

MATH524 – Spring 2025
Problem Set: Week 6

1. (Subgaussian Chaining and Dudley's Entropy Integral)

Let (\mathcal{T}, d) be a non-empty metric space and X_t be real-valued random variables for $t \in \mathcal{T}$. Suppose $\mathbb{E}[X_t] = 0$ for all $t \in \mathcal{T}$ and assume the subgaussian increments condition

$$\mathbb{E}[\exp(\lambda(X_t - X_s))] \leq \exp\left(\frac{\lambda^2 d(s, t)^2}{2}\right)$$

for all $s, t \in \mathcal{T}$. Assume that there is a countable subset $\mathcal{T}' \subseteq \mathcal{T}$ with $\sup_{t \in \mathcal{T}} X_t = \sup_{t' \in \mathcal{T}'} X_{t'}$ almost surely.

(a) Show that if $t_1, \dots, t_N \in \mathcal{T}$ and $s_1, \dots, s_N \in \mathcal{T}$ satisfy $\max_{1 \leq j \leq N} d(s_j, t_j) \leq \delta$ then

$$\mathbb{E}\left[\max_{1 \leq j \leq N} (X_{t_j} - X_{s_j})\right] \leq \delta \sqrt{2 \log N}.$$

Hint: you may wish to show first that if $\lambda > 0$ then $\max_{1 \leq j \leq N} x_j \leq \frac{1}{\lambda} \log \sum_{j=1}^N \exp(\lambda x_j)$ for any $x_j \in \mathbb{R}$.

(b) For $\varepsilon > 0$ we say a subset $\mathcal{T}_\varepsilon \subseteq \mathcal{T}$ is an ε -cover of (\mathcal{T}, d) if $\sup_{t \in \mathcal{T}} \inf_{s \in \mathcal{T}_\varepsilon} d(s, t) \leq \varepsilon$. The covering number $N(\varepsilon, \mathcal{T}, d)$ is the cardinality of the smallest ε -cover. Show that if $\varepsilon \leq \varepsilon'$ then $N(\varepsilon, \mathcal{T}, d) \geq N(\varepsilon', \mathcal{T}, d)$.

(c) Define the diameter $D = \sup_{s, t \in \mathcal{T}} d(s, t)$. Show that if $D = \infty$ then $N(\varepsilon, \mathcal{T}, d) = \infty$ for all $\varepsilon > 0$.

Hint: You may choose to prove this result by contradiction.

For the remainder of this question we will assume $D < \infty$.

(d) For $k \geq 0$ let \mathcal{T}_k be a $(2^{-k}D)$ -cover of (\mathcal{T}, d) with cardinality $N_k = N(2^{-k}D, \mathcal{T}, d)$ and for all $t \in \mathcal{T}$ let $\pi_k(t) \in \mathcal{T}_k$ satisfy $d(t, \pi_k(t)) \leq 2^{-k}D$. Using the result from part (a), show that $d(\pi_{k+1}(t), \pi_k(t)) \leq 3 \cdot 2^{-k-1}D$ and deduce that

$$\mathbb{E}\left[\sup_{t \in \mathcal{T}} (X_{\pi_{k+1}(t)} - X_{\pi_k(t)})\right] \leq 3 \cdot 2^{-k}D \sqrt{\log N_{k+1}}.$$

(e) Show that $N_0 = 1$ and by considering the chain $t_{\pi_0(t)} \rightarrow t_{\pi_1(t)} \rightarrow \dots \rightarrow t$ show that

$$\mathbb{E}\left[\sup_{t \in \mathcal{T}} X_t\right] \leq 6 \sum_{k=1}^{\infty} 2^{-k}D \sqrt{\log N_k}.$$

Hint: first assume that \mathcal{T} is finite, then extend to the countable setting, and finally to a general set \mathcal{T} .

(f) By considering Riemann sums, prove Dudley's entropy integral:

$$\mathbb{E}\left[\sup_{t \in \mathcal{T}} X_t\right] \leq 12 \int_0^{\infty} \sqrt{\log N(\varepsilon, \mathcal{T}, d)} \, d\varepsilon.$$