

HOMEWORK WEEK 5

1. Suppose $\mathcal{H} \neq \{0\}$.
 - (a) Find the spectral family and verify the conclusions of Spectral Theorem I for the zero operator $S : \mathcal{H} \rightarrow \mathcal{H}$, $Su = 0$ for all $u \in \mathcal{H}$.
 - (b) Find the spectral family and verify the conclusions of Spectral Theorem I for the identity operator $I : \mathcal{H} \rightarrow \mathcal{H}$.
2. Consider the operator $X : L^2[0, 1] \rightarrow L^2[0, 1]$, $(Xu)(x) = xu(x)$. Prove that the spectral family $(E_\lambda)_{\lambda \in \mathbb{R}}$ of X is given by

$$E_\lambda u = \begin{cases} 0 & \text{if } \lambda \leq 0, \\ \chi_{[0, \lambda]} u & \text{if } \lambda \in (0, 1], \\ u & \text{if } \lambda > 1, \end{cases}$$

where $\chi_{[0, \lambda]}$ is the characteristic function of the interval $[0, \lambda]$.

Hint: Start by showing that $|X - \lambda I|$ is the operator $T_\lambda : L^2[0, 1] \rightarrow L^2[0, 1]$ defined by $(T_\lambda u)(x) = |x - \lambda|u(x)$, $x \in [0, 1]$. Then find the corresponding projection $E_+(\lambda)$ appearing in the proof of Spectral Theorem I.

3. Let $S \in \mathcal{B}(\mathcal{H})$ be a symmetric operator and $(E_\lambda)_{\lambda \in \mathbb{R}}$ be a corresponding spectral family given by Spectral Theorem I. Prove that, for any real polynomial p ,

$$\langle p(S)u, v \rangle = \int_m^{M+\varepsilon} p(\lambda) d\langle E_\lambda u, v \rangle, \quad \forall u, v \in \mathcal{H}. \quad (1)$$

Hint: Start by proving the case $v = u$, using Theorem A.2.1 and Lemma 2.2.2.

4. Prove the uniqueness of the spectral family given by Spectral Theorem I.

Hint: Given two spectral families $(E_\lambda)_{\lambda \in \mathbb{R}}, (F_\lambda)_{\lambda \in \mathbb{R}}$ and a fixed $u \in \mathcal{H}$, introduce the function $\phi(\lambda) := \langle E_\lambda u, u \rangle - \langle F_\lambda u, u \rangle$. Then use (1), Theorem A.3.3 and Theorem A.3.4.