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Homework Solution Week 10

1. The proof follows along the same lines as that for bounded symmetric operators.

2. (a) Integrating by parts twice yields

⟨Hu, v⟩ =
∫
R
(−u′′)v̄ =

∫
R
u(−v̄′′) = ⟨u,Hv⟩ , ∀u, v ∈ C∞

c (R).

(b) Let

D :=
{
v ∈ L2(R) ; v ∈ C1(R), v′ ∈ AC[a, b] for any −∞ < a < b < ∞, v′′ ∈ L2(R)

}
.

We first show that D ⊆ DH∗ and H∗v = −v′′ for all v ∈ D. Consider v ∈ D. Integrating by parts twice,
we have

⟨Hu, v⟩ =
∫
R
(−u′′)v̄ =

∫
R
u(−v̄′′), ∀u ∈ DH . (1)

Hence,
| ⟨Hu, v⟩ | ⩽ ∥u∥

∥∥v′′∥∥ , ∀u ∈ DH .

It follows that u 7→ ⟨Hu, v⟩ is bounded on DH , so v ∈ DH∗ and (1) implies that H∗v = −v′′.
Conversely, suppose that v ∈ DH∗ . Then H∗v ∈ L2(R) ⊂ L1

loc(R). Hence, the function Φ defined by

Φ(x) =

∫ x

0

∫ y

0
H∗v(z) dz dy

satisfies
Φ ∈ C1(R), Φ′ ∈ AC[a, b] for any a < b, Φ′′ = H∗v.

Furthermore, since ⟨Hu, v⟩ = ⟨u,H∗v⟩ for all u ∈ DH , we deduce that

−
∫
R
u′′v̄ =

∫
R
uH∗v =

∫
R
uΦ′′ =

∫
R
u′′Φ, ∀u ∈ C∞

c (R).

By the Du Bois-Reymond Lemma (a variant of the Fundamental Lemma of the Calculus of Variations),
there exist c0, c1 ∈ C such that v(x) = −Φ(x) + c1x+ c0. We conclude that, indeed, v ∈ D.

(c) We will prove that rge(H±iI) are dense in L2(R). By Theorem 3.5.6, this implies that H is essentially
selfadjoint. To this end, recall that

rge(H ± iI)⊥ = ker(H∗ ∓ iI),

so we need only show ker(H∗ ∓ iI) = {0}. Now,
u ∈ ker(H∗ ∓ iI) ⇐⇒ u ∈ DH∗ and u′′ = ∓iu.

Solving the differential equations yields two independent solutions

u±1 (x) = exp

(
(1± i)x√

2

)
, u±2 (x) = exp

(
−(1± i)x√

2

)
.

Since neither of them belongs to L2(R), we conclude that, indeed, ker(H∗ ∓ iI) = {0}.

3. (a) To see that X is not bounded, observe that, for all n ⩾ 1, un := χ[n,n+1) satisfies

∥un∥ = 1 and ∥Xun∥2 =
∫ n+1

n
x2 dx > n2.

We now observe that DX ⊊ L2(R) but DX is dense in L2(R). Indeed, the function u : R → R defined
by

u(x) =

{
1/x if x ⩾ 1,

0 otherwise,
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belongs to L2(R)\DX . Furthermore, Cc(R) ⊂ DX and Cc(R) dense in L2(R) implies DX dense in L2(R).
Hence, X∗ exists. To show that X = X∗, we proceed in two steps.

First, X ⊆ X∗. Indeed, for all u, v ∈ DX ,

⟨Xu, v⟩ =
∫
R
xu(x)v(x) dx =

∫
R
u(x)xv(x) dx = ⟨u,Xv⟩ .

Next, DX∗ ⊆ DX . Let v ∈ DX∗ . It follows from the fundamental relation ⟨Xu, v⟩ = ⟨u,X∗v⟩ that∫
R
u(x)(xv(x)− (X∗v)(x)) dx = 0, ∀u ∈ DX .

Let a < b and choose u : R → C defined by

u(x) =

{
xv(x)− (X∗v)(x) if x ∈ (a, b),

0 otherwise.

Then ∫ b

a
|xv(x)− (X∗v)(x)|2 dx = 0

and it follows that xv(x) = (X∗v)(x) a.e. on (a, b). Since this interval was chosen arbitrarily, we conclude
that xv(x) = (X∗v)(x) a.e. on R. Hence, v ∈ DX .

(b) Using the same arguments as for the operator X acting on L2[0, 1] (Weeks 3 and 5), we obtain
σ(X) = σc(X) = R and Eλu = χ(−∞,λ]u for all λ ∈ R.


