

MATH524 – Spring 2025
Problem Set: Week 8

Recall from last week's exercises that we can define the total variation distance as

$$TV(P, Q) = \frac{1}{2} \int |p - q| d\nu = 1 - \int \min(p, q) d\nu.$$

1. **(Pinsker's inequality)**

(a) Show the following upper bound on the total variation distance:

$$TV(P, Q) \leq \int (\sqrt{p} - \sqrt{q})^2 d\nu := h^2(P, Q)$$

The function h^2 is also known as the Hellinger distance.

Solution: Let us define the following function:

$$h^2(P, Q) = \int (\sqrt{p} - \sqrt{q})^2 d\nu.$$

This is also known as the Hellinger distance. Using the absolute-value definition of TV and Cauchy-Schwarz,

$$\begin{aligned} 2TV(P, Q) &= \int |p - q| d\nu = \int |\sqrt{p} - \sqrt{q}| |\sqrt{p} + \sqrt{q}| d\nu \leq h(P, Q) \sqrt{\int |\sqrt{p} + \sqrt{q}|^2 d\nu} \\ &= h(P, Q) \sqrt{2 + \int \sqrt{pq} d\nu} = h(P, Q) \sqrt{4 - h^2(P, Q)} \leq 2h(P, Q). \end{aligned}$$

(b) Using the result of part (a) as an intermediate step, show the following inequality:

$$TV(P, Q)^2 \leq KL(P, Q).$$

Hint: You may wish to use the fact that $\log(1 + x) \leq x$ for $x > -1$.

Solution: We will use the hint and the concavity of the log function.

$$\begin{aligned} KL(P, Q) &= \int p \log \frac{p}{q} d\nu = 2 \int p \log \frac{\sqrt{p}}{\sqrt{q}} d\nu \\ &= -2 \int p \log \left(1 + \frac{\sqrt{q}}{\sqrt{p}} - 1 \right) d\nu \geq -2 \int p \left(\frac{\sqrt{q}}{\sqrt{p}} - 1 \right) d\nu = h^2(P, Q). \end{aligned}$$

The result now follows by squaring both sides of part (a).

2. **(Le Cam's inequality)** Show the following relationship:

$$\int \min(p, q) d\nu \geq \frac{1}{2} \left(\int \sqrt{pq} \right)^2$$

Solution: We start by noticing the fact that

$$\int \min(p, q) d\nu + \int \max(p, q) d\nu = 2.$$

Then,

$$\begin{aligned}
\left(\int \sqrt{pq} \right)^2 &= \left(\int \sqrt{\min(p, q) \max(p, q)} \right)^2 \\
&\leq \int \min(p, q) \int \max(p, q) \\
&= \int \min(p, q) \left[2 - \int \min(p, q) \right] \\
&= 2 \int \min(p, q) - \left(\int \min(p, q) \right)^2 \\
&\leq 2 \int \min(p, q),
\end{aligned}$$

where we use the fact that $(\int \min(p, q))^2 \geq 0$.

3. (Affinity, TV and KL)

(a) Using Jensen's inequality and Le Cam's inequality from Question 2, show that

$$\int \min(p, q) d\nu \geq \frac{1}{2} \exp(-\text{KL}(P, Q))$$

Solution: Trivially, we only need to consider the case where $\text{KL}(P, Q) < \infty$. By Jensen's inequality, we have

$$\begin{aligned}
\left(\int \sqrt{pq} \right)^2 &= \exp(2 \log \int_{pq>0} \sqrt{pq}) \\
&= \exp(2 \log \int_{pq>0} p \sqrt{q/p}) \\
&\geq \exp(2 \int_{pq>0} p \log \sqrt{q/p}) \\
&= \exp(- \int_{pq>0} p \log(\sqrt{p/q})^2) \\
&= \exp(-\text{KL}(P, Q)).
\end{aligned}$$

The conclusion follows from plugging in the expression into the bound from Le Cam's inequality.

(b) Finally, conclude the following relationship between TV and KL:

$$TV(P, Q) \leq 1 - \frac{1}{2} \exp(-\text{KL}(P, Q)).$$

Solution: The result follows directly from part (a) and Scheffé's Theorem that was proven in the previous week's exercise.