MATHb524 — Spring 2025
Problem Set: Week 11

1. (k-NN) In this question we will explore some of the key steps in proving consistency of the k-NN algorithm
(see Theorem 4 from Chapter 7). Recall that the empirical risk for the clustering scheme is defined by
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The nearest neighbour algorithm is chosen such that

R,(C) = \é?gulin R, (C).

For this question, assume the data z7 is fixed. Let C, = {c1,...,cx,} and C,, = {é1,..., ¢k, } denote two sets

of cluster centers corresponding to two clustering schemes C and C.
(a) Show that

[Ra(C) = Ra(C)] < max(fli — ¢l + llzs — &) max le; — &1

Solution: Plugging in for R,, and simplifying,
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This result shows that the empirical risk on a bounded set of cluster centers is a continuous function of
the cluster centers.

(b) Show that for the clustering scheme C,, that minimizes R,, over all nearest neighbour clustering schemes
with &, clusters, R,(C,) — 0 as n — oo for E[||z]|?] < oc.
Hint: You may wish to use a truncation argument to split the risk function.

Solution: Let {u1,us,...} be a countable dense subset of R? with u; = 0. Choose L > 0. Then,
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|z]|?1(x € R¥\[~L, L]%)] — 0 and the result follows.

Since we assume E[||z]|?] < oo, letting L — oo, E[



(¢) Show that if IT,, is the collection of all partitions induced by the k,, nearest enighbour clustering scheme,
M1,) = ky,.
Solution: Every k-nearest neighbour clustering scheme generates exactly k cluster centers that partition
all the data. Thus, we directly see that M (I1,,) = k.

(d) Show that for the k,-NN partitioning scheme, A(IL,,) < (n 4+ 1)(d+1)ki

Solution: Putting together the results of Theorem 8 and Theorem 9 from Chapter 5, A(z?,1I,,) <
(n+ 1)@+ Thus, by definition and the fact that each k,-NN partition is the intersections of at most k2

kz

hyperplanes perpendicular to one of the k2 pairs of cluster centers, A(II,,) < ((n + 1)(d+1))

2. (Packing and covering numbers (Chapter 5, Lemma 2)) F = {f € R?} and v is a probability measure
with p > 1, € > 0. Then,

M(2e,F,L,(v)) < N(e,F,L,(v)) < M(e, F, Ly(v))

where M is the packing number and N is the covering number.

Solution: Let fi,..., fi be a 2e-packings of F w.r.t L,(v). Any set
Ulg)={h:R* 5 R:|h— gllz,w) <e}

constains at most one f; from the packing. This directly implies the first inequality. For the second inequality,
we assume M (e, F, L,(v)) < oo since otherwise the proof is trivial. Now, let g1,..., ¢ be an e-packing of F
of size | = M(e, F, L,(v)). Letting h € F be an arbitrary function, {h, ¢1,..., g} is a subset of F of size [ 41
and so it cannot by an e-packing of F. Thus, there exists a j € {1,...,1} such that

Ih—gillz, o) <e-

This means that {gi,...,9;} is an e-cover of F and so the second inequality follows.



