

HOMEWORK WEEK 10

1. Let $A : \mathfrak{D}_A \subseteq \mathcal{H} \rightarrow \mathcal{H}$ be a selfadjoint operator. Prove that $\sigma_r(A) = \emptyset$.

2. Let $\mathcal{H} = L^2(\mathbb{R})$ and define $H : \mathfrak{D}_H \subset \mathcal{H} \rightarrow \mathcal{H}$ by

$$H := -\frac{d^2}{dx^2}, \quad \mathfrak{D}_H := C_c^\infty(\mathbb{R}).$$

(a) Prove that H is symmetric.

(b) Prove that H^* is given by $H^* = -\frac{d^2}{dx^2}$ on $\mathfrak{D}_{H^*} = \mathfrak{D}$, where

$$\mathfrak{D} := \{v \in L^2(\mathbb{R}) ; v \in C^1(\mathbb{R}), v' \in AC[a, b] \text{ for any } -\infty < a < b < \infty, v'' \in L^2(\mathbb{R})\}.$$

(c) Using Theorem 3.5.6, determine whether H is essentially selfadjoint.

3. Consider the multiplication operator in $\mathcal{H} = L^2(\mathbb{R})$ defined by

$$(Xu)(x) := xu(x), \quad \mathfrak{D}_X := \{u \in L^2(\mathbb{R}) ; xu(x) \in L^2(\mathbb{R})\}.$$

(a) Show that X is unbounded and selfadjoint.

(b) Find the spectrum and the spectral family of X .