have that ∥Au∥ ⩽ SA ∥u∥ for all u ∈ H1, hence SA ∈ ΩA and SA ⩾ ∥A∥.

Now suppose by contradiction that SA > ∥A∥. Then, by definition of ∥A∥, there exists C ∈ [∥A∥ , SA)
such that ∥Au∥ ⩽ C ∥u∥ for all u ∈ H1. Hence,

∥Au∥
∥u∥

⩽ C < SA ∀u ∈ H1 \ {0}.

But this contradicts the definition of SA.
Finally, we prove that

sup
u̸=0

∥Au∥
∥u∥

= sup
∥u∥=1

∥Au∥ = sup
∥u∥⩽1

∥Au∥ .

The first identity follows directly by the linearity of A and the positive homogeneity of the norm. We
now prove the second one. The inequality sup∥u∥=1 ∥Au∥ ⩽ sup∥u∥⩽1 ∥Au∥ is trivial. To conclude, observe
that

sup
∥u∥=1

∥Au∥ = sup
u̸=0

∥Au∥
∥u∥

⩾ sup
0<∥u∥⩽1

∥Au∥
∥u∥

⩾ sup
∥u∥⩽1

∥Au∥ .

3. We recall that a linear operator is bounded if and only if it is continuous.
Suppose that A is bounded. Consider a sequence ((un, vn)) ⊂ GA such that (un, vn) → (u, v) as n → ∞.

By continuity of A, vn = Aun → Au, hence (u, v) = (u,Au). Therefore, (u, v) ∈ GA, showing that GA is
closed.

Conversely, suppose that GA ⊂ X1×X2 is closed. Then GA, endowed with the product norm inherited
from X1 ×X2, is a Banach space. Consider the projections πj : GA → Xj (j = 1, 2) defined by

π1 : (u,Au) 7→ u, π2 : (u,Au) 7→ Au.

Both are bounded linear maps of norm one. Since π1 is a bounded bijection between Banach spaces, the
inverse mapping theorem ensures that π−1

1 is continuous. Since, A = π2 ◦ π−1
1 , we conclude that A is

continuous, hence bounded.

4. By assumption, Rλ(A) = (A − λI)−1 is well defined and bounded on a dense subspace Dλ(A) of X .
Let u ∈ X . The Closed Graph Theorem implies that the graph

G(A−λI) = {(x, (A− λI)x) : x ∈ X} ⊂ X ×X
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of (A− λI) is closed. Hence,

GRλ(A) = {(x, y) ∈ X ×X : (y, x) ∈ G(A−λI)}

is closed as well. We prove that Dλ(A) is closed, hence Dλ(A) = Dλ(A) = X. Take any sequence
(un) ⊂ Dλ(A) such that un → u ∈ X. We need to show that u ∈ Dλ(A). Observe that

∥Rλ(A)un −Rλ(A)um∥ ⩽ ∥Rλ(A)∥ ∥un − um∥ → 0 (n,m → ∞),

i.e. (Rλ(A)un) is a Cauchy sequence in X , hence converges. Call v its limit. We have proved that
(un, Rλ(A)un) ⊂ GRλ(A) converges to (u, v) ∈ X. Since the graph of Rλ(A) is closed, (u, v) ∈ GRλ(A). In
particular, u ∈ Dλ(A), which finishes the proof.

Alternative argument which does not use the Closed Graph Theorem : A bounded operator
defined on a dense subset of a Banach space has a unique bounded extension defined on the whole Banach
space. Such an extension is obtained as follows. If x ∈ X, take a sequence (un)n∈N ⊂ Dλ(A) for which
x = lim

n→+∞
un and define

Rλ(A)x := lim
n→+∞

Rλ(A)un

The sequence (Rλ(A)un)n∈N is Cauchy, hence converges in X, as was shown above. One easily checks
that the definition of Rλ(A)x is independent of the chosen sequence (un)n∈N. Moreover, by continuity of
the norm

||Rλ(A)x|| = || lim
n→+∞

Rλ(A)un|| = lim
n→+∞

||Rλ(A)un|| ≤ lim
n→+∞

||Rλ(A)|| · ||un|| = ||Rλ(A)|| · ||x||

meaning that the extension Rλ(A)x is still bounded with unchanged norm. As (A− λI) is also bounded,
one has

(A− λI)Rλ(A)x = lim
n→+∞

(A− λI)Rλ(A)un = lim
n→+∞

un = x

for all x ∈ X. Similarly,
Rλ(A)(A− λI)x = x ∀x ∈ X

which concludes the proof.

5. (a) By assumption, there exists M ∈ [0,∞) such that supn⩾1 |θn| = M . Hence,

∥Au∥2 =
∑
n⩾1

|θnun|2 ⩽ M2
∑
n⩾1

|un|2 = M2 ∥u∥2 , ∀u = (un)n⩾1 ∈ ℓ2.

This implies that A is bounded, with ∥A∥ ⩽ M .

(b) For each n0 ⩾ 1, θn0 is an eigenvalue of A, with eigenvector en0 = (δn,n0)n⩾1.
Hence, σp(A) = (θn)n⩾1.

Since σ(A) is closed, it follows that

(θn)n⩾1 ⊂ σ(A). (1)

On the other hand, if λ ̸∈ (θn)n⩾1, for any v = (vn)n⩾1 ∈ ℓ2, the equation

(A− λI)u = v (2)

can be solved in ℓ2. Indeed, since |θn − λ| is bounded away from zero, un = (θn − λ)−1vn yields a unique
sequence u = (un)n⩾1 ∈ ℓ2 satisfying (2). Hence,

λ ̸∈ (θn)n⩾1 =⇒ λ ∈ ρ(A). (3)

We conclude from (1) and (3) that σ(A) = (θn)n⩾1.

(c) Consider a limit point λ ∈ (θn)n⩾1 \ (θn)n⩾1. Then there exists a subsequence (θnj )j⩾1 such that

θnj → λ as j → ∞. Now consider the sequence (enj )j⩾1 ⊂ ℓ2 defined by enj = (δn,nj )n⩾1, for all j ⩾ 1.
We have ∥enj∥ = 1 for all j ⩾ 1 and∥∥(A− λI)−1enj

∥∥2 = ∑
n⩾1

|θn − λ|−2δn,nj = |θnj − λ|−2 → ∞ (j → ∞).
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(d) A is symmetric if and only if (θn)n⩾1 ⊂ R.

6. Define T on C[0, 1] by
Tu(x) = t(x)u(x), x ∈ [0, 1],

where t ∈ C[0, 1] is any function whose range is equal to [a, b]. Then (T −λI)u = v can be solved uniquely
in C[0, 1] by the formula

u(x) = (t(x)− λ)−1v(x), x ∈ [0, 1],

if and only if λ ̸∈ [a, b]. Hence, σ(T ) = [a, b].


