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Fundamental Lemma of Calculus of Variations/Du Bois-Reymond Lemma

Lemma 1. Let n ∈ N≥0. Let f ∈ L1
loc((a, b)), −∞ ≤ a < b ≤ +∞, satisfy∫ b

a
f(x)φ(n)(x)dx = 0 ∀φ ∈ C∞c ((a, b))

Then f(x) is a.e. a polynomial of degree at most n − 1 (where 0 is what we consider a polynomial of
degree −1).

Proof. First, we state a useful observation : Assume that f ∈ L1
loc((a, b)) and for any compact interval

I ⊂ (a, b) which is not a singleton, there exists a polynomial pI(x) for which f(x) = pI(x) almost every-
where on I. Then the polynomial representation of f does not depend on I, i.e. f(x) = pI(x) = p(x) a.e.
on (a, b). Proof : It suffices to observe that the polynomial pI(x) is independent of I. If I, J ⊂ (a, b) are
two compact intervals, take a larger compact interval I, J ⊂ K ⊂ (a, b) so that f(x) = pI(x) = pK(x) on
I and f(x) = pJ(x) = pK(x) on J . This implies pI(x) = pJ(x) = pK(x) are the same polynomials.

Thanks to this observation, assume without loss of generality that f ∈ L1([a, b]). Let φ ∈ C∞c (R),
φ ≥ 0, ||φ||L1(R) = 1 and φε(x) = ε−1φ(ε−1x) for ε > 0 be a standard family of mollifiers.

Then ρε ∗ f(x) converges to f(x) in L1([a, b]) as ε → 0. In particular, we have pointwise convergence

almost everywhere along some subsequence. Moreover, ρε∗f(x) ∈ C∞(R) and (ρε∗f)(n)(x) = (ρ
(n)
ε ∗f)(x).

Observe now that for x ∈ (a, b) fixed, y 7→ ρε(x − y) has support in (x − εb, x − εa) ⊂ (a, b) if
0 < ε < min{(x− a)b−1, (b− x)a−1}, where 0−1 = +∞ by convention. Hence,

(ρ(n)ε ∗ f)(x) =

∫ b

a
ρ(n)ε (x− y)f(y)dy

=

∫ b

a

dn

dyn
((−1)nρε(x− y)) f(y)dy

= 0 ∀x ∈ (a, b),∀0 < ε < min{(x− a)b−1, (b− x)a−1}
by assumption on f .

Fixing I ⊂ (a, b) a compact interval which is not a singleton, we deduce (ρ
(n)
ε ∗ f)(x) = 0 for all x ∈ I

and ε > 0 small enough (this depends only on I, a and b). Hence,

(ρε ∗ f)(x) =
n−1∑
k=0

ck,εx
k

almost everywhere on I.
To conclude the proof, it suffices to check that the coefficients ck,ε converge as ε → 0. Pointwise

convergence of ρε ∗ f to f then implies that f is given by a polynomial pI(x) on I and we can use again
the observation from the beginning of the proof to conclude.

Fix x1, ..., xn ∈ I distinct for which lim
ε→0

ρε ∗ f(xi) = lim
ε→0

∑n−1
k=0 ck,εx

k
i = f(xi). This limit can be

rewritten as

lim
ε→0


1 x1 x21 . . . xn−11

1 x2 x22 . . . xn−12
...

...
... . . .

...
1 xn x2n . . . xn−1n

 ·


c0,ε
c1,ε

...
cn−1,ε

 =


f(x1)
f(x2)

...
f(xn)


The matrix on the left-hand side is an invertible Vandermonde matrix A which does not depend on ε.

Applying A−1, the vector of coefficients must converge. �

Corollary 1. Fix n ∈ N≥0. The subspace M = {φ(n)(x) : φ ∈ C∞c (R)} ⊂ L2(R) is dense.
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Proof. The Du Bois-Reymond lemma implies that M⊥ ⊂ L2(R) contains only polynomials of degree
≤ n− 1. The only square-integrable polynomial is the trivial one, i.e. M⊥ = {0}, so M is dense. �

Remark 1. If −∞ < a < b < +∞, the subspace M = {φ′(x) : φ ∈ C∞c ((a, b))} ⊂ L2((a, b)) is not dense.
Indeed, ∫ b

a
φ′(x)dx = φ(b)− φ(a) = 0 ∀φ ∈ C∞c ((a, b))

i.e. every element of M has zero mean. The embedding L2((a, b)) ⊂ L1((a, b)) implies that every element
of M must have zero mean as well, so density cannot hold. In fact, the Du-Bois Reymond Lemma shows
that M⊥ is the set of constant functions.


