

HOMEWORK WEEK 4

1. Let $A \in \mathcal{B}(\mathcal{H})$. Prove that $r_\sigma(A) \leq \|A\|$.

Hint: Use the contraction mapping principle.

2. An operator $A \in \mathcal{B}(\mathcal{H})$ is called **normal** if $AA^* = A^*A$. Prove that $r_\sigma(A) = \|A\|$ for any normal operator $A \in \mathcal{B}(\mathcal{H})$.

Hint: Consider the symmetric operator $T = AA^*$ and use the Spectral Radius Theorem to compute $r_\sigma(T)$ in two different ways.

3. Show that the relation $A \geq B$ defines a partial order on $\mathcal{B}(\mathcal{H})$.

Recall: A partial order is a binary relation which is reflexive, transitive and antisymmetric.

4. Let $A : \ell^2 \rightarrow \ell^2$ be the **double right shift**, defined by $(u_1, u_2, \dots) \mapsto (0, 0, u_1, u_2, \dots)$.

(a) Show that A is bounded and compute $\|A\|$.

(b) Find A^* .

(c) Find $\sigma_p(A)$, $\sigma_r(A)$ and $\sigma_c(A)$.

(d) Is A positive? Find $B : \ell^2 \rightarrow \ell^2$ such that $A = B^2$.

5. Let $a \in L^\infty[0, 1]$ and consider the **multiplication operator** $A : L^2[0, 1] \rightarrow L^2[0, 1]$ defined by $(Au)(x) = a(x)u(x)$.

(a) Show that A is bounded and compute $\|A\|$.

(b) Find a condition on a for A to be positive and, in this case, find the square root of A .

(c) Show that:

(i) $\sigma_p(A) = \{\lambda \in \mathbb{C} ; |\{x \in [0, 1] ; a(x) = \lambda\}| > 0\}$;

(ii) $\sigma_r(A) = \emptyset$;

(iii) $\sigma(A) = \text{essrge}(a)$.

Recall: $|E|$ is the Lebesgue measure of a Borel set $E \subset [0, 1]$, and $\text{essrge}(a)$ is the essential range of a , defined as

$$\text{essrge}(a) := \{\lambda \in \mathbb{C} ; \text{for all } \varepsilon > 0 : |\{x \in [0, 1] ; |a(x) - \lambda| < \varepsilon\}| > 0\}.$$