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HOMEWORK SOLUTION WEEK 10

1. The proof follows along the same lines as that for bounded symmetric operators.

2. (a) Integrating by parts twice yields
(Hu,v) = /(—u”)v = / uw(—=0") = (u, Hv), Yu,v € CX(R).
R R

(b) Let
D :={veL*(R);veCR), v € AC[a,b] for any —co < a < b < o0, v" € L*(R)}.

We first show that ® C Dy« and H*v = —v” for all v € ©. Consider v € ©. Integrating by parts twice,
we have

(Hu,v) = /(—u")v:/u(—v”), Yu € Dpy. (1)
R R
Hence,
| (Hu,v) | < |Jul] Hv" } , Yu€eDy.

It follows that u +— (Hu,v) is bounded on D, so v € Dy and (1) implies that H*v = —v".
Conversely, suppose that v € Dg+. Then H*v € L*(R) C Ll (R). Hence, the function ® defined by

z oy
= / / H*v(z)dzdy
o Jo

® € CY(R), @ € AC|a,b] for any a < b, ®" = H*v.
Furthermore, since (Hu,v) = (u, H*v) for all u € ®, we deduce that

/u v—/uH*v—/ @’/:/u"é, Vu € C°(R).
R

By the Du Bois-Reymond Lemma (a variant of the Fundamental Lemma of the Calculus of Variations),
there exist ¢g,c; € C such that v(z) = —®(z) + 12 + ¢p. We conclude that, indeed, v € .

(c) We will prove that rge(H £il) are dense in L?(R). By Theorem 3.5.6, this implies that H is essentially
selfadjoint. To this end, recall that

satisfies

rge(H £ il)* = ker(H* T il),
so we need only show ker(H* FiI) = {0}. Now,
u € ker(H* Fil) <= u € Dy~ and v = Fiu.

Solving the differential equations yields two independent solutions

W () = exp <(1 j?‘”) L b (2) = exp <—(HE\/§)””> .

Since neither of them belongs to L?(R), we conclude that, indeed, ker(H* Fil) = {0}.

3. (a) To see that X is not bounded, observe that, for all n > 1, up := X[nn41) satisfies
n+1
funll =1 and [ Xua2 = [ P do >
n

We now observe that ®x C L*(R) but Dx is dense in L?(R). Indeed, the function u : R — R defined

by
Uz ifz>1,
ue) = M it >
0 otherwise,
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belongs to L2(R)\ D x. Furthermore, C.(R) C ® x and C.(R) dense in L?(R) implies ® x dense in L?(R).
Hence, X* exists. To show that X = X*, we proceed in two steps.
First, X € X*. Indeed, for all u,v € Dx,

(Xu,v) = /qu(a:)v(a:)dx = /Ru(a:)xv(x)dx = (u, Xv) .

Next, Dx~ C Dx. Let v € Dx=«. It follows from the fundamental relation (Xwu,v) = (u, X*v) that

/ (@) (0@ = (@) dz =0, Vu € Dx.
R
Let a < b and choose u : R — C defined by
() = zv(z) — (X*v)(z) ifxe ('a,b),
0 otherwise.
Then .
/ lzv(z) — (X*0)(2)|*dz =0

and it follows that zv(x) = (X*v)(x) a.e. on (a,b). Since this interval was chosen arbitrarily, we conclude
that zv(x) = (X*v)(z) a.e. on R. Hence, v € Dx.

(b) Using the same arguments as for the operator X acting on L2[0,1] (Weeks 3 and 5), we obtain
o(X) =0.(X)=Rand Eyu = X (—co N U for all A € R.



