

## HOMEWORK WEEK 2

1. Let  $M$  and  $N$  be closed subspaces of the Hilbert space  $\mathcal{H}$ . Denote by  $P$  and  $Q$  the associated projections. Prove the following statements. (Drawing a picture in  $\mathbb{R}^3$  can help.)
  - (a) For all  $u, v \in \mathcal{H}$ ,  $\langle Pu, v \rangle = \langle u, Pv \rangle$ .
  - (b)  $M = \text{Im } P$  and  $M^\perp = \ker P$ .
  - (c)  $I - P$  is the projection onto  $M^\perp$ .
  - (d)  $M \subseteq N$  if and only if  $PQ = QP = P$ .
  - (e)  $PQ = 0 \Leftrightarrow QP = 0 \Leftrightarrow M \perp N$ .
  - (f) For all  $u \in \mathcal{H}$ ,  $\langle Pu, u \rangle \leq \langle Qu, u \rangle$  if and only if  $M \subseteq N$ .
2. Prove that a bounded operator  $P : \mathcal{H} \rightarrow \mathcal{H}$  is a projection if and only if it is symmetric and idempotent (i.e.  $P^2 = P$ ).
3. Let  $\mathcal{H}$  be a complex Hilbert space. For  $T \in \mathcal{B}(\mathcal{H})$ , prove that

$$\langle Tu, u \rangle = 0 \quad \forall u \in \mathcal{H} \implies T = 0.$$

Find a counterexample in the real case.

*Hint:* Write  $u = v + \lambda w$  and use special values of  $\lambda \in \mathbb{C}$ .

4. Prove that, for any bounded operator  $A : \mathcal{H} \rightarrow \mathcal{H}$ ,

$$\mathcal{H} = \ker A^* \oplus \overline{\text{rge } A}.$$

*Hint:* (Prove and) use the fact that  $\mathcal{X}^{\perp\perp} = \overline{\mathcal{X}}$  for any subspace  $\mathcal{X} \subset \mathcal{H}$ .

5. We define the **left shift**  $S : \ell^2 \rightarrow \ell^2$  and the **right shift**  $T : \ell^2 \rightarrow \ell^2$  by

$$(Su)_n = u_{n+1}, \quad n \geq 1$$

and

$$(Tu)_1 = 0, \quad (Tu)_n = u_{n-1}.$$

- (a) Show that  $S$  and  $T$  are bounded. Compute  $\|S\|$  and  $\|T\|$ .
- (b) Find  $S^*$  and  $T^*$ .
- (c) Find  $\sigma_p(S), \sigma_p(T), \sigma_r(S), \sigma_r(T), \sigma_c(S)$  and  $\sigma_c(T)$ .

6. Suppose  $S \in \mathcal{B}(\mathcal{H})$  is symmetric. Prove that

$$\text{Re } \langle Su, v \rangle = \frac{1}{4} \left( \langle S(u+v), u+v \rangle - \langle S(u-v), u-v \rangle \right), \quad \forall u, v \in \mathcal{H}$$

and

$$\text{Im } \langle Su, v \rangle = \frac{1}{4} \left( \langle S(u+iv), u+iv \rangle - \langle S(u-iv), u-iv \rangle \right), \quad \forall u, v \in \mathcal{H}.$$

Deduce the classical polarization identity for  $\langle u, v \rangle$ .