

HOMEWORK WEEK 7

1. Consider an operator $T : \mathfrak{D}_T \subset \mathcal{H} \rightarrow \mathcal{H}$, and suppose that T is bounded on \mathfrak{D}_T , in the sense that there is a constant $C \geq 0$ such that $\|Tu\| \leq C\|u\|$, for all $u \in \mathfrak{D}_T$. Show that T can be extended to a bounded linear operator on \mathcal{H} . (Remark: It is not assumed that \mathfrak{D}_T is dense).
2. Let $S : \mathfrak{D}_S \subset \mathcal{H} \rightarrow \mathcal{H}$ be a one-to-one operator. Consider the following properties.
 - (i) S is closed.
 - (ii) $\text{rge } S$ is dense.
 - (iii) $\text{rge } S$ is closed.
 - (iv) There is a constant C such that $\|Su\| \geq C\|u\|$, for all $u \in \mathfrak{D}_S$.
 (a) Prove that (i)-(ii)-(iii) imply (iv). *Hint:* Apply the Closed Graph Theorem to S^{-1} .

 (b) Prove that (ii)-(iii)-(iv) imply (i).

 (c) Prove that (i) and (iv) imply (iii).
3. Prove that, if T^{-1} , T^* and $(T^{-1})^*$ exist, then $(T^*)^{-1}$ also exists, and $(T^{-1})^* = (T^*)^{-1}$.
4. We define an operator T on $L^2(\mathbb{R})$ by $(Tu)(x) = \phi(x)u(x)$, where $\phi \in L^\infty(\mathbb{R})$.
 - (a) Show that T is bounded and compute its norm.
 - (b) Find T^* . Under what condition is $T = T^*$?
 - (c) If S is defined by $(Su)(x) = \psi(x)u(x)$ with $\psi \in L^\infty(\mathbb{R})$, find TS and $(TS)^*$.
5. Consider again the multiplication operator $T : L^2(\mathbb{R}) \rightarrow L^2(\mathbb{R})$, $(Tu)(x) = \phi(x)u(x)$. Suppose now that $\phi : \mathbb{R} \rightarrow \mathbb{C}$ is continuous and satisfies $\lim_{x \rightarrow +\infty} |\phi(x)| = +\infty$.
 - (a) Find the domain of T and show that T is unbounded.
 - (b) Find T^* .

Hint: Start by showing that $\mathfrak{D}_T \subseteq \mathfrak{D}_{T^*}$ and $T^*v = \bar{\phi}v$, for all $v \in \mathfrak{D}_T$.