
MATH524 – Spring 2025
Problem Set: Week 11

1. (k-NN) In this question we will explore some of the key steps in proving consistency of the k-NN algorithm

(see Theorem 4 from Chapter 7). Recall that the empirical risk for the clustering scheme is defined by

Rn(C) =
1

n

n∑
i=1

‖xi − C(xi)‖2 =
1

n

n∑
i=1

min
j
‖xi − cj‖2.

The nearest neighbour algorithm is chosen such that

Rn(C) = min
|C|≤kn

Rn(C).

For this question, assume the data xn1 is fixed. Let Cn = {c1, . . . , ckn} and C̄n = {c̄1, . . . , c̄kn} denote two sets

of cluster centers corresponding to two clustering schemes C and C̄.

(a) Show that

|Rn(C)−Rn(C̄)| ≤ max
i,j

(‖xi − cj‖+ ‖xi − c̄j‖) max
j
‖cj − c̄j‖.

Solution: Plugging in for Rn and simplifying,

|Rn(C)−Rn(C̄)| =

∣∣∣∣∣ 1n
n∑
i=1

( min
j=1,...,kn

‖xi − cj‖ − min
j=1,...,kn

‖xi − c̄j‖)

∣∣∣∣∣
≤ 1

n

n∑
i=1

max
j=1,...,n

(‖xi − cj‖+ ‖xi − c̄j‖)‖cj − c̄j‖

≤ max
i,j

(‖xi − cj‖+ ‖xi − c̄j‖) max
j
‖cj − c̄j‖.

This result shows that the empirical risk on a bounded set of cluster centers is a continuous function of

the cluster centers.

(b) Show that for the clustering scheme Cn that minimizes Rn over all nearest neighbour clustering schemes

with kn clusters, Rn(Cn)→ 0 as n→∞ for E[‖x‖2] <∞.

Hint: You may wish to use a truncation argument to split the risk function.

Solution: Let {u1, u2, . . .} be a countable dense subset of Rd with u1 = 0. Choose L > 0. Then,

Rn(Cn) ≤ 1

n

n∑
i=1

min
j=1,...,kn

‖xi − uj‖2

≤ 1

n

∑
i:xi∈[−L,L]d

min
j=1,...,kn

‖xi − uj‖2 +
1

n

∑
i:xi∈Rd\[−L,L]d

min
j=1,...,kn

‖xi − uj‖2

≤ max
x∈[−L,L]d

min
j=1,...,kn

‖x− uj‖2 +
1

n

∑
i:xi∈Rd\[−L,L]d

‖xi‖2

→ 0 + E[‖x‖21(x ∈ Rd\[−L,L]d)].

Since we assume E[‖x‖2] <∞, letting L→∞, E[‖x‖21(x ∈ Rd\[−L,L]d)]→ 0 and the result follows.
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(c) Show that if Πn is the collection of all partitions induced by the kn nearest enighbour clustering scheme,

M(Πn) = kn.

Solution: Every k-nearest neighbour clustering scheme generates exactly k cluster centers that partition

all the data. Thus, we directly see that M(Πn) = k.

(d) Show that for the kn-NN partitioning scheme, ∆(Πn) ≤ (n+ 1)(d+1)k2n

Solution: Putting together the results of Theorem 8 and Theorem 9 from Chapter 5, ∆(xn1 ,Πn) ≤
(n+ 1)(d+1). Thus, by definition and the fact that each kn-NN partition is the intersections of at most k2n

hyperplanes perpendicular to one of the k2n pairs of cluster centers, ∆(Πn) ≤
(
(n+ 1)(d+1)

)k2n .

2. (Packing and covering numbers (Chapter 5, Lemma 2)) F = {f ∈ Rd} and ν is a probability measure

with p ≥ 1, ε > 0. Then,

M(2ε,F , Lp(ν)) ≤ N(ε,F , Lp(ν)) ≤M(ε,F , Lp(ν))

where M is the packing number and N is the covering number.

Solution: Let f1, . . . , fl be a 2ε-packings of F w.r.t Lp(ν). Any set

Uε(g) = {h : Rd → R : ‖h− g‖Lp(ν) < ε}

constains at most one fi from the packing. This directly implies the first inequality. For the second inequality,

we assume M(ε,F , Lp(ν)) < ∞ since otherwise the proof is trivial. Now, let g1, . . . , gl be an ε-packing of F
of size l =M(ε,F , Lp(ν)). Letting h ∈ F be an arbitrary function, {h, g1, . . . , gl} is a subset of F of size l+ 1

and so it cannot by an ε-packing of F . Thus, there exists a j ∈ {1, . . . , l} such that

‖h− gj‖Lp(ν) < ε.

This means that {g1, . . . , gl} is an ε-cover of F and so the second inequality follows.
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