

HOMEWORK WEEK 11

1. Taking the definition that $U : \mathcal{H} \rightarrow \mathcal{H}$ is unitary if U is surjective and $\langle Uu, Uv \rangle = \langle u, v \rangle$ for all $u, v \in \mathcal{H}$, show that a unitary operator $U : \mathcal{H} \rightarrow \mathcal{H}$ satisfies the following properties:

- $\|U\| = 1$;
- U is invertible with $U^{-1} = U^*$ unitary.

Then show that, in fact, $U \in \mathcal{B}(\mathcal{H})$ is unitary if and only if $UU^* = U^*U = I$.

- Show that a weakly continuous one-parameter unitary group is strongly continuous.
- Prove Stone's Theorem: To any strongly continuous one-parameter unitary group $(U_t)_{t \in \mathbb{R}}$ corresponds a unique selfadjoint operator A such that

$$U_t = e^{itA} \quad \text{for all } t \in \mathbb{R}.$$

Furthermore, $U_t \curvearrowright A$ for all $t \in \mathbb{R}$.

Strategy: Let $A := -iG$ where G is the infinitesimal generator of $(U_t)_{t \in \mathbb{R}}$, and consider the set \mathfrak{D} of all finite linear combinations of elements of the form

$$u_\phi = \int_{\mathbb{R}} \phi(t) U_t u \, dt,$$

for $u \in \mathcal{H}$ and $\phi \in C_0^\infty(\mathbb{R})$ (see Appendix C for the meaning of this integral). The theorem is then proved in three steps.

- Using the results of Section C.2, show that \mathfrak{D} is dense in \mathcal{H} , and contained in \mathfrak{D}_A .
- Show that A is essentially selfadjoint.

Hint: Letting $f(t) = \langle U_t u, v \rangle$, note that

$$\langle u, G^* v \rangle = \langle Gu, v \rangle = f'(0), \quad \forall u \in \mathfrak{D}_G, v \in \mathfrak{D}_{G^*}.$$

- By differentiating $\|(U_t - e^{it\bar{A}})u\|^2$ with respect to t , show that $U_t = e^{it\bar{A}}$. Conclude.