

MATH524 – Spring 2025
Problem Set: Week 6

1. (Subgaussian Chaining and Dudley's Entropy Integral)

Let (\mathcal{T}, d) be a non-empty metric space and X_t be real-valued random variables for $t \in \mathcal{T}$. Suppose $\mathbb{E}[X_t] = 0$ for all $t \in \mathcal{T}$ and assume the subgaussian increments condition

$$\mathbb{E}[\exp(\lambda(X_t - X_s))] \leq \exp\left(\frac{\lambda^2 d(s, t)^2}{2}\right)$$

for all $s, t \in \mathcal{T}$. Assume that there is a countable subset $\mathcal{T}' \subseteq \mathcal{T}$ with $\sup_{t \in \mathcal{T}} X_t = \sup_{t' \in \mathcal{T}'} X_{t'}$ almost surely.

(a) Show that if $t_1, \dots, t_N \in \mathcal{T}$ and $s_1, \dots, s_N \in \mathcal{T}$ satisfy $\max_{1 \leq j \leq N} d(s_j, t_j) \leq \delta$ then

$$\mathbb{E}\left[\max_{1 \leq j \leq N} (X_{t_j} - X_{s_j})\right] \leq \delta \sqrt{2 \log N}.$$

Hint: you may wish to show first that if $\lambda > 0$ then $\max_{1 \leq j \leq N} x_j \leq \frac{1}{\lambda} \log \sum_{j=1}^N \exp(\lambda x_j)$ for any $x_j \in \mathbb{R}$.

Solution: The hint can be proven directly as

$$\max_{1 \leq j \leq N} x_j = \frac{1}{\lambda} \log \exp\left(\lambda \max_{1 \leq j \leq N} x_j\right) = \frac{1}{\lambda} \log \max_{1 \leq j \leq N} \exp(\lambda x_j) \leq \frac{1}{\lambda} \log \sum_{j=1}^N \exp(\lambda x_j).$$

So by Jensen's inequality, assuming $\delta > 0$ and $N \geq 2$,

$$\begin{aligned} \mathbb{E}\left[\max_{1 \leq j \leq N} (X_{t_j} - X_{s_j})\right] &\leq \mathbb{E}\left[\frac{1}{\lambda} \log \sum_{j=1}^N \exp(\lambda(X_{t_j} - X_{s_j}))\right] \leq \frac{1}{\lambda} \log \sum_{j=1}^N \mathbb{E}\left[\exp(\lambda(X_{t_j} - X_{s_j}))\right] \\ &\leq \frac{1}{\lambda} \log\left(N \exp\left(\frac{\lambda^2 \delta^2}{2}\right)\right) = \frac{\log N}{\lambda} + \frac{\lambda \delta^2}{2} \leq \delta \sqrt{2 \log N}, \end{aligned}$$

where the last inequality follows by setting $\lambda = \frac{\sqrt{2 \log N}}{\delta}$. Now if $\delta = 0$ or $N = 1$ then it is easy to see that $X_{t_j} - X_{s_j} = X_{t_{j'}} - X_{s_{j'}}$ almost surely for all $1 \leq j, j' \leq N$ and the result holds as $\mathbb{E}[X_{t_j} - X_{s_j}] = 0$.

(b) For $\varepsilon > 0$ we say a subset $\mathcal{T}_\varepsilon \subseteq \mathcal{T}$ is an ε -cover of (\mathcal{T}, d) if $\sup_{t \in \mathcal{T}} \inf_{s \in \mathcal{T}_\varepsilon} d(s, t) \leq \varepsilon$. The covering number $N(\varepsilon, \mathcal{T}, d)$ is the cardinality of the smallest ε -cover. Show that if $\varepsilon \leq \varepsilon'$ then $N(\varepsilon, \mathcal{T}, d) \geq N(\varepsilon', \mathcal{T}, d)$.

Solution: This follows because every ε -cover is an ε' -cover, so the smallest ε -cover must be at least as large as the smallest ε' -cover.

(c) Define the diameter $D = \sup_{s, t \in \mathcal{T}} d(s, t)$. Show that if $D = \infty$ then $N(\varepsilon, \mathcal{T}, d) = \infty$ for all $\varepsilon > 0$.

Hint: You may choose to prove this result by contradiction.

Solution: Suppose for contradiction that $N(\varepsilon, \mathcal{T}, d) = N < \infty$ for some $\varepsilon > 0$. Let $\mathcal{T}_N = \{t_1, \dots, t_N\}$ be a ε -cover and take $s, t \in \mathcal{T}$. Without loss of generality we can order the points so that $d(s, t_1) \leq \varepsilon$ and $d(t, t_N) \leq \varepsilon$. Then by the triangle inequality, $d(s, t) \leq d(s, t_1) + \sum_{j=1}^{N-1} d(t_j, t_{j+1}) + d(t, t_N) \leq 2\varepsilon + (N-1) \max_{1 \leq j, j' \leq N-1} d(t_j, t_{j'})$. But then taking a supremum over $s, t \in \mathcal{T}$ shows that $D < \infty$.

For the remainder of this question we will assume $D < \infty$.

(d) For $k \geq 0$ let \mathcal{T}_k be a $(2^{-k}D)$ -cover of (\mathcal{T}, d) with cardinality $N_k = N(2^{-k}D, \mathcal{T}, d)$ and for all $t \in \mathcal{T}$ let $\pi_k(t) \in \mathcal{T}_k$ satisfy $d(t, \pi_k(t)) \leq 2^{-k}D$. Using the result from part (a), show that $d(\pi_{k+1}(t), \pi_k(t)) \leq 3 \cdot 2^{-k-1}D$ and deduce that

$$\mathbb{E} \left[\sup_{t \in \mathcal{T}} (X_{\pi_{k+1}(t)} - X_{\pi_k(t)}) \right] \leq 3 \cdot 2^{-k}D \sqrt{\log N_{k+1}}.$$

Solution: By definition of π_k we have $d(\pi_{k+1}(t), \pi_k(t)) \leq d(\pi_{k+1}(t), t) + d(t, \pi_k(t)) \leq 2^{-k-1}D + 2^{-k}D = 3 \cdot 2^{-k-1}D$. Now apply part 1a to $X_{\pi_{k+1}(t)} - X_{\pi_k(t)}$. There are at most $N_k N_{k+1}$ such variables so

$$\begin{aligned} \mathbb{E} \left[\sup_{t \in \mathcal{T}} (X_{\pi_{k+1}(t)} - X_{\pi_k(t)}) \right] &\leq 3 \cdot 2^{-k-1}D \sqrt{2 \log(N_k N_{k+1})} \leq 3 \cdot 2^{-k-1}D \sqrt{2 \log(N_{k+1}^2)} \\ &\leq 3 \cdot 2^{-k}D \sqrt{\log N_{k+1}}. \end{aligned}$$

(e) Show that $N_0 = 1$ and by considering the chain $t_{\pi_0(t)} \rightarrow t_{\pi_1(t)} \rightarrow \dots \rightarrow t$ show that

$$\mathbb{E} \left[\sup_{t \in \mathcal{T}} X_t \right] \leq 6 \sum_{k=1}^{\infty} 2^{-k}D \sqrt{\log N_k}.$$

Hint: first assume that \mathcal{T} is finite, then extend to the countable setting, and finally to a general set \mathcal{T} .

Solution: $N_0 = 1$ because any singleton subset of \mathcal{T} is a D -cover. Suppose that \mathcal{T} is finite and take $\mathcal{T}_0 = \{t_0\}$. Let $2^{-K}D < \inf\{d(s, t) : d(s, t) \neq 0\}$ so that $\mathcal{T}_K = \mathcal{T}$ and note that since $\mathbb{E}[X_{t_0}] = 0$,

$$\begin{aligned} \mathbb{E} \left[\sup_{t \in \mathcal{T}} X_t \right] &= \mathbb{E} \left[\sup_{t \in \mathcal{T}} (X_t - X_{t_0}) \right] = \mathbb{E} \left[\sup_{t \in \mathcal{T}} (X_{\pi_K(t)} - X_{\pi_0(t)}) \right] = \mathbb{E} \left[\sup_{t \in \mathcal{T}} \sum_{k=0}^{K-1} (X_{\pi_{k+1}(t)} - X_{\pi_k(t)}) \right] \\ &\leq \sum_{k=0}^{K-1} \mathbb{E} \left[\sup_{t \in \mathcal{T}} (X_{\pi_{k+1}(t)} - X_{\pi_k(t)}) \right] \leq 3 \sum_{k=0}^{K-1} 2^{-k}D \sqrt{\log N_{k+1}} \leq 6 \sum_{k=1}^{\infty} 2^{-k}D \sqrt{\log N_k}. \end{aligned}$$

(f) By considering Riemann sums, prove Dudley's entropy integral:

$$\mathbb{E} \left[\sup_{t \in \mathcal{T}} X_t \right] \leq 12 \int_0^\infty \sqrt{\log N(\varepsilon, \mathcal{T}, d)} d\varepsilon.$$

Solution:

$$\begin{aligned} \mathbb{E} \left[\sup_{t \in \mathcal{T}} X_t \right] &\leq 6 \sum_{k=1}^{\infty} 2^{-k}D \sqrt{\log N(2^{-k}D, \mathcal{T}, d)} = 12 \sum_{k=1}^{\infty} \int_{2^{-k-1}D}^{2^{-k}D} \sqrt{\log N(2^{-k}D, \mathcal{T}, d)} d\varepsilon \\ &\leq 12 \int_0^\infty \sqrt{\log N(\varepsilon, \mathcal{T}, d)} d\varepsilon. \end{aligned}$$

Since this does not depend on the cardinality of \mathcal{T} , it must also hold if \mathcal{T} is countable by the monotone convergence theorem. By separability it holds for general \mathcal{T} since $\sup_{t \in \mathcal{T}} X_t = \sup_{t' \in \mathcal{T}'} X_{t'}$ almost surely for some countable \mathcal{T}' .