

HOMEWORK SOLUTION WEEK 10

1. The proof follows along the same lines as that for bounded symmetric operators.
2. (a) Integrating by parts twice yields

$$\langle Hu, v \rangle = \int_{\mathbb{R}} (-u'') \bar{v} = \int_{\mathbb{R}} u (-\bar{v}'') = \langle u, Hv \rangle, \quad \forall u, v \in C_c^\infty(\mathbb{R}).$$

(b) Let

$$\mathfrak{D} := \{v \in L^2(\mathbb{R}) ; v \in C^1(\mathbb{R}), v' \in AC[a, b] \text{ for any } -\infty < a < b < \infty, v'' \in L^2(\mathbb{R})\}.$$

We first show that $\mathfrak{D} \subseteq \mathfrak{D}_{H^*}$ and $H^*v = -v''$ for all $v \in \mathfrak{D}$. Consider $v \in \mathfrak{D}$. Integrating by parts twice, we have

$$\langle Hu, v \rangle = \int_{\mathbb{R}} (-u'') \bar{v} = \int_{\mathbb{R}} u (-\bar{v}''), \quad \forall u \in \mathfrak{D}_H. \quad (1)$$

Hence,

$$|\langle Hu, v \rangle| \leq \|u\| \|v''\|, \quad \forall u \in \mathfrak{D}_H.$$

It follows that $u \mapsto \langle Hu, v \rangle$ is bounded on \mathfrak{D}_H , so $v \in \mathfrak{D}_{H^*}$ and (1) implies that $H^*v = -v''$.

Conversely, suppose that $v \in \mathfrak{D}_{H^*}$. Then $H^*v \in L^2(\mathbb{R}) \subset L_{\text{loc}}^1(\mathbb{R})$. Hence, the function Φ defined by

$$\Phi(x) = \int_0^x \int_0^y H^*v(z) dz dy$$

satisfies

$$\Phi \in C^1(\mathbb{R}), \Phi' \in AC[a, b] \text{ for any } a < b, \Phi'' = H^*v.$$

Furthermore, since $\langle Hu, v \rangle = \langle u, H^*v \rangle$ for all $u \in \mathfrak{D}_H$, we deduce that

$$-\int_{\mathbb{R}} u'' \bar{v} = \int_{\mathbb{R}} u \bar{H^*v} = \int_{\mathbb{R}} u \bar{\Phi''} = \int_{\mathbb{R}} u'' \bar{\Phi}, \quad \forall u \in C_c^\infty(\mathbb{R}).$$

By the Du Bois-Reymond Lemma (a variant of the Fundamental Lemma of the Calculus of Variations), there exist $c_0, c_1 \in \mathbb{C}$ such that $v(x) = -\Phi(x) + c_1x + c_0$. We conclude that, indeed, $v \in \mathfrak{D}$.

(c) We will prove that $\text{rge}(H \pm iI)$ are dense in $L^2(\mathbb{R})$. By Theorem 3.5.6, this implies that H is essentially selfadjoint. To this end, recall that

$$\text{rge}(H \pm iI)^\perp = \ker(H^* \mp iI),$$

so we need only show $\ker(H^* \mp iI) = \{0\}$. Now,

$$u \in \ker(H^* \mp iI) \iff u \in \mathfrak{D}_{H^*} \text{ and } u'' = \mp iu.$$

Solving the differential equations yields two independent solutions

$$u_1^\pm(x) = \exp\left(\frac{(1 \pm i)x}{\sqrt{2}}\right), \quad u_2^\pm(x) = \exp\left(-\frac{(1 \pm i)x}{\sqrt{2}}\right).$$

Since neither of them belongs to $L^2(\mathbb{R})$, we conclude that, indeed, $\ker(H^* \mp iI) = \{0\}$.

3. (a) To see that X is not bounded, observe that, for all $n \geq 1$, $u_n := \chi_{[n, n+1]}$ satisfies

$$\|u_n\| = 1 \quad \text{and} \quad \|Xu_n\|^2 = \int_n^{n+1} x^2 dx > n^2.$$

We now observe that $\mathfrak{D}_X \subsetneq L^2(\mathbb{R})$ but \mathfrak{D}_X is dense in $L^2(\mathbb{R})$. Indeed, the function $u : \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$u(x) = \begin{cases} 1/x & \text{if } x \geq 1, \\ 0 & \text{otherwise,} \end{cases}$$

belongs to $L^2(\mathbb{R}) \setminus \mathfrak{D}_X$. Furthermore, $C_c(\mathbb{R}) \subset \mathfrak{D}_X$ and $C_c(\mathbb{R})$ dense in $L^2(\mathbb{R})$ implies \mathfrak{D}_X dense in $L^2(\mathbb{R})$. Hence, X^* exists. To show that $X = X^*$, we proceed in two steps.

First, $X \subseteq X^*$. Indeed, for all $u, v \in \mathfrak{D}_X$,

$$\langle Xu, v \rangle = \int_{\mathbb{R}} xu(x) \overline{v(x)} \, dx = \int_{\mathbb{R}} u(x) \overline{xv(x)} \, dx = \langle u, Xv \rangle.$$

Next, $\mathfrak{D}_{X^*} \subseteq \mathfrak{D}_X$. Let $v \in \mathfrak{D}_{X^*}$. It follows from the fundamental relation $\langle Xu, v \rangle = \langle u, X^*v \rangle$ that

$$\int_{\mathbb{R}} u(x) (\overline{xv(x) - (X^*v)(x)}) \, dx = 0, \quad \forall u \in \mathfrak{D}_X.$$

Let $a < b$ and choose $u : \mathbb{R} \rightarrow \mathbb{C}$ defined by

$$u(x) = \begin{cases} xv(x) - (X^*v)(x) & \text{if } x \in (a, b), \\ 0 & \text{otherwise.} \end{cases}$$

Then

$$\int_a^b |xv(x) - (X^*v)(x)|^2 \, dx = 0$$

and it follows that $xv(x) = (X^*v)(x)$ a.e. on (a, b) . Since this interval was chosen arbitrarily, we conclude that $xv(x) = (X^*v)(x)$ a.e. on \mathbb{R} . Hence, $v \in \mathfrak{D}_X$.

(b) Using the same arguments as for the operator X acting on $L^2[0, 1]$ (Weeks 3 and 5), we obtain $\sigma(X) = \sigma_c(X) = \mathbb{R}$ and $E_\lambda u = \chi_{(-\infty, \lambda]} u$ for all $\lambda \in \mathbb{R}$.