

HOMEWORK WEEK 9

1. Let $\mathcal{H} = L^2[0, 1]$. We continue here our study of the differential operator $i \frac{d}{dx}$. We now consider $D_3 : \mathfrak{D}_{D_3} \subset \mathcal{H} \rightarrow \mathcal{H}$ defined by

$$D_3 := i \frac{d}{dx}, \quad \mathfrak{D}_{D_3} := C_0^1(0, 1).$$

(a) Show that D_3 is unbounded.
 (b) Prove that the adjoint D_3^* of D_3 exists and is given by

$$D_3^* = i \frac{d}{dx}, \quad \mathfrak{D}_{D_3^*} = \mathfrak{D} := \{u \in AC[0, 1] ; u' \in L^2[0, 1]\}.$$

Hint: For any subinterval $[a, b] \subseteq [0, 1]$, construct a sequence $(u_n) \subset \mathfrak{D}_{D_3}$ which converges to $\chi_{[a, b]}$. Use this sequence to compute $\int_a^b (D_3^* u)(x) dx$ for any $u \in \mathfrak{D}_{D_3^*}$.

(c) Observe the inclusion relations between $\mathfrak{D}_{D_3}, \mathfrak{D}_{D_3^*}$ and $\mathfrak{D}_{D_1}, \mathfrak{D}_{D_1^*}$.
 (d) Prove that the closure $\overline{D_3}$ of D_3 is given by

$$\overline{D_3} = i \frac{d}{dx}, \quad \mathfrak{D}_{\overline{D_3}} = \{u \in AC[0, 1] ; u' \in L^2[0, 1] \text{ and } u(0) = u(1) = 0\}.$$

2. Prove Theorem 3.6.5 from the lecture notes : Let $(E_\lambda)_{\lambda \in \mathbb{R}}$ be a spectral family and $f : \mathbb{R} \rightarrow \mathbb{C}$ be an E -measurable function. Then the following properties hold true.

(a) $u \in \mathfrak{D}_{E(f)} \iff \|E(f)u\|^2 = \int |f|^2 d\mu_{\|E_\lambda u\|^2} < +\infty$.
 (b) If f is bounded, then $\mathfrak{D}_{E(f)} = \mathcal{H}$, $E(f) \in \mathcal{B}(H)$ and $\|E(f)\| \leq \text{ess sup}_{\lambda \in \mathbb{R}} |f(\lambda)|$.
 (c) If $f(\lambda) = 1$ for all $\lambda \in \mathbb{R}$, then $E(f) = I$.
 (d) For all $u \in \mathfrak{D}_{E(f)}$,

$$\langle E(f)u, u \rangle = \int f(\lambda) d\mu_{\|E_\lambda u\|^2}$$

(e) For $a, b \in \mathbb{C}$ and any E -measurable function $g : \mathbb{R} \rightarrow \mathbb{C}$,

$$aE(f) + bE(g) \subseteq E(af + bg), \quad \mathfrak{D}_{E(f)+E(g)} = \mathfrak{D}_{E(|f|+|g|)}$$

(f) For all $\mu \in \mathbb{R}$,

$$E_\mu E(f) \subseteq E(f)E_\mu$$

with equality if f is bounded.

(g) For any E -measurable functions $f, g : \mathbb{R} \rightarrow \mathbb{C}$,

$$E(f)E(g) \subseteq E(fg), \quad \mathfrak{D}_{E(f)E(g)} = \mathfrak{D}_{E(g)} \cap \mathfrak{D}_{E(fg)}$$

Hint: For the equality of domains, show that

$$\int_{-\infty}^{+\infty} |f(\rho)|^2 d\mu_{||E_\rho E(g)u||^2} = \int_{-\infty}^{+\infty} |f(\rho)g(\rho)|^2 d\mu_{||E_\rho u||^2}$$

for any E -measurable functions $f, g : \mathbb{R} \rightarrow \mathbb{C}$. Try to prove it first when f is a step function.

(h) $\mathfrak{D}_{E(f)}$ is dense.

Hint: For $u \in \mathcal{H}$, try the sequence $u_n := E(\chi_{[-n,n]} \circ f)u$.

(i)

$$E(\bar{f}) = E(f)^*, \quad \mathfrak{D}_{E(f)^*} = \mathfrak{D}_{E(f)}$$

(j) The operator $E(f)$ is normal, i.e. $E(f)E(f)^* = E(f)^*E(f)$.