

HOMEWORK SOLUTION WEEK 12

1. The spectral family of X is given by

$$E_\lambda \psi = \chi_{(-\infty, \lambda]} u, \quad \lambda \in \mathbb{R}, \quad \psi \in L^2(\mathbb{R}).$$

Hence, the distribution function of X is

$$F_X(\lambda) = \langle E_\lambda \psi, \psi \rangle = \int_{\mathbb{R}} \chi_{(-\infty, \lambda]}(x) |\psi(x)|^2 dx = \int_{-\infty}^{\lambda} |\psi(x)|^2 dx$$

and the result follows from relations (4.2.6) of the lecture notes.

2. That $(U_a)_{a \in \mathbb{R}}$ is unitary group is easy to check. To prove strong continuity, dominated convergence cannot be applied directly and we use an approximation by smooth functions.

Let $\psi \in L^2(\mathbb{R})$, $a \in \mathbb{R}$, and consider a sequence $a_n \rightarrow a$. Let $\varepsilon > 0$ and $\varphi \in C^1(\mathbb{R})$ a function with compact support K such that

$$\|\psi - \varphi\|_{L^2}^2 < \varepsilon.$$

Then there is a constant $C > 0$ (independent of φ , ε and n) such that

$$\begin{aligned} \int_{\mathbb{R}} |\psi(x - a_n) - \psi(x - a)|^2 dx &\leq C \left(\int_{\mathbb{R}} |\psi(x - a_n) - \varphi(x - a_n)|^2 dx \right. \\ &\quad + \int_{\mathbb{R}} |\varphi(x - a_n) - \varphi(x - a)|^2 dx \\ &\quad \left. + \int_{\mathbb{R}} |\varphi(x - a) - \psi(x - a)|^2 dx \right). \end{aligned}$$

The first and last integrals in the right-hand side are $< \varepsilon$. On the other hand, by the mean-value theorem, there exists $C_1 > 0$ such that

$$|\varphi(x - a_n) - \varphi(x - a)|^2 \leq C_1 |a_n - a|^2.$$

Hence,

$$\int_{\mathbb{R}} |\psi(x - a_n) - \psi(x - a)|^2 dx \leq 2C\varepsilon + C_1 |K| |a_n - a|^2 \rightarrow 2C\varepsilon, \quad n \rightarrow \infty.$$

Since $\varepsilon > 0$ is arbitrary, we conclude that

$$\int_{\mathbb{R}} |\psi(x - a_n) - \psi(x - a)|^2 dx \rightarrow 0, \quad n \rightarrow \infty.$$

3. For any $\psi \in \mathfrak{D}(XP - PX) = \mathfrak{D}_{XP} \cap \mathfrak{D}_{PX}$, there holds

$$\begin{aligned} (XP - PX)\psi(x) &= X(P\psi)(x) - P(X\psi)(x) = x \frac{\hbar}{i} \frac{d}{dx} \psi(x) - \frac{\hbar}{i} \frac{d}{dx} (x\psi(x)) \\ &= \frac{\hbar}{i} \left(x \frac{d}{dx} \psi(x) - \psi(x) - x \frac{d}{dx} \psi(x) \right) = -\frac{\hbar}{i} \psi(x) = i\hbar \psi(x). \end{aligned}$$

4. For $\psi \in L^2(\mathbb{R})$, let $S = A - \langle A \rangle_\psi$ and $T = B - \langle B \rangle_\psi$. Then $\mathfrak{D}(ST - TS) = \mathfrak{D}(AB - BA)$ and a direct calculation shows that

$$ST - TS = AB - BA = C.$$

It follows that

$$|\langle C \rangle_\psi| = |\langle (ST - TS)\psi, \psi \rangle| \leq |\langle ST\psi, \psi \rangle| + |\langle TS\psi, \psi \rangle| = |\langle T\psi, S\psi \rangle| + |\langle S\psi, T\psi \rangle| \leq 2\|S\psi\| \|T\psi\|,$$

where

$$\|S\psi\| = \|(A - \langle A \rangle_\psi)\psi\| = \Delta_\psi(A)$$

and

$$\|T\psi\| = \|(B - \langle B \rangle_\psi)\psi\| = \Delta_\psi(B).$$