

HOMEWORK SOLUTION WEEK 1

1. Let $v \in \mathcal{H}$ and $u_n \rightarrow u$ in \mathcal{H} , $n \rightarrow \infty$. Then, by Cauchy-Schwarz,

$$|\langle u_n, v \rangle - \langle u, v \rangle| = |\langle u_n - u, v \rangle| \leq \|u_n - u\| \|v\| \rightarrow 0, \quad n \rightarrow \infty,$$

showing that $u \mapsto \langle u, v \rangle$ is continuous. That $v \mapsto \langle u, v \rangle$ is also continuous now follows from this result and the identity $\langle u, v \rangle = \overline{\langle v, u \rangle}$.

On the other hand, if $u_n \rightarrow u$ in \mathcal{H} , $n \rightarrow \infty$, the triangle inequality implies that

$$|\|u_n\| - \|u\|| \leq \|u_n - u\| \rightarrow 0, \quad n \rightarrow \infty,$$

showing that $u \mapsto \|u\|$ is continuous.

2. We define

$$\|A\|_{\mathcal{B}(\mathcal{H}_1, \mathcal{H}_2)} := \inf \Omega_A, \quad \Omega_A := \{C \geq 0; \|Au\|_{\mathcal{H}_2} \leq C \|u\|_{\mathcal{H}_1} \ \forall u \in \mathcal{H}_1\}.$$

On the other hand, we let

$$S_A := \sup_{u \in \mathcal{H}_1 \setminus \{0\}} \frac{\|Au\|_{\mathcal{H}_2}}{\|u\|_{\mathcal{H}_1}}.$$

We will prove that $\|A\| = S_A$. We drop the indices from the norms to simplify the notation.

Firstly, by definition of S_A , we have that $\|Au\| \leq S_A \|u\|$ for all $u \in \mathcal{H}_1$, hence $S_A \in \Omega_A$ and $S_A \geq \|A\|$. Now suppose by contradiction that $S_A > \|A\|$. Then, by definition of $\|A\|$, there exists $C \in [\|A\|, S_A)$ such that $\|Au\| \leq C \|u\|$ for all $u \in \mathcal{H}_1$. Hence,

$$\frac{\|Au\|}{\|u\|} \leq C < S_A \quad \forall u \in \mathcal{H}_1 \setminus \{0\}.$$

But this contradicts the definition of S_A .

Finally, we prove that

$$\sup_{u \neq 0} \frac{\|Au\|}{\|u\|} = \sup_{\|u\|=1} \|Au\| = \sup_{\|u\|\leq 1} \|Au\|.$$

The first identity follows directly by the linearity of A and the positive homogeneity of the norm. We now prove the second one. The inequality $\sup_{\|u\|=1} \|Au\| \leq \sup_{\|u\|\leq 1} \|Au\|$ is trivial. To conclude, observe that

$$\sup_{\|u\|=1} \|Au\| = \sup_{u \neq 0} \frac{\|Au\|}{\|u\|} \geq \sup_{0 < \|u\| \leq 1} \frac{\|Au\|}{\|u\|} \geq \sup_{\|u\|\leq 1} \|Au\|.$$

3. We recall that a linear operator is bounded if and only if it is continuous.

Suppose that A is bounded. Consider a sequence $((u_n, v_n)) \subset \mathbf{G}_A$ such that $(u_n, v_n) \rightarrow (u, v)$ as $n \rightarrow \infty$. By continuity of A , $v_n = Au_n \rightarrow Au$, hence $(u, v) = (u, Au)$. Therefore, $(u, v) \in \mathbf{G}_A$, showing that \mathbf{G}_A is closed.

Conversely, suppose that $\mathbf{G}_A \subset \mathcal{X}_1 \times \mathcal{X}_2$ is closed. Then \mathbf{G}_A , endowed with the product norm inherited from $\mathcal{X}_1 \times \mathcal{X}_2$, is a Banach space. Consider the projections $\pi_j : \mathbf{G}_A \rightarrow \mathcal{X}_j$ ($j = 1, 2$) defined by

$$\pi_1 : (u, Au) \mapsto u, \quad \pi_2 : (u, Au) \mapsto Au.$$

Both are bounded linear maps of norm one. Since π_1 is a bounded bijection between Banach spaces, the inverse mapping theorem ensures that π_1^{-1} is continuous. Since, $A = \pi_2 \circ \pi_1^{-1}$, we conclude that A is continuous, hence bounded.

4. By assumption, $R_\lambda(A) = (A - \lambda I)^{-1}$ is well defined and bounded on a dense subspace $\mathfrak{D}_\lambda(A)$ of \mathcal{X} . Let $u \in \mathcal{X}$. The Closed Graph Theorem implies that the graph

$$\mathbf{G}_{(A - \lambda I)} = \{(x, (A - \lambda I)x) : x \in X\} \subset X \times X$$

of $(A - \lambda I)$ is closed. Hence,

$$\mathbf{G}_{R_\lambda(A)} = \{(x, y) \in X \times X : (y, x) \in \mathbf{G}_{(A - \lambda I)}\}$$

is closed as well. We prove that $\mathfrak{D}_\lambda(A)$ is closed, hence $\mathfrak{D}_\lambda(A) = \overline{\mathfrak{D}_\lambda(A)} = X$. Take any sequence $(u_n) \subset \mathfrak{D}_\lambda(A)$ such that $u_n \rightarrow u \in X$. We need to show that $u \in \mathfrak{D}_\lambda(A)$. Observe that

$$\|R_\lambda(A)u_n - R_\lambda(A)u_m\| \leq \|R_\lambda(A)\| \|u_n - u_m\| \rightarrow 0 \quad (n, m \rightarrow \infty),$$

i.e. $(R_\lambda(A)u_n)$ is a Cauchy sequence in X , hence converges. Call v its limit. We have proved that $(u_n, R_\lambda(A)u_n) \subset \mathbf{G}_{R_\lambda(A)}$ converges to $(u, v) \in X$. Since the graph of $R_\lambda(A)$ is closed, $(u, v) \in \mathbf{G}_{R_\lambda(A)}$. In particular, $u \in \mathfrak{D}_\lambda(A)$, which finishes the proof.

Alternative argument which does not use the Closed Graph Theorem : A bounded operator defined on a dense subset of a Banach space has a unique bounded extension defined on the whole Banach space. Such an extension is obtained as follows. If $x \in X$, take a sequence $(u_n)_{n \in \mathbb{N}} \subset \mathfrak{D}_\lambda(A)$ for which $x = \lim_{n \rightarrow +\infty} u_n$ and define

$$R_\lambda(A)x := \lim_{n \rightarrow +\infty} R_\lambda(A)u_n$$

The sequence $(R_\lambda(A)u_n)_{n \in \mathbb{N}}$ is Cauchy, hence converges in X , as was shown above. One easily checks that the definition of $R_\lambda(A)x$ is independent of the chosen sequence $(u_n)_{n \in \mathbb{N}}$. Moreover, by continuity of the norm

$$\|R_\lambda(A)x\| = \left\| \lim_{n \rightarrow +\infty} R_\lambda(A)u_n \right\| = \lim_{n \rightarrow +\infty} \|R_\lambda(A)u_n\| \leq \lim_{n \rightarrow +\infty} \|R_\lambda(A)\| \cdot \|u_n\| = \|R_\lambda(A)\| \cdot \|x\|$$

meaning that the extension $R_\lambda(A)x$ is still bounded with unchanged norm. As $(A - \lambda I)$ is also bounded, one has

$$(A - \lambda I)R_\lambda(A)x = \lim_{n \rightarrow +\infty} (A - \lambda I)R_\lambda(A)u_n = \lim_{n \rightarrow +\infty} u_n = x$$

for all $x \in X$. Similarly,

$$R_\lambda(A)(A - \lambda I)x = x \quad \forall x \in X$$

which concludes the proof.

5. (a) By assumption, there exists $M \in [0, \infty)$ such that $\sup_{n \geq 1} |\theta_n| = M$. Hence,

$$\|Au\|^2 = \sum_{n \geq 1} |\theta_n u_n|^2 \leq M^2 \sum_{n \geq 1} |u_n|^2 = M^2 \|u\|^2, \quad \forall u = (u_n)_{n \geq 1} \in \ell^2.$$

This implies that A is bounded, with $\|A\| \leq M$.

(b) For each $n_0 \geq 1$, θ_{n_0} is an eigenvalue of A , with eigenvector $e_{n_0} = (\delta_{n, n_0})_{n \geq 1}$. Hence, $\sigma_p(A) = (\theta_n)_{n \geq 1}$.

Since $\sigma(A)$ is closed, it follows that

$$\overline{(\theta_n)_{n \geq 1}} \subset \sigma(A). \tag{1}$$

On the other hand, if $\lambda \notin \overline{(\theta_n)_{n \geq 1}}$, for any $v = (v_n)_{n \geq 1} \in \ell^2$, the equation

$$(A - \lambda I)u = v \tag{2}$$

can be solved in ℓ^2 . Indeed, since $|\theta_n - \lambda|$ is bounded away from zero, $u_n = (\theta_n - \lambda)^{-1}v_n$ yields a unique sequence $u = (u_n)_{n \geq 1} \in \ell^2$ satisfying (2). Hence,

$$\lambda \notin \overline{(\theta_n)_{n \geq 1}} \implies \lambda \in \rho(A). \tag{3}$$

We conclude from (1) and (3) that $\sigma(A) = \overline{(\theta_n)_{n \geq 1}}$.

(c) Consider a limit point $\lambda \in \overline{(\theta_n)_{n \geq 1}} \setminus (\theta_n)_{n \geq 1}$. Then there exists a subsequence $(\theta_{n_j})_{j \geq 1}$ such that $\theta_{n_j} \rightarrow \lambda$ as $j \rightarrow \infty$. Now consider the sequence $(e_{n_j})_{j \geq 1} \subset \ell^2$ defined by $e_{n_j} = (\delta_{n, n_j})_{n \geq 1}$, for all $j \geq 1$. We have $\|e_{n_j}\| = 1$ for all $j \geq 1$ and

$$\|(A - \lambda I)^{-1}e_{n_j}\|^2 = \sum_{n \geq 1} |\theta_{n_j} - \lambda|^{-2} \delta_{n, n_j} = |\theta_{n_j} - \lambda|^{-2} \rightarrow \infty \quad (j \rightarrow \infty).$$

(d) A is symmetric if and only if $(\theta_n)_{n \geq 1} \subset \mathbb{R}$.

6. Define T on $C[0, 1]$ by

$$Tu(x) = t(x)u(x), \quad x \in [0, 1],$$

where $t \in C[0, 1]$ is any function whose range is equal to $[a, b]$. Then $(T - \lambda I)u = v$ can be solved uniquely in $C[0, 1]$ by the formula

$$u(x) = (t(x) - \lambda)^{-1}v(x), \quad x \in [0, 1],$$

if and only if $\lambda \notin [a, b]$. Hence, $\sigma(T) = [a, b]$.