

HOMEWORK WEEK 3

1. Let $S : \mathcal{H} \rightarrow \mathcal{H}$ be bounded and symmetric.

(a) Prove that all the eigenvalues (if any) of S are real. Show that eigenvectors of S corresponding to distinct eigenvalues are orthogonal.

(b1) Prove that $\lambda \in \rho(S)$ iff there exists $C > 0$ such that

$$\|(S - \lambda I)u\| \geq C \|u\|, \quad \forall u \in \mathcal{H}.$$

(b2) Prove that $\lambda \in \sigma(S)$ iff there exists a sequence $(u_n) \subset \mathcal{H}$ such that

$$\|u_n\| = 1 \quad \forall n \geq 1 \quad \text{and} \quad \|(S - \lambda I)u_n\| \rightarrow 0 \quad (n \rightarrow \infty).$$

(c) Prove that $\sigma(S) \subset \mathbb{R}$ using (b1).

(d1) Let m and M be the lower bound and upper bound of S , respectively.

Prove that $\lambda \notin [m, M] \Rightarrow \lambda \in \rho(S)$.

(d2) Prove that $m, M \in \sigma(S)$.

Hint: Start by showing that $M \in \sigma(S)$ in case $S \geq 0$.

2. Consider a sequence $(S_n)_{n \geq 1}$ of symmetric operators, such that $S_n \rightarrow S$ strongly in $\mathcal{B}(\mathcal{H})$ as $n \rightarrow \infty$. Show that S is symmetric.

Hint: Apply the triangle inequality to $\|S - S^*\|$.

3. Find a Hilbert space \mathcal{H} and a sequence of operators $(A_n)_{n \in \mathbb{N}} \subset \mathcal{B}(\mathcal{H})$ which converges strongly but not in operator norm.

4. Let $S, B \in \mathcal{B}(\mathcal{H})$.

(a) If S is symmetric, show that $SB = BS \Rightarrow SB^* = B^*S$.

(b) If S and B are symmetric, show that SB is symmetric $\Leftrightarrow SB = BS$.

(c) If S is symmetric, show that any polynomial in S with real coefficients is symmetric.

5. Show that the multiplication operator $X : L^2[0, 1] \rightarrow L^2[0, 1]$ defined by

$$(Xu)(x) = xu(x), \quad x \in [0, 1],$$

is a bounded symmetric operator without eigenvalues. Find the spectrum of X .