

MATH524 – Spring 2025
Problem Set: Week 4

1. (Kernel Density Estimation with a Fourth Order Kernel)

Let X_1, \dots, X_n be i.i.d. real-valued samples from a distribution with Lebesgue density function $f(x)$. Suppose that f is four times continuously differentiable with $|f^{(r)}(x)| \leq M$ for $0 \leq r \leq 4$.

Define the fourth order Epanechnikov kernel as $K(u) = \frac{45}{32} \left(1 - \frac{7u^2}{3}\right) (1 - u^2)$ for $-1 \leq u \leq 1$. Recall that the kernel density estimator of $f(x)$ is given by

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h} K\left(\frac{X_i - x}{h}\right).$$

(a) Show that K is indeed a fourth order kernel by proving the following four statements.

$$\int_{-1}^1 K(u) du = 1, \quad \int_{-1}^1 uK(u) du = 0, \quad \int_{-1}^1 u^2 K(u) du = 0, \quad \int_{-1}^1 u^3 K(u) du = 0.$$

You may wish to use the fact that $K(u) = K(-u)$.

(b) Show that the variance is bounded by

$$\mathbb{V}[\hat{f}(x)] \leq \frac{5M}{4nh}.$$

You may wish to show first that $\int_{-1}^1 K(u)^2 du = \frac{5}{4}$.

(c) Show that the bias is bounded by

$$|\mathbb{E}[\hat{f}(x)] - f(x)| \leq \frac{45Mh^4}{384}.$$

You may wish to use a third order Taylor expansion with Lagrange remainder for f around the point x .

Note that $|K(u)| \leq \frac{45}{32}$.

- (d) Use the bias and variance upper bounds to derive an approximate optimal bandwidth which minimizes the mean squared error at each x . You may ignore constants which depend on M , giving your answer as a function of n only.
- (e) Using this approximate optimal bandwidth, provide an upper bound on the mean squared error of the kernel density estimator as a function of n only.
- (f) Compare the bias, variance, approximate optimal bandwidth and mean squared error upper bound derived above with those arising from an order 2 kernel, ignoring constants. What do you think would happen in the general case where $p \geq 2$ is even? Give any extra regularity assumptions you require.
- (g) Find u which minimizes $K(u)$ and report the associated value of $K(u)$. Propose a modified estimator $\tilde{f}(x)$ based on $\hat{f}(x)$ which satisfies:
 - i. $\tilde{f}(x) \geq 0$ for all $x \in \mathbb{R}$ almost surely.
 - ii. $\mathbb{E}[(\tilde{f}(x) - f(x))^2] \leq \mathbb{E}[(\hat{f}(x) - f(x))^2]$ for all $x \in \mathbb{R}$.

2. (Influence functions) Determine the influence function $\varphi(x; \theta)$ for the variance estimator.