

MATH524 – Spring 2025
Problem Set: Week 11

1. (**k -NN**) In this question we will explore some of the key steps in proving consistency of the k -NN algorithm (see Theorem 4 from Chapter 7). Recall that the empirical risk for the clustering scheme is defined by

$$R_n(C) = \frac{1}{n} \sum_{i=1}^n \|x_i - C(x_i)\|^2 = \frac{1}{n} \sum_{i=1}^n \min_j \|x_i - c_j\|^2.$$

The nearest neighbour algorithm is chosen such that

$$R_n(C) = \min_{|C| \leq k_n} R_n(C).$$

For this question, assume the data x_1^n is fixed. Let $\mathcal{C}_n = \{c_1, \dots, c_{k_n}\}$ and $\bar{\mathcal{C}}_n = \{\bar{c}_1, \dots, \bar{c}_{k_n}\}$ denote two sets of cluster centers corresponding to two clustering schemes C and \bar{C} .

(a) Show that

$$|R_n(C) - R_n(\bar{C})| \leq \max_{i,j} (\|x_i - c_j\| + \|x_i - \bar{c}_j\|) \max_j \|c_j - \bar{c}_j\|.$$

Solution: Plugging in for R_n and simplifying,

$$\begin{aligned} |R_n(C) - R_n(\bar{C})| &= \left| \frac{1}{n} \sum_{i=1}^n \left(\min_{j=1, \dots, k_n} \|x_i - c_j\| - \min_{j=1, \dots, k_n} \|x_i - \bar{c}_j\| \right) \right| \\ &\leq \frac{1}{n} \sum_{i=1}^n \max_{j=1, \dots, n} (\|x_i - c_j\| + \|x_i - \bar{c}_j\|) \|c_j - \bar{c}_j\| \\ &\leq \max_{i,j} (\|x_i - c_j\| + \|x_i - \bar{c}_j\|) \max_j \|c_j - \bar{c}_j\|. \end{aligned}$$

This result shows that the empirical risk on a bounded set of cluster centers is a continuous function of the cluster centers.

(b) Show that for the clustering scheme C_n that minimizes R_n over all nearest neighbour clustering schemes with k_n clusters, $R_n(C_n) \rightarrow 0$ as $n \rightarrow \infty$ for $\mathbb{E}[\|x\|^2] < \infty$.

Hint: You may wish to use a truncation argument to split the risk function.

Solution: Let $\{u_1, u_2, \dots\}$ be a countable dense subset of \mathbb{R}^d with $u_1 = 0$. Choose $L > 0$. Then,

$$\begin{aligned} R_n(C_n) &\leq \frac{1}{n} \sum_{i=1}^n \min_{j=1, \dots, k_n} \|x_i - u_j\|^2 \\ &\leq \frac{1}{n} \sum_{i: x_i \in [-L, L]^d} \min_{j=1, \dots, k_n} \|x_i - u_j\|^2 + \frac{1}{n} \sum_{i: x_i \in \mathbb{R}^d \setminus [-L, L]^d} \min_{j=1, \dots, k_n} \|x_i - u_j\|^2 \\ &\leq \max_{x \in [-L, L]^d} \min_{j=1, \dots, k_n} \|x - u_j\|^2 + \frac{1}{n} \sum_{i: x_i \in \mathbb{R}^d \setminus [-L, L]^d} \|x_i\|^2 \\ &\rightarrow 0 + \mathbb{E}[\|x\|^2 \mathbf{1}(x \in \mathbb{R}^d \setminus [-L, L]^d)]. \end{aligned}$$

Since we assume $\mathbb{E}[\|x\|^2] < \infty$, letting $L \rightarrow \infty$, $\mathbb{E}[\|x\|^2 \mathbf{1}(x \in \mathbb{R}^d \setminus [-L, L]^d)] \rightarrow 0$ and the result follows.

(c) Show that if Π_n is the collection of all partitions induced by the k_n nearest neighbour clustering scheme, $M(\Pi_n) = k_n$.

Solution: Every k -nearest neighbour clustering scheme generates exactly k cluster centers that partition all the data. Thus, we directly see that $M(\Pi_n) = k$.

(d) Show that for the k_n -NN partitioning scheme, $\Delta(\Pi_n) \leq (n+1)^{(d+1)k_n^2}$

Solution: Putting together the results of Theorem 8 and Theorem 9 from Chapter 5, $\Delta(x_1^n, \Pi_n) \leq (n+1)^{(d+1)}$. Thus, by definition and the fact that each k_n -NN partition is the intersections of at most k_n^2 hyperplanes perpendicular to one of the k_n^2 pairs of cluster centers, $\Delta(\Pi_n) \leq ((n+1)^{(d+1)})^{k_n^2}$.

2. (Packing and covering numbers (Chapter 5, Lemma 2)) $\mathcal{F} = \{f \in \mathbb{R}^d\}$ and ν is a probability measure with $p \geq 1$, $\varepsilon > 0$. Then,

$$\mathcal{M}(2\varepsilon, \mathcal{F}, L_p(\nu)) \leq N(\varepsilon, \mathcal{F}, L_p(\nu)) \leq \mathcal{M}(\varepsilon, \mathcal{F}, L_p(\nu))$$

where \mathcal{M} is the packing number and N is the covering number.

Solution: Let f_1, \dots, f_l be a 2ε -packings of \mathcal{F} w.r.t $L_p(\nu)$. Any set

$$U_\varepsilon(g) = \{h : \mathbb{R}^d \rightarrow \mathbb{R} : \|h - g\|_{L_p(\nu)} < \varepsilon\}$$

contains at most one f_i from the packing. This directly implies the first inequality. For the second inequality, we assume $\mathcal{M}(\varepsilon, \mathcal{F}, L_p(\nu)) < \infty$ since otherwise the proof is trivial. Now, let g_1, \dots, g_l be an ε -packing of \mathcal{F} of size $l = \mathcal{M}(\varepsilon, \mathcal{F}, L_p(\nu))$. Letting $h \in \mathcal{F}$ be an arbitrary function, $\{h, g_1, \dots, g_l\}$ is a subset of \mathcal{F} of size $l+1$ and so it cannot be an ε -packing of \mathcal{F} . Thus, there exists a $j \in \{1, \dots, l\}$ such that

$$\|h - g_j\|_{L_p(\nu)} < \varepsilon.$$

This means that $\{g_1, \dots, g_l\}$ is an ε -cover of \mathcal{F} and so the second inequality follows.